
Knowledge-Based Systems 105 (2016) 248–269

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

ZCR-aided neurocomputing: A study with applications

Rodrigo Capobianco Guido

∗

Instituto de Biociências, Letras e Ciências Exatas, Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth,

15054-0 0 0, São José do Rio Preto - SP, Brazil

a r t i c l e i n f o

Article history:

Received 18 March 2016

Revised 1 May 2016

Accepted 7 May 2016

Available online 10 May 2016

Keywords:

Zero-crossing rates (ZCRs)

Pattern recognition and knowledge-based

systems (PRKbS)

Feature extraction (FE)

Speech segmentation

Image border extraction

Biomedical signal analysis

a b s t r a c t

This paper covers a particular area of interest in pattern recognition and knowledge-based systems

(PRKbS), being intended for both young researchers and academic professionals who are looking for a pol-

ished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction

(FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity

and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples,

innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming

language and interesting applications on speech segmentation, image border extraction and biomedical

signal analysis complement the text.

© 2016 Elsevier B.V. All rights reserved.

t

c

c

S

s

m

n

c

d

p

b

d

t

1

[

s

w

i
1. Introduction

1.1. Objective and tutorial structure

In a previous work, I published a tutorial on signal energy and

its applications [1] , introducing alternative and innovative digital

signal processing (DSP) algorithms designed for feature extraction

(FE) [2–4] in pattern recognition and knowledge-based systems

(PRKbS) [5,6] . At that time, I intended to cover the lack of novelty

in related approaches based on consistency among creativity, sim-

plicity and accuracy . So it is presently, opportunity in which three

methods for FE from unidimensional (1D) and bidimensional (2D)

data are defined, explained and exemplified, pursuing and taking

advantage of my own three previous formulations [1] . The dif-

ferences between that and this work are related to the concepts

and their corresponding physical meanings adopted to substanti-

ate them: antecedently, signal energy was used to provide infor-

mation on workload, on the other hand, zero-crossing rates (ZCRs)

are currently handled to retrieve spectral behaviour [7] of signals.

Complementarily, ZCRs are interpreted as being neurocomputing

agents, which characterises an innovation that this work offers to

the scientific community. Another remarkable contribution consists

of the use of ZCRs for 2D signal processing and pattern recognition,

a concept practically inexistent up to date.
∗ Corresponding author.

E-mail address: guido@ieee.org

URL: http://www.sjrp.unesp.br/˜guido/

m

t

P

m

http://dx.doi.org/10.1016/j.knosys.2016.05.011

0950-7051/© 2016 Elsevier B.V. All rights reserved.
As in the previous, this essay suggests possible future trends for

he PRKbS community. In doing so, it is organised as follows. The

oncept of ZCRs and some recent related work pertaining to these

onstitute the next subsections of these introductory notes. Then,

ection 2 presents the proposed algorithms for FE, their corre-

ponding implementations in C/C++ programming language [8] and

y particular point-of-view which characterises ZCRs as being

eurocomputing agents. Moving forward, Section 3 shows numeri-

al examples and Section 4 describes the tests and results obtained

uring the analyses of both 1D and 2D data. Lastly, Section 5 re-

orts the conclusions that are followed by the references.

Throughout this document, detailed descriptions, graphics, ta-

les and algorithms are abundant, however, for a much better un-

erstanding, I strongly encourage you, the reader of this tutorial,

o learn my previous text [1] before proceeding any further.

.2. A review on ZCRs and their applications

Although its roots were traced back before [9] and throughout

10,11] the beginning of DSP, the suitability of ZCRs has been inten-

ively pointed out by the speech processing community, the one in

hich their applications are more frequent [12] . Thus, ZCRs, as be-

ng the simplest existing tools used to extract basic spectral infor-

ation from time-domain signals without their explicit conversion

o the frequency-domain [13] , play an important role in DSP and

RKbS.

Despite the word rate in its name, ZCR is defined, in its ele-

entary form, as being the number of times a signal waveform

http://dx.doi.org/10.1016/j.knosys.2016.05.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.05.011&domain=pdf
mailto:guido@ieee.org
http://www.sjrp.unesp.br/~guido/
http://dx.doi.org/10.1016/j.knosys.2016.05.011

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 249

Fig. 1. The example signal s [·] = {−2 , 3 , −5 , 4 , 2 , 3 , −5 } and its four zero-crossings represented as red square dots. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article).

Fig. 2. In blue, the pure sine wave; in red, the composed sine wave; in brown, the square wave. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article).

c

e

t

Z

b

n

Z

s

Z

s

|

a

F

s

t

F

m

a

a

q

e

p

s

fi

t

s

o

p

I

t

s

I

Z

t

l

o

s

t

f

f

o

f

p

i

a

C

a

p

s

l

s

p

F

s

i

t

j

t

n

e

s

r

p

i

fi

T

2

i

r
rosses the amplitude zero. An alternative and formal manner to

xpress this concept, letting s [·] = { s 0 , s 1 , s 2 , ..., s M−1 } be a discrete-

ime signal of length M > 1, is

CR (s [·]) =

1

2

M−2 ∑

j=0

| sign (s j) − sign (s j+1) | , (1)

eing ZCR (s [·]) ≥ 0 for any s [·] and sign (x) =

{

1 if x � 0 ;
−1 otherwise

. In the

ext section, distinct normalisation procedures will be applied to

CRs in order for the word rate to make the intended sense.

As an example, let s [·], of size M = 7 , be the discrete-time

ignal for which the samples are {−2 , 3 , −5 , 4 , 2 , 3 , −5 } . Then,

CR(s [·]) =

1
2

∑ M−2
j=0 | sign (s j) − sign (s j+1) | =

1
2

∑ 5
j=0 | sign (s j) −

ign (s j+1) | =

1
2 (| − 1 − 1 | + | 1 − (−1) | + | − 1 − 1 | + | 1 − 1 | +

 1 − 1 | + | 1 − (−1) |) =

1
2 (| − 2 | + | 2 | + | − 2 | + | 0 | + | 0 | + | 2 |) =

1
2 (2 + 2 + 2 + 0 + 0 + 2) = 4 , i.e., the waveform of s [·] crosses its

mplitude axis four times at the value 0, as can be easily seen in

ig. 1 .

The elementary example I have just described is really quite

imple, however, I ask for your attention in order to figure out

he correct physical meaning of ZCRs, avoiding underestimations.

or that, a basic input drawn from Fourier’s theory and his mathe-

atical series [14] is required: the statement which confirms that

ny signal waveform distinct of the sinusoidal can be decomposed

s an infinite linear combination of sinusoids with multiple fre-

uencies, called harmonics . Thus, a signal waveform that matches

xactly a sinusoidal function, with a certain period, phase and am-

litude, is classified as being pure . Conversely, any other type of

ignal waveform consists of a main sinusoid called fundamental or

rst harmonic , owning the lowest frequency among the set, added

ogether with the other sinusoids of higher frequencies, i.e., the

econd harmonic, the third harmonic, the fourth harmonic, and so

n, in a descending order of magnitude.

The connection between ZCRs and Fourier’s series is now ex-

lained on the basis of the following example, illustrated in Fig. 2 .

n blue, red and brown, respectively, a pure sine wave, a composi-

ion of two sine waves and a square wave that is essentially the

um of infinite sinusoids, are shown, all with the same length.

nterestingly, the three curves have exactly the same number of

CRs, however, according to Fourier’s theory, their frequency con-

ents are considerably different. Based on the example, the learnt

esson is: the first harmonics of a non pure signal are dominant
ver the others, whilst mandatory to define its general waveform

hape. Consequently, it is often the minor oscillations produced by

he higher harmonics that do not generate zero-crossings. There-

ore, the ZCR of a given signal is much more likely to provide in-

ormation on its fundamental frequency than a detailed description

f its complete frequency content.

Another relevant concept is the direct relationship between the

undamental frequency of a signal and its ZCR. Since sinusoids are

eriodic in 2 π , each period contains two zero-crossings, as shown

n Fig. 3 . Thus, if a 1D signal s [·] of length M crosses G times the

mplitude zero, it contains G
2 sinusoidal periods at that frequency.

onsidering that, at the time the signal was converted from its

nalog to its digital version [14] , the sampling rate was R sam-

les per second, then

1
R is the period of time between consecutive

amples, entailing that M · 1
R =

M

R is the time extension of the ana-

og signal in seconds. Concluding, in

M

R seconds there are G
2 sinu-

oidal periods, implying that, proportionally, there are G ·R
2 ·M

periods

er second, i.e., the frequency, F , caught by the ZCRs is

 (ZCR (f [·])) =

G · R

2 · M

Hz. (2)

Obviously, the previous formulation is only valid if the sinu-

oids are not shifted on the amplitude axis, i.e., no constant value

s added to them. Equivalently, the signal under analysis is required

o have its arithmetic mean equal zero, implying that an initial ad-

ustment may be necessary prior to counting the ZCRs, otherwise

hey would not be physically meaningful. The simplest process to

ormalise a signal s [·] in order to turn its mean to zero is to shift

ach one of its samples, subtracting its original mean, i.e.,

 k ← s k −
(∑ M−1

j=0 s j
)

M

, (0 � k � M − 1) . (3)

In order to illustrate the concepts I have just exposed, the

eaders are requested to consider the signal s [·] = { 12
10 , 3 ,

12
10 , 3 ,

12
10 , 3 ,

12
10 , 3 ,

12
10 } , of length M = 9 , that was sampled at 36 sam-

les per second and is illustrated in Fig. 4 . Its arithmetic mean

s
12
10

+3+ 12
10

+3+ 12
10

+3+ 12
10

+3+ 12
10

9 = 2 � = 0 , i.e., the normalisation de-

ned in Eq. (3) must be applied before the ZCRs are counted.

hus, s [·] becomes { 12
10 − 2 , 3 − 2 , 12

10 − 2 , 3 − 2 , 12
10 − 2 , 3 − 2 , 12

10 −
 , 3 − 2 , 12

10 − 2 } = {− 8
10 , 1 , − 8

10 , 1 , − 8
10 , 1 , − 8

10 , 1 , − 8
10 } , which has

ts mean equal zero and is also shown in Fig. 4 . ZCRs are now

eady to be counted, according to Eq. (1) , resulting in G = 8 zero-

250 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Fig. 3. A sine wave and its zero-crossings.

Fig. 4. The example original signal s [·] = { 12
10

, 3 , 12
10

, 3 , 12
10

, 3 , 12
10

, 3 , 12
10

} , in olive, and its translated version, {− 8
10

, 1 , − 8
10

, 1 , − 8
10

, 1 , − 8
10

, 1 , − 8
10

} , with zero mean, in red. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

s

c

t

t

y

e

w

t

[

w

t

9

c

w

s

o

[

a

t

p

t

b

t

fi
crossings. Therefore, the signal fundamental frequency is G ·R
2 ·M

=
8 ·36
2 ·9 = 16 Hz.

In comparison with the most common features, ZCRs have the

following advantages. First, they are extremely simple to be com-

puted, with a linear order of time and space complexities [15] . Sec-

ond, as mentioned above, they are the only features which reveal

spectral information on input data without an explicit conversion

from time to frequency-domain. Third, as consolidated in the lit-

erature, relevant problems on DSP and PRKbS, such as those in-

volving speech processing [12] , can benefit from them. Nonethe-

less, the disadvantages presented by ZCRs must be considered. Ini-

tially, spectral information on the signal under analysis is not com-

plete, as obtained, for instance, with the Discrete Fourier Trans-

form [13] or the Discrete Wavelet Transform [69] . In addition, a

joint time-frequency mapping is not possible with them, i.e., fre-

quency localisation can only be performed based on a manual-

controlled partition of the signal. Lastly, features extracted on

their bases may be considerably disturbed if originated from noisy

inputs.

Summarising, ZCRs are neither better nor worse than other fea-

tures, from a general point-of-view. Instead, they present advan-

tages and disadvantages that have to be taken into account for

each particular PRKbS problem. In any event, they should be con-

sidered every time that modest or incomplete spectral information

is found to be useful. In order to complement the review on ZCRs,

the remaining of this section is dedicated to describe their recent

applications, those found in the literature.
In article [16] , authors used ZCR in addition to a least-mean

quares filter for speech enhancement. Their successful strategy

onsists of using ZCRs at the final stage of their algorithm in order

o identify patterns, providing the desired improvements. Signal-

o-noise ratio (SNR) increased about 22 dB in the signals anal-

sed, confirming the important role of ZCR-based PRKbS. Speech

nhancement based on ZCRs is also the focus of the paper [17] ,

hich points out that zero-crossing information is more accurate

han the cross-correlation for the proposed task.

In association with short-time energy, the authors of article

18] applied ZCRs to distinguish speech from music. In conjunction

ith an ordinary k-means algorithm, ZCRs allowed the identifica-

ion of quasi-periodic patterns that are key for their task, attaining

6.10% accuracy with 110 music clips and 140 speech files. Recipro-

ally, the authors of article [19] showed a ZCR-based estimator that

orks better than the sample autocorrelation method to analyse

tationary Gaussian processes. Their work was successfully devel-

ped on the basis of a mathematical analysis of random noise. In

20] , researchers proposed a method to estimate the frequency of

 harmonic trend based on ZCRs. In addition to a low computation

ime, their results demonstrate the possible use of such features in

ractical applications.

An interesting aspect of ZCRs was shown by the authors of ar-

icle [21] , who analysed transient signals to demonstrate these can

e accurately found based on zero-crossings. Applications related

o the estimate of epochs in speech signals were performed, con-

rming the authors’ assumptions. In conjunction with other fea-

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 251

Fig. 5. 1D example for B 1 aiming DSP and PRKbS with its variants TA, PA and EA: sliding window with length L = 8 traversing s [·] with overlap V = 50% . The symbols w i

represent the k th positioning of the window, for k = 0 , 1 , 2 , ..., T − 1 , and w h is the window that contains the highest number of ZCRs.

t

m

s

m

i

[

s

s

1

n

s

t

G

e

m

n

p

c

v

t

[

e

i

i

e

y

a

h

i

t

a

c

2

o

T

2

t

c

i

t

E

t

e

s

m

c

c

p

T

f

p

t

a

l

m

t

t

t

P

m

t

i

c

P

s

f

b

e

i

t

W

t
ures, such as energy, the authors of paper [22] present different

ethods to distinguish voiced from unvoiced segments in speech

ignals. Empirically, the size of the speech segments were deter-

ined for better accuracy during their successful analyses. Sim-

lar experiments were also performed by the authors of paper

23] , confirming the findings. In [24] , a practical and noise-robust

peech recognition system based on ZCRs was developed. Authors

howed improvements on baseline approaches at a rate of about

8.8%. Humanoid robots also benefit from ZCRs, for speech recog-

ition and segregation purposes, according to the experiments de-

cribed in [25] .

In order to successfully predict epileptic seizures in scalp elec-

roencephalogram signals, the authors of paper [26] modeled a

aussian Mixture of ZCRs intervals of occurrence, obtaining rel-

vant results. Interestingly, the authors of the paper [27] used a

odified ZCR to determine fractal dimensions of biomedical sig-

als. Similarly, in paper [28] , authors evaluate a modified ZCR ap-

roach for the detection of heart arrhythmias. A prominent appli-

ation of ZCRs can be found in paper [29] , in which authors de-

eloped a brain-computer interface on their basis. A health moni-

oring scheme based on ZCRs characterises the work described in

30] , for which interesting aspects of such features are pointed out.

Not surprisingly, a wide search on Web of Science and other sci-

ntific databases, aiming to find possible research articles describ-

ng applications of ZCRs on image processing and computer vision,

.e., 2D signals, returned a modest number of results: two confer-

nce papers, being one recent [31] and the other published twenty

ears ago [32] , and one journal paper published almost thirty years

go [33] . Possibly, this is due to the fact that digital images usually

ave their pixels represented as being positive integer numbers,

nhibiting the use of zero-crossings. In this study, in addition to

he novel ZCR-based algorithms designed for 1D signals, 2D ones

re also considered just after a proper pre-processing strategy dis-

ussed herein.

