Knowledge-Based Systems 105 (2016) 248-269

journal homepage: www.elsevier.com/locate/knosys

Contents lists available at ScienceDirect

Knowledge-Based Systems

..

ZCR-aided neurocomputing: A study with applications

Rodrigo Capobianco Guido*

@ CrossMark

Instituto de Biociéncias, Letras e Ciéncias Exatas, Unesp - Univ Estadual Paulista (Sdo Paulo State University), Rua Cristévdo Colombo 2265, Jd Nazareth,

15054-000, Sdo José do Rio Preto - SP, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 18 March 2016
Revised 1 May 2016
Accepted 7 May 2016
Available online 10 May 2016

Keywords:

Zero-crossing rates (ZCRs)

Pattern recognition and knowledge-based
systems (PRKbS)

Feature extraction (FE)

Speech segmentation

Image border extraction

Biomedical signal analysis

This paper covers a particular area of interest in pattern recognition and knowledge-based systems
(PRKDS), being intended for both young researchers and academic professionals who are looking for a pol-
ished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction
(FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity
and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples,
innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming
language and interesting applications on speech segmentation, image border extraction and biomedical
signal analysis complement the text.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Objective and tutorial structure

In a previous work, I published a tutorial on signal energy and
its applications [1], introducing alternative and innovative digital
signal processing (DSP) algorithms designed for feature extraction
(FE) [2-4] in pattern recognition and knowledge-based systems
(PRKDbS) [5,6]. At that time, I intended to cover the lack of novelty
in related approaches based on consistency among creativity, sim-
plicity and accuracy. So it is presently, opportunity in which three
methods for FE from unidimensional (1D) and bidimensional (2D)
data are defined, explained and exemplified, pursuing and taking
advantage of my own three previous formulations [1]. The dif-
ferences between that and this work are related to the concepts
and their corresponding physical meanings adopted to substanti-
ate them: antecedently, signal energy was used to provide infor-
mation on workload, on the other hand, zero-crossing rates (ZCRs)
are currently handled to retrieve spectral behaviour [7] of signals.
Complementarily, ZCRs are interpreted as being neurocomputing
agents, which characterises an innovation that this work offers to
the scientific community. Another remarkable contribution consists
of the use of ZCRs for 2D signal processing and pattern recognition,
a concept practically inexistent up to date.

* Corresponding author.
E-mail address: guido@ieee.org
URL: http://www.sjrp.unesp.br/"guido/

http://dx.doi.org/10.1016/j.knosys.2016.05.011
0950-7051/© 2016 Elsevier B.V. All rights reserved.

As in the previous, this essay suggests possible future trends for
the PRKbS community. In doing so, it is organised as follows. The
concept of ZCRs and some recent related work pertaining to these
constitute the next subsections of these introductory notes. Then,
Section 2 presents the proposed algorithms for FE, their corre-
sponding implementations in C/C++ programming language [8] and
my particular point-of-view which characterises ZCRs as being
neurocomputing agents. Moving forward, Section 3 shows numeri-
cal examples and Section 4 describes the tests and results obtained
during the analyses of both 1D and 2D data. Lastly, Section 5 re-
ports the conclusions that are followed by the references.

Throughout this document, detailed descriptions, graphics, ta-
bles and algorithms are abundant, however, for a much better un-
derstanding, I strongly encourage you, the reader of this tutorial,
to learn my previous text [1] before proceeding any further.

1.2. A review on ZCRs and their applications

Although its roots were traced back before [9] and throughout
[10,11] the beginning of DSP, the suitability of ZCRs has been inten-
sively pointed out by the speech processing community, the one in
which their applications are more frequent [12]. Thus, ZCRs, as be-
ing the simplest existing tools used to extract basic spectral infor-
mation from time-domain signals without their explicit conversion
to the frequency-domain [13], play an important role in DSP and
PRKDS.

Despite the word rate in its name, ZCR is defined, in its ele-
mentary form, as being the number of times a signal waveform

http://dx.doi.org/10.1016/j.knosys.2016.05.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.05.011&domain=pdf
mailto:guido@ieee.org
http://www.sjrp.unesp.br/~guido/
http://dx.doi.org/10.1016/j.knosys.2016.05.011

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 249

5[1
Q
o
=]
= 0 third ZCR fourth ZCR y
= /
=
[
=51 I I I I I 1]
0 1 2 3 4 5 6
sample
Fig. 1. The example signal s[-] = {-2,3, -5, 4, 2,3, -5} and its four zero-crossings represented as red square dots. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article).

—_

A Y

amplitude
o

NLRTRVATEEATE AT

1000

sample

1200 1400 1600 1800

Fig. 2. In blue, the pure sine wave; in red, the composed sine wave; in brown, the square wave. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article).

crosses the amplitude zero. An alternative and formal manner to
express this concept, letting s[-] = {sg. S1. 52, S;y_1} be a discrete-
time signal of length M > 1, is

M-2
ZORGLD) = 5 Y Isign(s;) — sign(sy.)|. (1)
j=0

being ZCR(s[-]) > 0 for any s[-] and sign(x) = {1 1 :)ftﬁerwwe In the

next section, distinct normalisation procedures will be applied to
ZCRs in order for the word rate to make the intended sense.

As an example, let s[-], of size M =7, be the discrete-time
signal for which the samples are {-2,3,-5,4,2,3,-5}. Then,
ZCR(s[)= 5 X115 Isign(s)) — sign(sj)| = 5 ¥3_g Isign(s;) —
sign(sj,1)| = 2(|,],HH],(,1)|+|,1,1|+|1,1|+
T=1+[1- (D) =F(=2[+[2[+[=2[+[0] +[0] +[2]) =
%(2 +2+2+0+0+2)=4, ie, the waveform of s[-] crosses its
amplitude axis four times at the value 0, as can be easily seen in
Fig. 1.

The elementary example [have just described is really quite
simple, however, I ask for your attention in order to figure out
the correct physical meaning of ZCRs, avoiding underestimations.
For that, a basic input drawn from Fourier’s theory and his mathe-
matical series [14] is required: the statement which confirms that
any signal waveform distinct of the sinusoidal can be decomposed
as an infinite linear combination of sinusoids with multiple fre-
quencies, called harmonics. Thus, a signal waveform that matches
exactly a sinusoidal function, with a certain period, phase and am-
plitude, is classified as being pure. Conversely, any other type of
signal waveform consists of a main sinusoid called fundamental or
first harmonic, owning the lowest frequency among the set, added
together with the other sinusoids of higher frequencies, i.e., the
second harmonic, the third harmonic, the fourth harmonic, and so
on, in a descending order of magnitude.

The connection between ZCRs and Fourier’s series is now ex-
plained on the basis of the following example, illustrated in Fig. 2.
In blue, red and brown, respectively, a pure sine wave, a composi-
tion of two sine waves and a square wave that is essentially the
sum of infinite sinusoids, are shown, all with the same length.
Interestingly, the three curves have exactly the same number of
ZCRs, however, according to Fourier’s theory, their frequency con-
tents are considerably different. Based on the example, the learnt
lesson is: the first harmonics of a non pure signal are dominant

over the others, whilst mandatory to define its general waveform
shape. Consequently, it is often the minor oscillations produced by
the higher harmonics that do not generate zero-crossings. There-
fore, the ZCR of a given signal is much more likely to provide in-
formation on its fundamental frequency than a detailed description
of its complete frequency content.

Another relevant concept is the direct relationship between the
fundamental frequency of a signal and its ZCR. Since sinusoids are
periodic in 2, each period contains two zero-crossings, as shown
in Fig. 3. Thus, if a 1D signal s[-] of length M crosses G times the
amplitude zero, it contains g sinusoidal periods at that frequency.
Considering that, at the time the signal was converted from its
analog to its digital version [14], the sampling rate was R sam-
ples per second, then % is the period of time between consecutive
samples, entailing that M - % = % is the time extension of the ana-

log signal in seconds. Concluding, in % seconds there are % sinu-

soidal periods, implying that, proportionally, there are 57; perlods
per second, i.e., the frequency, F, caught by the ZCRs 15

G R
F(ZCR(f[-D) = 5—; Hz (2)

Obviously, the previous formulation is only valid if the sinu-
soids are not shifted on the amplitude axis, i.e., no constant value
is added to them. Equivalently, the signal under analysis is required
to have its arithmetic mean equal zero, implying that an initial ad-
justment may be necessary prior to counting the ZCRs, otherwise
they would not be physically meaningful. The simplest process to
normalise a signal s[-] in order to turn its mean to zero is to shift
each one of its samples, subtracting its original mean, i.e.,

(ZJ 0 SJ)
M ,
In order to illustrate the concepts I have just exposed, the
readers are requested to consider the signal s[-] = {}3,3, }%,3
12,3,12.3, 12} of length M =9, that was sampled at 36 sam-
ples per second and is illustrated in Fig. 4. Its arithmetic mean

is 164316 +3+9+3+‘°+3+1° 2 #£0, ie, the normalisation de-
fined in Eq. (3) must be applied before the ZCRs are counted.
Thus, s[] becomes {12 -2,3-212-23-212_23_2 13-

23-22-2y=(-§1.-5.1.-5.1.-%.1.-&}. which has
its mean equal zero and is also shown in Fig. 4. ZCRs are now
ready to be counted, according to Eq. (1), resulting in G = 8 zero-

Sk < Sk — O<k<M-1) . (3)

250 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

third period,
containing two
Zero-crossings

second period,
containing two
Zero-crossings

first period,
containing two
Zero-crossings

3 . eee
E signal advances
s
=
<

0/ I 2n 3n 4n Sn 61

/ period

This is the first
zero-crossing of

This is the first
zero-crossing of
the second period.

This is the first

This is not a .
zero-crossing of

ZeT0-Crossing
because the

the first period. the third period.

signal starts

.N1S PO
LS pPu

This is the second
zero-crossing of

This is the second
zero-crossing of

This is the second
zero-crossing of

the first period. the second period. the third period.
Fig. 3. A sine wave and its zero-crossings.

3F PNy PN I I -
_ac) 2k - - \\\ . //// \\\\ //// \\\\ //// \\\\ .
2 ~ ~ ~_ ~_ ~.
R :
E of i
-1 b I 1 1 1 1 1 I =

0 1 2 3 4 5 6 7 8

sample

(This is the original signal, with no zero—crossings.J [This is the translated signal, with eight zero—crossings.}

Fig. 4. The example original signal s[-] = {{2.3, 12,3, 12,3, 12,3 12} in olive, and its translated version, {—&.1, -5 1,-§ 1,

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

8 8 ; i
—&.1.— 1}, with zero mean, in red. (For

crossings. Therefore, the signal fundamental frequency is % =
835 =16 Hz
29 = :

In comparison with the most common features, ZCRs have the
following advantages. First, they are extremely simple to be com-
puted, with a linear order of time and space complexities [15]. Sec-
ond, as mentioned above, they are the only features which reveal
spectral information on input data without an explicit conversion
from time to frequency-domain. Third, as consolidated in the lit-
erature, relevant problems on DSP and PRKbS, such as those in-
volving speech processing [12], can benefit from them. Nonethe-
less, the disadvantages presented by ZCRs must be considered. Ini-
tially, spectral information on the signal under analysis is not com-
plete, as obtained, for instance, with the Discrete Fourier Trans-
form [13] or the Discrete Wavelet Transform [69]. In addition, a
joint time-frequency mapping is not possible with them, i.e., fre-
quency localisation can only be performed based on a manual-
controlled partition of the signal. Lastly, features extracted on
their bases may be considerably disturbed if originated from noisy
inputs.

Summarising, ZCRs are neither better nor worse than other fea-
tures, from a general point-of-view. Instead, they present advan-
tages and disadvantages that have to be taken into account for
each particular PRKbS problem. In any event, they should be con-
sidered every time that modest or incomplete spectral information
is found to be useful. In order to complement the review on ZCRs,
the remaining of this section is dedicated to describe their recent
applications, those found in the literature.

In article [16], authors used ZCR in addition to a least-mean
squares filter for speech enhancement. Their successful strategy
consists of using ZCRs at the final stage of their algorithm in order
to identify patterns, providing the desired improvements. Signal-
to-noise ratio (SNR) increased about 22 dB in the signals anal-
ysed, confirming the important role of ZCR-based PRKbS. Speech
enhancement based on ZCRs is also the focus of the paper [17],
which points out that zero-crossing information is more accurate
than the cross-correlation for the proposed task.

In association with short-time energy, the authors of article
[18] applied ZCRs to distinguish speech from music. In conjunction
with an ordinary k-means algorithm, ZCRs allowed the identifica-
tion of quasi-periodic patterns that are key for their task, attaining
96.10% accuracy with 110 music clips and 140 speech files. Recipro-
cally, the authors of article [19] showed a ZCR-based estimator that
works better than the sample autocorrelation method to analyse
stationary Gaussian processes. Their work was successfully devel-
oped on the basis of a mathematical analysis of random noise. In
[20], researchers proposed a method to estimate the frequency of
a harmonic trend based on ZCRs. In addition to a low computation
time, their results demonstrate the possible use of such features in
practical applications.

