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Nowadays, global warming and its resulting environmental changes is a hot topic in different biology re- 

search area. Phenology is one effective way of tracking such environmental changes through the study 

of plant’s periodic events and their relationship to climate. One promising research direction in this area 

relies on the use of vegetation images to track phenology changes over time. In this scenario, the cre- 

ation of effective image-based plant identification systems is of paramount importance. In this paper, we 

propose the use of a new representation of time series to improve plants recognition rates. This represen- 

tation, called recurrence plot (RP), is a technique for nonlinear data analysis, which represents repeated 

events on time series into a two-dimensional representation (an image). Therefore, image descriptors can 

be used to characterize visual properties from this RP images so that these features can be used as input 

of a classifier. To the best of our knowledge, this is the first work that uses recurrence plot for plant 

recognition task. Performed experiments show that RP can be a good solution to describe time series. 

In addition, in a comparison with visual rhythms (VR), another technique used for time series repre- 

sentation, RP shows a better performance to describe texture properties than VR. On the other hand, 

a correlation analysis and the adoption of a well successful classifier fusion framework show that both 

representations provide complementary information that is useful for improving classification accuracies. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Global warming and its resulting environmental changes have

aised important research topics of different disciplines. Among

hose is phenology that studies recurrent life cycles events and its

elationship to climate [35] . To increase the range of study sites

nd species and the effectiveness of phenological observations,

echnological devices (e.g., multi-channel imaging sensors) have

een successfully applied to provide metrics for estimating changes

n phenological events, such as leaf development and senescence

3,4,33] . 

Plant species recognition in the digital images is not a triv-

al task, especially in tropical vegetations, where one single image
✩ This paper has been recommended for acceptance by Jenny Qian Du. 
∗ Corresponding author at: Institute of Science and Technology, Federal University 

f São Paulo – UNIFESP, 12247-014 São José dos Campos, SP, Brazil. Tel.: +55 12 3309 

500; fax: +55 12 3921 8857. 

E-mail addresses: ffaria@unifesp.br , juruna18@gmail.com (F.A. Faria), jurandy. 

lmeida@unifesp.br (J. Almeida), bru.alberton@gmail.com (B. Alberton), 

morella@rc.unesp.br (L.P.C. Morellato), rtorres@ic.unicamp.br (R. da S. Torres). 

c  

g  

o  

f  

p  

q  

r  

t

ttp://dx.doi.org/10.1016/j.patrec.2016.03.005 

167-8655/© 2016 Elsevier B.V. All rights reserved. 
ay include a huge number of species [4] . This task is very time

onsuming since it has to be done in the field, first by matching

ach crown in the image to the tree in the soil and then by iden-

ifying the tree at species level. 

Our goal in this work is to support automatic plant species

ecognition tasks based on phenological pattern information. Dif-

erent patterns correspond to different species, as well as similar

atterns can be grouped in one species type or in a leaf func-

ional group that encompasses several species. This may not just

ave time for phenologists but also complement the phenological

nterpretation of the data collected. 

Almeida et al. [7] have proposed the use of machine-learning

ethods to find similar patterns in the digital images and then

heck if those patterns correspond to similar species or functional

roups. Their work was focused on the intraspecies analysis, i.e.,

n detecting different individuals of a same species. However, dif-

erent species from a same functional group may exhibit a similar

henological pattern [4] , confounding the classifiers. Hence, many

uestions arise when considering interspecies interactions, i.e., the

ecognition of individuals from different species but belonging to

he same functional group [4] . 
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In this work, we adopt the strategy of characterizing phenolog-

ical patterns from time series and distinguishing species from the

same leaf functional group in plant species recognition tasks. In

fact, several time series representations have been proposed in the

literature. Some successful approaches include data-adaptive (e.g.,

SAX [26] and APCA [23] ) and non-data adaptive representations

(e.g., wavelets [31] ). A good survey upon this subject can be found

in [40] . 

