
1 3

Engineering with Computers (2016) 32:231–246
DOI 10.1007/s00366-015-0412-3

ORIGINAL ARTICLE

Influence surfaces by boundary element/least square methods 
coupling

Valério da Silva Almeida1 · Luttgardes de Oliveira Neto2 

Received: 13 June 2014 / Accepted: 11 August 2015 / Published online: 2 September 2015 
© Springer-Verlag London 2015

bending moment and shear force for the safe design of the 
structure. A referential vehicle is located in many positions 
to obtain the design variable envelopes, which are usually 
called influence surfaces for bi-dimensional analysis.

In this context, the thin plate theory is applied for this 
evaluation, in which some models have been developed 
along two distinct lines. In the first, manual methods were 
developed generating famous influence surface charts, 
which were obtained by solving the differential equations 
using Fourier series for various shapes and support condi-
tions. In this category, Rusch and Hergenroder [30] and 
Rusch [31] approaches, and respectively charts, are cur-
rently applied in this line. One of the most famous design 
charts was produced by Pucher [28], who presented a col-
lection of influence surface charts for isotropic slabs; Brit-
ish and American Standard Specifications use this method. 
However, these procedures are very cumbersome, and 
impossible in most cases, for solving plates with irregular 
geometries, non-conventional types of loadings, the pres-
ence of cavities, curved or skewed side plates, and do not 
allow internal support conditions. Besides, the bending 
moment and shear force obtained using these charts are 
very conservative.

The second line of research uses a powerful numerical 
method, such as the finite element method (FEM) for stress/
strain calculation in conjunction with other mathematical 
tools. Some groups developed specific FE formulations 
for computing influence surfaces, such as Orakdogan and 
Girgin [23] and Shen [34] who presented generalizations 
of the classical Muller Breslau principle using Betti´s law 
to construct influence surfaces. Other researchers applied 
commercial FEM software integrated with some other pro-
cedures, such as Memari and West [20], who used the 3D 
FEM and the technique called ‘adjoint method’ for deter-
mining the influence surface, or Kong [17], who developed 
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1  Introduction
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loads must be considered for calculating stress, deflections, 
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a practical method to determine critical moments of bridge 
decks using the method of least squares and spreadsheets 
with FE software.

In all the lines of work discussed so far, both procedures 
have some disadvantages for treating influence surface; the 
former ones are limited for general problems, and the lat-
ter, for simulating complex problems, makes it necessary 
to refine the discretization of the structure geometry, which 
requires huge computational work and the results have 
strong mesh dependencies.

In light of these considerations, this work presents a 
new application for calculating the influence surfaces 
of transverse displacements, directional derivatives and 
bending moments for bridge decks using the boundary 
element method (BEM) with the application of a con-
tinuous field surface derived from the least square pro-
cedure. Two works presented similar coupling proposal, 
with boundary method and least square (nodal) procedure 
applied to thin plates subjected to concentrated loads [37, 
38].

The BEM has advantages over FEM when applied to 
analyze surface and volume bodies because the problems 
are formulated using boundary integrals, in which vari-
ables are calculated. In other words, the problems are for-
mulated with one dimension less than the real problem. 
In elastic-linear problems, the internal discretization is 
not necessary, making it advantageous to determine influ-
ence surfaces of bending plates and, consequently, not 
requiring longer computational processing cost. Another 
advantage of using BEM over FEM is the non-domain 
mesh dependency of the former, an extremely important 
factor in accurately computing the design variables of the 
domain.

This formulation also allows calculating influence 
surfaces of plates with polygonal, curved or circular 
geometry, and a Gaussian coordinate transformation 
is used over the boundary elements to obtain internal 
values at points very close to the boundary with good 
results. The proposal permits future analysis of build-
ing floors and bridge trusses, simulating both isolated 
and continuous plates connected to longitudinal and 
transversal girders under normal traffic loads defined by 
specific standards. Numerical examples are presented 
to prove and to demonstrate the potential of the present 
formulation and the results are compared with analyti-
cal values.

2 � Boundary element method

The BEM is already recognized as an alternative to the 
FEM when solving different engineering problems, but it 

is still necessary to optimize studies and formulations for 
new applications.