An interesting aspect of ZCRs was shown by the authors of ar-
ticle [21], who analysed transient signals to demonstrate these can
be accurately found based on zero-crossings. Applications related
to the estimate of epochs in speech signals were performed, con-
firming the authors’ assumptions. In conjunction with other fea-

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 251

S6

input signal s[-] :

‘SQ‘Sl‘.Yz‘S3‘;Y4‘S5

57| 58| 59 [s10[11]812[$13[814] 15[516

s17]s18]51|

| wol-] |
} wil] }
\ wol-] 1
‘ wi[-] ‘

_ _ZCRoxgl)

feature vector f[] for PRKbS using By with TA:| :g’; ZCROn)

ZCROwy [ZCR(wy 1) ZCROw3[-])

= Ja= =

= =1 7-1
5 ZCROw[-) 5 ZCROw D) S ZCROw)
=1 k=0 k=0

feature vector f[-] for PRKbS using By with PA}} /'~ ZC’i(:»PH) f5= zp,i(itlmz fa= ZCRZL‘E“’ . ZL‘lin:\ixU)

ZCRw | [-])

_ ZCR(wy['])
/B = ZCRowy 1D

. H H ZCROwgl]
feature vector f[-] for PRKbS using B; with EA: (wolD) = Feredd

B ZCROv3 1)
Jo = ZCRtw, D

13 = ZCRew, T

Fig. 5. 1D example for B; aiming DSP and PRKbS with its variants TA, PA and EA: sliding window with length L = 8 traversing s[-] with overlap V = 50%. The symbols w;

represent the kth positioning of the window, for k=0,1,2,...,T — 1, and w,, is the window that contains the highest number of ZCRs.

tures, such as energy, the authors of paper [22] present different
methods to distinguish voiced from unvoiced segments in speech
signals. Empirically, the size of the speech segments were deter-
mined for better accuracy during their successful analyses. Sim-
ilar experiments were also performed by the authors of paper
[23], confirming the findings. In [24], a practical and noise-robust
speech recognition system based on ZCRs was developed. Authors
showed improvements on baseline approaches at a rate of about
18.8%. Humanoid robots also benefit from ZCRs, for speech recog-
nition and segregation purposes, according to the experiments de-
scribed in [25].

In order to successfully predict epileptic seizures in scalp elec-
troencephalogram signals, the authors of paper [26] modeled a
Gaussian Mixture of ZCRs intervals of occurrence, obtaining rel-
evant results. Interestingly, the authors of the paper [27] used a
modified ZCR to determine fractal dimensions of biomedical sig-
nals. Similarly, in paper [28], authors evaluate a modified ZCR ap-
proach for the detection of heart arrhythmias. A prominent appli-
cation of ZCRs can be found in paper [29], in which authors de-
veloped a brain-computer interface on their basis. A health moni-
toring scheme based on ZCRs characterises the work described in
[30], for which interesting aspects of such features are pointed out.

Not surprisingly, a wide search on Web of Science and other sci-
entific databases, aiming to find possible research articles describ-
ing applications of ZCRs on image processing and computer vision,
i.e., 2D signals, returned a modest number of results: two confer-
ence papers, being one recent [31] and the other published twenty
years ago [32], and one journal paper published almost thirty years
ago [33]. Possibly, this is due to the fact that digital images usually
have their pixels represented as being positive integer numbers,
inhibiting the use of zero-crossings. In this study, in addition to
the novel ZCR-based algorithms designed for 1D signals, 2D ones
are also considered just after a proper pre-processing strategy dis-
cussed herein.

2. The proposed methods

Three different methods, i.e., By, B, and Bs, respectively inspired
on Aj, A, and As introduced in [1], are proposed in this section.
Their corresponding details follow.

2.1. Method B;

By, illustrated in Fig. 5, is the simplest method I present in
this study, in which an 1D discrete-time signal s[-] of length M is

considered as being the input. The procedure consists of a slid-
ing rectangular window, w, of length L traversing the signal so
that, for each placement, the ZCR over that position is determined.
Each subsequent positioning overlaps in V% the previous one, being
the surplus samples at the end of the signal, which are not long
enough to be overlapped by a L-sample window, disposed. The re-
strictions (2 < L < M) and (0 < V < 100) are mandatory.

In a DSP context, the ZCRs computed over the fragments of s[-]
may be directly used to determine the fundamental frequencies it
contains, based on Eq. 2. On the other hand, in case PRKbS asso-
ciated with handcrafted FE is the objective, as explained in [1]-
pp.2, s[-] requires its conversion to a feature vector, f[-], of length
T= L%J, being | - | the floor operator. In this case, each
fi» (O<k<T-1), corresponds to the ZCR computed over the kth
position of the window w. Of fundamental importance is the fact
that, for handcrafted FE, f]-] requires normalisation prior to its use
as an input for a classifier, as documented in [1]-pp.2.

There are, basically, three possible ways to normalise f]-]: in re-
lation to the total amount (TA) of zero-crossings, in relation to the
maximum possible amount (PA) of zero-crossings and in relation
to the maximum existing amount (EA) of zero-crossings. Each of
the normalisations characterises a particular physical meaning for
the ZCRs contained in f[-], being adequate for a specific task in
PRKbS. Comments on each of them follow, nonetheless, all the nor-
malisations force f]-] to express a rate, bringing the proper sense to
the letter “R” used in the abbreviation “ZCR”.

The division of each individual ZCR in f[-] by the sum of all ZCRs
it contains, i.e.,

fr

<~ ST 1 -\
SETR
characterises TA. Once this procedure is adopted, Zz;(} fi=1
Physically, TA forces f[-] to express the fraction of ZCRs in each
segment of s[-], being ideal to describe the way the fundamental
frequencies of an input signal, s[-], vary in relation to its overall
behaviour.

To force f]-] express individual spectral properties related to
each fragment of s[-], in isolation, PA is required. The correspond-
ing normalisation consists of dividing each ZCR in f[-] by L — 1, i.e.,
the highest possible number of ZCRs inside a window of length L:
fr <~ I j_cr] s
With this procedure, fi < 1, for (0 <k <T —1). The closer a cer-
tain fi, is to 0 or to 1, respectively, the lowest or highest the fun-

O0<r<T-1),

O<r<T-1).

252 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

damental frequency at the corresponding window is, disregarding
the remaining fragments of s[-].

Lastly, EA is chosen whenever evaluation by comparison is
needed, particularly forcing the highest ZCR in f]-] to be 1 and ad-
justing the remaining ones, proportionally, within the range (0-1).
The corresponding procedure consists of dividing each individual
ZCR in f[-] by the highest unnormalised ZCR contained in it, the
one computed over the window placement named wy, i.e.,

fo b

" ZCR(wy)’
All the previous formulations and concepts can be easily ex-
tended to a 2D signal, m[-][-], with N rows and M columns, which
represent, respectively, the height and width of the corresponding
image. As in the unidimensional case, the computation of a bidi-
mensional ZCR requires all the values in m[-][-] to be previously
shifted so that its arithmetic mean becomes equal zero, i.e.,

(X i mij)
M-N ’
O<p<M-1), (0<g<N-1). (4)
Once m[-][-] presents zero mean, its ZCR is simply the sum of
individual ZCRs in each row and column, i.e.,
1 N=im-2
ZER(mLD = 5 3 > Isign(my j) — sign(m ji1)]
i=0 j=0
M-1N-2

+% Z Z |51gn(ml]) - Sign(mi+1vj)|. (5)
j=0 i=0

O<r<T-1).

Mpq < Mpg —

Similarly to 1D signals, ZCRs computed in 2D are useful for both
DSP and FE in PRKbDS, as illustrated in Fig. 6. In the latter, the case
of interest, the feature vector, f[-], contains not only T, but T - P
elements, being P = L%J, as in the bidimensional case of
method Ay, explained in [1]-pp.3. During the analysis, m[-][-] is tra-
versed along the horizontal orientation based on T placements of
the square window w of side L, being L < M and L < N. Then, the
process is repeated for each one of the P shifts along the vertical
orientation.

TA, PA and EA are also the possible normalisations for the 2D
version of By applied for FE in PRKbS. Particularly, TA requires each
component of f[-] to be divided by the sum of all ZCRs it contains,
i.e., the sum of all the values in that vector prior to any normali-
sation. On the other hand, if PA is adopted, each element in f[-] is
divided by the maximum possible number of ZCRs inside w, i.e.,

CL-1)- L + CL-1) - (L) =2-L-(L-1).
—_—— —— e—— =

X maximum ZCR number of
in one column columns

maximum ZCR number of
in one row TOWS

Lastly, the choice for EA implies that each component of f]-] is di-
vided by the highest ZCR contained in it, the one computed over
the window placement named wy,.

Exactly as in Ay [1], for both 1D and 2D signals, respectively,
By is only capable of generating a T, or a T - P, sample-long vec-
tor f[-] if the value of L is subjected to the value of M, or M
and N. Thus, the value of L intrinsically depends on the length of
the input 1D signal s[-], or the dimensions of the input 2D ma-
trix m[-][-], bringing a disadvantage: irregular, temporal or spatial
analysis. Oppositely, the advantage is that a few sequential ele-
ments of f[-], obtained by predefining L, T and P, allow the de-
tection of some particular event in the 1D or 2D signal under
analysis.

The algorithms 1, 2 and 3, respectively, contain the source code
in C/C++ programming language that implement method B; with
the normalisations TA, PA and EA, all of them for 1D input signals.
At variance with this, algorithms 4, 5 and 6 correspond, respec-
tively, to the 2D versions of By with the same normalisations.

Algorithm 1 : fragment of C++ code for method B¢ in 1D, adopting
the normalisation TA.
/...
// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0;k < M; k + +)
mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k + +)
s[k]— = mean; //at this point, the arithmetic mean of the input signal is 0
int L = /* the desired positive value, not higher than M */;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 * M — L % V)/((100 — V)«L));
int ZCR = 0; // ZCR is the total number of zero-crossings over all the window place-
ments, required for normalisation
double xf = new double[T]; // dynamic vector declaration
for(int k =0;k < T: k+ +)
{
flk] = 0;
for(int i=kx ((int)(((100 —V)/100.0) % L)); i < k * ((int) (((100 —
V)/100.0) x L)) + L — 15+ +)
flk]+ =(s[i] *s[i + 1] < 0)?1:0; /* multiplying subsequent samples
results in a negative value if they are between 0. This is equivalent to the theoretical
procedure described in the text and based on equation 1. x/
ZCR+ = f[k];
}
for(int k = 0; k < T; k+ +) // normalisation
flk]/ = (double)(ZCR); /« the casting, i.e., the explicit conversion of ZCR
from int to double is, theoretically, not required, however, some C/C++ compilers have
presented problems when a double-precision variable is divided by an int one, result-
ing in 0. To avoid this issue, the casting is used. x/
// at this point, the feature vector, f[-], is ready
/...

Algorithm 2 : fragment of C++ code for method B; in 1D, adopting
the normalisation PA.
/...
// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0; k < M; k + +)
mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k + +)
s[k]— = mean; //at this point, the arithmetic mean of the input signal is O
int L = /* the desired positive value, not higher than M */;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 « M — L« V)/((100 — V)«L));
double xf = new double[T]; // dynamic vector declaration
for(int k=0;k < T: k+ +)

{
flk] =0;
for(int i= k= ((int)(((100 —V)/100.0) * L)); i < k * ((int) (((100 —
V)/100.0) L)) + L —1;i++)
flk]+ =(s[i] *s[i + 1] < 0)?1:0; /* multiplying subsequent samples
results in a negative value if they are between 0. This is equivalent to the theoretical
procedure described in the text and based on equation 1. %/
flk]/ = (double)(L — 1); /* the casting, i.e., the explicit conversion of L from
int to double is, theoretically, not required, however, some C/C++ compilers have pre-
sented problems when a double-precision variable is divided by an int one, resulting
in 0. To avoid this issue, the casting is used. x/
}
// at this point, the feature vector, f[-], is ready
/...

2.2. Method B,

By, as A, in [1], is also based on a sliding window w traversing
s[-], or m[-][-]. Two differences, however, exist: there are no over-
laps and the window length for 1D, or the rectangle sizes for 2D,
vary. Thus, s[-] or m[-][-] are inspected in different levels of resolu-
tion.