. The proposed methods

Three different methods, i.e., B 1 , B 2 and B 3 , respectively inspired

n A 1 , A 2 and A 3 introduced in [1] , are proposed in this section.

heir corresponding details follow.

.1. Method B 1

B 1 , illustrated in Fig. 5 , is the simplest method I present in

his study, in which an 1D discrete-time signal s [·] of length M is
onsidered as being the input. The procedure consists of a slid-

ng rectangular window, w , of length L traversing the signal so

hat, for each placement, the ZCR over that position is determined.

ach subsequent positioning overlaps in V % the previous one, being

he surplus samples at the end of the signal, which are not long

nough to be overlapped by a L -sample window, disposed. The re-

trictions (2 � L � M) and (0 � V < 100) are mandatory.

In a DSP context, the ZCRs computed over the fragments of s [·]
ay be directly used to determine the fundamental frequencies it

ontains, based on Eq. 2 . On the other hand, in case PRKbS asso-

iated with handcrafted FE is the objective, as explained in [1] -

p.2, s [·] requires its conversion to a feature vector, f [·], of length

 = � (100 ·M) −(L ·V)
(100 −V) ·L � , being � · � the floor operator. In this case, each

 k , (0 � k � T − 1) , corresponds to the ZCR computed over the k th

osition of the window w . Of fundamental importance is the fact

hat, for handcrafted FE, f [·] requires normalisation prior to its use

s an input for a classifier, as documented in [1] -pp.2.

There are, basically, three possible ways to normalise f [·]: in re-

ation to the total amount (TA) of zero-crossings, in relation to the

aximum possible amount (PA) of zero-crossings and in relation

o the maximum existing amount (EA) of zero-crossings. Each of

he normalisations characterises a particular physical meaning for

he ZCRs contained in f [·], being adequate for a specific task in

RKbS. Comments on each of them follow, nonetheless, all the nor-

alisations force f [·] to express a rate , bringing the proper sense to

he letter “R” used in the abbreviation “ZCR”.

The division of each individual ZCR in f [·] by the sum of all ZCRs

t contains, i.e.,

f r ←

f r (∑ T −1
k =0 f k

) , (0 � r � T − 1) ,

haracterises TA. Once this procedure is adopted,
∑ T −1

k =0
f k = 1 .

hysically, TA forces f [·] to express the fraction of ZCRs in each

egment of s [·], being ideal to describe the way the fundamental

requencies of an input signal, s [·], vary in relation to its overall

ehaviour.

To force f [·] express individual spectral properties related to

ach fragment of s [·], in isolation, PA is required. The correspond-

ng normalisation consists of dividing each ZCR in f [·] by L − 1 , i.e.,

he highest possible number of ZCRs inside a window of length L :

f r ←

f r

L − 1

, (0 � r � T − 1) .

ith this procedure, f k ≤ 1, for (0 � k � T − 1) . The closer a cer-

ain f is to 0 or to 1, respectively, the lowest or highest the fun-
k

252 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Algorithm 1 : fragment of C++ code for method B 1 in 1D, adopting

the normalisation TA.
//...

// ensure that s [·] , of length M, is available as input

double mean = 0 ;

for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;

for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal is 0

int L = / * the desired positive value, not higher than M * / ;

int V = / * the desired positive value, lower than 100 * / ;

int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));

int ZCR = 0 ; // ZCR is the total number of zero-crossings over all the window place-

ments, required for normalisation

double ∗ f = new double[T]; // dynamic vector declaration

for(int k = 0 ; k < T ; k + +)

{

f [k] = 0 ;

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

f [k]+ = (s [i] ∗ s [i + 1] < 0)?1:0; / ∗ multiplying subsequent samples

results in a negative value if they are between 0. This is equivalent to the theoretical

procedure described in the text and based on equation 1. ∗/

ZCR + = f [k] ;

}

for(int k = 0 ; k < T ; k + +) // normalisation

f [k] / = (double)(ZCR) ; / ∗ the casting, i.e., the explicit conversion of ZCR

from int to double is, theoretically, not required, however, some C/C++ compilers have

presented problems when a double-precision variable is divided by an int one, result-

ing in 0. To avoid this issue, the casting is used. ∗/

// at this point, the feature vector, f [·] , is ready

//...

Algorithm 2 : fragment of C++ code for method B 1 in 1D, adopting

the normalisation PA.
//...

// ensure that s [·] , of length M, is available as input

double mean = 0 ;

for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;

for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal is 0

int L = / * the desired positive value, not higher than M * / ;

int V = / * the desired positive value, lower than 100 * / ;

int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));

double ∗ f = new double[T]; // dynamic vector declaration

for(int k = 0 ; k < T ; k + +)

{

f [k] = 0 ;

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

f [k]+ = (s [i] ∗ s [i + 1] < 0)?1:0; / ∗ multiplying subsequent samples

results in a negative value if they are between 0. This is equivalent to the theoretical

procedure described in the text and based on equation 1. ∗/

f [k] / = (double)(L − 1) ; / ∗ the casting, i.e., the explicit conversion of L from

int to double is, theoretically, not required, however, some C/C++ compilers have pre-

sented problems when a double-precision variable is divided by an int one, resulting

in 0. To avoid this issue, the casting is used. ∗/

}

// at this point, the feature vector, f [·] , is ready

//...

2

s

l

v

t

m

i

i
damental frequency at the corresponding window is, disregarding

the remaining fragments of s [·].
Lastly, EA is chosen whenever evaluation by comparison is

needed, particularly forcing the highest ZCR in f [·] to be 1 and ad-

justing the remaining ones, proportionally, within the range (0 −1) .

The corresponding procedure consists of dividing each individual

ZCR in f [·] by the highest unnormalised ZCR contained in it, the

one computed over the window placement named w h , i.e.,

f r ←

f r

ZCR (w h)
, (0 � r � T − 1) .

All the previous formulations and concepts can be easily ex-

tended to a 2D signal, m [·][·], with N rows and M columns, which

represent, respectively, the height and width of the corresponding

image. As in the unidimensional case, the computation of a bidi-

mensional ZCR requires all the values in m [·][·] to be previously

shifted so that its arithmetic mean becomes equal zero, i.e.,

m p,q ← m p,q −
(∑ N−1

i =0

∑ M−1
j=0 m i, j

)
M · N

,

(0 � p � M − 1) , (0 � q � N − 1) . (4)

Once m [·][·] presents zero mean, its ZCR is simply the sum of

individual ZCRs in each row and column, i.e.,

ZCR (m [·][·]) =

1

2

N−1 ∑

i =0

M−2 ∑

j=0

| sign (m i, j) − sign (m i, j+1) |

+

1

2

M−1 ∑

j=0

N−2 ∑

i =0

| sign (m i, j) − sign (m i +1 , j) | . (5)

Similarly to 1D signals, ZCRs computed in 2D are useful for both

DSP and FE in PRKbS, as illustrated in Fig. 6 . In the latter, the case

of interest, the feature vector, f [·], contains not only T , but T · P

elements, being P = � (100 ·N) −(L ·V)
(100 −V) ·L � , as in the bidimensional case of

method A 1 , explained in [1] -pp.3. During the analysis, m [·][·] is tra-

versed along the horizontal orientation based on T placements of

the square window w of side L , being L < M and L < N . Then, the

process is repeated for each one of the P shifts along the vertical

orientation.

TA, PA and EA are also the possible normalisations for the 2D

version of B 1 applied for FE in PRKbS. Particularly, TA requires each

component of f [·] to be divided by the sum of all ZCRs it contains,

i.e., the sum of all the values in that vector prior to any normali-

sation. On the other hand, if PA is adopted, each element in f [·] is
divided by the maximum possible number of ZCRs inside w , i.e.,

(L − 1) ︸ ︷︷ ︸
maximum ZCR

in one row

· (L) ︸︷︷︸
number of

rows

+ (L − 1) ︸ ︷︷ ︸
maximum ZCR

in one column

· (L) ︸︷︷︸
number of

columns

= 2 · L · (L − 1) .

Lastly, the choice for EA implies that each component of f [·] is di-

vided by the highest ZCR contained in it, the one computed over

the window placement named w h .

Exactly as in A 1 [1] , for both 1D and 2D signals, respectively,

B 1 is only capable of generating a T , or a T · P , sample-long vec-

tor f [·] if the value of L is subjected to the value of M , or M

and N . Thus, the value of L intrinsically depends on the length of

the input 1D signal s [·], or the dimensions of the input 2D ma-

trix m [·][·], bringing a disadvantage: irregular, temporal or spatial

analysis. Oppositely, the advantage is that a few sequential ele-

ments of f [·], obtained by predefining L, T and P , allow the de-

tection of some particular event in the 1D or 2D signal under

analysis.

The algorithms 1 , 2 and 3 , respectively, contain the source code

in C/C++ programming language that implement method B 1 with

the normalisations TA, PA and EA, all of them for 1D input signals.

At variance with this, algorithms 4 , 5 and 6 correspond, respec-

tively, to the 2D versions of B with the same normalisations.
1
.2. Method B 2

B 2 , as A 2 in [1] , is also based on a sliding window w traversing

 [·], or m [·][·]. Two differences, however, exist: there are no over-

aps and the window length for 1D, or the rectangle sizes for 2D,

ary. Thus, s [·] or m [·][·] are inspected in different levels of resolu-

ion.

After applying Eq. (3) or Eq. (4), respectively to remove the

ean of s [·] or of m [·][·], the feature vector, f [·], is defined as be-

ng the concatenation of Q sub-vectors of different dimensions, i.e.,

f [·] = { ξ1 [·] } ∪ { ξ2 [·] } ∪ { ξ3 [·] } ∪ ... ∪ { ξQ [·] } . For 1D, each sub-vector

s created by placing w over T non-overlapping sequential positions

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 253

Fig. 6. 2D example for B 1 aiming DSP and PRKbS with its variants TA, PA and EA: sliding square with length L = 3 traversing m [·][·] with overlap V = 66 . 67% . Again, w k [·]

indicate the k th position of the window, for k = 0 , 1 , 2 , ..., (T · P) − 1 . Dashed squares in the arbitrary positions 0, 1, 15, 16, 41 and 63, are shown.

o

E

l

e

v

f

w

t

p

i

i

e

z

e(
︸

f s [·] and then calculating the normalised ZCRs using TA, PA, or

A, as previously explained during the description of B 1 , i.e.,:

• subvector ξ 1 [·] is obtained by letting L = � M

2 � and V = 0% ,

which that T = � (100 ·M) −(L ·V)
(100 −V) ·L � = 2 , to traverse s [·] and get the

normalised ZCRs;

• idem to subvector ξ 2 [·], obtained by letting L = � M

3 � and V =
0% , which that T = � (100 ·M) −(L ·V)

(100 −V) ·L � = 3 ;

• idem to subvector ξ 3 [·], obtained by letting L = � M

5 � and V =
0% , which that T = � (100 ·M) −(L ·V)

(100 −V) ·L � = 5 ;

• . . .

• idem to subvector ξQ [·], obtained by letting L = � M

X � and V =
0% , which that T = � (100 ·M) −(L ·V)

(100 −V) ·L � = X .

Q is defined on the basis of the desired refinement and, simi-

arly, the values 2, 3, 5, 7, 9, 11, 13, 17, ..., X are choices for T , that is

ssentially restricted to prime numbers in order to avoid one sub-

ector to be a linear combination of another, implying in no gain

or classification.

For the 2D case, each sub-vector is created by framing m [·][·]
ith T · P non-overlapping rectangles, being T = P prime numbers,

o compute the corresponding normalised ZCRs, i.e.,

• subvector ξ 1 [·] is created by letting L = � M

2 � and V = 0% to

obtain T = � (100 ·M) −(L ·V)
(100 −V) ·L � = 2 and then by letting L = � N 2 � and

V = 0% to obtain P = � (100 ·N) −(L ·V)
(100 −V) ·L � = 2 . Subsequently, m [·][·] is

traversed by T · P = 2 · 2 = 4 non-overlapping rectangles ;

• idem to subvector ξ 2 [·], obtained by letting L = � M

3 � and

V = 0% and then L = � N � and V = 0% , which that T =
3
� (100 ·M) −(L ·V)
(100 −V) ·L � = 3 and P = � (100 ·N) −(L ·V)

(100 −V) ·L � = 3 , respectively, im-

plying that T · P = 3 · 3 = 9 non-overlapping rectangles traverse

m [·][·];
• idem to subvector ξ 3 [·], obtained by letting L = � M

5 � and

V = 0% and then L = � N 5 � and V = 0% , which that T =
� (100 ·M) −(L ·V)

(100 −V) ·L � = 5 and P = � (100 ·N) −(L ·V)
(100 −V) ·L � = 5 , respectively, im-

plying that T · P = 5 · 5 = 25 non-overlapping rectangles tra-

verse m [·][·];
• . . .

• idem to subvector ξQ [·], obtained by letting L = � M

X � and

V = 0% and then L = � N X � and V = 0% , which that T =
� (100 ·M) −(L ·V)

(100 −V) ·L � = X and P = � (100 ·N) −(L ·V)
(100 −V) ·L � = X, respectively, im-

plying that T · P = X · X = X 2 non-overlapping rectangles tra-

verse m [·][·];

In the 2D version of B 2 , the normalisations TA and EA are im-

lemented exactly as they were in B 1 . One particular note regard-

ng the normalisation PA is, however, important. Differently to B 1
n 2D, in which L is the same for both horizontal and vertical ori-

ntations, B 2 divides the input image into rectangles, i.e., the hori-

ontal and vertical sides are � M

X � and � N X � , respectively. Thus, each

lement of f [·] is not divided by 2 · L · (L − 1) , but by

� M

X

� − 1

)
 ︷︷ ︸

maximum ZCR

in one row

· � N

X

� ︸︷︷︸
number of

rows

+

(
� N

X

� − 1

)
︸ ︷︷ ︸

maximum ZCR

in one column

· � M

X

� ︸ ︷︷ ︸
number of

columns

= 2 · � M � · � N � − � M � − � N � ,

X X X X

254 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Algorithm 3 : fragment of C++ code for method B 1 in 1D, adopting

the normalisation EA.
// ensure that s [·] , of length M, is available as input

double mean = 0 ;

for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;

for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal is 0

int L = / * the desired positive value, not higher than M * / ;

int V = / * the desired positive value, lower than 100 * / ;

int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));

int highest _ ZCR = 0 ;

double ∗ f = new double[T]; // dynamic vector declaration

for(int k = 0 ; k < T ; k + +)

{

f [k] = 0 ;

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

f [k]+ = (s [i] ∗ s [i + 1] < 0)?1:0; / ∗ multiplying subsequent samples

results in a negative value if they are between 0. This is equivalent to the theoretical

procedure described in the text and based on equation 1. ∗/

if (f [k] > highest _ ZCR)

highest _ ZCR = f [k] ;

}

for(int k = 0 ; k < T ; k + +)

f [k] / = (double)(highest _ ZCR); / ∗ the casting, i.e., the explicit conversion of

highest_ZCR from int to double is, theoretically, not required, however, some C/C++

compilers have presented problems when a double-precision variable is divided by

an int one, resulting in 0. To avoid this issue, the casting is used. ∗/

// at this point, the feature vector, f [·] , is ready

Algorithm 4 : fragment of C++ code for method B 1 in 2D, adopting

the normalisation TA.
// ensure that m [·][·] , with height N and width M, is available as input

double mean = 0 ;

for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)

mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the input

signal is 0

int L = / * the desired positive value, not higher than the higher between M and N

* / ;

int V = / * the desired positive value, lower than 100 * / ;

int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));

int P = (int)((100 ∗ N − L ∗ V)/((100 − V) ∗L));

int ZCR = 0 ; // ZCR is the total number of zero-crossings over all the window place-

ments, required for normalisation

double ∗ f = new double[T ∗ P]; // dynamic vector declaration

for(int k = 0 ; k < T ∗ P; k + +)

{

f [k] = 0 ;

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L ; i + +)

for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j < k ∗ ((int)(((100 −
V) / 100 . 0)) ∗ L) + L − 1 ; j + +)

f [k]+ = (m [i][j] ∗ m [i][j + 1] < 0)?1:0; / ∗ multiplying sub-

sequent samples results in a negative value if they are between 0. This is equivalent

to the theoretical procedure described in the text and based on equation 1. ∗/

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j < k ∗ ((int)(((100 −
V) / 100 . 0)) ∗ L) + L ; j + +)

f [k]+ = (m [i][j] ∗ m [i + 1][j] < 0)?1:0; / ∗ multiplying sub-

sequent samples results in a negative value if they are between 0. This is equivalent

to the theoretical procedure described in the text and based on equation 1. ∗/

ZCR + = f [k] ;

}

for(int k = 0 ; k < T ∗ P; k + +)

f [k] / = (double)(ZCR) ; / ∗ the casting, i.e., the explicit conversion of ZCR

from int to double is, theoretically, not required, however, some C/C++ compilers have

presented problems when a double-precision variable is divided by an int one, result-

ing in 0. To avoid this issue, the casting is used. ∗/

// at this point, the feature vector, f [·] , is ready

Algorithm 5 : fragment of C++ code for method B 1 in 2D, adopting

the normalisation PA.

// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
int L = / * the desired positive value, not higher than the higher between M

and N * / ;
int V = / * the desired positive value, lower than 100 * / ;
int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));
int P = (int)((100 ∗ N − L ∗ V)/((100 − V) ∗L));
double ∗ f = new double[T ∗ P]; // dynamic vector declaration
for(int k = 0 ; k < T ∗ P; k + +)

{
f [k] = 0 ;
for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −

V) / 100 . 0) ∗ L)) + L ; i + +)
for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j <

k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) + L − 1 ; j + +)
f [k]+ = (m [i][j] ∗ m [i][j + 1] < 0)?1:0; / ∗ multiplying

subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. ∗/

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j <

k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) + L ; j + +)
f [k]+ = (m [i][j] ∗ m [i + 1][j] < 0)?1:0; / ∗ multiplying

subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. ∗/

}
for(int k = 0 ; k < T ∗ P; k + +)

f [k] / = (double)(2 ∗ L ∗ (L − 1)) ; the casting, i.e., the explicit conver-
sion of L from int to double is, theoretically, not required, however, some
C/C++ compilers have presented problems when a double-precision variable
is divided by an int one, resulting in 0. To avoid this issue, the casting is
used. ∗/

// at this point, the feature vector, f [·] , is ready

t

c

r

a

t

2

o

s

o

d

t

c

i

r

(

d

hat corresponds to the maximum possible number of zero-

rossings in each rectangular sub-image.

Figs. 7 and 8 show the sliding window for 1D and the sliding

ectangle for 2D, respectively, for TA , PA and EA . In addition, the

lgorithms 8 , 7 and 9 contain the corresponding 1D implementa-

ions. The 2D ones are in the algorithms 10–12 .

.3. Method B 3

As described above, B 1 and B 2 focus on measuring the levels

f normalised ZCRs over windows or rectangles of certain dimen-

ions. B 3 , on the other hand, is quite similar to A 3 [1] and consists

f determining the proportional lengths, or areas, of the signal un-

er analysis that are required to reach predefined percentages of

he total ZCR. Normalisations do not apply in this case. The direct

onsequence of this approach is the characterisation of B 3 as being

deal to inspect the constancy in frequency of the physical entity

esponsible for generating s [·], or m [·][·].
Specifically, C is defined as being the critical base-level of ZCRs,

0 < C < 100), and then, for 1D, the feature vector f [·] of size T is

etermined as follows:

• f 0 is the proportion of the length of s [·], i.e., M , starting from its

beginning, which is covered by the window placement w 0 [·],

required to reach C % of the total ZCR;

• f B is the proportion of the length of s [·], i.e., M , starting from its

beginning, which is covered by the window placement w 1 [·],

required to reach 2 · C % of the total ZCR;

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 255

Fig. 7. 1D example for B 2 assuming Q = 3 : (a) sliding window, with length L = � M
2
� = � 20

2
� = 10 traversing s [·] in order to compose ξ 1 [·]; (b) sliding window with length

L = � M
3
� = � 20

3
� = 6 traversing s [·] in order to compose ξ 2 [·]; (c) sliding window with length L = � M

5
� = � 20

5
� = 4 traversing s [·] in order to compose ξ 3 [·]. The window

positions do not overlap and the symbols w i indicate the i th window position, for i = 0 , 1 , 2 , ..., T − 1 .

T

T

t

i

1 I will take this opportunity to correct an error in my previous published tutorial

[1] -pp.270 regarding the description of A 3 in 2D: the way αi and β i vary is in ac-

cordance with a relationship between N and M , as shown above, instead of αi and
• f A is the proportion of the length of s [·], i.e., M , starting from its

beginning, which is covered by the window placement w 2 [·],

required to reach 3 · C % of the total ZCR;

• . . .

• f T −1 is the proportion of the length of s [·], i.e., M , starting

from its beginning, which is covered by the window placement

w T −1 [·] , required to reach (T · C)% of the total ZCR, so that (T ·
C) < 100%;

For B 3 , the value of T is defined as being:

 =

{
100

C
− 1 if C is multiple of 100 ;

� 100
C

� otherwise .

he 2D version of B 3 implies that f [·], with the same size T , is de-

ermined as follows:

• f 0 is the proportion of m [·][·] area, i.e., M · N , starting from m 0, 0

and covered by the � α0 � x � β0 � rectangle w 0 [·][·], required

to reach C % of the total ZCR;
• f B is the proportion of m [·][·] area, i.e., M · N , starting from m 0, 0

and covered by the � α1 � x � β1 � rectangle w 1 [·][·], required

to reach 2 · C % of the total ZCR;

• f A is the proportion of m [·][·] area, i.e., M · N , starting from m 0, 0

and covered by the � α2 � x � β2 � rectangle w 2 [·][·], required

to reach 3 · C % of the total ZCR;

• . . .

• f T P−1 is the proportion of m [·][·] area, i.e., M · N , starting from

m 0, 0 and covered by the � αT −1 � x � βT −1 � rectangle w T −1 [·][·] ,
required to reach T · C % of the total ZCR, so that (T · C) < 100%;

The values of αi and β i , (0 � i � T − 1), are determined accord-

ng to the following rule, the exact same used for A 3 in 2D

1 [1] :

256 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Fig. 8. 2D example for B 2 assuming Q = 3 subvectors: [above] sliding square with length {� M
2
� x � N

2
�} = {� 10

2
� x � 20

2
�} = 5 x 10 traversing m [·][·] in order to compose ξ 1 [·]; [mid-

dle] sliding square with length {� M
3
� x � N

3
�} = {� 10

3
� x � 20

3
�} = 3 x 6 traversing m [·][·] in order to compose ξ 2 [·]; [below] sliding square with length {� M

5
� x � N

5
�} = {� 10

5
� x � 20

5
�} =

2 x 4 traversing m [·][·] in order to compose ξ 3 [·]. Again, w i indicates the i th window position, for i = 0 , 1 , 2 , ..., (T · P) − 1 , with no overlap. Dashed squares represent the sliding

window in all possible positions.

e

2

e
Beginning: (αi ← 0) and (βi ← 0) , unconditionally .

repeat

{

(αi ← αi + 1) and (βi ← βi + 1) if (N = M)

(αi ← αi + 1) and (βi ← βi +

M

N
) if (N > M)

(αi ← αi +

N
M

) and (βi ← βi + 1) otherwise .

until the desired level of energy, i.e., C , 2 · C , 3 · C , ..., T · C is
reached.

β i themselves, as originally documented in that paper. A corrigendum is available

on-line at http://dx.doi.org/10.1016/j.neucom.2016.04.001 with details.

s

g

End. Figs. 9 and 10 , and algorithms 13 and 14 2 , complement my

xplanations regarding B 3 , for both 1D and 2D, respectively.

.4. ZCRs are neurocomputing agents

In this subsection, the trail for an interesting point-of-view is

xplained. Additionally to Eq. 1 , ZCRs may also be counted based
2 The algorithm for A 3 in 2D, originally described in [1] -pp.273, also requires the

ame corrections I mentioned in the previous footnote, as described in the corri-

endum.

http://dx.doi.org/10.1016/j.neucom.2016.04.001

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 257

Fig. 9. 1D example for B 3 , where L w i represents the length of the window w i [·], for i = 0 , 1 , 2 , 3 , ..., T − 1 .

Fig. 10. 2D example for B 3 , where w i [·] corresponds to the i th window, and αi and β i represent, respectively, its height and width, for i = 0 , 1 , 2 , 3 , ..., T P − 1 .

Fig. 11. The sigmoide function, y =

1
1+ e −γ ·x , exemplified for different values of γ :

2, 5 and 10 0 0, respectively drawn in green, blue and brown. The proposed strategy

requires γ >> 0 aiming at a response as the one drawn in brown.(For interpretation

of the references to colour in this figure legend, the reader is referred to the web

version of this article).

o

t

c

1 ,

b

−

p

f

t

t

s

t

h

b

Z

i

t

d ∑

t

F

t

d

o

t

p

k

t

l

c

t

k

t

t

t

n

t

3

n
n a different strategy, which is the one I use in my algorithms:

wo adjacent samples of a discrete-time signal, lets say s i and s i +1 ,

ross zero whenever their product is negative. Thus,

s i · s i +1

| s i · s i +1 | =

{
−1 if there is a zero-crossing between s i and s i +
1 otherwise

eing the denominator used for normalisation.

Purposely, I am inverting the polarities hereafter so that
s i ·s i +1 | s i ·s i +1 | becomes either 1 or −1 , respectively, in response to the

resence or absence of a zero-crossing. Furthermore, despite the

act that 1
| s i ·s i +1 | is the simplest existing normalisation, I am going

o replace it by a more convenient formulation to reach my objec-

ive: the sigmoide function parametrised with a slope γ > > 0, as

hown in Fig. 11 . We therefore have

1

1 + e −γ (−s i ·s i +1)
=

{

1 if there is a zero-crossing between

s i and s i +1

0 otherwise
.

In order to traverse a window of length L and count its ZCRs,

he summation

∑ L −2
i =0

1

1+ e −γ (−s i ·s i +1)
is adopted. The readers may

ave learnt that, for FE, we are interested in the normalised num-
er of ZCRs instead of its raw amount. Thus,

CR (s [·]) =

1

β
·

L −2 ∑

i =0

1

1 + e −γ (−s i ·s i +1)
=

L −2 ∑

i =0

1

β
· 1

1 + e −γ (−s i ·s i +1)

s the simplest possibility to obtain a bounded outcome within

he range from 0 to 1. Particularly, TA, PA and EA can be ad-

ressed as a function of β , respectively, by letting it be equal to
 T −1
k =0

ZCR (w k [·]) , L − 1 and ZCR (w h [·]), as I defined previously.

Clearly, the structure I propose corresponds to the original mul-

ilayer perceptron defined by Frank Rosenblatt [34] , as shown in

ig. 12 , with some peculiarities. Its i th input, i th weight between

he input and the hidden layers, and i th weight between the hid-

en and the output layers are, respectively, s i , −s i +1 and 1
β

. More-

ver, the i th neuron of the input layer connects forward only with

he i th of the hidden one. Another possible interpretation for the

roposed structure is that of a weightless neural network, also

nown as random access memory (RAM) network [35–37] , so that

here are weights albeit pre-defined, implying that there is no

earning procedure.

Concluding, when we are counting the normalised ZCRs of a

ertain signal, we are somehow neurocomputing it, moreover, on

he basis of neurons which were “born with a pre-established

nowledge”. The potential of ZCRs awakens deeper attraction upon

heir characterisation as being specific neurocomputing agents,

hus, my expectation is that the interdisciplinary community in-

erested in PRKbS, FE, computational intelligence, artificial neural

etworks, DSP and related fields will frequently take advantage of

he methods I present.

. Numerical examples

In order to shed some light on the proposed approaches, one

umerical example follows for each case: methods B , B and B ,
1 2 3

258 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Fig. 12. The proposed structure, with pre-defined weights.

Algorithm 6 : fragment of C++ code for method B 1 in 2D, adopting

the normalisation EA.

// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
int L = / * the desired positive value, not higher than the higher between M

and N * / ;
int V = / * the desired positive value, lower than 100 * / ;
int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));
int P = (int)((100 ∗ N − L ∗ V)/((100 − V) ∗L));
int highest _ ZCR = 0 ; // ZCR is the total number of zero-crossings over all the
window placements, required for normalisation
double ∗ f = new double[T ∗ P]; // dynamic vector declaration
for(int k = 0 ; k < T ∗ P; k + +)

{
f [k] = 0 ;
for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −

V) / 100 . 0) ∗ L)) + L ; i + +)
for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j <

k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) + L − 1 ; j + +)
f [k]+ = (m [i][j] ∗ m [i][j + 1] < 0)?1:0; / ∗ multiplying

subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. ∗/

for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −
V) / 100 . 0) ∗ L)) + L − 1 ; i + +)

for(int j = k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) ; j <

k ∗ ((int)(((100 − V) / 100 . 0)) ∗ L) + L ; j + +)
f [k]+ = (m [i][j] ∗ m [i + 1][j] < 0)?1:0; / ∗ multiplying

subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. ∗/

if (f [k] > highest _ ZCR)
highest _ ZCR = f [k] ;

}
for(int k = 0 ; k < T ∗ P; k + +)

f [k] / = (double)(highest _ ZCR) ; the casting, i.e., the explicit conver-
sion of highest_ZCR from int to double is, theoretically, not required, however,
some C/C++ compilers have presented problems when a double-precision vari-
able is divided by an int one, resulting in 0. To avoid this issue, the casting is
used. ∗/

// at this point, the feature vector, f [·] , is ready

V

Algorithm 7 : fragment of C++ code for method B 2 in 1D, adopting

the normalisation TA.
// ensure that s [·] , of length M, is available as input

double mean = 0 ;

for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;

for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal is 0

int L ; // window length

int ZCR ; // ZCR represents the total ZCR over all the window positions, that is re-

quired to normalise f [·]
int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of interest.

It can be changed according to the experiment */

int total_size_of_f = 0 ;

for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in X[·]
total_size_of_f+=X[i];

double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum of the

elements in X[·] , i.e., the size of the subvector ξ1 [·] plus the size of the subvector

ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so on */

int jump = 0; // helps to control the correct positions to write in f [·]
for(int j = 0 ; j < (int)(sizeof(X)/sizeof(int)) ; j + +)

{

ZCR = 0 ;

for(int k = 0 ; k < X[j] ; k + +)

{

L = (int)(M/X[j]) ;

f [jump + k] = 0 ;

for(int i = (k ∗ L) ; i < (k ∗ L) + L ; i + +)

f [jump + k]+ = (s [i] ∗ s [i + 1] < 0)?1:0;

ZCR + = f [jump + k] ;

}

for(int k = 0 ; k < X[j] ; k + +)

f [jump + k] / = (double)(ZCR) ;

jump+ = X[j] ;

}

// at this point, the feature vector, f [·] , is ready

v

i

b

{

i

1

e

i

{

both in 1D and 2D, assuming the normalisations previously de-

scribed and based on hypothetical data.

3.1. Numerical example for B 1 in 1D

Problem statement : Let s [·] = { 1 , 2 , 3 , 4 , 5 , 5 , 4 , 3 , 2 , 1 } , imply-

ing in M = 10 , and L = 4 be the window length, with overlaps of

 = 50% . Obtain the feature vector, f [·], according to the method

B 1 .