The direct method for elastic bending plates was 
elaborated by Hansen [14], followed by the studies by 
Bezine [6] and Stern [36], who, in turn, developed direct 
formulations based on Green identity, which considers 
two integral equations that are relative to the transverse 
displacement and its normal derivative to the boundary 
line. Afterwards, basic and pioneer studies were pro-
duced by Tottenham [40], Wu and Altiero [42], Hart-
mann and Zotemantel [15], Song and Mukherjee [35], 
Paris and Leon [27], Abdel-Akher and Hartley [2] and 
Beskos [5].

Very recent works have aimed to apply BEM formula-
tions considering different aspects of civil engineering, 
such as stiffened plate by beams, shear deformation, plate 
over foundations and laminated plates, such as Almeida 
and Paiva [3, 4], Rashed [29], Sapountzakis and Mokos 
[32], Waidemam and Venturini [41], Fernandes [11], Shao 
and Wu [33], Hwu [16], Palermo Jr [26], or simulations 
such as damage, fracture, vibration or modal analysis, in 
which line we can cite Fudoli et al. [12], Botta et al. [7], 
Xia et al. [43], Citarella and Cricrì [8] and [9], Paiva et al. 
[25].

Considering several plate geometries, the analytical 
integral resolution for geometrically linear elements is 
possible, but solutions are difficult when the elements are 
geometrically curved. For bending plates, Oliveira Neto 
and Paiva [21] proved that the best solutions require an 
approximation by curved boundary elements (quadratic or 
circular). The same formulation is used here; the integral 
resolution is carried out numerically, a Gaussian coordi-
nate transformation is used over the boundary elements and 
the equivalent shear forces, Vn, are represented as a con-
centrated force in the nodes of the boundary [21]. These 
propositions allow obtaining internal values at points very 
close to the boundary or to concentrated loads with good 
numerical precision.

2.1 � Integral equations for bending plates

The integral equations for fixed and free-boundary plates 
involve the following boundary variables: transverse 
displacement w, directional derivative dw/dn, equiva-
lent shear force Vn and normal bending moment mn, and 
their respective fundamental solutions w*, dw*/dn, Vn

*, mn
* 

(Fig. 1).
The integral Eq.  (1) for the transverse displacement w 

and its directional derivative dw/dn at point Q are written 
by means of the summation of boundary integrals, which 
are then performed on every boundary element, defined 
geometrically based on the nodal values: 
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in which, C(Q)  =  β/2π, with β as the internal angle of 

the boundary at point Q; Jk = d Γl

dξ
=

√

(

dx
dξ

)2

+

(

dy
dξ

)2

 

is the Jacobean of the local coordinate transformation; 

UT
k =

{

w1
(

∂w
∂n

)1
w2

(

∂w
∂n

)2
w3

(

∂w
∂n

)3
}

 is the bound-

ary displacement vector; PT
k =

{

V1
nm

1
nV

2
nm

2
nV

3
nm

3
n

}

 is 
the boundary bending moment and equivalent shear force 
vector; φk represents the interpolate function for bound-
ary variables, quadratic polynomials are used in this 
formulation; Rc is the corner reaction; Rc  =  m−

ns − m+
ns 

u∗T =

{

w∗(Q, P)
(

∂w∗

∂n

)

(Q, P)
}

 is the fundamental dis-
placement vector; p∗T =

{

V∗
n (Q, P) m

∗
n (Q, P)

}

 is the 
fundamental bending moment and equivalent shear force 
vector; and g(p) is the transverse load distributed over 
domain region Ωg.

In BEM, the boundary is divided into elements whose 
variables are approximated by interpolate functions, 

(1)

C(Q)U(Q)+

Ne
∑

l=1

1
∫

−1

Jk φ
k p∗(Q,P)Uk dξ

+

Nc
∑

i=1

R
∗
ci
(Q,P)Uci(P)

=

Ne
∑

l=1

1
∫

−1

Jk φ
k u∗(Q,P)Pk dξ

+

Nc
∑

i=1

Rci(P) u
∗
ci
(Q,P)

+

∫

Ωg

g(p) u∗(Q, p)dΩg(p)

preserving the continuity of displacement function along 
element boundaries.

In the cases that use quadratic or circular approxima-
tion, three points are necessary to geometrically define the 
boundary element, and the approximate functions are as 
follows:

in which ξ is a local non-dimensional coordinate.
The detailed expressions that define geometrically quad-

ratic and circular elements are described in Oliveira Neto 
and Paiva [21].