After applying Eq. (3) or Eq. (4), respectively to remove the
mean of s[-] or of m[-][-], the feature vector, f[-], is defined as be-
ing the concatenation of Q sub-vectors of different dimensions, i.e.,

fll={& B Ul u{&[1}u... U {&l]} For 1D, each sub-vector
is created by placing w over T non-overlapping sequential positions

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269

253

-~ wol 1.1 wil] - - wis[-][-] ==~
| P AR nmmn
/ mo,0 §mo,1 [mo24mo3 §mo4 | mos | moe | m07 [mo8 M09 [mo,10[m0,11{m0,12|m0,13 M0, 14¥m0,15 M0, 16 0,17 :
!
/
"w [J[J w0 hmi,n | m2 b3 Imyg | mys | my g my g | myg | g mc ofrty 1,12 13 L 140 s e 7L
| 16 I | Waill [=< ,
| /
input signal / 72,0 2,1 |22 3 g g | ma s | a6 |7 | mg B0 (M2, 10(m2, 12,12 2,13 2, 1487,15 2,16 2,17
ml-[] : v vinl pSul T - oA
. ', $73.0 | 3,1 | M32 (133 | m3.4 | M35 |m36 | m37 | m3g Im3 9 |m310m3,119M3,12|M3,13 |3, 14¢713,15 "13,16)3,17 “"(ﬂ['][']
\ 5 / \ / -
! 7 |
\\\ ma0 |ma1 | myn | ma3|may|mys /"14,6 my7 | mag gmag \ma 10/ma 11 gma,12|ma,13|ma 1480ma 15|14 164,17 ,
\ /|
\ \
W ms0 |ms,1 |mso | ms3|ms 4| mss|mse | msg | msg|msg |ms jms 11|ms 12|ms 13[ms 141m5,15|m5 16 M5,17 \

| 3

eature vector _ (o[- wi Ll _ (wislIl wielIlD _ (wap LI _ (we3 Il
feat 1 ZCROn[D |, ZCROw 1)) " ZCROvy5[11) ZCROw 6 [11] ’ ZCROvg1 1) ’ ZCR(we3 1)
10 = 7p1 B~ TP1 - f157 P01 16 = 7p_1 - 4T TP 63~ Tp_1
ST for PRKbS 3, ZCROw 1) Y ZCROv D ¥ ZCROw L) X ZCROw 1) 3 ZCROw D 3 ZCROw D
U.Sil'lg B with TAl k=0 k=0 k=0 k=0 k=0 k=0
1
feature vector
_ ZCROwg 1) _ ZCRov(1) ZCROwy5[1) ZCR(M15[][]) - _ ZCROug [_ ZCR(wg3 1)
fI-] for PRKbS | /0= 2z 8= =2 N5 = —3on N6 = —2mon fa1 = == fe3 = —21-1)
using B with PA
feature vector
1o = ZCROn[ILD s = ZCROM LILD o= ZCROsHLD | ZCROvigLILD 11 = ZCROu LIED oy = ZCROSG3LLD
f[-] for PRKbS 0 = ZCROw, [T = ZCRGw, [0 15 = ZCROwy, [10D 16 = ZCROw;, [17D J41 = ZCRGw,, [T1D 63 = ZCROw,,[T-D)
using By with EA|

Fig. 6. 2D example for B; aiming DSP and PRKbS with its variants TA, PA and EA: sliding square with length L = 3 traversing m[-][-] with overlap V = 66.67%. Again, w;[- |

indicate the kth position of the window, for k=0,1,2, ...,

of s[-] and then calculating the normalised ZCRs using TA, PA, or
EA, as previously explained during the description of By, i.e.,:

subvector &4[-] is obtained by letting L= L%J and V = 0%,
which that T = L%J =2, to traverse s[-] and get the
normalised ZCRs;

idem to subvector &,[-], obtained by letting L = L%J and V =
0%, which that T = L%WJ =3;

idem to subvector £s[-], obtained by letting L = L%J and V =

0%, which that T = L%J =5;

idem to subvector £gl-], obtained by letting L = L%J and V =
0%, which that T = [109RDZ(V) | — x

(100-V).L

Q is defined on the basis of the desired refinement and, simi-
larly, the values 2, 3, 5, 7, 9, 11, 13, 17, ..., X are choices for T, that is
essentially restricted to prime numbers in order to avoid one sub-
vector to be a linear combination of another, implying in no gain
for classification.

For the 2D case, each sub-vector is created by framing m[-][-]
with T - P non-overlapping rectangles, being T = P prime numbers,
to compute the corresponding normalised ZCRs, i.e.,

« subvector &[] is created by letting L = L%J and V =0% to

obtain T = L%WJ =2 and then by letting L = L%J and

V = 0% to obtain P = L%J = 2. Subsequently, m[-][] is
traversed by T - P = 2 - 2 = 4 non-overlapping rectangles ;
« idem to subvector &,[-], obtained by letting L= L%J and

V=0% and then L=|§| and V=0% which that T=

(T - P) — 1. Dashed squares in the arbitrary positions 0, 1, 15, 16, 41 and 63, are shown.

L(l((’?o’o"’)ngL")J =3and P= L(H(’loo’(\)’) V()LLV)J = 3, respectively, im-

plying that T-P =3 -3 =9 non-overlapping rectangles traverse
m[-[-];

idem to subvector &3[.], obtained by letting L= L%J and
V=0% and then L=[Y] and V=0% which that T =
|0 =5 and P= [U0V | = 5 respectively, im-
plying that T-P=5-5=25 non-overlapping rectangles tra-
verse m[-][-];

idem to subvector £y[-], obtained by letting L= L%J and
V=0% and then L=|§] and V=0% which that T =
Liﬁ‘z%’gi;gi‘ﬂ —Xand P= Li("(’fd’a’)_ ;,()FiV)J = X, respectively, im-
plying that T-P=X-X = X? non-overlapping rectangles tra-
verse m[-][-];

In the 2D version of B,, the normalisations TA and EA are im-
plemented exactly as they were in B;. One particular note regard-
ing the normalisation PA is, however, important. Differently to B;
in 2D, in which L is the same for both horizontal and vertical ori-
entations, B, divides the input image into rectangles, i.e., the hori-
zontal and vertical sides are L%J and L%J, respectively. Thus, each
element of f[-] is not divided by 2-L- (L — 1), but by

(50 s (1)

number of
columns

number of
rows

) maximum ZCR
in one column

SRR

maximum ZCR
1n one row

S HENEY

254 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

Algorithm 5 : fragment of C++ code for method B in 2D, adopting

Algorithm 3 : fragment of C++ code for method B in 1D, adopting the normalisation PA

the normalisation EA.

// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k= 0;k < M; k+ +)

mean+ = s[k]/(double)(M);
for(int k = 0;k < M; k + +)

s[k]— = mean; //at this point, the arithmetic mean of the input signal is 0
int L = /* the desired positive value, not higher than M */;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 * M — L% V)/((100 — V)«L));
int highest_ZCR = 0;
double xf = new double[T]; // dynamic vector declaration
for(int k =0:k < T: k++)

{
flk]=0;
for(int i = ks ((int)(((100 —V)/100.0) * L)); i < k * ((int)(((100 —
V)/100.0) L)) + L — 150+ +)
flk]+ =(s[i] = s[i + 1] < 0)?1:0; /+ multiplying subsequent samples
results in a negative value if they are between 0. This is equivalent to the theoretical
procedure described in the text and based on equation 1. x/
if (f[k] > highest_ZCR)
highest_ZCR = f[k];

for(int k =0;k < T; k++)

flk]/ = (double) (highest_ZCR);/x the casting, i.e., the explicit conversion of
highest_ZCR from int to double is, theoretically, not required, however, some C/C++
compilers have presented problems when a double-precision variable is divided by
an int one, resulting in 0. To avoid this issue, the casting is used. */
// at this point, the feature vector, f[-], is ready

Algorithm 4 : fragment of C++ code for method B in 2D, adopting

the normalisation TA.

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N;p++)
for(int q=0;q < M; q+ +)
mean+ = m[pl[q]/(double) (M % N);
for(int p=0;p <N;p++)
for(int g = 0;q < M; q + +)
m[pllq]— = mean; //at this point, the arithmetic mean of the input
signal is O
int L= /* the desired positive value, not higher than the higher between M and N
*/;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 * M — L% V)/((100 — V)«L));
int P = (int)((100 * N — L+ V)/((100 — V)«L));
int ZCR = 0; // ZCR is the total number of zero-crossings over all the window place-
ments, required for normalisation
double xf = new double[T x P]; // dynamic vector declaration
for(int k =0;k < T xP; k++)

{
flk] = 0;
for(int i=kx ((int)(((100 —V)/100.0) xL)); i < k* ((int) (((100 —
V)/100.0) « L)) + L: i+ +)
for(int j = k* ((int)(((100 —V)/100.0)) * L); j < k* ((int) (((100 —
V)/100.0)) «L) +L—1; j+ +)
flkl+ = (m[i][j] = m[i][j + 1] < 0)?1:0; /% multiplying sub-
sequent samples results in a negative value if they are between 0. This is equivalent
to the theoretical procedure described in the text and based on equation 1. x/
for(int i=kx((int)(((100 —V)/100.0) xL)); i < k* ((int) (((100 —
V)/100.0) « L)) +L—1;i++)
for(int j =k ((int)(((100 —V)/100.0)) % L); j < k= ((int) (((100 —
V)/100.0)) x L) + L; j + +)
flk]+ = (m[i][j]* m[i + 1][j] < 0)?1:0; /+ multiplying sub-
sequent samples results in a negative value if they are between 0. This is equivalent
to the theoretical procedure described in the text and based on equation 1. %/
ZCR+ = flk];

for(int k=0;k < T+ P;k++)

flk]/ = (double)(ZCR); /+ the casting, i.e., the explicit conversion of ZCR
from int to double is, theoretically, not required, however, some C/C++ compilers have
presented problems when a double-precision variable is divided by an int one, result-
ing in 0. To avoid this issue, the casting is used. =/
// at this point, the feature vector, f[-], is ready

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N; p++)
for(int g =0;q < M; q++)
mean+ = m[p][q]/(double) (M = N);
for(int p=0; p <N:p++)
for(int q=0;q < M;q++)
m[pllq]— = mean; //at this point, the arithmetic mean of the
input signal is 0
int L = /* the desired positive value, not higher than the higher between M
and N */;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 * M — L« V)/((100 — V)xL));
int P = (int)((100 % N — L+ V)/((100 — V')xL));
double xf = new double[T x P]; // dynamic vector declaration
for(int k=0:k < T «P; k+ +)

{
11k = 0; _ ,
for(int i= k= ((int)(((100 —V)/100.0) xL)); i < k ((int) (((100 —
V)/100.0) « L)) +L;i++)
for(int j=k=((int)(((100 —V)/100.0)) * L); j <
k* ((int)(((100 — V)/100.0)) L) + L —1; j + +)
flkl+ = (m[i][j] * m[i][j + 1] < 0)?1:0; /+ multiplying
subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. %/
for(int i= k= ((int)(((100 —V)/100.0) *L)); i < k » ((int) (((100 —
V)/100.0) « L)) + L —1;i++)
for(int j =k ((int)(((100 —V)/100.0)) * L); j <
k * ((int)(((100 — V)/100.0)) * L) + L; j + +)
flk]+ = (m[i][j] * m[i + 1][j] < 0)?1:0; /* multiplying
subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. x/

for(int k =0;k < T % P; k+ +)

flk]/ = (double)(2 « L+ (L —1)); the casting, i.e., the explicit conver-
sion of L from int to double is, theoretically, not required, however, some
C/C++ compilers have presented problems when a double-precision variable
is divided by an int one, resulting in 0. To avoid this issue, the casting is
used. */
// at this point, the feature vector, f[-], is ready

that corresponds to the maximum possible number of zero-
crossings in each rectangular sub-image.

Figs. 7 and 8 show the sliding window for 1D and the sliding
rectangle for 2D, respectively, for TA, PA and EA. In addition, the
algorithms 8, 7 and 9 contain the corresponding 1D implementa-
tions. The 2D ones are in the algorithms 10-12.

2.3. Method B3

As described above, B; and B, focus on measuring the levels
of normalised ZCRs over windows or rectangles of certain dimen-
sions. B3, on the other hand, is quite similar to A3 [1] and consists
of determining the proportional lengths, or areas, of the signal un-
der analysis that are required to reach predefined percentages of
the total ZCR. Normalisations do not apply in this case. The direct
consequence of this approach is the characterisation of B; as being
ideal to inspect the constancy in frequency of the physical entity
responsible for generating s[-], or m[-][-].