In this work, we present a novel approach for time series repre-

sentation, which is based on a technique for nonlinear data anal-

ysis called recurrence plots (RP). Different from other time series

representations, RP provides a visual mechanism for pattern iden-

tification, being suitable for combining with state-of-the-art com-

puter vision description approaches. This work has also been mo-

tivated by the results of [24] and [37] . Both studies indicate that

it is possible to perform classification tasks through the use of re-

currence plots and texture feature extraction approaches. RP tech-

nique has been used successfully in different application domain,

such as action recognition [24] , identification of diabetes analysis

of epilepsy [1] , and detection of financial crisis [2] . 

In our experiments, we performed four rigorous comparative

analysis to show the robustness of RP-based representations for

plant recognition tasks. We begin with an effectiveness study eval-

uating the performance of RP-based classifier associated with time

series of different hours of day. Then, we compared the proposed

approach with another time series representation proposed by [6] ,

called Visual Rhythm (VR). Next, we performed a correlation anal-

ysis to find out agreement/disagreement between all classifiers in-

volved between RP and VR-based representations. Finally, we adopt

a successful classifier fusion framework [16] to combine the most

suitable classifiers. Experimental results show that the combina-

tion of RP- and VR-based representations yields better results that

their use in isolation. 

In summary, the main contributions of this work are: (i) a

new representation of time series based on recurrence plots tech-

nique for plant recognition; (ii) effectiveness study of the recur-

rence plots approach in different hours of day; (iii) effectiveness

comparative study between recurrence plots and visual rhythm ap-

proaches; (iv) correlation analysis between recurrence plots and vi-

sual rhythm approaches; (v) use of a classifier fusion framework to

combine the most suitable classifiers using both approaches. 

The remainder of this paper is organized as follows.

Section 2 presents the phenological data acquisition process

considered in our study. Section 3 presents the recurrence plot

approach and how to use it for phenological time series represen-

tation. Section 4 describes the experimental protocol adopted to

validate the proposed approach. Section 5 reports the results of

our experiments and compares the proposed approach with an-

other time series representation. Finally, we offer our conclusions

and directions for future work in Section 6 . 

2. Phenological data acquisition 

A digital hemispherical lens camera (Mobotix Q24) was set up

in an 18 m-high tower in a Cerrado sensu stricto , a neotropical sa-

vanna vegetation located at Itirapina, São Paulo State, Brazil [4,32] .

Fig. 1 shows all steps of the time series acquisition process used in

our work. 

Firstly, we set up the camera to take a daily sequence of five

JPEG images (at 1280 × 960 pixels of resolution) per hour, from

6:00 to 18:00 h (UTC-3). The present study was based on the anal-

ysis of over 2700 images ( Fig. 1 a), recorded at the end of the dry

season, between August 29th and October 3rd 2011, day of year

241 to 278, during the main leaf flushing season [4] . 

Next, the image analysis has been conducted by defining dif-

ferent regions of interest (ROI), as described in [33] and defined
y [4] for our target species. Then, we analyzed 22 ROIs ( Fig. 1 b)

btained from a random selection of six plant species identified

anually by phenology experts in the hemispheric image [4] : 

(i) Three regions associated with Aspidosperma tomentosum

(green areas). 

(ii) Four regions for Caryocar brasiliensis (blue areas). 

(iii) Two regions for Myrcia guianesis (orange areas). 

(iv) Six regions for Miconia rubiginosa (magenta areas). 

(v) Two regions for Pouteria ramiflora (cyan areas), and 

(vi) Four regions for Pouteria torta (red areas). 

We analyzed each ROI in terms of the contribution of the pri-

ary colors (R, G, and B), as proposed by [34] and described in [4] .

nitially, we analyze each color channel and compute the average

alue of the pixel intensity ( Fig. 1 c). After that, we compute the

ormalized brightness of each color channel (RGB Chromatic co-

rdinates) ( Fig. 1 d). The normalization of those values reduces the

nfluence of the incident light, decreasing the color variability due

o changes on illumination conditions [4,11,41] . Finally, by comput-

ng those values along the whole period (August 28th to October

rd, 2011), we obtained time series to use as input data for our

roposed framework ( Fig. 1 e). 