Equation (1), written for all the boundary points, results 
in a system of linear equations as expressed in Eq. (2):

in which [H] and [G] are matrices obtained by calculating 
boundary integrals over all boundary elements; {T} is the 
vector with contributions of transverse distributed load g(p) 
over domain region Ωg.

Imposing the boundary conditions, taking them to vector 
{P} and changing the correspondent columns of [H] and 
[G], the system of equations can be rewritten as:

where {X} is the vector of the unknown nodal variables at 
the boundary, [A] has contributions from matrices [H] and 
[G] after changing columns.

2.2 � Equations of bending moments on internal points

After the resolution of system (3), the unknown variables 
of the boundary are calculated and it is possible to obtain 
the displacements w(s), the direction derivatives ∂w/∂m and 
the curvatures in relation to a direction m for the domain 
points. As such, the following matrix equation is obtained, 
similar to that already described for the boundary points:

where

 being, Npi the number of internal points.
In turn, the bending and twisting moments in the inter-

nal points are given by equations expressed in the indicated 
form:

φ1 =
1

2
ξ(ξ − 1); φ2 = (1− ξ)(1+ ξ); φ3 =

1

2
ξ(ξ + 1)

(2)[H]{U} = [G]{P} + {T}

(3)[A]{X} = {B}

(4){U(s)} +
[

H ′
]

{U} =
[

G′
]

{P} +
{

p′
}

{U(s)}T =
{

w1(∂w/∂m)1 . . .wNpi(∂w/∂m)Npi
}

(5)Mij = −D

[

νδij
∂2w

∂xl∂xl
+ (1− ν)

∂2w

∂xi∂xj

]

, with, i, j, l = 1, 2

Fig. 1   Plate with load region Ωg
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Here D is the flexural rigidity and v is the Poisson’s 
ratio. Replacing the integral equation of displacement w (4) 
at a plate domain point into the moment Eq. (5), and per-
forming the necessary integrations, the integral equation of 
the bending moment of the plate domain points is obtained:

The algebraic equations of bending moments can be 
written by a similar procedure already described as:

where {M(s)}T = {M1M2 · · ·MNpi}, {Mi}
T = {MxMxyMy}  

and  Mx, My and Mxy are bending and twisting  
moments, defined, respectively, as Mx =

∫

h/2

−h/2
σxzdz,

My =
∫ h/2

−h/2
σyzdz and Mxy =

∫ h/2

−h/2
τxyzdz.

3 � Influence surface determination

For calculating the maximum effect Es at a defined cross 
section of a structural element by boundary element for-
mulation, this effect depends on the summation of maxi-
mum effects at the same cross section as the result of loads 
applied to all points of the structural element. This way, the 
structure must be computed several times by a unitary load 
applied to those points to obtain the set of maximum effects 
Es at the specified cross section.

Those discrete values are defined as required for each 
point and they will be computed to trace the influence sur-
face of effect Es at the defined cross section.

The direct use of the fundamental solution in determin-
ing the influence surface (IS) is most appropriate when 
one knows the position of the dead and/or standard vehi-
cle loads. In case of determining the position of these criti-
cal actions to take to the extreme effect of Es at a defined 
cross section of the structural element, the knowledge of 

(6)

Mij(s) = −

∫

Γ

[

q∗nij (s,Q)w(Q)

−m∗
nij
(s,Q)

∂w

∂n
(Q)− m∗

nsij
(s,Q)

∂w

∂s
(Q)

]

dΓ (Q)

+

∫

Γ

[

Vn(Q)w
∗
ij(s,Q)− mn(Q)

∂w∗

∂nij
(s,Q)

]

dΓ (Q)

+

Nc
∑

c=1

Rc(Q)w
∗
cij
(S,Q)+

∫

Ωg

g(q)w∗
ij(S, q)dΩg(q).

(7){M(s)} = −
[

H′′
]

{U} +
[

G′′
]

{P} +
{

p′′
}

a function that represents its IS, ηs (x, y) is more suitable 
and reliable. For instance, consider the case of one-dimen-
sional structure and the influence line (IL) of an effect Es at 
defined cross section S (see Fig. 2a):

The determination of the positive extreme effect, E+
S , of 

an effect Es, is achieved by the known curve ηs(x) and it is 
necessary to apply it as follows:

The distributed vehicle load (q), which has a variable 
length, must be applied over sections with values ηs(x) > 0 
and concentrated loads of standard vehicle Pi positioned at 
coordinates ηs(x) > 0.