Specifically, C is defined as being the critical base-level of ZCRs,
(0 < C < 100), and then, for 1D, the feature vector f]-] of size T is
determined as follows:

* fo is the proportion of the length of s[-], i.e., M, starting from its
beginning, which is covered by the window placement wy| -],
required to reach C% of the total ZCR;

« fg is the proportion of the length of s[-], i.e., M, starting from its
beginning, which is covered by the window placement wq| - |,
required to reach 2 - C% of the total ZCR;

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 255
feature feature feature
sub-vector sub-vector sub-vector
1[] for %[-] for £1]+] for
PR bS using PRKDbS using PRKDbS using
input signal s[-] B, with PA B, with TA™ B with EA
So|S1|821853([84|55|86|S57|58|S59|S10[S11/512(513/514|515[516/517|518/(S .
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13|]4| 15| 16| 17| 18| 19| 510:% . _ ZCROwglD) 1o _ ZCRowglD)
o o e ——— == - = 3 ZCROw[D) 10 = L-1 7CR(Wh[])
| wol'] |
f 1 -
wil-]---- e, = ZRealD ZCRov 1D ZCR(w) 1)
l | 1l e Tilzcmwk[-n 611= =1 | |11 = ZcRon,1D
i el k=0
(a) windowing the input signal to form the first sub-vector
feature feature feature
sub-vector sub-vector sub-vector
&[] for &[] for &[] for
PRKbS using ~ PRKDbS using PRKDS using
input signal s[-] B, with PA B, with TA™ B with EA
| 50 | s | 5 | 53 | 54 | S5 | 56 | 57 | 53 | 59 |510|Sll|512|Sl3|Sl4|515|516|517|518|519| £y = ZCRO0LD zcrogn| | zerogm
- S acronen | [P07 T 20 = ZCRG3D
[]777———~7 - - - k=0
L |
T 1
will]l- - | &, = JZCRmlLD ZCRov([]) ZCRov|[D)
} i | A e | T | s e
l ‘ Wz['] . k=0
! l = ZCROw[])
discard two R Y H72 ZCRw [_ ZCRow [
samples ;Eo ZCRwi [217 L 217 ZCRGu LD
(b) windowing the input signal to form the second sub-vector
feature feature feature
sub-vector sub-vector sub-vector
&3] for &3] for &3] for
PRKbS using ~ PRKbS using PRKDS using
input signal s[-] B, with PA B, with TA™ B, with EA
|S0|S1 |52|S3|S4|S5|S6|S7|Ss|59|Slo|511|512|Sl3|S14|515|S16|Sl7|518|519| £30 = 7o RlD ey = ZeRoorn |) ZCRor
— —L — - s zerontny | P07 T ZCR(WT[]J
woll -~
wil]--- . - el zere|) 2GR
-~ Z ZCROn 1D 31 -1 = ZCRGw,[D
Tt _ _ZCROwplD) :
-~ _le,- _ ZCROwi) _ ZCR(w{['])
o 32 T 2cRimlD 32 = =1 | |32 = ZCRow,ID
wyl] - k=0
~ 1
N ZCROw3 L)) ‘
N f37 = 31D _ ZCROwi[) ZCR(wy)
N 3 S zcronn | P27 =T |63 = zern
N k=0
N ZCROwy[]) _
£y = e ROD _ ZCRw([]) ZCR(w{[])
T zeroney | P47 0| |47 ZeRGD
k=0

(c) windowing the input signal to form the third sub-vector

Fig. 7. 1D example for B, assuming Q = 3: (a) sliding window, with length L = L | = L 0 | =10 traversing s[-] in order to compose &1[-]; (b) sliding window with length
L=[Y]=1[%]=6 traversing s[-] in order to compose &;[-]; (c) sliding wmdow with length L=[¥]=[2]=4 traversing s[-] in order to compose &s3[-]. The window
positions do not overlap and the symbols w; indicate the i window position, for i =0,1,2,...T - 1.

« fa is the proportion of the length of s[-], i.e., M, starting from its « fp is the proportion of m[-][-] area, i.e., M - N, starting from my ¢
beginning, which is covered by the window placement ws[- |, and covered by the |oq] x [B1] rectangle wq[-][- |, required
required to reach 3 - C% of the total ZCR; to reach 2 - C% of the total ZCR;

... * fa is the proportion of m[-][-] area, i.e., M - N, starting from mg,

» fr_1 is the proportion of the length of s[-], i.e., M, starting
from its beginning, which is covered by the window placement
wr_1[-], required to reach (T - C)% of the total ZCR, so that (T
C) < 100%;

For Bs, the value of T is defined as being:

and covered by the |a,] x | B,] rectangle wy| -
to reach 3 - C% of the total ZCR;

Il

|, required

* frp_1 is the proportion of m|[-][-] area, i.e., M - N, starting from
my, o and covered by the |y 1] x |Br_1] rectangle wr_¢[][],
required to reach T - C% of the total ZCR, so that (T - C) < 100%;

r - |1 —1 if Cis multiple of 100
T |L'2] otherwise. The values of «; and B;, (0 <i< T — 1), are determined accord-

The 2D version of B; implies that f]-], with the same size T, is de-
termined as follows:

* fo is the proportion of m[-][-] area, i.e., M - N, starting from mg ¢
and covered by the |og| x [Bo] rectangle wy[- |[-], required
to reach C% of the total ZCR;

ing to the following rule, the exact same used for As in 2D '[1]:

T T will take this opportunity to correct an error in my previous published tutorial
[1]-pp.270 regarding the description of A; in 2D: the way «; and B; vary is in ac-
cordance with a relationship between N and M, as shown above, instead of «; and

256

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269

input signal m[-][-]) feature feature feature
general for DSP sub-vector sub-vector sub-vector
S . . £1]-] for £1]-] for %1[1 for
—] PRKDbS using PRKDS using PRKDS using
S Tl B> with PA B> with TA™ B, with EA
oI} TES N A PRRSEZETTI | JPPESTHTRY | Ippem
- & zeron - 0 = ZCROw),[TTD
H ~ |- k=0
i general i ion for DSP -
H T ZCR(w L)
£y = R D _ ZCROwi [_ ZCRew [
————— T ‘ZCR(M'k[_][_]) 1= s | |6 = Zoron, 0T
- -k k=0
-
\ i e e £y = T}ETR(& ¢, = ZCROnIID ¢, = ZCROmLID
==L] 5 zeron i 127 T *12 = ZCRGw, [T
2[H] 113180 k=0
1T -r-4- ZCROv3 LD ,
:) ey = e — _ ZCRw3[[]) . _ ZCROw3 LD
{ general for DSP. 3 T ek | |53~ e wn | |93 = Zcre, (D
s S general information for DSP k=0

(a) windowing the input signal to form the first sub-vector

e input signal m|[-]1[-] feature feature feature
general for DSP sub-vector sub-vector sub-vector
general information for DSP fz[] fOl' Afz[] fOl' fz[] for
PRKDS using PRKDS using PRKDS using
0[1] HI >[F11-] B, with PA B, with TA™ B, with EA
7 ~—
, R | a0 = pSRlD e = ZCRonguitd | ZCRowgLILD
- - - 5 ZeRon L) £20= rmg-gon | 1520 = ZCRow, LD
| S e -5 k=0
N - e
3{JL] o ~wial][] s 1o, - P%ICR(”A 6, < 2oty ||, ZCRon L)
S 2ero) § R e v} 1= ZCRGw),[IED
=0
6lH1L] 7H1L] sl
-
general information for DSP e T}ETR(W_%[-][-D ZCROvLILD) ZCRon)
= 8 ZeRom D) 28 = mppm | 1928 = ZORe, 0D
this gray part is not taken into account k=0
(b) windowing the input signal to form the second sub-vector
T input signal ml[-][-] feature feature feature
general information for DSP e sub-vector sub-vector sub-vector
general i for DSP %[] fOl' 3[] fOl' é‘:} [] for
woltH wil] wa walHE walHH PRKDS using PRKDS using PRKbS using
, N S B, with PA B, with TA™ B, with EA
/ B . ZCROvgL D) ,
L S P _ ZCROwgLILD) _ ZCROygLILD
wsEHE NS e bWl I Tl ko || 207 T w-gms | |50 ZeRogtIe
~ -~ =0
\ e iy Il .
R I B N ZCROv) [11) ,
| 1 i &1 = 701 er) = ZCROA LD _ ZCRoy [
Y10][Y1 JT[i}][Y13][Y1a][Y ZCROw LD S1= e | [ZoRew D
=0
1 1 1 1 1
VIOU I VIO I YIreJr I8y Ir VIO It
ZCROw3 11D ,
6304 = —oooRO3LIED _ ZCRow3[1) _ ZCROw3 11D
k=0
general i for DSP

(c) windowing the input signal to form the third sub-vector

Fig. 8. 2D example for B, assuming Q = 3 subvectors: [above] sliding square with length {L%JXL%J} = {L‘T‘]JxL%OJ} = 5x10 traversing m[-][-] in order to compose &1[-]; [mid-
dle] sliding square with length {[% |x| §]} = {| 2 Jx[£ |} = 3x6 traversing m[-][-] in order to compose &;[-]; [below] sliding square with length {{ ¥ |x| ¥ |} ={| 2 x| 2|} =
2x4 traversing m[-][-] in order to compose &s[-]. Again, w; indicates the i window position, for i =0, 1,2, ..., (T - P) — 1, with no overlap. Dashed squares represent the sliding

window in all possible positions.

Beginning: (o; < 0) and (B; < 0), unconditionally.

(ot,-<—oz,»+1) and (ﬂ,(—ﬁl-‘r]) if (N=M)
repeat] (o; < o;+1) and (B; < Bi+ M) if (N>M)
(o; <o+ 4) and (B; < Bi+1) otherwise.

until the desired level of energy, ie, C,2-C 3 -C ., T-Cis

reached.

B; themselves, as originally documented in that paper. A corrigendum is available
on-line at http://dx.doi.org/10.1016/j.neucom.2016.04.001 with details.

End. Figs. 9 and 10, and algorithms 13 and 142, complement my
explanations regarding Bs, for both 1D and 2D, respectively.

2.4. ZCRs are neurocomputing agents

In this subsection, the trail for an interesting point-of-view is
explained. Additionally to Eq. 1, ZCRs may also be counted based

2 The algorithm for A; in 2D, originally described in [1]-pp.273, also requires the
same corrections I mentioned in the previous footnote, as described in the corri-
gendum.

http://dx.doi.org/10.1016/j.neucom.2016.04.001

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269

257

input signal s[-] :

|SO|51 |52|S3|S4|55|56|S7|S8|S9 |510|511|512|S13|

wol, of size L, covers C% of he ZCRsof 11—,
S

7 wyl]. of size Lwy , covers 2C% of the ZCRs of s[]

|
f

w1, of size L, covers 3C% of the ZCRs of s{-]
|
f

¢ general information for DSP

\ wjl].of size Lws, covers 4C% of the ZCRs of s[-] _ "

\ o

feature vector f[-] T
for PRKbS based on B3 2

o=

L,

fo =4

Fig. 9. 1D example for B3, where Ly, represents the length of the window w;[- |, fori=0,1,2,3,...T - 1.

‘ T Te-a _ input signal m[-][-] :

feature vector f[-]

[1[]

for PRKbS using B3

general information for DSP

Tt |: _ LagllBp)
0= TNM

eneral information for DSP

{ general information for DSP

_ Lo B3l
3= TNM

Fig. 10. 2D example for B3, where w;[-] corresponds to the ith window, and «; and S; represent, respectively, its height and width, for i =0,1,2,3,.., TP - 1.

Fig. 11. The sigmoide function, y = -1, exemplified for different values of y:
2, 5 and 1000, respectively drawn in green, blue and brown. The proposed strategy
requires y >>0 aiming at a response as the one drawn in brown.(For interpretation
of the references to colour in this figure legend, the reader is referred to the web

version of this article).

on a different strategy, which is the one I use in my algorithms:
two adjacent samples of a discrete-time signal, lets say s; and s; 1,
cross zero whenever their product is negative. Thus,

SiSip1 _)1
IS; - Sizal 1

if there is a zero-crossing between s; and s;4
otherwise ’
being the denominator used for normalisation.
Purposely, 1 am inverting the polarities hereafter so that
—‘z'fi’}:l becomes either 1 or —1, respectively, in response to the
17014
presence or absence of a zero-crossing. Furthermore, despite the
fact that ‘s“; n is the simplest existing normalisation, I am going
1721+
to replace it by a more convenient formulation to reach my objec-
tive: the sigmoide function parametrised with a slope y > >0, as

shown in Fig. 11. We therefore have

1 if there is a zero-crossing between
s; and S;,q
0 otherwise

1 —_—
14+ e vsisi)

In order to traverse a window of length L and count its ZCRs,

. L-2 1 :
the summation Y ;7 T is adopted. The readers may

have learnt that, for FE, we are interested in the normalised num-

ber of ZCRs instead of its raw amount. Thus,

= 1 L-2 4 1
ZCR(sLD) = E ' igo: 1 + e~V (=sisia) = g 3 ' 1 + e~V (=sisiv)

is the simplest possibility to obtain a bounded outcome within
the range from O to 1. Particularly, TA, PA and EA can be ad-
dressed as a function of B, respectively, by letting it be equal to
Zl;g ZCR(Wi[-]). L—1 and ZCR(wy[-]), as I defined previously.

Clearly, the structure I propose corresponds to the original mul-
tilayer perceptron defined by Frank Rosenblatt [34], as shown in
Fig. 12, with some peculiarities. Its ith input, ith weight between
the input and the hidden layers, and ith weight between the hid-
den and the output layers are, respectively, s;, —s;;; and % More-
over, the ith neuron of the input layer connects forward only with
the ith of the hidden one. Another possible interpretation for the
proposed structure is that of a weightless neural network, also
known as random access memory (RAM) network [35-37], so that
there are weights albeit pre-defined, implying that there is no
learning procedure.

Concluding, when we are counting the normalised ZCRs of a
certain signal, we are somehow neurocomputing it, moreover, on
the basis of neurons which were “born with a pre-established
knowledge”. The potential of ZCRs awakens deeper attraction upon
their characterisation as being specific neurocomputing agents,
thus, my expectation is that the interdisciplinary community in-
terested in PRKDbS, FE, computational intelligence, artificial neural
networks, DSP and related fields will frequently take advantage of
the methods I present.

3. Numerical examples

In order to shed some light on the proposed approaches, one
numerical example follows for each case: methods By, B, and Bs,

258 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

S0 | —58)_ e
s1 | ——2 :) g

~ =TS~
N 0=~

—SM-1

SM—1 hidden layer
(active nonlinear)

(passive)

output layer
(active linear)

@—) output value: normalised number of zero-crossings
1/p

Fig. 12. The proposed structure, with pre-defined weights.