According to the leaf exchange data from the on-the-ground

eld observations on leaf fall and leaf flush at our study site, those

pecies were classified on three functional groups [4,27] : (i) decid-

ous, A. tomentosum and C. brasiliensis ; (ii) evergreen, M. guianensis

nd M. rubiginosa ; and (iii) semideciduous, P. ramiflora and P. torta .

. Recurrence plots for plant species recognition 

This section introduces our approach for phenological time se-

ies representation using recurrence plots. Section 3.1 describes

ow to compute recurrence plots (RP) from time series, while

ection 3.2 presents how we use RP for representing phenology

ata. 

.1. Recurrence plots (RP) 

Recurrence plots (RP), proposed by [15] in dynamical systems, is

n advanced technique of nonlinear data analysis. RP technique has

een used to visualize repeated events (the recurrence of states) of

igher dimensional phase spaces through projection into the two

r three dimensional sub-spaces. This technique is able to investi-

ate recurrent behavior (periodicity) at time series ( m -dimensional

hase space) through a two-dimensional representation, such as a

istance square matrix. 

Recurrence Plot might be defined by: 

 i, j = �(εi − ‖ x i − x j ‖ ) , x i ∈ R 

m , i, j = 1 ...N (1)

here N is the number of considered states (dots at the time se-

ies) x i , ε i threshold distance, ‖ · ‖ a norm between the states

e.g., Euclidean norm), m is the embedding dimension, and �( ·)
he Heaviside function. This discontinuous function has value 0 for

egative argument and 1 for positive argument. 

Eq. (1) provides an N × N image, which shows us whether there

re recurrent states or not, along the target trajectory. This created

mage might be binary or grayscale, depending on the choice of a

hreshold or not. Fig. 2 shows a real time series from the dataset

nd two examples of recurrence plot considering those real time

eries, unthresholded and thresholded. 

The choice of an generalizable threshold to perform matching

etween two RP is a non-trivial task, but it can be possible with

ew heuristics [36] . As in this work we aim to make use of color

nd texture information, we have adopted the unthresholded ap-

roach using the Manhattan norm and m = 1 . This unthresholded

pproach is defined in Eq. (2) . However, we can not rule out that
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Fig. 1. The time series acquisition process pipeline. (a) Sample image of the cerrado savanna; (b) Different segmentation scales are computed and the coarse scale is selected; 

(c) Hemispherical image with the selected ROI’s species; (d) Channel representation are extracted from ROI’s; (e) RGB chromatic coordinates are computed; (f) Phenological 

time series extracted from digital images. 

Fig. 2. In (a), example of time series, (b) is an example of unthresholded RP, and (c) is an example of thresholded RP with �( ·) < 20, N = 37 , and m = 1 . 
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he extraction of shape information [13] is a research line to be

xplored in future work. 

 i, j = | x i − x j | , x i ∈ R 

1 , i, j = 1 ...N (2) 

.2. Recurrence plot for phenological time series representation 

From phenology time series, it is possible to estimate changes

n phenological events, such as leaf flushing when analyzing

he green channel, or leaf color change and senescence using

alues from the red channel [3,33] . It requires the analysis of

ime series related to different color channels. The changing pat-

erns along time are then validated with on-the-ground phenology

bservations. 

However, color information in the RGB channels are highly

orrelated (i.e., changes in one channel may lead to variations in

nother), making harder to detect temporal changes in recurrent

henology events. 

The novelty of this paper is to extend the notion of recurrence

lots for the context of phenology. Here, we combine the time se-

ies into a single representation, making the phenological change

nalysis easier. The key contribution of our idea is the combination

rocess we design to encode the time series into a single image. 

Fig. 3 (a)–(c) illustrates the process of computing RP-based rep-

esentations. In (a), given the obtained time series in Fig. 1 , the

ecurrence plot algorithm is applied on these time series to cre-

te their two-dimensional representation (distance matrix). Even

t this step, a normalization technique is applied to convert real

alues to integer values in the typical range of grayscale images

[0, 255]). Then, in (b), a merging process is performed to join

he three distance matrices into a single color image. Finally, in

c), many image descriptors may be used to encode visual proper-

ies (e.g., color, texture, and shape) from this color image into fea-

ure vectors. The feature vectors created through the use of image

escriptors are later used as input to a machine learning method

e.g., support vector machine and k -Nearest Neighbors). 