The determination of positive areas defined by IL (A+
Si

) and 
the ordinate (η+S (x)) is not obvious as one might imagine. Even 
getting ηs(x) at discrete positions, directly using the fundamen-
tal solution, the maximization of this effect (or minimization 
for the case of minimum effects E−

S ) leads to very inaccurate 
values due the inappropriate procedure for determining these 
areas and localizing the ordinates for all the concentrated loads 
and arranging them continuously for getting extremes effects.

What is the total area A+
S ? Where are the loads Pi applied 

to obtain the maximum/minimum effect?
The use of an adequately known function ηs(x) facili-

tates this process since the optimization problem can be 
written as follows:

subject to

Similarly, it should be extended to the case of two-dimen-
sional structure and influence surface, where the surfaces 
must be determined, its volume, and to which certain posi-
tions the loads must be applied (see Fig. 2b).

The determination of a known function surface ηs(x, y) 
for effect Es also facilitates this process, and we must thus 
determine the regions that generate extreme values by solv-
ing the following optimization problem:

subject to

max(Es)

min(Es)

}

=

x0+var
∫

x0

q(x) · ηsdx +
∑

Pi · η(x)

P(x) =







P1(x)

P2(x + a)

P3(x + a+ b)

and q(x) = q, (x0 < x < x0 + var.)

max(Es)

min(Es)

}

=

∫

Ω

q(x, y) · ηs(x, y)dΩ + ΣPi·η(x, y)

P(x, y) =







































P1(x, y)

P2(x + a, y)

P3(x + a+ b, y)

P1(x, y− c)

P2(x + a, y− c)

P3(x + a+ b, y− c)

and q(x, y) = q, (x0 < x < x0+var.), (y0 < y < y0+d)
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Fig. 2   a Concept for calculat-
ing maximum/minimum design 
effects subject to concentrated 
vehicle and distributed loads for 
beams. b Concept for calculat-
ing maximum/minimum design 
effects subject to concentrated 
vehicle and distributed loads for 
plates. c Influence surface of 
point s on the plate
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Thus, both optimization problems with restrictions 
can be solved immediately using a classical deterministic 
process.

This optimization process is not applied herein to deter-
mine extreme actions. We made the generation of influence 
surfaces investigating and determining the parameters of 
their generation to bring the ordinate values and regions for 
the subsequent application of loads in the process of deter-
mining the extreme actions at a defined cross section of the 
structural element.

The study of vehicle loads initiates with the determi-
nation of the influence surface, ηs(x,  y). The numerical 
procedure starts with the plate discretization in boundary 
elements and the definition of a total of ‘n’ points inside, 
on which the unit load equivalent is applied. At each itera-
tion, corresponding to the unit load positioned on each 
internal point “i”, the boundary unknowns are determined 
by solving equation system (3). In the same iteration, 
after calculating the boundary values, Eqs. (4) and (7) are 
applied to obtain the internal displacements, moments and 
shear forces. All of these calculated values are stored in 
temporary individual files that must be used to generate 
the ‘extreme quantity surfaces’.

For each type of response, a surface is generated with 
the extreme values at each internal point ‘i’ corresponding 
to the variation of the unitary load applied to all ‘n’ domain 
points. All of these calculated and stored values are used 
for generating ‘influence surfaces’, as shown in Fig.  2c. 
The ‘influence surface’, ηs(x, y), refers to an effect Es that 
derives from a generic section ‘s’ of domain Ω when an 
unitary load is applied to all the points regularly spread on 
the plate domain.

Note that the equivalent unit concentrated load is actu-
ally a uniformly distributed load over a small square region 
whose center is the chosen load point. Domain integrals 

∫

Ωg
 

in Eqs. (1), (4) and (6) are transformed into a summation of 
integrals over boundary Γg of each respective loaded region 
(Oliveira Neto and Paiva, [21]). This proposal permits the 
calculation of internal values, mainly bending moments, at 
load points avoiding strong singularities in fundamental solu-
tions of these equations and high gradients in internal values, 
e.g., bending moments. This BE technique also justifies the 
use of the least square technique to fit the discrete values 
obtained by the procedure described. Even for small areas of 
plate support, such as plates supported on columns, there are 
no high gradients in bending moment values, as proved in 
Paiva and Venturini [24] and Oliveira Neto and Paiva [22].