Algorithm 6 : fragment of C++ code for method By in 2D, adopting
the normalisation EA.

Algorithm 7 : fragment of C++ code for method B, in 1D, adopting
the normalisation TA.

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N; p++)
for(int q=0:q < M; q+ +)
mean+ = m[p][q]/(double)(M x N);
for(int p=0; p<N:p++)
for(int q=0;:q < M: q + +)
m[pllq]— = mean; //at this point, the arithmetic mean of the
input signal is 0
int L = /* the desired positive value, not higher than the higher between M
and N */;
int V = /* the desired positive value, lower than 100 */;
int T = (int)((100 * M — L+ V)/((100 — V)xL));
int P = (int)((100 * N — L+ V)/((100 — V')«L));
int highest_ZCR = 0; // ZCR is the total number of zero-crossings over all the
window placements, required for normalisation
double xf = new double[T x P]; // dynamic vector declaration
for(int k =0;k < T+ P; k+ +)

{
flk] = 0;
for(int i=kx ((int)(((100 —V)/100.0) xL)); i < k » ((int) (((100 —
V)/100.0) « L)) +L; i+ +)
for(int j=k= ((int)(((100 - V)/100.0)) *L); j <
k* ((int) (((100 —V)/100.0)) L) + L —1; j + +)
flkl+ = (ml[i][j]* m[i][j + 1] < 0)?1:0; /* multiplying
subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. x/
for(int i= k= ((int)(((100 —V)/100.0) xL)); i < k x ((int) (((100 —
V)/100.0) L)) + L — 1;i++)
for(int j=k= ((int)(((100 - V)/100.0)) *L); j <
k= ((int)(((100 —V)/100.0)) * L) + L; j+ +)
flkl+ = (ml[i][j]*m[i + 1][j] < 0)?1:0; /* multiplying
subsequent samples results in a negative value if they are between 0. This
is equivalent to the theoretical procedure described in the text and based on
equation 1. %/
if (f[k] > highest_ZCR)
highest_ZCR = f[k];

}
for(int k=0:k < T «P; k+ +)

flk]/ = (double) (highest_ZCR); the casting, i.e., the explicit conver-
sion of highest_ZCR from int to double is, theoretically, not required, however,
some C/C++ compilers have presented problems when a double-precision vari-
able is divided by an int one, resulting in 0. To avoid this issue, the casting is
used. x/
// at this point, the feature vector, f[-], is ready

both in 1D and 2D, assuming the normalisations previously de-
scribed and based on hypothetical data.

3.1. Numerical example for B; in 1D

Problem statement: Let s[-] ={1,2,3,4,5,5,4,3,2,1}, imply-
ing in M =10, and L =4 be the window length, with overlaps of
V = 50%. Obtain the feature vector, f[-], according to the method
B;.

Solution: First, the 1D signal mean, 1FZ£3+4+545+44342+41
% =3+#0, is subtracted from each component of s[-], result-
ing in {1-3,2-3,3-3,4-3,5-3,5-3,4-3,3-3,2-3,1—-
3} = {-2,-1,0,1,2,2,1,0, -1, -2}. The corresponding feature

// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0; k < M; k + +)

mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k + +)

s[k]— = mean; //at this point, the arithmetic mean of the input signal is O
int L; /[window length
int ZCR; // ZCR represents the total ZCR over all the window positions, that is re-
quired to normalise f[-]
int X[] = {2,3,5,7,9,11, 13, 17}; [* vector containing the prime numbers of interest.
It can be changed according to the experiment */
int total_size_of_f = 0;
for(int i = 0; i <(int)(sizeof(X)/sizeof(int));i + +) // number of elements in X[-]

total_size_of_f+=X[i];
double xf = new double[total_size_of_f]; /* The total size of f[-] is the sum of the
elements in X[-], i.e., the size of the subvector &[] plus the size of the subvector
& -], plus the size of the subvector &s|-], .., and so on *|
int jump = 0; // helps to control the correct positions to write in f[-]
for(int j = 0; j <(int)(sizeof(X)/sizeof(int)) ; j + +)

{

ZCR = 0;

for(int k = 0; k < X[j]: k+ +)

{

L = (int) (M/X[j]);

fljump + k] = 0;

for(int i = (k*L);i < (kL) +L;i++)
fljump + k]+ = (s[i] * s[i+ 1] < 0)?1:0;

ZCR+ = f[jump + k];

}
for(int k = 0; k < X[j]: k++)

fljump + k]/ = (double) (ZCR);
Jjump+ = X[jI;

// at this point, the feature vector, f[-], is ready

OO~M)—(L«V)J _ L(]OO-lO)—(4~50)J —4

vector, which has length T = |_“(1007V)>L o0 50,4

is obtained as follows:

wg[-], which covers the sub-signal {-2,—1,0, 1}, contains 1
zero-crossing, implying that fo =1;
wq| - |, which covers the sub-signal {0, 1, 2, 2}, contains no
zero-crossings, implying that fz = 0;
wy[- |, which covers the sub-signal {2, 2, 1, 0}, contains no
zero-crossings, implying that f, = 0;
ws[-], which covers the sub-signal {1,0, -1, -2}, contains 1
zero-crossing, implying that f3 = 1.

For the normalisation TA, each component of f[-] is divided
by Y3 ofi=1+0+0+1=2. Thus, it becomes {1.9.9. 11 =
{3.0.0,3}. On the other hand, for PA, each component of f[-]
is divided by the maximum number of zero-crossings, i.e., L—
1=3. Thus, it becomes {1,9.93,1}={3.0.0, 1}. Lastly, for EA,
each component of f[-] is divided by the highest component of
its unnormalised version, ie., 1. Thus, it becomes {1,9, 9 1} =
{1,0,0,1}.

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 259

Algorithm 8 : fragment of C++ code for method B, in 1D, adopting
the normalisation PA.

Algorithm 9 : fragment of C++ code for method B, in 1D, adopting
the normalisation EA.

// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0; k < M; k + +)
mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k + +)
s[k]— = mean; //at this point, the arithmetic mean of the input signal is 0
int L; /[window length
int X[] ={2,3,5,7,9, 11,13, 17}; [* vector containing the prime numbers of interest.
It can be changed according to the experiment *|
int total_size_of_f = 0;
for(int i = 0; i <(int)(sizeof(X)/sizeof(int));i + +) // number of elements in X[-]
total_size_of_f+=X[i];
double xf = new double[total_size_of_f]; /* The total size of f[-] is the sum of the
elements in X[.], i.e., the size of the subvector &[-] plus the size of the subvector
&[], plus the size of the subvector &s|-], .., and so on *|
int jump = 0; // helps to control the correct positions to write in f[-]
for(int j = 0; j <(int)(sizeof(X)/sizeof(int)) ; j + +)

for(int k = 0; k < X[j]; k+ +)

{

L = (int) (M/X[j]);

fljump + k] =0;

for(int i = (k*L);i< (kxL)+L;i++)
fljump + k]+ = (s[i] *s[i + 1] < 0)?1:0;

for(int k = 0; k < X[j]; k+ +)
fljump + k]/ = (double)(L — 1);

Jump+ = X[jl;

}

// at this point, the feature vector, f[-], is ready

3.2. Numerical example for B; in 2D

12 3 4
Problem statement: Let m[.][-] = (4 2 46) implying in
7 8 9 10
N =3 and M = 4. Assume that the square window has size L =2

with overlaps of V = 50%. Obtain the feature vector, f]-], following

method B;.
Solution: First, the 2D signal mean,
l+2+3+4+4+241r£1+6+7+8+9+10 — % =50, is subtracted from each

1-5 2-5 3-5 4-5
component of s[-], resulting in (4-5 2-5 4-5 6-5 | =
7-5 8-5 9-5 10-5
-4 -3 -2 -1
-1 -3 -1 1
2 3 4 5
| Q0OM)—(LV) | | (100N)—(WLV) | _ | (1004)-(250) | | (1003)-(2:50) | _
(00-V)L 4 L (@oo-v)L 4 = L (100-50)2 4 L (100-50)2 4 ~
3.2 =6 is obtained as follows:

. Then, the feature vector with length T.-P =

zero-crossings, implying that fp = 0;

wq[-][-] covers the sub-matrix 132 j

* Wo[-][- | covers the sub-matrix (__41 :g) which contains no
), which contains no

zero-crossings, implying that fz = 0;

wy[-][-] covers the sub-matrix (__2]]_1) which contains 2

zero-crossings, implying that fy = 2;

ws[-][-] covers the sub-matrix (;1 ;3) which contains 2

zero-crossings, implying that f3 = 2;

Wyl -][-] covers the sub-matrix <_33

Zl), which contains 2
zero-crossings, implying that f4 = 2;
<_1 1), which contains 2

ws[-][-] covers the sub-matrix

zero-crossings, implying that f5 = 2.

For the normalisation TA, each component of f[-] is di-
vided by Y37 ofi=0+0+2+2+2+2=8. Thus, it becomes

// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0; k < M; k+ +)

mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k+ +)

s[k]— = mean; //at this point, the arithmetic mean of the input signal
is 0
int L; /| window length
int highest_ZCR; // E represents the total ZCR over all the window positions,
that is required to normalise f[-]
int X[]=1{2,3.5,7,9,11, 13,17}, [* vector containing the prime numbers of
interest. It can be changed according to the experiment */|
int total_size_of_f = 0;
for(int i = 0;i <(int)(sizeof(X)/sizeof(int));i + +) // number of elements in
X[

total_size_of_f+=X[i];
double xf = new double[total_size_of_f]; /* The total size of f[-] is the sum
of the elements in X[-], i.e., the size of the subvector &[-] plus the size of the
subvector &[], plus the size of the subvector &s[-], ..., and so on */|
int jump = 0; // helps to control the correct positions to write in f[:]
for(int j = 0; j <(int)(sizeof(X)/sizeof(int)) ; j + +)

highest_ZCR = 0;
for(int k = 0; k < X[j]; k+ +)

L = (int)(M/X[j]);
fljump +k] = 0;
for(int i = (kxL);i< (k+xL)+L;i++)
fljump + k]+ = (s[i] = s[i + 1] < 0)?1:0;
if (f[jump + k] > highest_ZCR)
highest _ZCR = f[jump + kJ;

}
for(int k = 0; k < X[j]: k + +)

fljump + k]/ = (double) (highest_ZCR);
Jjump+ =X[jl;

// at this point, the feature vector, f[-], is ready

{8.9.2.2.2.3)=1{0,0.. 4. 1. 1). On the other hand, for PA,
each component of f[-] is divided by the maximum number of
zero-crossings, i.e.,, (4—1)-3+ (3 —-1)-4=9+ 8 = 17. Thus, it be-
comes {3, 2. %, 4. 4. &) Lastly, for EA, each component of f]-]
is divided by the highest component of its unnormalised version,

i.e, 2. Thus, it becomes {9,9,2, 2,22} ={0,0,1,1,1,1}.

3.3. Numerical example for B, in 1D

Problem statement: Let s[-] = {1,2,4,6,6,6,6,5,3, 1}, imply-
ing in M = 10. Assuming that Q = 3, with no overlaps between
window positions, obtain the feature vector, f[-], following the
method B,.

Solution: First, the 1D signal mean, 1+2+4+6+6:6+6+543+1
% =4 +#0, is subtracted from each component of s[.], result-
ing in {1-4,2-4,4-46-46-4,6-46-4,5-4,3-4,1-
4} = {-3,-2,0,2,2,2,2,1,-1,-3}. The feature vector is com-
posed by the concatenation of Q =3 sub-vectors, ie., f[-]=
{&1[-1 U {&]} U {&s]-1}, which are obtained as follows:

» The first subvector, &¢[-], comes from two non-overlapping
windows, wp[-]={-3,-2,0,2,2} and wy[-]={2,2,1,-1, -3},
which are positioned over s[-]. The corresponding results
are:

§19=1 ; =1

+ The second subvector, &;[-], comes from three non-overlapping
windows, wp[-]={-3,-2,0}, wi[-]1=1{2,2,2} and wy[]=
{2,1, -1}, which are positioned over s[-], discarding its last el-
ement, i.e., the amplitude —3. The corresponding results are:

260 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

Algorithm 10 : fragment of C++ code for method B, in 2D, adopt-
ing the normalisation TA.

Algorithm 11 : fragment of C++ code for method B, in 2D, adopt-
ing the normalisation PA.