Solution : First, the 1D signal mean, 1+2+3+4+5+5+4+3+2+1
10 =

30
10 = 3 � = 0 , is subtracted from each component of s [·], result-

ing in { 1 − 3 , 2 − 3 , 3 − 3 , 4 − 3 , 5 − 3 , 5 − 3 , 4 − 3 , 3 − 3 , 2 − 3 , 1 −
3 } = {−2 , −1 , 0 , 1 , 2 , 2 , 1 , 0 , −1 , −2 } . The corresponding feature
ector, which has length T = � (100 ·M) −(L ·V)
(100 −V) ·L � = � (100 ·10) −(4 ·50)

(100 −50) ·4 � = 4 ,

s obtained as follows:

• w 0 [·], which covers the sub-signal {−2 , −1 , 0 , 1 } , contains 1

zero-crossing, implying that f 0 = 1 ;

• w 1 [·], which covers the sub-signal {0, 1, 2, 2}, contains no

zero-crossings, implying that f B = 0 ;

• w 2 [·], which covers the sub-signal {2, 2, 1, 0}, contains no

zero-crossings, implying that f A = 0 ;

• w 3 [·], which covers the sub-signal { 1 , 0 , −1 , −2 } , contains 1

zero-crossing, implying that f 3 = 1 .

For the normalisation TA, each component of f [·] is divided

y
∑ 3

k =0 f k = 1 + 0 + 0 + 1 = 2 . Thus, it becomes { 1 2 ,
0
2 ,

0
2 ,

1
2 } =

1
2 , 0 , 0 ,

1
2 } . On the other hand, for PA, each component of f [·]

s divided by the maximum number of zero-crossings, i.e., L −
 = 3 . Thus, it becomes { 1 3 ,

0
3 ,

0
3 ,

1
3 } = { 1 3 , 0 , 0 ,

1
3 } . Lastly, for EA,

ach component of f [·] is divided by the highest component of

ts unnormalised version, i.e., 1. Thus, it becomes { 1 1 ,
0
1 ,

0
1 ,

1
1 } =

 1 , 0 , 0 , 1 } .

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 259

Algorithm 8 : fragment of C++ code for method B 2 in 1D, adopting

the normalisation PA.
// ensure that s [·] , of length M, is available as input

double mean = 0 ;

for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;

for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal is 0

int L ; // window length

int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of interest.

It can be changed according to the experiment */

int total_size_of_f = 0 ;

for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in X[·]
total_size_of_f+=X[i];

double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum of the

elements in X[·] , i.e., the size of the subvector ξ1 [·] plus the size of the subvector

ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so on */

int jump = 0; // helps to control the correct positions to write in f [·]
for(int j = 0 ; j < (int)(sizeof(X)/sizeof(int)) ; j + +)

{

for(int k = 0 ; k < X[j] ; k + +)

{

L = (int)(M/X[j]) ;

f [jump + k] = 0 ;

for(int i = (k ∗ L) ; i < (k ∗ L) + L ; i + +)

f [jump + k]+ = (s [i] ∗ s [i + 1] < 0)?1:0;

}

for(int k = 0 ; k < X[j] ; k + +)

f [jump + k] / = (double)(L − 1) ;

jump+ = X[j] ;

}

// at this point, the feature vector, f [·] , is ready

3

N

w

m

c (

�
3

v

Algorithm 9 : fragment of C++ code for method B 2 in 1D, adopting

the normalisation EA.

// ensure that s [·] , of length M, is available as input
double mean = 0 ;
for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;
for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal
is 0
int L ; // window length
int highest _ ZCR ; // E represents the total ZCR over all the window positions,
that is required to normalise f [·]
int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of
interest. It can be changed according to the experiment */
int total_size_of_f = 0 ;
for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in
X[·]

total_size_of_f+=X[i];
double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum

of the elements in X[·] , i.e., the size of the subvector ξ1 [·] plus the size of the
subvector ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so on */
int jump = 0; // helps to control the correct positions to write in f [·]
for(int j = 0 ; j < (int)(sizeof(X)/sizeof(int)) ; j + +)

{
highest _ ZCR = 0 ;
for(int k = 0 ; k < X[j] ; k + +)

{
L = (int)(M/X[j]) ;
f [jump + k] = 0 ;
for(int i = (k ∗ L) ; i < (k ∗ L) + L ; i + +)

f [jump + k]+ = (s [i] ∗ s [i + 1] < 0)?1:0;
if (f [jump + k] > highest _ ZCR)

highest _ ZCR = f [jump + k] ;
}

for(int k = 0 ; k < X[j] ; k + +)
f [jump + k] / = (double)(highest _ ZCR) ;

jump+ = X[j] ;
}

// at this point, the feature vector, f [·] , is ready

{

e

z

c

i

i

3

i

w

m

i

4

p

{

.2. Numerical example for B 1 in 2D

Problem statement : Let m [·][·] =

(
1 2 3 4
4 2 4 6
7 8 9 10

)
, implying in

 = 3 and M = 4 . Assume that the square window has size L = 2

ith overlaps of V = 50% . Obtain the feature vector, f [·], following

ethod B 1 .

Solution : First, the 2D signal mean,
1+2+3+4+4+2+4+6+7+8+9+10

12 =

60
12 = 5 � = 0 , is subtracted from each

omponent of s [·], resulting in

(
1 − 5 2 − 5 3 − 5 4 − 5
4 − 5 2 − 5 4 − 5 6 − 5
7 − 5 8 − 5 9 − 5 10 − 5

)
=

−4 −3 −2 −1
−1 −3 −1 1
2 3 4 5

)
. Then, the feature vector with length T · P =

(100 ·M) −(L ·V)
(100 −V) ·L � · � (100 ·N) −(L ·V)

(100 −V) ·L � = � (100 ·4) −(2 ·50)
(100 −50) ·2 � · � (100 ·3) −(2 ·50)

(100 −50) ·2 � =

 · 2 = 6 is obtained as follows:

• w 0 [·][·] covers the sub-matrix

(−4 −3
−1 −3

)
, which contains no

zero-crossings, implying that f 0 = 0 ;

• w 1 [·][·] covers the sub-matrix

(−3 −3
−2 −1

)
, which contains no

zero-crossings, implying that f B = 0 ;

• w 2 [·][·] covers the sub-matrix

(−2 −1
−1 1

)
, which contains 2

zero-crossings, implying that f A = 2 ;

• w 3 [·][·] covers the sub-matrix

(−1 −3
2 3

)
, which contains 2

zero-crossings, implying that f 3 = 2 ;

• w 4 [·][·] covers the sub-matrix

(−3 −1
3 4

)
, which contains 2

zero-crossings, implying that f 4 = 2 ;

• w 5 [·][·] covers the sub-matrix

(−1 1
4 5

)
, which contains 2

zero-crossings, implying that f 5 = 2 .

For the normalisation TA, each component of f [·] is di-

ided by
∑ 5 f k = 0 + 0 + 2 + 2 + 2 + 2 = 8 . Thus, it becomes
k =0

0
8 ,

0
8 ,

2
8 ,

2
8 ,

2
8 ,

2
8 } = { 0 , 0 , 1 4 ,

1
4 ,

1
4 ,

1
4 } . On the other hand, for PA,

ach component of f [·] is divided by the maximum number of

ero-crossings, i.e., (4 − 1) · 3 + (3 − 1) · 4 = 9 + 8 = 17 . Thus, it be-

omes { 0 17 ,
0
17 ,

2
17 ,

2
17 ,

2
17 ,

2
17 } . Lastly, for EA, each component of f [·]

s divided by the highest component of its unnormalised version,

.e., 2. Thus, it becomes { 0 2 ,
0
2 ,

2
2 ,

2
2 ,

2
2 ,

2
2 } = { 0 , 0 , 1 , 1 , 1 , 1 } .

.3. Numerical example for B 2 in 1D

Problem statement : Let s [·] = { 1 , 2 , 4 , 6 , 6 , 6 , 6 , 5 , 3 , 1 } , imply-

ng in M = 10 . Assuming that Q = 3 , with no overlaps between

indow positions, obtain the feature vector, f [·], following the

ethod B 2 .

Solution : First, the 1D signal mean, 1+2+4+6+6+6+6+5+3+1
10 =

40
10 = 4 � = 0 , is subtracted from each component of s [·], result-

ng in { 1 − 4 , 2 − 4 , 4 − 4 , 6 − 4 , 6 − 4 , 6 − 4 , 6 − 4 , 5 − 4 , 3 − 4 , 1 −
 } = {−3 , −2 , 0 , 2 , 2 , 2 , 2 , 1 , −1 , −3 } . The feature vector is com-

osed by the concatenation of Q = 3 sub-vectors, i.e., f [·] =
 ξ1 [·] } ∪ { ξ2 [·] } ∪ { ξ3 [·] } , which are obtained as follows:

• The first subvector, ξ 1 [·], comes from two non-overlapping

windows, w 0 [·] = {−3 , −2 , 0 , 2 , 2 } and w 1 [·] = { 2 , 2 , 1 , −1 , −3 } ,
which are positioned over s [·]. The corresponding results

are:

ξ1 0 = 1 ; ξ1 1 = 1 .

• The second subvector, ξ 2 [·], comes from three non-overlapping

windows, w 0 [·] = {−3 , −2 , 0 } , w 1 [·] = { 2 , 2 , 2 } and w 2 [·] =
{ 2 , 1 , −1 } , which are positioned over s [·], discarding its last el-

ement, i.e., the amplitude −3 . The corresponding results are:

260 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Algorithm 10 : fragment of C++ code for method B 2 in 2D, adopt-

ing the normalisation TA.

// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
double ZCR ; // represents the total ZCR over all the window positions, that
is required to normalise f [·]
int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of
interest. It can be changed according to the experiment */
int total_size_of_f = 0 ;
for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in
X[·]

total_size_of_f+=pow(X[i] , 2);
double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum

of the squares of the elements in X[·] , i.e., the size of the subvector ξ1 [·] plus
the size of the subvector ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so
on */
int jump = 0; // helps to control the correct positions to write in f [·]
for(int i = 0 ; i < total_size_of_f; i + +)

f [i] = 0 ;
int L 1 , L 2 ;
for(int k = 0 ; k < (int)(sizeof(X)/sizeof(int)); k + +)

{
ZCR = 0 ;
L 1 = (int)(N/X[k]);
L 2 = (int)(M/X[k]);
for(int i = 0 ; i < ((int)(N/X [k]))* X [k] - 1; i + +)

for(int j = 0 ; j < ((int)(M/X [k]))* X [k] ; j + +)
{
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i + 1][j] < 0)?1:0;
ZCR + = (m [i][j] ∗ m [i + 1][j] < 0)?1 : 0 ;
}

for(int i = 0 ; i < ((int)(N/X [k]))* X [k] ; i + +)
for(int j = 0 ; j < ((int)(M/X [k]))* X [k] - 1; j + +)

{
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i][j + 1] < 0)?1:0;
ZCR + = (m [i][j] ∗ m [i][j + 1] < 0)?1 : 0 ;
}

for(int i = jump; i < jump + pow(X[k] , 2); i + +)
f [i] / = (double)(ZCR) ;

jump+=pow(X[k] , 2);
}

// at this point, the feature vector, f [·] , is ready .

Algorithm 11 : fragment of C++ code for method B 2 in 2D, adopt-

ing the normalisation PA.

// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
int L 1 , L 2 ;
int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of
interest. It can be changed according to the experiment */
int total_size_of_f = 0 ;
for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in
X[·]

total_size_of_f+=pow(X[i] , 2);
double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum

of the squares of the elements in X[·] , i.e., the size of the subvector ξ1 [·] plus
the size of the subvector ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so
on */
int jump = 0; // helps to control the correct positions to write in f [·]
for(int i = 0 ; i < total_size_of_f; i + +)

f [i] = 0 ;
for(int k = 0 ; k < (int)(sizeof(X)/sizeof(int)); k + +)

{
L 1 = (int)(M/X[k]);
L 2 = (int)(N/X[k]);
for(int i = 0 ; i < ((int)(N/X [k]))* X [k] - 1; i + +)

for(int j = 0 ; j < ((int)(M/X [k]))* X [k] ; j + +)
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i + 1][j] < 0)?1:0;
for(int i = 0 ; i < ((int)(N/X [k]))* X [k] ; i + +)

for(int j = 0 ; j < ((int)(M/X [k]))* X [k] - 1; j + +)
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i][j + 1] < 0)?1:0;
for(int i = jump; i < jump + pow(X[k] , 2); i + +)

f [i] / = (2 ∗ L 1 ∗ L 2 − L 1 − L 2) ;
jump+=pow(X[k] , 2);
}

// at this point, the feature vector, f [·] , is ready .
// . . .

b

f

c

e

{

3

N

w

t ⎛
⎝

v

ξ2 0 = 1 ; ξ2 1 = 0 ; ξ2 2 = 1 .

• The third subvector, ξ 3 [·], comes from five non-overlapping

windows, w 0 [·] = {−3 , −2 } , w 1 [·] = { 0 , 2 } , w 2 [·] = { 2 , 2 } ,
w 3 [·] = { 2 , 1 } and w 4 [·] = {−1 , −3 } , which are positioned over

s [·]. The corresponding results are:

ξ3 0 = 0 ; ξ3 1 = 0 ; ξ3 2 = 0 ; ξ3 3 = 0

; ξ3 4 = 0 .

The concatenation of the three sub-vectors produce f [·] =
{ 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } . Now, each sub-vector is normalised sep-

arately. Considering TA, each component of ξ 1 in f [·] is divided

by
∑ 1

k =0 ξ1 k = 1 + 1 = 2 ; each component of ξ 2 in f [·] is di-

vided by
∑ 2

k =0 ξ2 k = 1 + 0 + 1 = 2 ; and each component of ξ 3 in

f [·] keeps unchangeable because
∑ 4

k =0 ξ3 k = 0 . Thus, f [·] becomes

{ 1 2 ,
1
2 ,

1
2 ,

0
2 ,

1
2 , 0 , 0 , 0 , 0 , 0 } = { 1 2 ,

1
2 ,

1
2 , 0 ,

1
2 , 0 , 0 , 0 , 0 , 0 } .

On the other hand, considering PA, each component of ξ 1 in f [·]
is divided by the maximum number of zero-crossings possible for

the window that originated it, i.e., L − 1 = 5 − 1 = 4 . Equally, each

component of ξ 2 in f [·] is divided by L − 1 = 3 − 1 = 2 , and each

component of ξ 3 in f [·] is divided by L − 1 = 2 − 1 = 1 . Thus, f [·]
becomes { 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } = { 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } .
4 4 2 2 2 1 1 1 1 1 4 4 2 2
Lastly, considering EA, each component of ξ 1 in f [·] is divided

y the highest component in it, i.e., 1; each component of ξ 2 in

 [·] is divided by the highest component in it, i.e., 1; and each

omponent of ξ 3 in f [·] keeps unchangeable because its high-

st component is 0. Thus, f [·] becomes { 1 1 ,
1
1 ,

1
1 ,

0
1 ,

1
1 , 0 , 0 , 0 , 0 , 0 } =

 1 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } .

.4. Numerical example for B 2 in 2D

Problem statement : Let m [·][·] =

⎛

⎝

0 1 2 3
4 5 6 7
8 9 10 53
3 0 1 0

⎞

⎠ , implying in

 = 4 and M = 4 . Assume that Q = 2 with no overlaps between

indows. Obtain the feature vector, f [·], following method B 2 .