3.1 � Effect approximation discretized by the least 
square procedure

The extreme effects Es are obtained in sections “s” of the 
domain and the boundary. Each of these effects can be 

represented by a continuous field surface with the appli-
cation of a polynomial interpolation of the least square 
type.

The surface adjustment by the least square method is a 
mathematical procedure for finding the best-fitting surface 
that adjusts to the set of values of a given sample, so as 
to minimize the square of the distance between this surface 
and these points [18].

A continuous field can be obtained using this adjust-
ment procedure, producing a surface in terms of the defined 
values read in the domain and boundary, which can be dis-
placements or bending moment values.

Fig. 3   Scheme of the tridimensional surface adjustment

Fig. 4   Load effect determination (Ec) using numerical integration 
with the automated Delaunay triangulation
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For the sake of simplicity and following the Weierstrass 
theory, it is possible to approximate the domain field by 
polynomial functions, and this procedure does not induce 
considerable numerical errors, provided the approximat-
ing fields do not have high gradient for displacement or 
bending moments at points of the domain. This occurs, 
for instance, in problems that consider fracture or damage 
mechanical theory, which is not considered herein.

domain, n indicates the total number of known values, or 
internal points.

Substituting the approximation of η̄(x, y)k given by expres-
sion (8) in (11) and minimizing function Q in relation to each 
term of real coefficients, it arrives at a linear system with the 
polynomial coefficients of the unknown values. The matricial 
representation of this system is generically given by:

As such, it is desirable to approximate η(x,  y), with 
(x, y) ∊ Ω (Fig. 3); in other words, η(x, y) is defined in a closed 
interval of continuous and real vectorial space, using com-
pletely orthonormal bases to represent polynomial Pm so that:

and furthermore such that the distances between the points of 
η(x, y) are the closest to the adopted function Pm(x, y), where 
m is the maximum power of the polynomial.

To determine the polynomial Pm(x,  y), the real coeffi-
cients should guarantee that:

The definitions for distance are given by:

with

and where (·, ·) represents the inner product, η̄(x, y)k are the 
known displacements or bending moments at point k of the 

(8)
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Considering a grid automatic generation applied over 
the entire domain with a total number of internal points (n), 
the linear system, Eq. (12), is obtained and it can be solved 
where unknown values αi are the polynomial coefficients of 
each influence surface.

The errors involved in the least square fitting can be esti-
mated by the following expression:

3.2 � Load effect determination

When the influence surfaces are obtained, it is possible to 
calculate the effect of any load by using the hypothesis that 
there is a linear superposition of effects.

Hence, the final effect (bending moments or displace-
ments) at a section (s) under a certain load distribution is 
written as:

where nc and nd are, respectively, the number of concen-
trated (F) and distributed (q) forces acting on the plate. 
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These actions are generated by dead loadings due to struc-
tural and non-structural part of bridges and imposed traffic 
loading due to road vehicles, which are defined by specific 
codes, for example, AASHTO [1].

In the second part of expression (14), the k-th portion 
referring to the distributed load is numerically integrated 
over domain Ωk, which is automatically discretized in trian-
gular elements using the Delaunay triangulation algorithm, 

Fig. 5   Flowchart of the compu-
tational process
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the procedure of which was incorporated to the present 
formulation following Lee and Schachter [19] algorithms. 
Figure  4 shows a portion of the volume integration to be 
computed for considering the distributed forces, which is 
carried out numerically using triangular coordinates, as 
indicated in Hammer et al. [13] as:

where nh is the number of integration points, ξi
1, ξ

i
2 and ξi

3 
are the homogeneous coordinates of the triangle, J is the 
Jacobean of element j, and wi represents the weight factor 
at the point of integration.