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0; p<N:p++)

for(int q=0:q < M: q + +)

mean+ = m[p][q]/(double) (M % N);

for(int p=0;p <N; p++)

for(int q=0:q < M; q+ +)

m[pllq]l— = mean; //at this point, the arithmetic mean of the

input signal is 0
double ZCR; // represents the total ZCR over all the window positions, that
is required to normalise f[-]
int X[] ={2,3,5,7,9,11,13,17}; [* vector containing the prime numbers of
interest. It can be changed according to the experiment *|
int total_size_of_f = 0;
for(int i = 0; i <(int)(sizeof(X)/sizeof(int));i+ +) // number of elements in
X[

total_size_of_f+=pow(X[i], 2);
double xf = new double[total_size_of_f]; [* The total size of f[-] is the sum
of the squares of the elements in X[-], i.e., the size of the subvector &[-] plus
the size of the subvector &|[-], plus the size of the subvector &;[-], ..., and so
on’|
int Jump 0; // helps to control the correct positions to write in f[-]
for(int i = = 0; i <total_size_of f;i + +)

for(int k = 0;k <(int)(sizeof(X)/sizeof(int));k + +)
{

ZCR = 0;

L1 = (int)(N/X[k]);

L2 = (int)(M/X[K]);

for(int i = 0;i <((int)(N/X[k]))*X[k] - 1;i++)
for(int j = 0;j <((int)(M/X[k]))*X[k];j + +)

)) Sljump+(((int)(i/L2))*(X[K])+((int)(j/L1)]+ =(m[i][j]
m[i+1][j] < 0)?1:0;
ZCR+ = (mli][j] *m[i + 1][j] < 0)?1:0;
for(int i = 0;i <((int)(N/X[k]))*X[k];i + +)
for(int{j = 0: <((int)M/XKDYX([K] - 15+ +)
Slump+(((int)(i/L2))(X[k]))+((int)(j/L1)]+ =(m[i][j]
mli][j + 1] < 0)?1:0;
fCR+ = (m[i][j]*m[i][j + 1] < 0)?1:0;
for(int i =jump;i <jump-+pow(X[k],2);i + +)
flil/ = (double)(ZCR);
jump+=pow(X[k],2);

// at this point, the feature vector, f[-], is ready.

§=1 ; §1=0 ; §=1
+ The third subvector, &€5[-], comes from five non-overlapping
windows, wgl-] ={-3,-2}, wy[-]={0,2}, wy[-]={2,2},

ws[-] ={2,1} and wy[-] = {-1, -3}, which are positioned over
s[-]. The corresponding results are:
§30=0 ; §31=0 ;

; &3, =0.

§3,=0 ; §33=0

The concatenation of the three sub-vectors produce f[-]=
{1,1,1,0,1,0,0,0, 0, 0}. Now, each sub-vector is normalised sep-
arately. Considering TA, each component of &; in f[-] is divided
by Z,LO &x=1+1=2; each component of &, in f[-] is di-
vided by ZLO &r=1+0+1=2; and each component of &3 in
1 keeps unchangeable because Zk 0$3k = 0. Thus, f[-] becomes
{%,%,j 3, j 0,0,0,0, 0}_{2 3 2 0, ,0,0,0,0,0}.

On the other hand, considering PA, each component of &1 in f]-]
is divided by the maximum number of zero-crossings possible for
the window that originated it, i.e., L —1 =5 —1 = 4. Equally, each
component of &, in f[-] is divided by L—1=3 -1 =2, and each
component of &5 in f[-] is divided by L—1=2 -1 =1. Thus, f[]

10100000 111 1
becomes {7.3.3.3.5.7.7. 1. 1. 1} ={4.4.3.0.3.0.0.0.0.0}.

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N:p++)

for(int q=0:q < M: q + +)

mean+ = m[p][q]/(double) (M % N);

for(int p=0;p <N; p++)

for(int q=0:q < M; q + +)

m[pllq]— = mean; //at this point, the arithmetic mean of the

input signal is 0
int L1,L12;
int X[] ={2,3,5,7,9,11, 13, 17}; [* vector containing the prime numbers of
interest. It can be changed according to the experiment *|
int total_size_of_f = 0;
for(int i = 0; i <(int)(sizeof(X)/sizeof(int));i + +) // number of elements in
X[

total_size_of_f+=pow(X[i], 2);
double xf = new double[total_size_of_f]; [* The total size of f[-] is the sum
of the squares of the elements in X[-], i.e., the size of the subvector &[-] plus
the size of the subvector &[], plus the size of the subvector &;]-], .., and so
on*
int jump = 0; || helps to control the correct positions to write in f[-]
for(int i = 0;i <total _size_of_f;i + +)

flil =
for(int k = 0; k <(1nt)(sizeof(X)/sizeof(int));k+ +)

{
L1 =(int)(M/X[K]);
12 =(int)(N/X[k]);
for(int i = 03 <((int)(N/X[k]))*X[K] - 15+ +)
for(int j = 0;j <((int)(M/X[k]))*X[k];j + +)
Sliump+(((int)(i/L2))*(X[k])+((int)(j/L1))]+ =(m[i][] *
m[i+ 1][j] < 0)?1:0;
for(int i = 03 <((int)(N/X[k]))*X[K:i + +)
for(int j = 0;j <((int)(M/X[K])Y"X[K] - 15j + +)
o Slump+(((int)(i/L2))*(X[K]))+((int)(j/L1))]+
mli][j + 1] < 0)?1:0;
for(int i =jump;i <jump+pow(X[k],2);i + +)
flil/ = @*L1 %12 - 11 - [2);
Jjump+=pow(X[k],2);

=(mli][j]*

// at this point, the feature vector, f[-], is ready.
/...

Lastly, considering EA, each component of &; in f[-] is divided
by the highest component in it, i.e., 1; each component of &, in
fl-] is divided by the highest component in it, i.e., 1; and each
component of 53 in j[] keeps unchangeable because its high—

{1,1,1,0,1,0,0,0,0,0}.

3.4. Numerical example for B, in 2D

0o 12 3
Problem statement: Let m[-][-] = g g ?O ;3 , implying in
301 O

N =4 and M =4. Assume that Q =2 with no overlaps between
windows. Obtain the feature vector, f[-], following method B,.

Solution: First, the 2D signal mean,
0+1+2+3+4+5+6+7+]86+9+10+53+3+0+1+0 _ % —740 is sub-

tracted from each component of m[.][-], resulting in
0-7 1-7 2-7 3-7 -7 -6 -5 -4
4-7 5-7 6-7 7-7 -3 -2 -1 0
s-7 9-7 10-7 53-71=11" 27 3 ag | The feature
3-7 0-7 1-7 0-7 -4 -7 -6 -7

vector is composed by the concatenation of Q = 2 sub-vectors, i.e.,
fl-1={&1[-1} U {&[-]}. They are obtained as follows:

« for &¢[-], a total of 2.2=4 non-overlapping windows,
wol 1= (T 25) willid= (5 o) wallt1= ("4 2y)
and ws[-][-] = (376 ‘167> are positioned over m|[-][-]. The result
is:

§10=0 ; §11=2 ; §13=2 ; §14=2.

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 261

Algorithm 12 : fragment of C++ code for method B, in 2D, adopt-
ing the normalisation EA.

// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N; p++)
for(int q=0;q <M; q+ +)
mean+ = m[p][q]/(double) (M x N);
for(int p=0; p<N:p++)
for(int q=0:q < M; q + +)
m[pllq]— = mean; //at this point, the arithmetic mean of the
input signal is 0
int X[] ={2,3,5,7,9,11,13,17}; [* vector containing the prime numbers of
interest. It can be changed according to the experiment *|
int total_size_of_f = 0;
for(int i = 0; i <(int)(sizeof(X)/sizeof(int));i + +) // number of elements in
X[

total_size_of_f+=pow(X[i], 2);
double xf = new double[total_size_of_f]; [* The total size of f[-] is the sum
of the squares of the elements in X[-], i.e., the size of the subvector &[-] plus
the size of the subvector &[-], plus the size of the subvector &;[-], .., and so
on */
int jump = 0; // helps to control the correct positions to write in f[:]
for(int i = 0;i <total_size_of f;i + +)
o flil=o;
int L1, L2;
for(int k = 0;k <(int)(sizeof(X)/sizeof(int));k + +)

{
L1 = (int)(N/X[k]);
L2 = (int)(M/X[K]);
for(int i = 0;i <((int)(N/X[k]))*X[k] - 1;i+ +)
for(int j = 0;j <((int)(M/X[k]))*X[k];j + +)
)) Sliump+(((int)(i/L2))*(X[kD)+((int)(j/L1))]+ =(m[i][j] *
m[i+ 1][j] < 0)?1:0;
for(int i = 0;i <((int)(N/X[k]))*X[k];i + +)
for(int j = 0;j <((int)(M/X[KD))*X[K] - 1;j + +)
o Sljump+(((int)(i/L2))*(X[k])+((int)(j/L1))]+ =(m[i][j] *
m[i][j + 1] < 0)?1:0;
Jjump+=pow(X[k],2);
}

jump=0;
double highest_ZCR;
for(int k = 0;k <(int)(sizeof(X)/sizeof(int));k + +)

!

highest_ZCR = 0;

for(int | = 0;1 <pow(X[k],2);l + +)
if(fljump+l]> highest_ZCR)

highest_ZCR = f[jump+l];

for(int | = 0;1 <pow(X[k], 2);l + +)
fljump+l]/ = highest_ZCR;

jump+=pow(X[k], 2);

// at this point, the feature vector, f[-], is ready.

Algorithm 13 : fragment of C++ code for method B3 in 1D.

// ensure that s[-], of length M, is available as input
double mean = 0;
for(int k = 0; k < M; k + +)
mean+ = s[k]/(double)(M);
for(int k = 0; k < M; k + +)
s[k]— = mean; //at this point, the arithmetic mean of the input signal

is 0

int L =0; // partial lengths

double C =; // the desired value, being 0 < C < 100

int T = ((100/C) — ((int)(100/C)) == 0)?(100/C) — 1 : (int)(100/C) ; //
the number of elements in T

double xf = new double[T]; // dynamic vector declaration

double z = zcr(&s[0], M)*((double)(C)/100);

for(int k=0;k < T; k++)

{

while(zer(&s[0], L)<((k + 1) xz))
L++;

flk] =(double)(L)/(double)(M);

// at this point, the feature vector, f[-], is ready
/...

// function zcr

double zcr(double* input_vector, int length)

{
double z = 0;
for(int i=0;i<length - 1;i++)
z +=(input_vector[i] » input_vector[i + 1] < 0)?1:0;
return(z);

Algorithm 14 : fragment of C++ code for method Bs in 2D.

/]
// ensure that m[-][-], with height N and width M, is available as input
double mean = 0;
for(int p=0;p <N; p++)
for(int g =0;q < M; q++)
mean+ = m[p][q]/(double) (M x N);
for(int p=0;p<N:p++)
for(int q=0:q < M: q + +)
m[pllq]— = mean; //at this point, the arithmetic mean of the
input signal is 0
double alpha = 0; // partial height
double beta = 0; // partial width
double C =; // the desired value, being 0 < C < 100
int T = ((100/C) — ((int)(100/C)) == 0)?(100/C) — 1 : (int)(100/C) ; //
the number of elements in T
double xf = new double[T]; // dynamic vector declaration
double z = zcr(m, N, M)*((double)(C)/100.0);
for(int k=0;k < T: k+ +)

{
while(zcr(&m[0][0],(int)(alpha),(int)(beta))<((k + 1) % z))
if (N == M)
{
alpha++;
beta++;

}
else if (N > M)

alpha++;
beta+=(double)(M)/(double)(N);
}

else

{
alpha+=(double)(N)/(double)(M);
beta++;

}
fIk] =((alpha = beta)<=(N x M))?((alpha * beta)|(N « M)):(1); // ex-
ceptionally, as alpha or beta increases, f[k] > 1 for k close to T, so this is
a correction.

}
// at this point, the feature vector, f[.], is ready

// ﬂ;n.ction zcr in 2D
double zcr(double™ input_matrix, int height, int width)

{
double z = 0;
for(int i=0;i<height - 1;i++)
for(int j=0;j<width;j++)
z +=(input_matrix[i][j] * input_matrix[i + 1][j] < 0)?1:0;
for(int i=0;i<height;i++)
for(int j=0;j<width - 1;j4+4)
z +=(input_matrix[i][j] * input_matrix[i][j + 1] < 0)?1:0;
return(z);
}
/]

- for &,[-], a total of 3-3=9 non-overlapping windows,
wol 1= (7). wil1[] = (=6). Wo[][]= (=5). ws[-][]1 = (-3).
wyl-[-] = (-2), ws[-][-] = (-1), wg[-][-] = (1), wy[-][-] = (2) and
wg[-][-] = (3), are positioned over m[-][-], being its fourth row
and fourth column discarded. The result is:

§20=0 ; &1=0 1 &=0 ; &3=0 ; &u=0

v Es=0 5 &g=0 &y;=0 ; &g=0.

The concatenation of both sub-vectors produce f[-]=
{0,2,2,2,0,0,0,0,0,0,0,0,0}. As in the previous example,

each sub-vector is normalised separately. Considering TA, each
component of &4 in f[-] is divided by Zizo £E4,=0+2+2+2=6;
and each component of &, in f[-] keeps unchangeable because
Y8 & = 0. Thus, f[-] becomes {2, 2,2, 2,0,0,0,0,0,0,0,0,0} =
{0.1.4.1.0,0,0,0,0,0,0,0,0}.