Solution : First, the 2D signal mean,
0+1+2+3+4+5+6+7+8+9+10+53+3+0+1+0

16 =

112
16 = 7 � = 0 , is sub-

racted from each component of m [·][·], resulting in

0 − 7 1 − 7 2 − 7 3 − 7
4 − 7 5 − 7 6 − 7 7 − 7
8 − 7 9 − 7 10 − 7 53 − 7
3 − 7 0 − 7 1 − 7 0 − 7

⎞

⎠ =

⎛

⎝

−7 −6 −5 −4
−3 −2 −1 0
1 2 3 46
−4 −7 −6 −7

⎞

⎠ . The feature

ector is composed by the concatenation of Q = 2 sub-vectors, i.e.,

f [·] = { ξ1 [·] } ∪ { ξ2 [·] } . They are obtained as follows:

• for ξ 1 [·], a total of 2 · 2 = 4 non-overlapping windows,

w 0 [·][·] =

(−7 −6
−3 −2

)
, w 1 [·][·] =

(−5 −4
−1 0

)
, w 2 [·][·] =

(
1 2
−4 −7

)
and w 3 [·][·] =

(
3 46
−6 −7

)
, are positioned over m [·][·]. The result

is:

ξ1 0 = 0 ; ξ1 1 = 2 ; ξ1 3 = 2 ; ξ1 4 = 2 .

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 261

Algorithm 12 : fragment of C++ code for method B 2 in 2D, adopt-

ing the normalisation EA.

// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
int X[] = { 2 , 3 , 5 , 7 , 9 , 11 , 13 , 17 } ; /* vector containing the prime numbers of
interest. It can be changed according to the experiment */
int total_size_of_f = 0 ;
for(int i = 0 ; i < (int)(sizeof(X)/sizeof(int)); i + +) // number of elements in
X[·]

total_size_of_f+=pow(X[i] , 2);
double ∗ f = new double[total_size_of_f]; /* The total size of f [·] is the sum

of the squares of the elements in X[·] , i.e., the size of the subvector ξ1 [·] plus
the size of the subvector ξ2 [·] , plus the size of the subvector ξ3 [·] , ..., and so
on */
int jump = 0; // helps to control the correct positions to write in f [·]
for(int i = 0 ; i < total_size_of_f; i + +)

f [i] = 0 ;
int L 1 , L 2 ;
for(int k = 0 ; k < (int)(sizeof(X)/sizeof(int)); k + +)

{
L 1 = (int)(N/X[k]);
L 2 = (int)(M/X[k]);
for(int i = 0 ; i < ((int)(N/X [k]))* X [k] - 1; i + +)

for(int j = 0 ; j < ((int)(M/X [k]))* X [k] ; j + +)
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i + 1][j] < 0)?1:0;
for(int i = 0 ; i < ((int)(N/X [k]))* X [k] ; i + +)

for(int j = 0 ; j < ((int)(M/X [k]))* X [k] - 1; j + +)
f [jump+(((int)(i/L 2))*(X[k]))+((int)(j /L 1))] + = (m [i][j] ∗

m [i][j + 1] < 0)?1:0;
jump+=pow(X[k] , 2);
}

jump=0;
double highest _ ZCR ;
for(int k = 0 ; k < (int)(sizeof(X)/sizeof(int)); k + +)

{
highest _ ZCR = 0 ;
for(int l = 0 ; l < pow(X[k] , 2); l + +)

if(f[jump+l] > highest _ ZCR)
highest _ ZCR = f [jump+l];

for(int l = 0 ; l < pow(X[k] , 2); l + +)
f[jump+l] / = highest _ ZCR ;

jump+=pow(X[k] , 2);
}

// at this point, the feature vector, f [·] , is ready .

Algorithm 13 : fragment of C++ code for method B 3 in 1D.

// ensure that s [·] , of length M, is available as input
double mean = 0 ;
for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;
for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal
is 0
int L = 0 ; // partial lengths
double C = ; // the desired value, being 0 < C < 100
int T = ((100 /C) − ((int)(100 /C)) == 0)?(100 /C) − 1 : (int)(100 /C) ; //

the number of elements in T
double ∗ f = new double[T]; // dynamic vector declaration
double z = zcr(& s [0] , M)*((double)(C)/ 100);
for(int k = 0 ; k < T ; k + +)

{
while(zcr(& s [0] , L) < ((k + 1) ∗ z))

L + + ;
f [k] = (double)(L)/(double)(M);
}

// at this point, the feature vector, f [·] , is ready
// . . .
// function zcr
double zcr(double* input_vector, int length)
{
double z = 0 ;
for(int i= 0 ;i < length - 1;i ++)

z +=(input _ v ector[i] ∗ input _ v ector[i + 1] < 0)?1:0;
return(z);
}

Algorithm 14 : fragment of C++ code for method B 3 in 2D.

// ...
// ensure that m [·][·] , with height N and width M, is available as input
double mean = 0 ;
for(int p = 0 ; p < N; p + +)

for(int q = 0 ; q < M; q + +)
mean + = m [p][q] / (double)(M ∗ N) ;

for(int p = 0 ; p < N; p + +)
for(int q = 0 ; q < M; q + +)

m [p][q] − = mean ; // at this point, the arithmetic mean of the
input signal is 0
double alpha = 0; // partial height
double beta = 0; // partial width
double C = ; // the desired value, being 0 < C < 100
int T = ((100 /C) − ((int)(100 /C)) == 0)?(100 /C) − 1 : (int)(100 /C) ; //

the number of elements in T
double ∗ f = new double[T]; // dynamic vector declaration
double z = zcr(m, N, M)*((double)(C)/ 100 . 0);
for(int k = 0 ; k < T ; k + +)

{
while(zcr(& m [0][0] , (int)(alpha),(int)(beta)) < ((k + 1) ∗ z))

if (N == M)
{
alpha ++ ;
beta ++ ;
}

else if (N > M)
{
alpha ++ ;
beta+=(double)(M)/(double)(N);
}

else
{
alpha+=(double)(N)/(double)(M);
beta ++ ;
}

f [k] = ((alpha ∗ beta) < = (N ∗ M))?((alpha ∗ beta)/(N ∗ M)):(1); // ex-
ceptionally, as alpha or beta increases, f [k] > 1 for k close to T , so this is
a correction.

}
// at this point, the feature vector, f [·] , is ready
// . . .
// function zcr in 2D

double zcr(double** input_matrix, int height, int width)
{
double z = 0 ;
for(int i= 0 ;i < height - 1;i ++)

for(int j= 0 ;j < width;j ++)
z +=(input _ matrix [i][j] ∗ input _ matrix [i + 1][j] < 0)?1:0;

for(int i= 0 ;i < height;i ++)
for(int j= 0 ;j < width - 1;j ++)

z +=(input _ matrix [i][j] ∗ input _ matrix [i][j + 1] < 0)?1:0;
return(z);
}
// ...

{

e

c

a ∑

{

i

p

4

c

{
• for ξ 2 [·], a total of 3 · 3 = 9 non-overlapping windows,

w 0 [·][·] = (−7) , w 1 [·][·] = (−6) , w 2 [·][·] = (−5) , w 3 [·][·] = (−3) ,

w 4 [·][·] = (−2) , w 5 [·][·] = (−1) , w 6 [·][·] = (1) , w 7 [·][·] = (2) and

w 8 [·][·] = (3) , are positioned over m [·][·], being its fourth row

and fourth column discarded. The result is:

ξ2 0 = 0 ; ξ2 1 = 0 ; ξ2 2 = 0 ; ξ2 3 = 0 ; ξ2 4 = 0

; ξ2 5 = 0 ; ξ2 6 = 0 ; ξ2 7 = 0 ; ξ2 8 = 0 .

The concatenation of both sub-vectors produce f [·] =
 0 , 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } . As in the previous example,

ach sub-vector is normalised separately. Considering TA, each

omponent of ξ 1 in f [·] is divided by
∑ 3

k =0 ξ1 k = 0 + 2 + 2 + 2 = 6 ;

nd each component of ξ 2 in f [·] keeps unchangeable because
 8
k =0 ξ2 k = 0 . Thus, f [·] becomes { 0 6 ,

2
6 ,

2
6 ,

2
6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } =

 0 , 1 3 ,
1
3 ,

1
3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } .

On the other hand, considering PA, each component of ξ 1

n f [·] is divided by the maximum number of zero-crossings

ossible for the window that originated it, i.e., 1 · 2 + 1 · 2 =
 , and each component of ξ 2 in f [·] keeps unchangeable be-

ause the subvector does not cross zero. Thus, f [·] becomes

0 , 2 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } = { 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } .
4 4 4 4 2 2 2

262 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

 =

t

4

r

d

4

v

p

[

t

c

t

d

t

f

s

p

t

t

t

t

V

f

s

e

t

a

a

f

a

t

a

c

d

s

s

w

d

p

o

d

/

“

u

c

s

m

S

t

t

[

s
Lastly, considering EA, each component of ξ 1 in f [·] is di-

vided by the highest component in it, i.e., 2; and each compo-

nent of ξ 2 in f [·] keeps unchangeable because its highest com-

ponent is 0. Thus, f [·] becomes { 0 2 ,
2
2 ,

2
2 ,

2
2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } =

{ 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } .

3.5. Numerical example for B 3 in 1D

Problem statement : Let s [·] = { 1 , −1 , 1 , −1 , 1 , 1 , −1 , −1 } , im-

plying in M = 8 , and assume that C = 20% is the critical level. Ob-

tain the feature vector, f [·], according to the method B 3 .

Solution : The signal mean is 1 + (−1) + 1 + (−1) + 1 + 1 +
(−1) + (−1) = 0 , i.e., the ZCRs are ready to be counted. The fea-

ture vector, of length T =

100
20 − 1 = 4 , is composed by the pro-

portional lengths of s [·] required to reach 1 · 20% = 20% , 2 · 20% =
40% , 3 · 20% = 60% and 4 · 20% = 80% of its total number of zero-

crossings. They are obtained as follows:

• s [·] has 5 zero-crossings;

• 20% of 5 is 0 . 2 · 5 = 1 . 4 . Ceiling the result, 2 zero-crossings are

required. The proportion of the length of s [·] to reach them,

from the beginning, is 3
8 ;

• 40% of 5 is 0 . 4 · 5 = 2 zero-crossings. The proportion of the

length of s [·] to reach them, from the beginning, is, again, 3
8 ;

• 60% of 5 is 0 . 6 · 5 = 3 . The proportion of the length of s [·] to

reach them, from the beginning, is 4
8 =

1
2 ;

• 80% of 5 is 0 . 8 · 5 = 4 . The proportion of the length of s [·] to

reach them, from the beginning, is 5
8 .

Thus, f [·] = { 3 8 ,
3
8 ,

1
2 ,

5
8 } . As explained in the previous section,

no further normalisation applies.

3.6. Numerical example for B 3 in 2D

Problem statement : Let m [·][·] =

⎛

⎝

5 2 5 6
2 3 3 7
8 4 −4 6
1 4 12 0

⎞

⎠ , implying in

N = 4 and M = 4 . Assume that C = 25% is the critical level. Obtain

the feature vector, f [·], according to the method B 3 .

Solution : The signal mean is 5+2+5+6+2+3+3+7+8+4 −4+6+1+4+12+0
16

64
16 = 4 � = 0 . Thus, m [·][·] is translated so that it becomes⎛

⎝

5 − 4 2 − 4 5 − 4 6 − 4
2 − 4 3 − 4 3 − 4 7 − 4
8 − 4 4 − 4 −4 − 4 6 − 4
1 − 4 4 − 4 12 − 4 0 − 4

⎞

⎠ =

⎛

⎝

1 −2 1 2
−2 −1 −1 3
4 0 −8 2
−3 0 8 −4

⎞

⎠ . The feature

vector, of length T =

100
25 − 1 = 3 , is composed of the proportional

areas of m [·][·] required to reach 1 · 25% = 25% , 2 · 25% = 50% and

3 · 25% = 75% of its total ZCR. They are obtained as follows:

• m [·][·] has 13 zero-crossings. Its area is N · M = 4 · 4 = 16 ;

• 25% of 13 is 0 . 25 · 13 = 3 . 25 . Ceiling it, 4 zero-crossings are con-

sidered. Thus, the sub-matrix covered by the (N = 3) x (M = 3)

rectangle, from m 0, 0 , are required to reach at least 4 zero-

crossings. Since N · M = 3 · 3 = 9 , the proportion of m [·][·] area

covered is 9
16 = 0 . 5625 ;

• 50% of 13 is 0 . 5 · 13 = 6 . 5 . Ceiling it, 7 zero-crossings are con-

sidered. Thus, the sub-matrix covered by the (N = 4) x (M = 4)

rectangle, from m 0, 0 , are required to reach at least 7 zero-

crossings. Since N · M = 4 · 4 = 16 , the proportion of m [·][·] area

covered is 16
16 = 1 ;

• 75% of 13 is 0 . 75 · 13 = 9 . 75 . Ceiling it, 10 zero-crossings are

considered. Thus, the sub-matrix covered by the (N = 4) x (M =
4) rectangle, from m 0, 0 , are required to reach at least 10 zero-

crossings. Since N · M = 4 · 4 = 16 , the proportion of m [·][·] area

covered is 16
16 = 1 ;

Thus, f [·] = { 0 . 5625 , 1 , 1 } . As in the previous example, no fur-

her normalisation applies.

. Example applications

In this section, example applications involving 1D and 2D

eal-life data are shown to consolidate the proposed approaches,

emonstrating their usability.

.1. Speech classification and segmentation

There are many subclassifications for speech data, however,

oiced, unvoiced and silent , respectively originated from quasi-

eriodic, non-periodic and inactive sources, are the root ones

38] -pp.77, 78. Usual applications in which the differentiation be-

ween voiced, unvoiced and silent segments (VUSS) is relevant in-

lude large-vocabulary speech recognition [39] , speaker identifica-

ion [40] , voice conversion [41] and speech coding [42] . Thus, I

edicate this section to initially present a ZCR-based algorithm for

he distinction among VUSS and, upon taking advantage of that

ormulation, to introduce my proposal for isolated-sentence word

egmentation.

Neither B 2 nor B 3 can be used in this experiment, because, a

riori, there is an unknown number of VUSS, implying that the fea-

ure vector generated to store their positions has a variable length

hat depends not only on the duration but also on the content of

he spoken words. Thus, B 1 is the only adequate method, among

he three ones I presented, to carry out this task. Complementarily,

USS are classified according to the characteristics of each speech

rame, in isolation, i.e., disregarding the remaining of the signal,

uggesting that PA is the proper normalisation.

As reported in [43] , ZCRs are usually associated with signal en-

rgy [1] to allow the implementation of accurate algorithms for

he detection of VUSS. Thus, B 1 normalised with PA was associ-

ted with A 1 , fully described in [1] . Independently, B 1 and A 1 were

pplied to the input speech signal s [·], respectively, producing the

eature vectors I named as f B [·] and as f A [·], with the same vari-

ble length. Consequently, for each window placement, there are

wo types of information: spectral, based on the normalised ZCRs

vailable in f B [·], and temporal, based on the normalised energies

ontained in f A [·]. Considered in conjunction, the feature sets pro-

uce a variable-length description of s [·] so that there is a corre-

pondence between this signal and those vectors for each tran-

ition between different types of segments. Notably, the frontiers

hich delimit VUSS could not be easily found with basis on the

irect inspection of s [·].
Fig. 13 shows the input signal, s [·], that I use to explain the

roposed approach. It was digitalised at 16 , 0 0 0 samples per sec-

nd, 16-bit, corresponding to the 45 , 520 sample-long raw speech

ata extracted from the sentence sa1 contained in the directory

test/dr1/mdab0/ of the TIMIT speech corpus [44] , which reads as

She had your dark suit in greasy wash water all year ”. In the fig-

re, the horizontal axis contains the tags J k , (0 ≤ k ≤ 37), which

orrespond to the transitions between consecutive phonemes of

a1 , as described in the respective phn file included in the above-

entioned directory. In addition to the silent periods, labelled as

IL and indicated in orange, the exact voiced and unvoiced in-

ervals, respectively designated as VOI and UNV, are shown in

eal and violet, in accordance with the documentation found in

44] and [45] .