Fig. 4 shows the recurrence plots computed using the defined

OIs. As RP provides a two-dimensional representation (distance

quare matrix), we can observe many different colors in the matri-

es, which are associated with the distance values between plots

n the time series. The lowest distance values are closer to the
lue color and the highest distance values are closer to the red

olor. Notice that there are pattern differences among all of species

sed in this work. 

. Experimental setup 

This section describes the baseline used, which is based on vi-

ual rhythms ( Section 4.1 ); presents the classifier fusion frame-

ork adopted to combine VR-based and RP-based classifiers

 Section 4.2 ), and, finally, introduces the experimental protocol

 Section 4.3 ). 

.1. Baseline: visual rhythms (VR) 

An effective way to analyze temporal properties from video

ata is by means of visual rhythms [28] . The objective is to create

n abstraction of a video by coding the temporal change of pixel

alues along a specific sampling line [20] . 

In the context of phenology, a time series comprised of images

aken by digital cameras at fixed time intervals can be viewed as

 video of the vegetation, as proposed by [5] . However, instead of

pecific lines (e.g., diagonal, horizontal, and vertical), the interest

ere is to analyze unshapely regions related to plant species that

re identified by phenology experts (see the initial step in Fig. 3 ). 

Motivated by such limitations, [6] have generalized the notion

f visual rhythms. From a generic point of view, a visual rhythm

onsists of temporal data samples grouped in an orderly manner.

or that, they have designed a mapping function to convert a ROI

nto a vertical line. In the following, we briefly describe their strat-

gy for extracting visual rhythms from phenology time series. For

ore details regarding their approach, refer to [9] . 

Let V = { f t } , t ∈ [1 , T ] be a video, in domain 2 D + t, with T

rames of dimensions W V × H V ; and I be a binary image, with the

ame dimensions of V, in which white pixels indicate a ROI. Ini-

ially, the image I is converted into a list of Cartesian coordinates

 xy = { (x, y ) | I(x, y ) = 1 } . Next, this list is used for computing the

eometric center ( x c , y c ) of the ROI. Then, the Cartesian coordi-

ate system of the elements in L xy is translated to have its ori-

in at the point ( x c , y c ). After that, the Cartesian coordinates L xy 

re converted to the polar coordinate system, creating a list of
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Fig. 3. The steps for feature extraction from the recurrence plot representation. 

Fig. 4. Examples of recurrence plots for ROIs of each plant specie. These images 

were created using the Octave software [14] with one-dimensional interpolation 

method. 

Fig. 5. Visual rhythms obtained for ROIs of some plant species. Text and figure have 

been extracted from [6] . 
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olar coordinates L rθ . Thereafter, an index K = { k | ∀ (r, θ ) ∈
 rθ , k = 2 π r + θ} is created to assign a unique value to each el-

ment in L rθ . Finally, the keys in the index K are sorted in an in-

reasing order and then used to arrange the elements in L xy . 

In this way, they defined a visual rhythm as a mapping of each

rame f t into a vertical line on an image R 

∗, in domain 1 D + t, such

hat [6] : 

 

∗(t, z) = f t (L xy (z)) , t ∈ [1 , W R 

∗ ] , z ∈ [1 , H R 

∗ ] , 

here W R 

∗ = T and H R 

∗ = |L xy | are its width and height, respec-

ively. Figure 5 presents the visual rhythms produced by their ap-

roach using the ROIs from Fig. 3 (b). 

.2. The classifier fusion framework 

This section presents a framework for classifier selection and

usion (FSVM), as devised in [16] . The objective of the fusion

ramework is to exploit the degree of agreement/disagreement

mong classifiers, concept known as diversity, with the objective

f selecting the most suitable ones to be used in a combination

cheme. 