On the other hand, considering PA, each component of &,
in f[-] is divided by the maximum number of zero-crossings
possible for the window that originated it, ie, 1-2+1.2=
4, and each component of &, in f[-] keeps unchangeable be-
cause the subvector does not cross zero. Thus, f[-] becomes

$.2.2.2.0,0.0.0.0,0,0.0.0} ={0. 3. 3. 3.0.0.0.0,0.,0.0,0,0}.

262 R.C. Guido/ Knowledge-Based Systems 105 (2016) 248-269

Lastly, considering EA, each component of &; in f[-] is di-
vided by the highest component in it, i.e., 2; and each compo-
nent of &, in f[:] keeps unchangeable because its highest com-
ponent is 0. Thus, f[-] becomes {9,3,2,2,0,0,0.,0, 0,0,0,0,0} =
{0,1,1,1,0,0,0,0,0.0,0,0, 0}.

3.5. Numerical example for Bs in 1D

Problem statement: Let s[-]={1,-1,1,-1,1,1,-1, -1}, im-
plying in M = 8, and assume that C = 20% is the critical level. Ob-
tain the feature vector, f]-], according to the method Bs.

Solution: The signal mean is 1+ (=1)+1+(=1)+1+1+
(=1) +(=1) =0, i.e., the ZCRs are ready to be counted. The fea-
ture vector, of length T = % —1=4, is composed by the pro-
portional lengths of s[-] required to reach 1-20% = 20%, 2-20% =
40%, 3-20% = 60% and 4 -20% = 80% of its total number of zero-

crossings. They are obtained as follows:

s[-] has 5 zero-crossings;

20% of 5 is 0.2 -5 = 1.4. Ceiling the result, 2 zero-crossings are
required. The proportion of the length of s[-] to reach them,
from the beginning, is 3;
40% of 5 is 0.4.5 =2 zero-crossings. The proportion of the
length of s[-] to reach them, from the beginning, is, again, %;
60% of 5 is 0.6-5 = 3. The proportion of the length of s[-] to
reach them, from the beginning, is § = 1;

80% of 5 is 0.8-5 = 4. The proportion of the length of s[-] to
reach them, from the beginning, is 3.

Thus, f[-]= {%', %% 2} As explained in the previous section,
no further normalisation applies.

3.6. Numerical example for B3 in 2D

5

Problem statement: Let m[.][-] = é 4 é

14 12 0

N =4 and M = 4. Assume that C = 25% is the critical level. Obtain
the feature vector, f[-], according to the method Bs.

25 6
431 3 , implying in

Solution: The signal mean is 5+2+5+6+2+3+3+7J]rg+4—4+6+1+4+12+0 _

64 _4-£0. Thus,

&= is translated so that it becomes

m[-][]

5-4 2-4 5-4 6-4 1 21 2
2-4 3-4 3-4 7-4 -2 -1 -1 3
84 4-4 —4-46-4]1=14 o -8 2 | The feature
1-4 4-4 12-4 0-4 -3 0 8 -4

vector, of length T = % —1 =3, is composed of the proportional

areas of m[-][-] required to reach 1-25% = 25%, 2-25% = 50% and
3.25% = 75% of its total ZCR. They are obtained as follows:

m[-][-] has 13 zero-crossings. Its area is N-M =4 -4 = 16;

25% of 13 is 0.25 - 13 = 3.25. Ceiling it, 4 zero-crossings are con-
sidered. Thus, the sub-matrix covered by the (N=3) x (M = 3)
rectangle, from mg, o, are required to reach at least 4 zero-
crossings. Since N-M = 3.3 =9, the proportion of m[.][-] area
covered is &% = 0.5625;

50% of 13 is 0.5-13 = 6.5. Ceiling it, 7 zero-crossings are con-
sidered. Thus, the sub-matrix covered by the (N=4) x (M = 4)
rectangle, from mg, o, are required to reach at least 7 zero-
crossings. Since N-M = 4 -4 = 16, the proportion of m[-][-] area
covered is 18 =1;

75% of 13 is 0.75-13 = 9.75. Ceiling it, 10 zero-crossings are
considered. Thus, the sub-matrix covered by the (N=4) x (M =

4) rectangle, from mq ¢, are required to reach at least 10 zero-

crossings. Since N- M = 4 -4 = 16, the proportion of m[-][-] area

covered is 18 = 1;

Thus, f[-]={0.5625,1,1}. As in the previous example, no fur-
ther normalisation applies.

4. Example applications

In this section, example applications involving 1D and 2D
real-life data are shown to consolidate the proposed approaches,
demonstrating their usability.

4.1. Speech classification and segmentation

There are many subclassifications for speech data, however,
voiced, unvoiced and silent, respectively originated from quasi-
periodic, non-periodic and inactive sources, are the root ones
[38]-pp.77, 78. Usual applications in which the differentiation be-
tween voiced, unvoiced and silent segments (VUSS) is relevant in-
clude large-vocabulary speech recognition [39], speaker identifica-
tion [40], voice conversion [41] and speech coding [42]. Thus, I
dedicate this section to initially present a ZCR-based algorithm for
the distinction among VUSS and, upon taking advantage of that
formulation, to introduce my proposal for isolated-sentence word
segmentation.

Neither B, nor Bs can be used in this experiment, because, a
priori, there is an unknown number of VUSS, implying that the fea-
ture vector generated to store their positions has a variable length
that depends not only on the duration but also on the content of
the spoken words. Thus, B; is the only adequate method, among
the three ones I presented, to carry out this task. Complementarily,
VUSS are classified according to the characteristics of each speech
frame, in isolation, i.e., disregarding the remaining of the signal,
suggesting that PA is the proper normalisation.

As reported in [43], ZCRs are usually associated with signal en-
ergy [1] to allow the implementation of accurate algorithms for
the detection of VUSS. Thus, B; normalised with PA was associ-
ated with A;, fully described in [1]. Independently, B; and A; were
applied to the input speech signal s[-], respectively, producing the
feature vectors I named as fg[-] and as f4[-], with the same vari-
able length. Consequently, for each window placement, there are
two types of information: spectral, based on the normalised ZCRs
available in fg[-], and temporal, based on the normalised energies
contained in fy[-]. Considered in conjunction, the feature sets pro-
duce a variable-length description of s[-] so that there is a corre-
spondence between this signal and those vectors for each tran-
sition between different types of segments. Notably, the frontiers
which delimit VUSS could not be easily found with basis on the
direct inspection of s[-].

Fig. 13 shows the input signal, s[-], that [use to explain the
proposed approach. It was digitalised at 16,000 samples per sec-
ond, 16-bit, corresponding to the 45,520 sample-long raw speech
data extracted from the sentence sal contained in the directory
/Jtest/dr1/mdab0/ of the TIMIT speech corpus [44], which reads as
“She had your dark suit in greasy wash water all year”. In the fig-
ure, the horizontal axis contains the tags J, (0 < k < 37), which
correspond to the transitions between consecutive phonemes of
sal, as described in the respective phn file included in the above-
mentioned directory. In addition to the silent periods, labelled as
SIL and indicated in orange, the exact voiced and unvoiced in-
tervals, respectively designated as VOI and UNV, are shown in
teal and violet, in accordance with the documentation found in
[44] and [45].

The value [chose for L, equivalent to 32 ms of speech, is of 512
samples. As documented in [12]-pp.32 and [46]-pp.25, the speech

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 263
1 I 1T 1 T I T T I T 17T T T I T 1 I
Q
3 " ‘0 Mn { 4
=t H L Al >
2 0) AL 41?'“!”"”“; " A Mln o “ﬂ * n' ‘ ookl '” il "‘“W"'“' N il W |||,,‘;"m|w i IWI
j=N
£ | ” ||
<
0 (vor) (vor) 0 o (vor) (vor) (vor)
-, o J . S R A
i N T N 1 ! O O [i i T S O i [i
Yo L R A I A 710 1 N3 Juhis N hs o I 3 Ju Uos e S 9 S0 I3 J33 J3a s 736 137 I3 J39
(sample 0) (sample 45520)
sample

Fig. 13. The speech voiced/unvoiced/silent decision experiment. SIL, UNV and VOI, respectively, mean silent, unvoiced and voiced. Olive, blue and red, respectively, are
the colors used to plot the input speech signal s[-], i.e., the file /test/dr1/mdab0/sal.wav from TIMIT, the ZCR feature vector fz[-] and the energy feature vector fy-]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

processing community considers this as being adequate to analyse
speech data such as s[-], the signal that appears as an olive curve in
Fig. 13. Furthermore, V = 50% follows the usual procedure adopted
during the short-time analysis of speech signals, albeit this is not a
critical choice. Additionally, the options for L and V allowed a com-
fortable visualisation of fg[-] and fu[-], plotted respectively in red
and blue in Fig. 13, in which the three signals are time-aligned so
that the kth sample of fg[-] and of f4[-], (0 < k< T — 1), correspond
to the window placement that covers the interval from M 100V | to
Sku%]ﬁ-’-’ i.e,, from S256K O S256K4512- Since T = L%J =

LW | =176, both fi[-] and fy[-], indexed from 0 to
175, were dilated on the horizontal axis prior to be plotted, al-
lowing a better visualisation, comparison and understanding of the
proposed ideas.

On one hand, each unvoiced segment of s[-] matches a region
with two characteristics: an inconstant and high ZCR in fp[-], and
a high energy in fs[-]. On the other hand, voiced parts of s[-] are
the ones that correspond to low and relatively constant ZCRs in
fgl-] associated with high energies in fy[-]. Finally, silent segments
correspond to those with low energies in fy[-], disregarding fz|-].
To be considered either high or low, ZCRs and energies obey the
hard thresholds respectively named as Hg and H,. Summarising,
the strategy is:

For the kth sample of fg[-] and fa[-], (O <k <T —1):
{
If (fax<Ha)
the corresponding region in s[-] is silent ;

else if (fzr < Hp)
the corresponding region in s - | is voiced ;

else
the corresponding region in s[- | is unvoiced.

}

As documented in [12]-pp.34, ZCR measures for voiced
and unvoiced speech are, respectively, close to 1400 and
4900 zero-crossings per second. Thus, a reasonable value
for Hp is the mean, ie, 140044900 _3150 zero-crossings
per second. For 32 mili-seconds (ms), Hp=3150-0.032 =
100.8 zero-crossings per 512 samples. Since PA was ap-
plied, Hp becomes 1098 — 1008 ~0.197, the value I
adopted.

For energy, contrastingly, I observe that the threshold of hear-
ing for human beings is 0 dB at the pressure intensity of 20jLPa,

i.e., 20 micro-Pascal micro-Pascal, at 1000 Hz and 25°C, as docu-
mented in [71]-pp.150-155. In order to compare a spoken signal
with the threshold of hearing, its specific playback level should
be known but this is not simple in practice. Notwithstanding, an
usual assumption is to consider such a level as being the small-
est possible signal represented by means of the speech coding sys-
tem defined at the time the signal was digitalised and quantised.
Equivalently, the fairly flat bottom of the threshold of hearing, for
the frequencies within the main range of speech, is simply aligned
to the energy level represented by the least significant coding bit.
TIMIT speech files were quantised with 16 bits, with one of them
reserved for signalling, i.e., positive or negative, and the remaining
ones for amplitude description, hence, the amplitude axis, for both
positive and negative amplitudes, varies at each -+ = 215. Con-
sidering each window placement covers L = 512 samples, the nor-
malised level is 512 - 215 = 215 =2-6-0.015625 ~ 0.016, which is
the value I chose for Hy.

If the readers repeat this experiment for the entire TIMIT cor-
pus, which contains 630 spoken sentences, the same successful
style of discrimination observed in Fig. 13 will be obtained. In fact,
many similar descriptions for the distinction among VUSS based
on signal energy and ZCRs have already been documented in the
literature, such as [47], published forty years ago, and [23], that
is a more recent work. Aiming to offer the readers a more attrac-
tive and novel classification scheme, taking advantage of the previ-
ous formulation, I shall describe my proposal for isolated-sentence
word segmentation.

According to [48]-pp.125, no known detail contained in a raw
speech waveform corresponds directly to the white spaces that
separate two words in written form. In fact, as I have observed
through the years, the raw waveform rarely presents distinct and
clear silent spaces between words, making this kind of segmenta-
tion a hard and complex challenge. In some particular cases, only
the context can serve as the basis to find whether or not a bound-
ary exists. One example refers to the underlined words in the next
pair of sentences:

“ Is there a good wine ? Yes, there is some. What age is it ?

”

“ ”

Is there a good wine ? Yes, there is. Somewhat aged ?