The value I chose for L , equivalent to 32 ms of speech, is of 512

amples. As documented in [12] -pp.32 and [46] -pp.25, the speech

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 263

Fig. 13. The speech voiced/unvoiced/silent decision experiment. SIL, UNV and VOI, respectively, mean silent, unvoiced and voiced. Olive, blue and red, respectively, are

the colors used to plot the input speech signal s [·], i.e., the file /test/dr1/mdab0/sa1.wav from TIMIT, the ZCR feature vector f B [·] and the energy feature vector f A [·]. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

p

s

F

d

c

f

a

t

t

s

�

1

l

p

w

a

t

f

c

T

h

t

a

4

f

p

1

p

a

i

i

m

w

b

u

e

t

E

t

t

T

r

o

p

s

m

t

p

s

m

o

l

i

t

o

w

s

s

t

c

t

t

a

p

.

.

i

t
rocessing community considers this as being adequate to analyse

peech data such as s [·], the signal that appears as an olive curve in

ig. 13 . Furthermore, V = 50% follows the usual procedure adopted

uring the short-time analysis of speech signals, albeit this is not a

ritical choice. Additionally, the options for L and V allowed a com-

ortable visualisation of f B [·] and f A [·], plotted respectively in red

nd blue in Fig. 13 , in which the three signals are time-aligned so

hat the k th sample of f B [·] and of f A [·], (0 � k � T − 1) , correspond

o the window placement that covers the interval from s
k � L 100 −V

100
� to

k � L 100 −V
100

� + L , i.e., from s 256 K to s 256 K+512 . Since T = � (100 ·M) −(L ·V)
(100 −V) ·L � =

(100 ·45520) −(512 ·50)
(100 −50) ·512

� = 176 , both f B [·] and f A [·], indexed from 0 to

75, were dilated on the horizontal axis prior to be plotted, al-

owing a better visualisation, comparison and understanding of the

roposed ideas.

On one hand, each unvoiced segment of s [·] matches a region

ith two characteristics: an inconstant and high ZCR in f B [·], and

 high energy in f A [·]. On the other hand, voiced parts of s [·] are

he ones that correspond to low and relatively constant ZCRs in

 B [·] associated with high energies in f A [·]. Finally, silent segments

orrespond to those with low energies in f A [·], disregarding f B [·].
o be considered either high or low, ZCRs and energies obey the

ard thresholds respectively named as H B and H A . Summarising,

he strategy is:

For the k th sample of f B [·] and f A [·] , (0 ≤ k ≤ T − 1) :

{

If (f Ak < H A)

the corresponding region in s [·] is silent ;

else if (f B k < H B)

the corresponding region in s [·] is voiced ;

else

the corresponding region in s [·] is unvoiced.

}

As documented in [12] -pp.34, ZCR measures for voiced

nd unvoiced speech are, respectively, close to 1400 and

900 zero-crossings per second. Thus, a reasonable value

or H B is the mean, i.e., 140 0+490 0
2 = 3150 zero-crossings

er second. For 32 mili-seconds (ms), H B = 3150 · 0 . 032 =
00 . 8 zero-crossings per 512 samples. Since PA was ap-

lied, H B becomes 100 . 8
L −1 =

100 . 8
511 ≈ 0 . 197 , the value I

dopted.

For energy, contrastingly, I observe that the threshold of hear-

ng for human beings is 0 dB at the pressure intensity of 20 μPa,
.e., 20 micro-Pascal micro-Pascal, at 10 0 0 Hz and 25 °C, as docu-

ented in [71] -pp.150–155. In order to compare a spoken signal

ith the threshold of hearing, its specific playback level should

e known but this is not simple in practice. Notwithstanding, an

sual assumption is to consider such a level as being the small-

st possible signal represented by means of the speech coding sys-

em defined at the time the signal was digitalised and quantised.

quivalently, the fairly flat bottom of the threshold of hearing, for

he frequencies within the main range of speech, is simply aligned

o the energy level represented by the least significant coding bit.

IMIT speech files were quantised with 16 bits, with one of them

eserved for signalling, i.e., positive or negative, and the remaining

nes for amplitude description, hence, the amplitude axis, for both

ositive and negative amplitudes, varies at each

1
2 16 −1 =

1
2 15 . Con-

idering each window placement covers L = 512 samples, the nor-

alised level is 512 · 1
2 15 =

2 9

2 15 = 2 −6 = 0 . 015625 ≈ 0 . 016 , which is

he value I chose for H A .

If the readers repeat this experiment for the entire TIMIT cor-

us, which contains 630 spoken sentences, the same successful

tyle of discrimination observed in Fig. 13 will be obtained. In fact,

any similar descriptions for the distinction among VUSS based

n signal energy and ZCRs have already been documented in the

iterature, such as [47] , published forty years ago, and [23] , that

s a more recent work. Aiming to offer the readers a more attrac-

ive and novel classification scheme, taking advantage of the previ-

us formulation, I shall describe my proposal for isolated-sentence

ord segmentation.

According to [48] -pp.125, no known detail contained in a raw

peech waveform corresponds directly to the white spaces that

eparate two words in written form. In fact, as I have observed

hrough the years, the raw waveform rarely presents distinct and

lear silent spaces between words, making this kind of segmenta-

ion a hard and complex challenge. In some particular cases, only

he context can serve as the basis to find whether or not a bound-

ry exists. One example refers to the underlined words in the next

air of sentences:

“... Is there a good wine ? Yes, there is some. What age is it ?

..”

“... Is there a good wine ? Yes, there is. Somewhat aged ? ...”

Surely, not only an isolated speech fragment has to be taken

nto account to solve this issue but also the entire sentence. No-

ably, the authors of paper [50] have already shown the advantages

264 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Fig. 14. The speech segmentation experiment, with the tags I k , (0 ≤ k ≤ 13), delimiting each spoken word. Olive and black, respectively, are the colors used to plot the input

speech signal s [·], i.e., the file /test/dr1/mdab0/sa1.wav from TIMIT, and the feature vector f C [·]. The red horizontal line corresponds to the threshold H C . As in the previous

figure, SIL identifies the silent periods.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

i

s

t

m

m

t

fi

R

c

r

O

r

a

i

c

a

P

a

p

T

p

t

t

a

9

f

t

p

b
of using a few seconds of bootstrapping data, instead of particular

speech segment only, for word segmentation. Inspired by such for-

mulations, my experimental proposal is

f C k = f B k · f A k , (0 � k � T − 1) ,

which reflects a ZCR-based weighted set of energy components. Al-

though f A [·], originally described in [1] , is normalised considering

the whole input signal energy that is distributed along the time

so that its k th position is influenced by the entire speech, f B [·]
associated with PA contains only local spectral information. As a

result, global temporal workload [1] is weighted on the basis of

local frequency content, semantically characterising the intended

physical principle. Once f C [·] is obtained, the strategy for decision

becomes:

For (1 � k � T − 2) :

If (f C k is the mid-point between the beginning and the end of a region

below H C)

s k ·� L 100 −V
100 � is defined as being a word boundary.

H C = H B · 1
T

∑ T −1
k =0

f C k =

0 . 197
T

∑ T −1
k =0

f C k , which represents a hard

threshold for usage in conjunction with the new feature vector

f C [·], is formed on the basis of two contributions, just as that vec-

tor was: the local spectral threshold, H B , and the temporal vector

mean, which represents a distributed piece of information regard-

ing it.

Fig. 14 illustrates s [·], f C [·], H C and the exact word boundaries,

according to the corresponding wrd text file contained in the same

TIMIT folder that includes s [·]. The close, and certainly acceptable,

matches between the points that satisfy the condition imposed by

the proposed strategy and the real boundaries are clearly percep-

tible. Particularly, the highest positive spike in the black curve of

Fig. 14 , close to the position of I 5 , expresses the most improbable

point for a word boundary in s c [·], since it represents a consider-

able activity of the speaker’s vocal apparatus. Consequently and in

opposition, its lowest negative spikes, the ones we are interested
n, indicate the most probable points for the word boundaries in

 c [·], because they represent a more relaxed speaker’s work to ut-

er, in view of a semantic shift in the way of speaking.

Algorithm 15 presents the complete source-code that imple-

ents the procedures described for isolated-sentence word seg-

entation, so that the readers can easily replicate the experiments.

The global accuracy of the proposed approach was evaluated on

he basis of a recent tool called R-value , explained in [49] and de-

ned as being

 = 1 − | r 1 | + | r 2 |
200

,

onsidering

 1 =

√

(100 − HR) 2 + (OS) 2 and r 2 =

−OS + HR − 100 √

2

.

S and HR are respectively known as over-segmentation and hit-

ate . The former indicates the percentage of the number of bound-

ries correctly detected in relation to the total number of exist-

ng ones. On the other hand, the latter corresponds to the per-

entage of the total number of boundaries detected, both correctly

nd incorrectly, in relation to the total number of existing ones.

rominent results, fully acceptable in terms of the points labelled

s being word boundaries, were observed when the proposed ap-

roach was applied to all the 630 sentences sa1 spoken by the

IMIT speakers. Disregarding their borders, i.e., their start and end

oints, there are a total of 10 · 630 = 6300 boundaries between

he 11 · 630 = 6930 existing words in those sentences. Assuming

hat OS and HR were counted so that the former and the latter

re respectively equal to 1.7378% and 93.4755%, then R = 0 . 9379 =
3 . 70% , consolidating the hypothesis that f C [·] contains useful in-

ormation for word segmentation and motivating its further inves-

igation.

In comparison with state-of-the-art procedures [50–56] , the

roposed algorithm is novel, introducing the applications of ZCR-

ased weighted energy components for isolated-sentence word

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 265

Algorithm 15 : C++ function for word segmentation

void word_segmentation(double* s , int M)
{
double mean = 0 ;
for(int k = 0 ; k < M; k + +)

mean + = s [k] / (double)(M) ;
for(int k = 0 ; k < M; k + +)

s [k] − = mean ; // at this point, the arithmetic mean of the input signal
is 0
int L = 512 ;
int V = 50 ;
int T = (int)((100 ∗ M − L ∗ V)/((100 − V) ∗L));
double ∗ f _ B = new double[T];
double E = 0 ; // E represents the total energy over all the positions of the
window, that is required to normalise f _ A [·]
double ∗ f _ A = new double[T];
for(int k = 0 ; k < T ; k + +)

{
f _ B [k] = 0 ;
f _ A [k] = 0 ;
for(int i = k ∗ ((int)(((100 − V) / 100 . 0) ∗ L)) ; i < k ∗ ((int)(((100 −

V) / 100 . 0) ∗ L)) + L − 1 ; i + +)
{
f _ B [k]+ = (s [i] ∗ s [i + 1] < 0)?1:0;
f _ A [k]+ = pow(s [i] , 2);
}

f _ B [k] / = (double)(L − 1) ;
E+ = f _ A [k] ;
}

for(int k = 0 ; k < T ; k + +)
f _ A [k] / = E; // normalisation

double ∗ f _ C = new double[T];
for(int k = 0 ; k < T ; k + +)

f _ C[k] = f _ B [k] ∗ f _ A [k] ;
mean=0;
for(int k = 0 ; k < T ; k + +)

mean + = f _ C[k] ;
mean / = (double)(T);
double H _ C = 0 . 197 ∗mean;
int k = 0 ;
int start _ region , end _ region ;
while ((k < T)&&(f _ C[K] < H _ C))

k + + ;
do // search for regions below H C

{
while ((k < T)&&(f _ C[K] > H _ C))

k + + ;
start _ region = k ;
while ((k < T)&&(f _ C[K] < H _ C))

k + + ;
end _ region = k ;
if (k < T)

printf(“\ n Word boundary detected at s[%d].”,
(int)((end_region+start_region)/2.0) * (int)(((100-V)/(100.0)) * L));

} while (k < T);
}

s

F

n

p

o

c

e

t

s

a

u

a

t

g

a

t

a

t

i

4

P

t

a

t

t

t

h

i

i

o

h

t

c

e

T

d

t

r

u

b

f

t

b

g

a

w

f

v

c

s

s

s

c

t

f

r

g

r

a

d

t

N

t

v

c
egmentation. Furthermore, it presents the following advantages.

irst, it is based on a simple inspection of a feature vector origi-

ated from the most humble concepts involving spectral and tem-

oral analysis, i.e., ZCRs and signal energy, respectively. Second and

pposed to some of the usual procedures just cited, its order of

omputational complexity, both in terms of space and time, is lin-

ar (O (M)) in relation to the input signal length (M), allowing real-

ime implementations. This linearity is a direct consequence of the

trategies adopted to define B 1 , A 1 [1] and algorithm 15 , because

ll of them work based on a direct traverse of the input signal

nder analysis. Lastly, saving the appropriate proportions, it is as

ccurate as the above-referenced similar techniques, which report

heir successful results within the range from 54 to 95% for En-

lish, French, Chinese and also ancient language corpora.

Obviously, the strategy I have just presented does not take into

ccount complex lexical issues and cannot be determined as being

he definite algorithm for word segmentation, nevertheless, it bal-

nces creativity, simplicity and accuracy, satisfying the objective of

his study and providing the initial insights for additional research

n the same direction.
.2. Image analysis and re-synthesis for border extraction

At an early stage, most of the image processing algorithms for

RKbS have to deal with a segmentation step [57–59] , which refers

o the analysis of the input signal aiming to highlight meaningful

reas of interest. Usually, such a process is based on border extrac-

ion, a strategy that identifies the pixels responsible for defining

he boundaries between objects or specific parts of the image. Par-

icular regions in which the fundamental frequencies are relatively

igh are most likely to represent the borders, thus, ZCRs, captur-

ng those spectral components, are considered in this experiment

nstead of the usual methods, such as watershed [57] and filtering

perations [60] .

In order to establish an overall comparison, I state that ZCRs

ave one great advantage over the usual techniques: they do not

ake into account the frequencies higher than the fundamental one,

ompletely disregarding minor variabilities among neighbour pix-

ls which could hinder a precise characterisation of the borders.

he direct consequence is that filtering approaches, such as those

etailed in [60–63] , are not better than ZCRs for border extrac-

ion because filters are never ideal in practice, i.e., contaminations

esulting from imperfect filtering are not present when ZCRs are

sed. Thus, the proposed approach, which might definitively not

e understood as a filtering operation, consists of an FE procedure

or PRKbS playing the role of a DSP algorithm in which convolu-

ional filtering is advantageously replaced by an analysis followed

y re-synthesis of the input 2D signal.

My strategy requires ZCRs from all the minor constant-area re-

ions over the input image to be interrelated. Neither B 1 nor B 3
re suitable to perform this task. Instead, B 2 particularly associated

ith EA is ideal and so became the choice. The detailed scheme

ollows, where the ideal value for � is determined empirically. Ob-

iously, it is at least equal to four, otherwise, no ZCR could be

ounted. My tests have shown that sixteen is a great option for

ynthesising target images of different resolutions, allowing a rea-

onable visual quality.

Extract the raw data from the input gray-scaled image, storing it in the Nx M

matrix m [·][·] ;
Apply B 2 normalised with EA, choosing Q so that ξQ contains elements

extracted from non-overlapping rectangles with about � pixels ;

Select either ξ1 , or ξ2 , or ..., or ξQ to synthesise the target image, being ξ1

and ξQ , respectively, the options for worst and best resolutions ;

Synthesise the target image, m [·][·] , as follows :

For the k th sample of ξQ [·] , (0 � k < X 2) :

draw a � N
X
� x � M

X
� rectangle, using the color

((maximum_level_of_black_color) ·(ξQ k)), from the point (k
X

, k % X) to the point

(k
X

+ � N
X
� , k % X + � M

X
�) , being

% the remainder of the integer division, just as in C/C++ programming

language.

The strategy adopted to define the color of each rectangle con-

ists of a simple linear proportion of the maximum level of black

olor, that is usually equal to 255 for 8-bit images [60] , based on

he corresponding k th value of ξ [·], which varies from 0 to 1. The

ormer extreme forces a white rectangle to be plotted, which cor-

esponds, in practice, to the absence of plot, since a white back-

round is assumed. At the same time, the latter creates a black

ectangle. Intermediary gray colors, produced for 0 < k < 1, usually

ppear close to the black ones, stimulating the completion effects

uring the paintings.