In the context of classifier fusion area and in this work, a classi-

er might be defined as a tuple containing a learning method (e.g.,

NN) and a description technique (e.g., Color Histogram). Classi-

ers learn patterns from training instances and use learned models

o assign unseen instances to appropriate classes. Once the train-

ng step is finished, a selection process is performed to define
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Fig. 6. Time series-based classifier selection and fusion framework adapted from [16] . In (a), given a classification problem with training examples, different classifiers are 

trained using data from training set T . In (b), the most discriminating classifiers are selected ( C ∗) by taking into account diversity measures ( D ). Finally, in (c), classifiers are 

combined in a meta-learning approach using a SVM technique. 

Fig. 7. The five steps for classifier selection are: (a) Compute diversity measures from the validation matrix M V ; (b) R lists sorted by diversity measures scores; (c) R 

t lists 

with top t ; (d) counts the number of occurrences of each classifier that satisfies a defined threshold; (e) Selected classifiers |C ∗| . Text and figure have been extracted from 

[16] . 
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lassifiers whose combination, usually based on another learning

ethod (meta-learning), is more promising. The objective is to de-

ermine the most discriminative methods, and, at the same time,

oosting the classification performance at test time by selecting

ess, but more effective, classifiers. 

Fig. 6 illustrates the framework FSVM for combining classifiers,

hile Fig. 7 illustrates the adopted five-step approach for selecting

lassifiers based on diversity measures, previously introduced by

aria et al. [16] . 

First, diversity measures (set D in Fig. 7 ) are used to assess the

egree of agreement among available classifiers in C by taking into

ccount the M V matrix previously computed. That step is repre-

ented by arrow (a) in Fig. 7 . Pairs of classifiers are then ranked

ccording to their diversity score. Each diversity measure defines a

ifferent ranked list and, at the end of this step, a set R of ranked

ists is produced (arrow (b)). In the following, a novel set of ranked

ists R 

t is computed by selecting the top t pairs of classifiers from

ach ranked list in R (arrow (c)), and a histogram H that counts

he number of occurrences of a classifier in all ranked lists of R 

t 

s computed (arrow (d)). Finally, the most frequent classifiers in H,

hose accuracy is greater that a given threshold T , are combined

y a fusion approach (arrow (e)). T is a threshold defined in terms

f the average accuracy among all classifiers using the validation

et V . 

.3. Experimental protocol 

In this work, we adopted the evaluation method used in [7] .

t relies on the classification of time series extracted from pixels

ssociated with individuals of a same species. For that, we used

he algorithm introduced by [19] to segment the hemispheric im-

ge into small polygons, obtaining 8, 849 segmented regions (SR).

hen, we associated each SR with a single ROI aiming to label it. A

abeled region is created if there is at least 80% of overlapped area

etween an SR and a ROI. Finally, we extracted a time series from
ach labeled region using the approach described in Section 2 . In

his way, we built a dataset of 892 time series separated into six

lasses, one for each plant species: A. tomentosum (96), C. brasilien-

is (346), M. guianensis (36), M. rubiginosa (195), P. ramiflora (50),

nd P. torta (169). 

In the following, we present four experiments performed to val-

date the use of the RP representation in plant recognition tasks. 

First, in Section 5.1 , we performed an effectiveness study con-

erning the performance of classifiers that exploit RP-based fea-

ures associated with time series of different hours of day. In

his experiment, we used the k-Nearest Neighbors (kNN) learning

ethod. We set k = { 1 } , which achieved the best results in [12] .

or describing time series encoded into a RP representation, we

sed seven traditional and recently proposed image descriptors:

CC [21] , BIC [38] , CCV [30] , and GCH [39] , for encoding color in-

ormation; GFD [42] , GIST [29] , and HWD [22] , for analyzing tex-

ure properties. 

In the second experiment, in Section 5.2 , we compared the pro-

osed RP-based approach with another time series representation

roposed by [6] , called Visual Rhythm (VR). Two different effec-

iveness experiments have been done: 

(1) Coarse-grained Analysis ( Section 5.2.1 ) that evaluates the ef-

fectiveness results of the recurrence plot-based and visual

rhythms-based classifiers; and 

(2) Fine-grained Analysis ( Section 5.2.2 ) that evaluates the best

effectiveness results achieved by both representations (RP

and VR) using different image descriptors (GFD and BIC). 