Figure 5 depicts the flowchart of the computational pro-
cess, but Eq. 3 is replaced with:

(15)Ek
S =

elem
∑

j=1

|J|j ·

[

nh
∑

i=1

ηs(ξ
i
1, ξ

i
2, ξ

i
3) · qk · wi

]

(16)[A]{X}i = {δ}i

Fig. 6   a Geometry, plate data; b number of internal points (IP) and polynomial degree (PD); c characteristic loads of [10] (1985) including the 
figure of the vehicular moving loads (bottom); d propagation of the wheel load from the upper to the middle surface of the plate

Table 1   Transverse 
displacements and bending 
moments mx and my at section a

* Intel Core2 Quad CPU/2.83 GHz, 4 GB RAM

Case Transversal displacement
w · D/(q · L4)

Error (%) Bending moments
mx = my = m/(q · L2)

Error (%) Time (s)*

a 0.003878 −4.5 0.05173 8.0 57

b 0.004085 0.6 0.05160 7.7 58

c 0.004066 0.1 0.04908 2.4 164

d 0.004063 0.0 0.04852 1.3 257

[21] 0.004062 – 0.04789 – –

Fig. 7   Convergence of transverse displacements and bending 
moments on the central plate using the influence surface model
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where index i refers to the set of values obtained for the i-th 
internal point which represents each section (c). The vector 
on the right side of Eq. (16) represents a function similar to 
the Kronecker’s delta, but with only a unitary value on the 
vertical position acting at each i-th internal node.

The application of a fundamental solution, or Green func-
tion, does not directly provide a defined effect from the appli-
cation of Eq. (14). This equation represents the computation 
of the integral whose kernel results from the multiplication of 
influence surface values with the set of traffic load, concen-
trated and distributed loads. However, the physical quantity 
values are obtained punctually at all internal points. Hence, 
to calculate the integral with distributed loads (Eq. 14), it is 
necessary to determine a surface which represents the set of 
these punctual values and the representation must be adjusted 
by a function for each quantity kind. The adjust function min-
imizes the approximation errors and, then, analytical surfaces 
are generated, obtained in this proposal by the least square 
method; both types of surfaces are here called “extreme quan-
tity surfaces” and “influence surfaces”.

4 � Numerical example

4.1 � Square plate simply supported at the boundaries

The plate in Fig. 6a was discretized into 48 boundary ele-
ments and the number of internal points (IP) and the poly-
nomial degree (PD) are also indicated cases in Fig. 6b.

Equivalent unit concentrated loads were applied to each 
IP and the effects were calculated using Eqs.  (3), (4) and 
(7) and the relationships (8) and (12), with the 13 integra-
tion points mentioned in (1974).

In the present formulation, displacements, bending 
moments and shear forces at any point in the domain can 
be obtained. Table 1 presents the results and the processing 
time necessary to obtain the effects acting on section a, com-
paring with the plate under only a uniform distributed load. 
The analytical values are found in Timoshenko [39] and they 
are: w · D/(q · L4) = 0.004062, mx/(q · L

2) = 0.04789 , 
with D = E·t3

12(1−ν2)
.

Figure  7 presents the convergence of transverse dis-
placements and bending moments at the central plate using 
influence surface model varying the number of the internal 
points and the polynomial degree.

This simple example aims to evaluate the computational 
formulation by comparing the present formulation with the 
analytical solution varying the number of internal points 
in conjunction with the number of the polynomial degree. 
Table 1 and Fig. 7 show good accuracy between both dif-
ferent formulations. It is worth pointing out that the present 
formulation can simulate this classical problem properly.

Pucher [28] presents tables, based on the analytical pro-
cedure to calculate influence surfaces on elastic plates. The 
extreme bending moments in bridge decks subjected to 
traffic loads are proposed in the German standard [10].

A standard vehicle load is defined to represent all the 
set of bridge loads, a principal vehicle compounded by six 
concentrated loads and small vehicles and pedestrians as 
uniformly distributed loads (Fig. 6c). The principal vehicle 
is located in a critical position aiming at extreme values of 
bending moments and the secondary loads distributed in 
a wide area of the bridge deck. Charts in Pucher [28] are 
used to calculate the bending moment values following 
the plate geometry, boundary conditions and mechanical 
properties of the structural material (Fig.  6a). It is neces-
sary to obtain the wheel contact area, adopting 0.5 m width 

Table 2   Numerical and analytical maximum bending moments (48 
elements)

Case mx Error (%) my Error (%)

IP = 121; PD = 4 104.06 8.1 103.47 10.96

IP = 169; PD = 4 100.93 4.9 100.26 7.5

IP = 441; PD = 4 96.96 0.8 96.13 3.1

Analytical solution, [3] 96.25 – 93.25 –

Fig. 8   Geometry, boundary elements and internal points
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and 0.2 m long. The propagation of the wheel load from the 
upper to the middle surface of the plate is equal to 0.5 m, as 
can be seen in Fig. 6d.