Aiming to exemplify the proposed approach, Fig. 15 (a) shows

he digit “5”, handwritten and digitalised as being a matrix with

 = 508 rows and M = 508 columns. The image was analysed at

he resolution provided by using Q = 31 , which produces a feature

ector containing 2 2 + 3 2 + 5 2 + ... + (113) 2 + (127) 2 elements, ac-

ording to Section 2 . Then, sub-vectors ξ , ξ , ξ , ξ , ξ and ξ ,
1 2 7 11 18 31

266 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

Fig. 15. The input image and its synthesised versions.

Fig. 16. (a): The Elsevier logo; (b): corresponding image containing only borders.

Algorithm 16 : C++ code for image border extraction. The func-

tion receives three parameters, i.e., m [·][·] and the addresses of M

and N , modifying all of them: the first one, so that it becomes the

synthesised squared image (m [·][·]), and the second and third ones,

so that a new size can be set.

void border_extraction(double** m , int* N, int* M)
{
double mean = 0 ; // adjust mean to be zero
for(int p = 0 ; p < (∗N) ; p + +)

for(int q = 0 ; q < (∗M) ; q + +)
mean + = m [p][q] / (double)((∗M) ∗ (∗N)) ;

for(int p = 0 ; p < (∗N) ; p + +)
for(int q = 0 ; q < (∗M) ; q + +)

m [p][q] − = mean ;
int X = ; // the desired value, i.e., number of image divisions to produce ξQ .
In the example of Figure˜ ?? , it was set to 127
int total_size_of_f = X ∗ X;
double ∗ f = new double[total_size_of_f];
for(int i = 0 ; i < total_size_of_f; i + +)

f [i] = 0 ;
int L 1 = (int)((∗N) / (double)(X));
int L 2 = (int)((∗M) / (double)(X));
for(int i = 0 ; i < ((int)((∗N) / (double)(X)))* X - 1; i + +)

for(int j = 0 ; j < ((int)((∗M) / (double)(X)))* X ; j + +)
f [(((int)(i/L 2))*(X))+((int)(j /L 1))] + = (m [i][j] ∗ m [i + 1][j] <

0)?1:0;
for(int i = 0 ; i < ((int)((∗N) / (double)(X)))* X ; i + +)

for(int j = 0 ; j < ((int)((∗M) / (double)(X)))* X - 1; j + +)
f [(((int)(i/L 2))*(X))+((int)(j /L 1))] + = (m [i][j] ∗ m [i][j + 1] <

0)?1:0;
double highest _ ZCR = 0 ; // image normalisation
for(int l = 0 ; l < total_size_of_f; l + +)

if(f[l] > highest _ ZCR)
highest _ ZCR = f [l];

for(int l = 0 ; l < total_size_of_f; l + +)
f[l] / = highest _ ZCR ;

for(int k = 0 ; k < total_size_of_f; k + +) // image synthesis
for(int p = (int)(k/ (double)(X)) ; p < (int)(k/ (double)(X)) +

(int)((∗N) / (double)(X)) − 1 ; p + +)
for(int q = k % X; q < k % X + (int)((∗M) / (double)(X)) − 1 ; q +

+)
m [p][q] = 255 ∗ f [k] ;

∗N = X; // adjust size
∗M = X; // adjust size
}

s

V

s

p

s

m

f

t

b

i

m

p

fi

c

p
composed respectively of X = (2) 2 = 4 , X = (3) 2 = 9 , X = (17) 2 =
289 , X = (31) 2 = 961 , X = (61) 2 = 3721 and X = (127) 2 = 16129

elements, were separately used to synthesise the target images

shown in Fig. 15 (b)–(g). Clearly, the higher the resolution is, the

better the characterisation of the border will be.

When performed using the entire database of handwritten dig-

its downloaded from [64] , this experiment succeeds. Complemen-

tarily, Fig. 16 (a) and (b) shows, respectively, the 508 x 508 Elsevier

logo and its corresponding borders extracted on the basis of the

proposed approach adopting ξ 55 . All the tests performed allow me

to state that the proposed approach produces equivalent percep-

tual results in comparison with those obtained when algorithms

of cutting-edge nature, such as [65–67] . are adopted. Furthermore,

in addition to the advantages discussed above, it also presents an

attractive order of time and space complexities [15] . Finally, based

on the fact that my technique completely differs from the current

ones, in its nature and essence, I refrain from establishing more

detailed analogies. ZCR-based algorithms for 2D signal processing

cannot even be found in the literature, especially when it comes

to border extraction.

Algorithm 16 contains a C/C++ function that receives m [·][·]
and its dimensions as input, modifying them so that the bor-

der image is synthesised. Basically, the function corresponds to

algorithm 12 adapted so that f [·] stores just the analysis of m [·][·]
at one particular resolution, i.e., f [·] = ξQ [·] , implying that X be-

comes an unique integer number, instead of being a vector. For in-

stance, if m [·][·] corresponds to the raw data extracted from the

image shown in Fig. 15 (a), then, X is set to 127 and f [·] = ξ31 [·]
becomes a (127) 2 = 16 , 129 sample-long vector. In the specific case

treated in this example application, for which f [·] corresponds ex-

actly to ξQ , X may also assume values of non-prime numbers. An

intelligent choice is to set it as being a multiple of both the original

N and M in order to avoid some parts of the image to be discarded,

as exemplified in Fig. 8 b of Section 2 .

4.3. Biomedical signal analysis

In one of my previous works from 2007 [68] , an algorithm to

distinguish between healthy speech (HS) and pathologically-affect

speech (PAS) was presented. The former and the latter encompass,

respectively, the individuals with no abnormality in their vocal ap-

paratus and the ones with a pathology in their larynxes. In that
tudy, time-frequency features [69] served as input to a Support

ector Machine (SVM) [70] dedicated to examine the four-second

ustained /a/ vowel sounds, as in the word “dogma ”, emitted by

eople enrolled in our system. Similarly, in this experiment, I use

peech data digitalised at 22 , 050 Hz, 16-bit [71] , using a wideband

icrophone in a sound cabinet, from fourteen healthy subjects and

rom fourteen individuals with Reinke’s edema in their larynx. All

he twenty-eight voices were accredited by medical professionals

ased on specific hardware tools which allow precise image exam-

nations and detailed vocal analyses.

Initially, the radiation effects from the speakers’ lips were re-

oved, as a pre-processing stage known as pre-emphasis [48] -

p.168 [72] -pp.25, before applying the proposed approach. The

rst-order finite impulse response (FIR) high-pass filter [13] whose

oefficients are g[·] = { 1 , −0 . 95 } was used, via convolution [13] , to

erform this task. Considering s [·], of length M , as being an input

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 267

Table 1

Results obtained from the experiment on biomedical signal analysis.

Value chosen for

C 19 .9% 24 .9% 33 .3%

Corresponding

value of T

� 100
C

� = � 100
19 . 9

� = 5 � 100
C

� = � 100
24 . 9

� = 4 � 100
C

� = � 100
33 . 3

� = 3

Corresponding

confusion matrix

PAS HS

PAS

HS

[
7 0

0 7

] PAS HS

PAS

HS

[
7 0

2 5

] PAS HS

PAS

HS

[
6 1

1 6

]
Resulting matrix

sensibility (% of

accuracy)

7+7
14

= 100% 7+5
14

= 85 . 71% 6+6
14

= 85 . 71%

s

s

L

o

t

s

m

a

l

i

t

s

f

p

i

t

n

o

r

e

b

t

m

t

r

g

f

v

1

e

e

P

C

b

p

a

t

a

I

t

a

d

i

F

c

i

c

l

5

c

Z

t

d

f

I

t

w

i

t

i

t

t

t

t

d

t

i

o

T

B

e

[

w

l

r

v

S

s

t

b

p

p

i

8

o

B

o

T

o

e

f

t

t

D

t

f

d

s

e

a

w

a

t

Z

3 Please, send requests to guido@ieee.org
peech signal, the procedure is:

 k ← s k − (0 . 95 · s k −1) , (1 � k < M) .

ikewise any usual classification scheme, this approach intends to

ffer the classifier a set of fixed-length feature vectors, implying

hat B 1 is useless. On the other hand, both B 2 and B 3 output a

et of T elements regardless of M , being the latter a preferable

ethod because it allows the regularity of ZCRs to be analysed

long a period. From Section 1.2 we have learnt that ZCRs are more

ikely to capture the fundamental frequencies of the speech signals,

.e., their pitch [12] (F 0), disregarding the resonances of the vocal

ract, also known as being the formants (F 1 , F 2 , ...), which corre-

pond to their higher frequencies. Complementarily, based on the

act that B 3 intrinsically normalises the frequencies it captures, the

roposed approach registers only the way pitches vary, disregard-

ng their values themselves. Thus, for any speaker, HS is expected

o keep an almost linear variation in response to the regular and

on-excessive effort performed by the vocal folds and associated

rgans during vibration. On the other hand, PAS usually shows ir-

egular variations due to an excessive, and sometimes irresponsive,

ffort perf ormed by the speakers’ vocal system.

Assuming that seven signals from each class were adopted as

eing their representative models and the other seven were used

o test the proposed approach, an ordinary absolute distance (AD)

easurement [73] was selected to serve as the classifier. The dis-

ances from each testing vector to all the template models are

egistered, then, the class for which the lowest one belongs to,

uides the assignment. Table 1 shows the best results obtained

or all the possible
(

14
7

)2 = (14!
7!(14 −7)!

)
2 = (3432) 2 hold-out cross-

alidations procedures [74] , considering different options for C .

The respective accuracies suggest that a finer analysis, i.e., C =
9 . 9% , is required to characterise important data. For C = 33 . 3% ,

xcessive information is grouped together in each of the T = 3 co-

fficients of the feature vectors, causing the misclassification of one

AS member that was labelled as being an HS one. Although for

 = 24 . 9% , there are also incorrect assignments, HS members la-

elled as being PAS do not cause serious consequences, as in the

revious case in which the opposite occurs.

The above-mentioned characteristics of HS and PAS allow a rel-

tive generalisation of the results presented in Table 1 , despite

he modest size of the database, for which the lack of volunteers

nd the rigorous accreditations prevented further expansion. Thus,

 consider a meaningful and relevant outcome was obtained. De-

ailed comparisons with similar state-of-the-art algorithms, such

s those documented in [68,75–79] , were avoided because their

atabases and pathologies differ, however, the proposed approach

s overall as accurate as, and much simpler than, those strategies.

urthermore, AD was purposely selected to play the role of the

lassifier just to emphasise the relevance of the ZCR-based features,

.e., due to the potential solution offered by the latter, the former,

onsisting of the simplest existing possibility, performs an effort-

ess job.
. Conclusions

This study, dedicated to our neurocomputing community, was

arefully written, polished and reviewed to serve as a tutorial on

CRs for both 1D and 2D DSP applications designed for PRKbS. All

he concepts I described correspond to the outcome of a wide and

etailed research work. The readers can observe that, despite the

act that ZCRs are well known in the literature, the different ways

 show their applicability, majorly concerning the 2D cases, are to-

ally new.

Specifically, three methods for feature extraction based on ZCRs

ere presented just after the literature review section: B 1 , which

s the simplest one and is intended to produce variable-length fea-

ure vectors, is useful to search for a specific event or character-

stic in a digital signal, such as word segmentation or the distinc-

ion between voiced and unvoiced frames of a speech signal. B 2 , on

he other hand, for which an application on image border extrac-

ion based on analysis and re-synthesis was exhibited, is adopted

o inspect how ZCRs are distributed along the time, or space, in

ifferent levels of resolution. Finally, B 3 , exemplified for the dis-

inction of healthy and pathologically-affected biomedical signals,

s usefull in searching for the possible variabilities of ZCRs as time

r space advances. Three different types of normalisations, named

A, PA and EA, were also designed to work together with B 1 and

 2 . Furthermore, sixteen algorithms, sixteen figures, six numerical

xamples and one table were included in the text.

The readers may have learnt from many references, such as

1] , that the ordinary PRKbS require a classifier to be associated

ith the features extracted from raw data. The more such features

inearly separate the mixed data from different classes in a cor-

ect manner, the less exquisite the classifier should be, and vice-

ersa. Particularly based on the example applications described in

ection 4 , I highlight one aspect of the proposed approaches: the

implest existing classifiers, i.e., HT and AD, were used, implying

hat the ZCR-based features brightly performed their work. Possi-

ly, this is due to the fact that ZCRs are, by themselves, neurocom-

uting agents, as shown in Section 2 . To treat much more com-

lex problems, the potential of ZCRs may be enlarged by associat-

ng them with different types of neural networks [80] , SVMs [[81–

3]], hidden markov models (HMMs) [84] , paraconsistent [85] , and

thers.

In relation to noisy inputs, B 3 is less influenced than B 1 and

 2 when the noise, regardless of being white, pink, red, and so

n [7,13] , is uniformly distributed along the signal under analysis.

his is because that method describes the way ZCRs vary, instead

f counting them, implying that the artifacts introduced affect the

ntire signal more or less in the same manner, vanishing their ef-

ect over B 3 .

Concluding, the proposed approaches provide a valid contribu-

ion for both young researchers, who are expected to take advan-

age of the fundamental concepts and basic inputs drawn from

SP and PRKbS theory, and experienced professionals, for whom

his text may serve as an initial insight to the project of fruit-

ul and prominent algorithms. As mentioned in [1] , this study also

raws the DSP and PRKbS scientific communities’ attention to con-

ider the use of ZCRs, somewhen in conjunction with signal en-

rgy [1] or other features, to conform creativity, simplicity , and

ccuracy .

All the data used during the experiments, excluding TIMIT

hich is controlled by the Linguistic Data Consortium (LDC), are

vailable to the scientific community upon prior request 3 so that

he procedures could be reproduced. Further research related with

CRs focuses both on minor changes in the proposed approaches

268 R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269

[

so that more specific issues are properly addressed. An intriguing

open question: are there humbler features than ZCRs which are ca-

pable of achieving similar or better results for basic spectral signal

description?

Acknowledgements

I am very grateful to CNPQ - “Conselho Nacional de Pesquisa e

Desenvolvimento”, in Brazil, for the grants provided, through the

process 306811/2014-6 , to support this research.

References

[1] R.C. Guido , A tutorial on signal energy and its applications, Neurocomputing

179 (2016) 264–282 .
[2] J. Xu , A multi-label feature extraction algorithm via maximizing feature vari-

ance and feature-label dependence simultaneously, Knowl. Based Syst. 98

(2016) 172–184 .
[3] Q. Zhou , H. Zhou , T. Li , Cost-sensitive feature selection using random forest: se-

lecting low-cost subsets of information features., Knowl. Based Syst. 95 (2016)
1–11 .

[4] L. Yijing , Adapted ensemble classification algorithm based on multiple classi-
fication systems and feature selection for classifying multi-class unbalanced

data., Knowl. Based Syst. 94 (2016) 88–104 .

[5] S. Garcia , J. Luengo , F. Herrera , Tutorial on practical tips of the most influential
data preprocessing algorithm in data mining., Knowl. Based Syst. 98 (2016)

1–29 .
[6] Y. Meng , J. Liang , Y. Qian , Comparison study of orthonormal representations of

functional data in classification., Knowl. Based Syst. 97 (2016) 224–236 .
[7] S.M. Alessio , Digital Signal Processing and Spectral Analysis for Scientists: Con-

cepts and Applications, 1, Springer, 2016 .
[8] B. Stroustrup , The C++ Programming Language, 4, Addison-Wesley Professional,

2013 .

[9] M. Steenbeck , A contribution to the behavior of short AC arcs during the cur-
rent zero crossing., Z. Phys. 65 (1-2) (1930) 88–91 .

[10] F.M. Young , J.C. Grace , Zero crossing intervals of a sine wav in noise., J. Acoust.
Soc. Am. 25 (4) (1953) 832 .