In the third experiment, in Section 5.3 , we performed a cor-

elation analysis to find out agreement/disagreement between all

lassifiers involved in the previous experiment using RP and VR

epresentations. 

In the fourth experiment, in Section 5.4 , we adopt a success-

ul classifier fusion framework [16] to combine the most suitable

lassifiers using both approaches (RP and VR) representations. 
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Fig. 8. In (a)–(g), effectiveness results of the kNN learning method using each of seven different image descriptors and in (f), results for all seven descriptors together.. 
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Fig. 9. Effectiveness results of the (a) visual rhythms-based and (b) recurrence plot-based kNN classifiers using seven image descriptors.. 
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Fig. 10. The best effectiveness results for each representation approach. BIC color 
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Finally, in Section 5.5 , we conducted a behavioral study of the

ifferent approaches in small training scenarios. 

. Experimental results and discussion 

.1. Effectiveness results of RP-based classifiers 

In these experiments, we analyze the behavior of the kNN

earning method with each image descriptor (ACC, BIC, CCV, GCH,

FD, GIST, and HWD) for different hours of the day (from 6h to

8h). 

We have adopted a 5-fold cross validation protocol, thus the

valuation measure used in this work is the arithmetic mean of

he five accuracies (one accuracy per testing set). Furthermore, as

he dataset is unbalanced (i.e., the number of samples in differ-

nt classes is unequal), we computed each accuracy taking into ac-

ount the size of classes in the testing set (weighted accuracy). 

Fig. 8 (a)–(g) presents the effectiveness results for each of

he image descriptors used in this work. Furthermore, in (h) we

resent the effectiveness results of all descriptors together. Notice

hat the x -axis refers to the hours of the day, while the y -axis

efers to the used evaluation measure (Mean Accuracy). 
As it can be observed, C. brasiliensis (in blue) and P. torta (in

ed) species may be considered the easiest species to be recog-

ized among all the species, considering all hours of the day and

ll the image descriptors. However, M. guianesis (in orange) and P.

amiflora (in cyan) species are the hardest ones to be recognized

onsidering all the six species. In almost all the experiments, the

est results were achieved in the extreme hours of the day (6, 7,

7, and 18). 

In relation to visual property (color and texture), the best

ffectiveness results achieved by the RP-based methods are those

elated to the use of texture descriptors (GFD, GIST, and HWD).

otice in Fig. 8 (e) that our approach achieved the best result

hen consider a single descriptor (GFD) at 18h (65.09%). The

orst result of a single descriptor was observed when the CCV

olor descriptor was used: 19.55% ( Fig. 8 (c) at 15h). However, the

est effectiveness results for almost all hours of day have been

chieved in (h), with the merge of all image descriptors. 

.2. Comparison of RP-based and VR-based classifiers 

In this section, we compare the RP-based representations with

he VR-based ones [6] . In the experiments with VR, we adopted

he same experimental protocol (i.e., 5-fold cross validation and

he same image descriptors and classifier) used with our RP-based

pproach. 

.2.1. Coarse-grained analysis 

Fig. 9 shows two radar charts with effectiveness results of the

ecurrence plot-based and visual rhythms-based classifiers. These

harts are composed of three parts, (1) radius, (2) slice of the

erimeter, and (3) lines. The radius means the effectiveness mea-

ure values (mean balanced accuracy). The slices of the perimeter

eans each hours of day, from 6:00 to 18:00 h (UTC-3). Finally, the

ine means the performance of each kNN-1 learning method with

ne different image descriptor (ACC, BIC, CCV, GCH, GFD, GIST, and

WD). 

Fig. 9 (a) are the seven image descriptors used in this work for

isual rhythms-based classifiers and Fig. 9 (b) are the same image

escriptors for recurrence plots-based classifiers. 