Following the expressions and chart number 79 pre-
sented in Pucher [28], it is possible to obtain the maximum 
bending moments using the expression:

Mmax = Mg +Mq = k · g · l2 + φ ·
[

P ·ML + p ·Mp + p′ ·Mp′
]

Adopting in the main lane a distributed dead load g = 10 
kN/m2 and null values for the uniformly distributed sec-
ondary loads (p  =  0, front and behind; p′  =  0, lateral; 
Fig. 6c), axle loads p = 75 kN (standard vehicle class 45), 
the impact factor is  φ = 1, the parameters k, ML, Mp and 
Mp’ are obtained using the cited charts.

In Table 2, the analytical values obtained by the charts 
indicated in Pucher [28] and the ones generated by the 
present procedure are presented, and the good accuracy 
between them can be verified. It is worth pointing out the 
limitation of the geometry and the standard vehicle load 
that can be considered in the classical charts [28], which is 
not a drawback for the present formulation, which is gen-
eral in both aspects, geometric and loads properties.

4.2 � Rectangular plate simply supported at 3 
boundaries and clamped at 1 boundary (dir. y)

The rectangular plate is simulated with ratio of border 
dimension Lx = 2 · Ly, Fig. 8. The discretization is used for 
the plate with 48 boundary elements, 169 internal points and 
polynomial degree 4. Figures 9, 10, 11 show extreme val-
ues for displacements and bending moments, by applying 
the equivalent unitary loading. The material properties are: 

Fig. 9   Maximum transverse displacements w for a moving unit force

Fig. 10   Maximum/Minimum extreme bending moments mx for a moving unit force

Fig. 11   Maximum/Minimum extreme bending moments my for a moving unit force
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Young’s modulus E = 21,000 MPa, Poisson’s ratio ν = 0.3 
and thickness h = 0.2 m.

The results of extreme transverse displacements in the 
plate can be seen in Fig. 9, in which maximum values are 
noticed to be obtained along the central area. Bending 
moments mx in Fig.  10 and my in Fig.  11 have the maxi-
mum positive values spread over a wide range, covering 
practically the entire width of the plate area and the mini-
mum negative values very close the clamped boundary.

The graphs presented in Figs.  10 and 11 are not the 
nominated influence surfaces but surfaces which represent 
the extreme effects in the plate area for each unitary load 
position (extreme quantity surfaces). The influence surfaces 
represent the effects in a specific cross section of the struc-
tural element for each unitary load position.

The influence surfaces were evaluated to bending 
moments mx and my in internal point E1 (Fig.  8), and the 
results are, respectively, shown in Fig.  12a, b. The differ-
ence between extreme quantity surfaces and the influence 
surfaces can be observed, for example, by comparing the 
respective representations for bending moments mx in 
Figs.  10 and 12a, respectively. Extreme quantity surfaces 
represent extreme mx values in all the internal points of 
the plate, positive values in all the plate area (Fig. 10a) and 

negative values close to the clamped boundary (Fig. 10b). 
The influence surface represents mx and my values 
(Fig. 12a) in a specific section. In other words, loads posi-
tioned over the blue area imply extreme negative values in 
section E1.

4.3 � Skewed plate (deck) supported at 2 
opposite boundaries and free at the 2 other 
boundaries

Next, two examples show several plate shapes, mainly 
bridge slabs, simulated by this computational code. Both 
are modeled assuming Young’s modulus E = 21,000 MPa, 
Poisson’s ratio ν = 0.3 and thickness h = 0.2 m.

Now, a skewed plate is simulated, where the plate 
was divided into 48 boundary elements and 194 internal 
points and the geometrical and the mechanical parameters 
are indicated in Fig. 13. The extreme quantity surfaces of 
transverse displacements and moments (bending mx, my 
and twisting mxy) are shown in Figs. 14, 15, 16. Figure 14a 
shows the displacement and Fig.  4b shows the twisting 
moment mxy values with orders of magnitude from 0.1 
to 0.2. The maximum values for mx and my, for a unitary 
force, are indicated in Figs.  15a and 16a, respectively, 

Fig. 12   Influence surface for mx and my in section E1

Fig. 13   Geometry, boundary elements and 194 internal points
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spread boundaries in the central region of the plate. Like-
wise, the minimum values for mx and my are indicated 
in Figs.  15b and 16b, respectively, concentrated near the 
clamped boundaries. Those values reach magnitudes in 
the order from 0.3 to 0.6. It also shows the importance 
of influence surfaces, mainly when partial and/or traf-
fic vehicle loads are presented in plate structures. For the 
case of reinforced concrete slabs, it is necessary to place 
additional reinforced bars in the regions with maximum 
mxy, such as a reinforced mesh armor at 45° to the main 
orthogonal mesh.