[11] J.P. Ertl , Detection of evoked potentials by zero crossing analysis., Electroen-
cephalogr. Clin. Neurophysiol. 18 (6) (1965) 630–631 .

[12] L. Deng , D. O’Shaughnessy , Speech Processing: A Dynamic and Optimiza-

tion-oriented Approach, CRC Press, 2003 .
[13] A.V. Oppenheim , R.W. Schafer , Discrete-time Signal Processing, 3, Prentice-Hall,

2009 .
[14] S. Haykin , B.V. Veen , Signals and Systems, 2, Wiley, 2002 .

[15] S. Arora , Computational Complexity: a modern approach, Cambridge University
Press, 2009 .

[16] S. Goswami , P. Deka , B. Bardoloi , D. Dutta , D. Sarma , A novel approach for

design of a speech enhancement system using NLMS adaptive filter and ZCR
based pattern identification., in: Proceedings of the 2013 1st International Con-

ference on Emerging Trends and Applications in Computer Science (ICETACS),
2013, pp. 125–129 . 13-14.

[17] H.-.M. Park , R.M. Stern , Spatial separation of speech signals using amplitude
estimation based on interaural comparisons of zero-crossings., Speech Com-

mun. 51 (1) (2009) 15–25 .

[18] A. Ghosal , R. Chakraborty , R. Chakraborty , S. Haty , B.C. Dhara , S.K. Saha ,
Speech/music classification using occurrence pattern of ZCR and STE., in: Pro-

ceedings of the Third International Symposium on Intelligent Information
Technology Application (IITA), 3, 2009, pp. 435–438 .

[19] R.R. Shenoy , C.S. Seelamantula , A zero-crossing rate property of power comple-
mentary analysis filterbank outputs., IEEE Signal Process. Lett. 22 (12) (2015)

2354–2358 .

[20] A.V. Levenets , C.E. Un , Method for evaluating periodic trends in measured
signals based on the number of zero crossings., Meas. Tech. 58 (4) (2015)

381–384 .
[21] R.R. Shenoy , C.S. Seelamantula , Spectral zero-crossings: localization properties

and application to epoch extraction in speech signals., in: Proceedings of the
International Conference on Signal Processing and Communications (SPCOM),

2012, pp. 1–5 .

[22] M. Jalil , F.A. Butt , A. Malik , Short-time energy, magnitude, zero crossing rate
and autocorrelation measurement for discriminating voiced and unvoiced seg-

ments of speech signals., in: Proceedings of the International Conference on
Technological Advances in Electrical, Electronics and Computer Engineering

(TAEECE), 2013, pp. 208–212 .
[23] R.G. Bachu , S. Kopparthi , B. Adapa , B.D. Barkana , Voiced/unvoiced decision for

speech signals based on zero-crossing rate and energy., in: K. Elleithy (Ed.), Ad-
vanced Techniques in Computing Sciences and Software Engineering, Springer,

2010, pp. 279–282 .

[24] Y.-. I. Kim , H.-. Y. Cho , S.-. H. Kim , Zero-crossing-based channel atten-
tive weighting of cepstral features for robust speech recognition: the ETRI

2011 CHiME challenge system., in: Proceedings of the Interspeech, 2011,
pp. 1649–1652 .
[25] S.J. An , R.M. Kil , Y.-. I. Kim , Zero-crossing-based speech segregation and recog-
nition for humanoid robots., IEEE Trans. Consum. Electron. 55 (4) (2009)

2341–2348 .
[26] A.S. Zandi , R. Tafreshi , M. Javidan , Predicting epileptic seizures in scalp EEG

based on a variational bayesian gaussian mixture model of zero-crossing in-
tervals., IEEE Trans. Biom. Eng. 60 (5) (2013) 1401–1413 .

[27] M. Phothisonothai , M. Nakagawa , A complexity measure based on modified
zero-crossing rate function for biomedical signal processing., in: Proceedings

of the 13th International Conference on Biomedical Engineering (ICBME), 23,

2009, pp. 240–244 .
[28] M.I. Khan , M.B. Hossain , A.F.M.N. Uddin , Performance analysis of modified zero

crossing counts method for heart arrhythmias detection and implementation
in HDL., in: Proceedings of the International Conference on Informatics, Elec-

tronics and Vision (ICIEV), 2013, pp. 1–6 .
[29] C.-. H. Wu , H.-. C. Chang , P.-. L. Lee , Frequency recognition in an SSVEP-based

brain computer interface using empirical mode decomposition and refined

generalized zero-crossing., J. Neurosci. Methods 196 (1) (2011) 170–181 .
[30] D. Guyomar , M. Lallart , K. Li , A self-synchronizing and low-cost structural

health monitoring scheme based on zero crossing detection., Smart Mater.
Struct. 19 (4) (2010) . Article Number: 045017, 2010.

[31] L. Florea , C. Florea , R. Vranceanu , C. Vertan , Zero-crossing based image pro-
jections encoding for eye localization., in: Proceedings of the 20th European

Signal Processing Conference (EUSIPCO), 2012, pp. 150–154 .

[32] S. Watanube , T. Kotnatsu , T. Saito , A stabilized zero-crossing representation in
the wavelet transform domain and its extension to image representation for

early vision., in: IEEE TENCON - Digital Signal Processing Applications, 1996,
pp. 496–501 .

[33] J.G. Daugman , Pattern and motion vision without laplacian zero crossings., J.
Opt. Soc. Am. A-5 (7) (1988) 1142–1148 .

[34] K.-. L. Du , M.N.S. Swamy , Neural Networks and Statistical Learning, Springer,

2014 .
[35] N. Nedjaha , F.M.G. Fran A§ a , M.D. Gregorio , L.M. Mourelle , Weightless neural

systems., Neurocomputing 183 (2016) 1–2 .
[36] H.C.C. Carneiro , F.M.G. Franca , P.M.V. Lima , Multilingual part-of-speech tagging

with weightless neural networks., Neural Netw. 66 (2015) 11–21 .
[37] G.G. Lockwood , I. Aleksander , Predicting the behaviour of g-RAM networks.,

Neural Netw. 16 (1) (20 03) 91–10 0 .

[38] T.F. Quatieri , Discrete-time Speech Signal Processing: Principles and Practice,
Upper Saddle River, NJ: Prentice Hall, 2001 .

[39] W. Chou , B.H. Juang , Pattern Recognition in Speech and Language Processing,
Boca Raton: CRC Press, 2003 .

[40] H. Beigi , Fundamentals of Speaker Recognition, New York: Springer, 2011 .
[41] R.C. Guido , L.S. Vieira , S. Barbon Jr. , A neural-wavelet architecture for voice

conversion., Neurocomputing 71 (1-3) (2007) 174–180 .

[42] T. Ogunfunmi , M. Narasimha , Principles of Speech Coding, CRC Press, 2010 .
[43] K. Skoruppa , et al. , The role of vowel phonotactics in native speech segmenta-

tion., J. Phonet. 49 (2015) 67–76 .
44] TIMIT speech corpus. linguistic data consortium (LDC), https://catalog.ldc.

upenn.edu/LDC93S1 .
[45] C. Kim , K.-. d. Seo , Robust DTW-based recognition algorithm for hand-held

consumer devices., IEEE Trans. Consum. Electron. 51 (2) (2005) 699–709 .
[46] X. He , L. Deng , Discriminative Learning for Speech Recognition, Morgan and

Claypool Publishers, 2008 .

[47] B. Atal , L. Rabiner , A pattern recognition approach to voiced-unvoiced-si-
lence classification with applications to speech recognition., IEEE Trans. Audio,

Speech, Lang. Process. 1 (24) (1976) 201–212 .
[48] J. Harrington , S. Cassidy , Techniques in Speech Acoustics, The Netherlands:

Kluwer Academic Publishers, 1999 .
[49] O.J. Rosanen , U.K. Laine , T. Altosaar , An improved speech segmentation quality

measure: the r-value, in: Proceedings of the Interspeech, 2009, pp. 1851–1854 .

[50] S. Brognaux , T. Drugman , HMM-based speech segmentation: improvements of
fully automatic approaches., IEEE-ACM Trans. Audio, Speech, Lang. Process. 24

(1) (2016) 5–15 .
[51] A. Stan , et al. , ALISA: an automatic lightly supervised speech segmentation and

alignment tool., Comput., Speech Lang. 35 (2016) 116–133 .
[52] R.H. Baayen , C. Shaoul , J. Willits , M. Ramscar , Comprehension without segmen-

tation: a proof of concept with naive discriminative learning., Lang., Cognit.,

Neurosci. 31 (1) (2016) 106–128 .
[53] F. Stahlberg , T. Schlippe , S. Vogel , T. Schultz , Word segmentation and pronun-

ciation extraction from phoneme sequences through cross-lingual word-to–
phoneme alignment., Comput., Speech, Lang. 35 (2016) 234–261 .

[54] K.G. Estes , C. Lew-Williams , Listening through voices: infant statistical word
segmentation and meaning acquisition through cross-situational learning., Dev.

Psychol. 51 (11) (2015) 1517–1528 .

[55] Ok. Rasanen , H. Rasilo , A joint model for word segmentation and meaning
acquisition through cross-situational learning., Psychol. Rev. 122 (4) (2015)

792–829 .
[56] L. White , S.L. Mattys , L. Stefansdottir , Beating the bounds: localised timing cues

for word segmentation., J. Acoust. Soc. Am. 138 (2) (2015) 1214–1220 .
[57] F. Nery , J.S. Silva , N.C. Ferreira , F. Caramelo , R. Faustino , An algorithm for the

pulmonary border extraction in PET images, Proc. Technol. 5 (2012) 876–884 .

[58] L.H. Son , T.M. Tuan , A cooperative semi-supervised fuzzy clustering framework
for dental x-ray image segmentation, Expert Syst. Appl. 46 (2016) 380–393 .

[59] X.-. Y. Wang , Pixel classification based color image segmentation using quater-
nion exponent moments., Neural Netw. 74 (2016) 1–13 .

http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
https://catalog.ldc.upenn.edu/LDC93S1
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0059
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0059

R.C. Guido / Knowledge-Based Systems 105 (2016) 248–269 269

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

60] M. Nixon , Feature Extraction & Image Processing for Computer Vision, 3, Aca-
demic Press, 2012 .

[61] P. Zhang, T.D. Bui, C.Y. Suen, Wavelet feature extraction for the recognition
and verification of handwritten numerals., Keynote Address at 6th Interna-

tional Program on Wavelet Analysis and Active Media Technology. Available
at http://users.encs.concordia.ca/ ∼bui/pdf/Keynote.pdf .

62] S.E.N. Correia , J.M. Carvalho , R. Sabourin , On the performance of wavelets for
handwritten numerals recognition., in: Proceedings of the 16th International

Conference on Pattern Recognition, 2002, 3, 2002, pp. 127–130 .

63] X. You , L. Du , Y. Cheung , Q. Chen , A blind watermarking scheme using new
nontensor product wavelet filter banks., IEEE Trans. Image Process. 19 (12)

(2010) 3271–3284 .
64] The MNIST database of handwritten digits, Available at http://yann.lecun.com/

exdb/mnist/ .
65] A. Pratondo , C.-. K. Chui , S.-.H. Ong , Robust edge-stop functions for edge-based

active contour models in medical image segmentation., IEEE Signal Process.

Lett. 23 (2) (2016) 222–226 .
66] Z.M. Hadrich A , A. Masmoudi , Bayesian expectation maximization algorithm by

using b-splines functions: application in image segmentation., Math. Comput.
Simulat. 120 (2016) 50–63 .

[67] M. Liao , Automatic segmentation for cell images based on bottleneck detection
and ellipse fitting., Neurocomputing 173 (2016) 615–622 .

68] E. Fonseca , R.C. Guido , P.R. Scalassara , C.D. Maciel , J.C. Pereira , Wavelet

time-frequency analysis and least-squares support vector machine for the
identification of voice disorders., Comput. Biol. Med. 37 (4) (2007) 571–578 .

69] P. Addison , J. Walker , R.C. Guido , Time-frequency analysis of biosignals., IEEE
Eng. Biol. Med. Mag. 28 (5) (2009) 14–29 .

[70] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, 2, Wiley-Interscience,
20 0 0 .

[71] M. Bossi , E. Goldberg , Introduction to Digital Audio Coding and Standards,

Kluwer, 2003 .
[72] F. Muller , Invariant Features and Enhanced Speaker Normalization for Auto-

matic Speech Recognition, Logos Verlag, 2013 .
[73] V. Serdarushich , Analytic Geometry, CreateSpace Independent Publishing Plat-
form, 2015 .

[74] J.H. Kim , Estimating classification error rate: repeated cross-validation, re-
peated hold-out and bootstrap., Comput. Stat. Data Anal. 53 (11) (2009)

3735–3745 .
75] Z. Ali , I. Elamvazuthi , M. Alsulaiman , G. Muhammad , Detection of voice pathol-

ogy using fractal dimension in a multiresolution analysis of normal and disor-
dered speech signals., J. Med. Syst. 40 (1) (2016) 1–10 .

[76] D. Panek , A. Skalski , J. Gajda , R. Tadeusiewicz , Acoustic analysis assessment

in speech pathology detection., Int. J. Appl. Math. Comput. Sci. 25 (3) (2015)
631–643 .

[77] M. Alsulaiman , Voice pathology assessment systems for dysphonic patients:
detection, classification, and speech recognition., IETE J. Res. 60 (2) (2014)

156–167 .
78] M.J. Pulga , A.C. Spinardi-Panes , S.A. Lopes-Herrera , L.P. Maximino , Evaluat-

ing a speech-language pathology technology., Telemed. e-health 20 (3) (2014)

269–271 .
79] T.L. Whitehill , S. Bridges , K. Chan , Problem-based learning (PBL) and

speech-language pathology: a tutorial., Clin. Linguist. Phonet. 28 (1-2) (2014)
5–23 .

80] S. Haykin , Neural Networks and Learning Machines, 3, Prentice Hall, 2008 .
81] M. Jandel , Biologically relevant neural network architectures for support vector

machines., Neural Netw. 49 (2014) 39–50 .

82] Y. Leng , Employing unlabeled data to improve the classification performance
of SVM and its applications in audio event classification., Knowl. based Syst.

98 (2016) 117–129 .
83] L. Shen , Evolving support vector machines using fruit fly optimization for med-

ical data classification., Knowl. Based Syst. 96 (2016) 61–75 .
84] A.M. Fraser , Hidden Markov Models and Dynamical Systems, Society for Indus-

trial and Applied Mathematics, 2009 .

85] R.C. Guido , S. Barbon Jr. , R.D. Solgon , K.C.S. Paulo , L.C. Rodrigues , I.N. Silva ,
J.P.L. Escola , Introducing the discriminative paraconsistent machine (DPM)., Inf.

Sci. 221 (2013) 389–402 .

http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0060
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0060
http://users.encs.concordia.ca/~bui/pdf/Keynote.pdf
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0065
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0065
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0070
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0070
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0071
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0071
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0072
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0072
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0075
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0075
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0078
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0078
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0079
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0079
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0080
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0080
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0081
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0081
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0082
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0082
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083

	ZCR-aided neurocomputing: A study with applications
	1 Introduction
	1.1 Objective and tutorial structure
	1.2 A review on ZCRs and their applications

	2 The proposed methods
	2.1 Method B1
	2.2 Method B2
	2.3 Method B3
	2.4 ZCRs are neurocomputing agents

	3 Numerical examples
	3.1 Numerical example for B1 in 1D
	3.2 Numerical example for B1 in 2D
	3.3 Numerical example for B2 in 1D
	3.4 Numerical example for B2 in 2D
	3.5 Numerical example for B3 in 1D
	3.6 Numerical example for B3 in 2D

	4 Example applications
	4.1 Speech classification and segmentation
	4.2 Image analysis and re-synthesis for border extraction
	4.3 Biomedical signal analysis

	5 Conclusions
	 Acknowledgements
	 References