As it can be observed, in (a) the best results have been achieved

y classifiers that use color image descriptors (ACC, BIC, CCV, and



212 F.A. Faria et al. / Pattern Recognition Letters 83 (2016) 205–214 

Fig. 11. Correlation analysis considering all 182 available classifiers (2 representation approaches × 7 image descriptors × 13 hours = 182 classifiers). The lowest correlation 

coefficients are closer to the purple color ( −1 ) and the highest coefficients are closer to the yellow color ( +1 ). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article).. 
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GCH). However, in (b) the classifiers with texture image descriptors

have achieved the best results (GFD, GIST, and HWD). 

5.2.2. Fine-grained analysis 

For a more detailed analysis, we performed a comparison be-

tween the RP and VR approaches considering their performance

per class for the best achieved results. The best results of the RP

and VR approaches were observed when used with GFD (texture)

at 18h and BIC (color) at 6h, respectively. Fig. 10 shows this fined-

grained analysis. 

We can observe that the RP approach achieved better results

in four ( C. brasiliensis , M. guianensis , P. ramiflora , and P. torta ) out
f the six species (see Fig. 10 ). The VR approach, in turn, yields

etter results for A. tomentosum and M. rubiginosa . Furthermore, in

he experiments with P. ramiflora , and P. torta species, it is possible

o notice a large difference between results achieved by the RP-

ased and VR-based approaches, around 30% of accuracy in both

pecies. 

.3. Correlation analysis between RP-based and VR-based classifiers 

This section presents the correlation analysis of each pair

f classifiers for all 182 available classifiers aiming to identify
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hether them might be combined by any fusion technique (e.g.,

daboost [18] , Bagging [10] , and meta-learning approach [16] ). 

The Correlation Coefficient ρ ( COR ) [25] has been used to assess

he correlation of two classifiers c i and c j : 

OR (c i , c j ) = 

ad − bc √ 

(a + b)(c + d)(a + c)(b + d) 
, (3)

here a is the percentage of time series that both classifiers c i and

 j classified correctly in a validation set. Value b is the percent-

ge of time series that c j hit and c i missed, c is the opposite of b .

he value d is the percentage of time series that both classifiers

issed. The pairs of classifiers with lower COR values have greater

egree of complementarity and are more likely to yield better re-

ults when combined. Range of COR is in [ −1 , +1] . 

Fig. 11 presents the COR values for all possible combinations of

airs of classifiers considering the six classes. The lowest correla-

ion coefficients are closer to the purple color ( −1 ) and the highest

oefficients are closer to the yellow color ( +1 ). Furthermore, in this

gure, there are six important regions that have been highlighted

nd they are explained below. 

As we can observe in Fig. 11 (a), in region (1), the RP-based clas-

ifiers with texture descriptors are more correlated among them. In

egion (2), the VR-based classifiers with color descriptors are more

orrelated among them. This fact means that different classifiers

hat use the same kind of visual proporties (color or texture) in

hese approaches have predicted similar instances of the A. tomen-

osum species. However, outside these two regions, the same sce-

ario can not be observed. 

In general, although there are classifiers with high correlation

regions 3, 4, 5, and 6), the great majority of classifiers are non-

orrelated to each other (see purple color) for different species.

hus, there is a strong indication that the RP-based and VR-based

lassifiers used in this work might be combined to achieve better

esults for plant recognition task. 

In this sense, we adopt a well successfull classifier fusion

ramework [16] ( Section 4.2 ) to address complementary informa-

ion provided by RP-based and VR-based classifiers. 

.4. Fusion of RP-based and VR-based classifiers 

In this section, we adopt the framework reported in

ection 4.2 (FSVM), with the objective of demonstrating that

s possible to combine different RP-based and VR-based classifiers

nd to improve the effectiveness results in the plant recognition
ask. In additional, we consider the fusion of RGB channels as a

aseline approach [17] . 

Fig. 12 shows four curves, FSVM-RGB, FSVM-RP, FSVM-VR,

nd FSVM-RP+VR, which refer to the fusion of the RGB channels,

ecurrence plot, visual rhythms, and combination of RP and VR,

espectively. The suffix FSVM refers to the selection and fusion

ramework, which was implemented using the SVM classifier in

he fusion step (meta-learning). 