4.4 � Circular sector plate clamped at two 
opposite boundaries and free at two curved 
boundaries

Simulating a circular sector plate, this problem was divided 
into 30 boundary elements and 112 internal points. The 
geometry and the mechanical parameters are indicated in 
Fig.  17. The extreme quantity surfaces of transverse dis-
placements and moments (bending mx, my) are shown in 
Figs. 18 and 19. Figure 19 shows the bending moment neg-
ative values with an order of magnitude of −30. Negative 

Fig. 14   Maximum a transverse 
displacements w and b bending 
moments mxy for a moving unit 
force

Fig. 15   Maximum/Minimum extreme bending moments mx for a moving unit force
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values for bending moments occur along external curved 
free boundary, which means that for a partial load located 
near this edge, this region will present great negative 

moment values. In the opposite (internal) curved edge, the  
envelopes show that a partial load located near this edge do  
not cause significant bending moments to the plate. It again 
shows the importance of influence surfaces to determine 
the regions which, when loaded, will submit the plate with  
high level of effects, mainly when partial loads are presen 
ted.

5 � Conclusions

In this application, the objective was to use the advantages 
of BEM to elaborate a useful tool for structural engineers 
to determine influence surfaces for bending plates. The 
present formulation allowed eliminating the use of manual 
charts, which have so far been used for the same purpose, 
that is, for calculating influence surface of bridge decks, or 
eliminating the use of FEM software. But both procedures 

Fig. 16   Maximum/Minimum extreme bending moments my for a moving unit force

Fig. 17   Geometry, boundary elements and internal points

Fig. 18   Maximum transverse displacements w for a moving unit 
force
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have some disadvantage for treating influence surface; the 
former ones are limited for general problems; the latter 
requires refining the discretization of the structure geom-
etry to simulate complex problems, which demands huge 
computational work and the results present strong mesh 
dependencies.

The present formulation has general characteristics as 
it permits the simulation of plates with different shapes, 
including those with curved or circular boundaries, and 
type of vehicular loads. Manual charts only compute 
restricted and specific geometry, axle locations and num-
ber of wheels, not permitting specified classes or abnormal 
vehicle loads. The influence surfaces were used to obtain 
the maximum effects for several loads on the plate. Accord-
ing to the examples formulated by the authors, the present 
formulation proved to be efficient and robust with a short 
processing time considering the polynomial power for the 
computation of the final effect.

Some propositions are implemented to improve the 
numerical results, as demonstrated in Oliveira Neto and 
Paiva [21], such as using quadratic functions, a Gaussian 
coordinate transformation over the boundary elements and 
the concentrated equivalent shear forces Vn. These proposi-
tions also make possible to obtain internal values at points 
very close to the boundary or to concentrated loads with 
good numerical precision.

Another important proposition is the approach which 
considers an equivalent unit concentrated load as a uni-
formly distributed load over a square region centered by the 
load point. Domain integrals Ωg are calculated as a summa-
tion of integrals over boundary Γg of their respective load 
region. This proposal avoids the calculation of bending 
moments at load points with strong singularities in funda-
mental solutions and high gradients.

Our intention is to present a proposal that demonstrates 
the methodology for calculation procedures. Equation (14) 
represents the computation of the maximum effects as 
an integral with kernel results from the multiplication of 
influence surface values with the set of vehicular load, 

concentrated and distributed loads. Analytical surfaces are 
generated, obtained in this proposal by the least square 
method, approximating the set of punctual values of physi-
cal quantities and it is adjusted to minimize the approxi-
mation errors. Two types of surfaces can be generated, 
here called “extreme quantity surfaces” and “influence 
surfaces”.

Another research will be conducted to amplify its usage 
and prove it in comparison against charts. One of the future 
objectives will be applications in building floor or bridge 
slabs that are supported on flexible beams, over columns or 
pavements with potholes, through optimization techniques, 
in which the critical regions can be pinpointed, such as 
vehicle-type traffic.
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