Two evaluation measures, Accuracy and Average Accuracy, are

onsidered. In these experiments, the framework combines each

pproach for different numbers of classifiers |C ∗| . In pink, the

ramework combines |C ∗| = { 1 , . . . , 39 } RGB channels-based classi-

ers ( 39 = 3 channels × 13 h). In green, the framework combines

P-based classifiers |C ∗| = { 2 , . . . , 91 } ( 91 = 7 descriptors × 13 h).

n blue, it uses the VR-based classifiers |C ∗| = { 2 , . . . , 91 } . Finally, in

ed, the framework combines all available classifiers (91 RP-based

lus 91 VR-based classifiers, leading to a total of 182 classifiers).

s we can observe, the fusion framework using both representa-

ion (RP+VR) achieved a huge improvement when compared to the

se of the two representations in isolation. 

As it can be observed, the FSVM-RGB approach has achieved the

etter results on the range { 1 , . . . , 8 } classifiers. However, FSVM-

P+VR achieved the best results when more than 8 classifiers

re considered ( { 9 , . . . , 182 } ). Therefore, we could show that re-

urrence plot and visual rhythms representations address different

nd complementary information that might be combined to im-

rove the effectiveness of plant identification systems. 

.5. Training set size impact 

In this section, we have conducted a study considering three

ifferent sizes for the training set (25%, 50%, and 100%), which rep-

esents 15%, 30% and 60% of the entire datasets, respectively. These

ubsets have been selected from original training set. 

Fig. 13 shows comparative analysis of the four different

pproaches FSVM-RGB-32, FSVM-RP-90, FSVM-VR-7, and FSVM- 

P+VR-91. Notice that FSVM approaches show up with a numerical

uffix N (e.g., N = { 7 , 32 , 90 , 91 } ), which means the number of

lassifiers each approach has used achieving the best effectiveness

esults. Furthermore, we used again the 5-fold cross-validation

rotocol. 

Notice that the FSVM-RP+VR-91 approach, which combines RP-

ased and VR-based classifiers, has achieved better results than

ther approaches for any training set size. 

. Conclusion 

In this work, we proposed the use of a technique of nonlin-

ar data analysis for time series representation in plant species

ecognition task. This technique, called recurrence plot, allows us

o represent repeated events (the recurrence of states) on time se-

ies into two-dimensional representation. We have extracted fea-

ure vector from this new representation through use of different

inds of image descriptor (e.g., color and texture). The created fea-

ure vector is then used as input to a learning method, in our case,

he k -Nearest Neighbor method. 

The experiments performed in this work showed that there are

ifferences in terms of classification performance depending on the

lant species considered, as well as, the low correlation that exists

etween almost all used classifiers. In these experiments, we ob-

erved that texture descriptors describe better the image provided

rom recurrence plots representation. However, the visual rhythms

chieved better results when used in color descriptors. 

A correlation analysis between all of classifiers have been per-

ormed and we could observe that recurrence plot-based and vi-

ual rhythms-based classifiers have low correlation coefficients, i.e.,
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both approaches describe complementary information that might

be combined by fusion techniques with the objective of producing

better effectiveness results in plant recognition tasks. 

Furthermore, we have adopted a successful classifier fusion

framework [16] to combine RP-based and VR-based classifiers and

then improve the effectiveness results. We could show in practice

the huge complementarity degree between those time-series rep-

resentations. 

Future work includes the use of other image descriptors

to extract different visual features (e.g., shape description ap-

proaches based on contour and regions [13] ). In addition, the

proposed framework can be augmented to consider learning-

to-rank methods (e.g., genetic programming [8] ) for combining

different descriptors. Another point to be explored is the use of

RP for multispectral images or multisensor systems, which have

more than three time series. In these scenarios, remote sensing

approaches for channel selection and combination can be used.

Finally, we also plan to perform an extensive study on different

strategies for feature selection and classifier fusion. 
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