Surely, not only an isolated speech fragment has to be taken
into account to solve this issue but also the entire sentence. No-
tably, the authors of paper [50] have already shown the advantages

264 R.C. Guido / Knowledge-Based Systems 105 (2016) 248-269

first first second second third third fourth fourth fifth

region region region region region region region region region

below He || below He below He | below He below He || below He below He || below He

below He | below He

fifth sixth sixth seventh seventh eighth eighth ninth ninth

region region region region region region region region region

below He | below Ho below He || below Ho below He || below He below He || below He

begins ends begins ends begins ends. begins ends begins ends begins ends. begins ends begins ends. begins ends.
ninth ninth
region region
below He || below He
begins ends.
Q |
=l
32 |
= 0
[=¥
g mid
point
— i N — ~ N =) I = o)
() ¢ () ()i () D) D) (=) €D (var) (a ()
Iy h L I3 14 I5 16 I I3 Iy ho n 2 I3
(sample 0) (sample 45520)
sample
mid mid mid mid mid mid mid mid
point point point point point point point point

Fig. 14. The speech segmentation experiment, with the tags I, (0 < k < 13), delimiting each spoken word. Olive and black, respectively, are the colors used to plot the input
speech signal s[-], i.e., the file /test/dr1/mdab0/sal.wav from TIMIT, and the feature vector f¢[-]. The red horizontal line corresponds to the threshold Hc. As in the previous
figure, SIL identifies the silent periods.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

of using a few seconds of bootstrapping data, instead of particular
speech segment only, for word segmentation. Inspired by such for-
mulations, my experimental proposal is

fek=fox- fae. (O<k<T-1),

which reflects a ZCR-based weighted set of energy components. Al-
though f4[-], originally described in [1], is normalised considering
the whole input signal energy that is distributed along the time
so that its kth position is influenced by the entire speech, fp[-]
associated with PA contains only local spectral information. As a
result, global temporal workload [1] is weighted on the basis of
local frequency content, semantically characterising the intended
physical principle. Once f¢[-] is obtained, the strategy for decision
becomes:

For (1 <k<T-2):
If (fcy is the mid-point between the beginning and the end of a region
below Hc)
S| L 200y | is defined as being a word boundary.

He =Hg -+ Y120 for = %27 3125 fcr. which represents a hard
threshold for usage in conjunction with the new feature vector
fcl-1, is formed on the basis of two contributions, just as that vec-
tor was: the local spectral threshold, Hg, and the temporal vector
mean, which represents a distributed piece of information regard-
ing it.

Fig. 14 illustrates s[-], fc[-], Hc and the exact word boundaries,
according to the corresponding wrd text file contained in the same
TIMIT folder that includes s[-]. The close, and certainly acceptable,
matches between the points that satisfy the condition imposed by
the proposed strategy and the real boundaries are clearly percep-
tible. Particularly, the highest positive spike in the black curve of
Fig. 14, close to the position of Is, expresses the most improbable
point for a word boundary in s¢[-], since it represents a consider-
able activity of the speaker’s vocal apparatus. Consequently and in
opposition, its lowest negative spikes, the ones we are interested

in, indicate the most probable points for the word boundaries in
s¢[-], because they represent a more relaxed speaker’s work to ut-
ter, in view of a semantic shift in the way of speaking.

Algorithm 15 presents the complete source-code that imple-
ments the procedures described for isolated-sentence word seg-
mentation, so that the readers can easily replicate the experiments.

The global accuracy of the proposed approach was evaluated on
the basis of a recent tool called R-value, explained in [49] and de-
fined as being

_ Ir1] + |12
R=1-""60
considering
r =+/(100—HR)> + (05)> and 1= W'

0S and HR are respectively known as over-segmentation and hit-
rate. The former indicates the percentage of the number of bound-
aries correctly detected in relation to the total number of exist-
ing ones. On the other hand, the latter corresponds to the per-
centage of the total number of boundaries detected, both correctly
and incorrectly, in relation to the total number of existing ones.
Prominent results, fully acceptable in terms of the points labelled
as being word boundaries, were observed when the proposed ap-
proach was applied to all the 630 sentences sal spoken by the
TIMIT speakers. Disregarding their borders, i.e., their start and end
points, there are a total of 10-630 = 6300 boundaries between
the 11-630 = 6930 existing words in those sentences. Assuming
that OS and HR were counted so that the former and the latter
are respectively equal to 1.7378% and 93.4755%, then R = 0.9379 =
93.70%, consolidating the hypothesis that fc[-] contains useful in-
formation for word segmentation and motivating its further inves-
tigation.

In comparison with state-of-the-art procedures [50-56], the
proposed algorithm is novel, introducing the applications of ZCR-
based weighted energy components for isolated-sentence word

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 265

Algorithm 15 : C++ function for word segmentation
void word_segmentation(double* s, int M)

double mean = 0;

for(int k = 0; k < M; k + +)
mean+ = s[k]/(double)(M);

for(int k = 0; k < M; k + +)

s[k]— = mean; //at this point, the arithmetic mean of the input signal
is0
int L =512;
int V =50;

int T = (int)((100 * M — L % V)/((100 — V)xL));

double xf_B = new double[T];

double E = 0; // E represents the total energy over all the positions of the
window, that is required to normalise f_A[-]

double xf_A = new double[T];

for(int k=0;k < T; k++)

{

f_B[k] =0;

f_Alk] = 0;

for(int i= k= ((int)(((100 —V)/100.0) xL)); i < k » ((int) (((100 —
V)/100.0) «L)) + L — 1;i++)

E‘_B[k]+ = (s[i] = s[i + 1] < 0)?1:0;
f_Alk]+ = pow(s[i], 2);

f,B[k]/}= (double)(L —1);
E+ = f_A[k];

for(int k =0;k < T; k+ +)
f_Alk]/ = E; || normalisation

double xf_C = new double[T];

for(int k=0:k < T: k+ +)
fClk] = f_B[k] + f_A[K];

mean=0;

for(int k=0;k <T; k++)
mean + = f_C[k];

mean/ = (double)(T);

double H_C = 0.197xmean;

int k=0;

int start_region, end_region;

while ((k < T)&&(f_C[K] < H_C))
k++;

do // search for regions below Hc

while ((k < T)&&(f_C[K] > H_C))

k++;
start_region = k;
while ((k < T)&&(f_C[K] < H_C))

k++;
end_region = k;
if (k<T)

printf(*\n Word boundary detected at
(int)((end_region+start_region)/2.0) * (int)(((100-V)/(100.0)) * L));

} while (k < T);

s[%d].”,

segmentation. Furthermore, it presents the following advantages.
First, it is based on a simple inspection of a feature vector origi-
nated from the most humble concepts involving spectral and tem-
poral analysis, i.e., ZCRs and signal energy, respectively. Second and
opposed to some of the usual procedures just cited, its order of
computational complexity, both in terms of space and time, is lin-
ear (O(M)) in relation to the input signal length (M), allowing real-
time implementations. This linearity is a direct consequence of the
strategies adopted to define By, A; [1] and algorithm 15, because
all of them work based on a direct traverse of the input signal
under analysis. Lastly, saving the appropriate proportions, it is as
accurate as the above-referenced similar techniques, which report
their successful results within the range from 54 to 95% for En-
glish, French, Chinese and also ancient language corpora.

Obviously, the strategy I have just presented does not take into
account complex lexical issues and cannot be determined as being
the definite algorithm for word segmentation, nevertheless, it bal-
ances creativity, simplicity and accuracy, satisfying the objective of
this study and providing the initial insights for additional research
in the same direction.

4.2. Image analysis and re-synthesis for border extraction

At an early stage, most of the image processing algorithms for
PRKbS have to deal with a segmentation step [57-59], which refers
to the analysis of the input signal aiming to highlight meaningful
areas of interest. Usually, such a process is based on border extrac-
tion, a strategy that identifies the pixels responsible for defining
the boundaries between objects or specific parts of the image. Par-
ticular regions in which the fundamental frequencies are relatively
high are most likely to represent the borders, thus, ZCRs, captur-
ing those spectral components, are considered in this experiment
instead of the usual methods, such as watershed [57] and filtering
operations [60].

In order to establish an overall comparison, I state that ZCRs
have one great advantage over the usual techniques: they do not
take into account the frequencies higher than the fundamental one,
completely disregarding minor variabilities among neighbour pix-
els which could hinder a precise characterisation of the borders.
The direct consequence is that filtering approaches, such as those
detailed in [60-63], are not better than ZCRs for border extrac-
tion because filters are never ideal in practice, i.e., contaminations
resulting from imperfect filtering are not present when ZCRs are
used. Thus, the proposed approach, which might definitively not
be understood as a filtering operation, consists of an FE procedure
for PRKbS playing the role of a DSP algorithm in which convolu-
tional filtering is advantageously replaced by an analysis followed
by re-synthesis of the input 2D signal.

My strategy requires ZCRs from all the minor constant-area re-
gions over the input image to be interrelated. Neither By nor Bj
are suitable to perform this task. Instead, B, particularly associated
with EA is ideal and so became the choice. The detailed scheme
follows, where the ideal value for A is determined empirically. Ob-
viously, it is at least equal to four, otherwise, no ZCR could be
counted. My tests have shown that sixteen is a great option for
synthesising target images of different resolutions, allowing a rea-
sonable visual quality.

Extract the raw data from the input gray-scaled image, storing it in the NxM
matrix m[-][-];
Apply B, normalised with EA, choosing Q so that &, contains elements
extracted from non-overlapping rectangles with about A pixels;
Select either &, or &, or .., or &g to synthesise the target image, being &
and &g, respectively, the options for worst and best resolutions;
Synthesise the target image, m[-][-], as follows:
For the k' sample of &[], (0 < k < X?):

draw a [¥ |x[¥ | rectangle, using the color
((maximum_level_of_black_color)-(&y,)), from the point (%, k%X) to the point
(K4 [N k%X + [M]), being

% the remainder of the integer division, just as in G/C++ programming
language.

The strategy adopted to define the color of each rectangle con-
sists of a simple linear proportion of the maximum level of black
color, that is usually equal to 255 for 8-bit images [60], based on
the corresponding kth value of &[-], which varies from 0 to 1. The
former extreme forces a white rectangle to be plotted, which cor-
responds, in practice, to the absence of plot, since a white back-
ground is assumed. At the same time, the latter creates a black
rectangle. Intermediary gray colors, produced for 0 < k < 1, usually
appear close to the black ones, stimulating the completion effects
during the paintings.

Aiming to exemplify the proposed approach, Fig. 15(a) shows
the digit “5”, handwritten and digitalised as being a matrix with
N =508 rows and M = 508 columns. The image was analysed at
the resolution provided by using Q = 31, which produces a feature
vector containing 22 + 32 + 52 + ... + (113)% + (127)? elements, ac-
cording to Section 2. Then, sub-vectors &1, &;, &7, €11, €15 and &3y,

266 R.C. Guido / Knowledge-Based Systems 105 (2016) 248-269

(a) the original
508 x 508 image.

(b) the synthesised
image based on &].

(c) the synthesised
image based on &;.

S| Pfege)

(g) the syn-

the syn- (e) the syn- () the synthe-
thesised image thesised image sised image thesised image
based on &7. based on &1. based on &13. based on &31.

Fig. 15. The input image and its synthesised versions.

ELSEVIER
(a) the original
508 x 508 pic-
ture. &ss.

(b) the synthesised
image based on

Fig. 16. (a): The Elsevier logo; (b): corresponding image containing only borders.

composed respectively of X = (2)2 =4, X = (3)2 =9, X= (17)2 =
289, X = (31)2 =961, X = (61)> =3721 and X = (127)® = 16129
elements, were separately used to synthesise the target images
shown in Fig. 15(b)-(g). Clearly, the higher the resolution is, the
better the characterisation of the border will be.

When performed using the entire database of handwritten dig-
its downloaded from [64], this experiment succeeds. Complemen-
tarily, Fig. 16(a) and (b) shows, respectively, the 508 x 508 Elsevier
logo and its corresponding borders extracted on the basis of the
proposed approach adopting &s5. All the tests performed allow me
to state that the proposed approach produces equivalent percep-
tual results in comparison with those obtained when algorithms
of cutting-edge nature, such as [65-67]. are adopted. Furthermore,
in addition to the advantages discussed above, it also presents an
attractive order of time and space complexities [15]. Finally, based
on the fact that my technique completely differs from the current
ones, in its nature and essence, I refrain from establishing more
detailed analogies. ZCR-based algorithms for 2D signal processing
cannot even be found in the literature, especially when it comes
to border extraction.

Algorithm 16 contains a C/C++ function that receives m[-][-]
and its dimensions as input, modifying them so that the bor-
der image is synthesised. Basically, the function corresponds to
algorithm 12 adapted so that f[-] stores just the analysis of m[-][-]
at one particular resolution, ie., f[-] =&g[-]. implying that X be-
comes an unique integer number, instead of being a vector. For in-
stance, if m[-][-] corresponds to the raw data extracted from the
image shown in Fig. 15(a), then, X is set to 127 and f[-] = &31[-]
becomes a (127)2 = 16, 129 sample-long vector. In the specific case
treated in this example application, for which f]-] corresponds ex-
actly to £, X may also assume values of non-prime numbers. An
intelligent choice is to set it as being a multiple of both the original
N and M in order to avoid some parts of the image to be discarded,
as exemplified in Fig. 8b of Section 2.

4.3. Biomedical signal analysis

In one of my previous works from 2007 [68], an algorithm to
distinguish between healthy speech (HS) and pathologically-affect
speech (PAS) was presented. The former and the latter encompass,
respectively, the individuals with no abnormality in their vocal ap-
paratus and the ones with a pathology in their larynxes. In that

Algorithm 16 : C++ code for image border extraction. The func-
tion receives three parameters, i.e., m[-][-] and the addresses of M
and N, modifying all of them: the first one, so that it becomes the
synthesised squared image (m[-][-]), and the second and third ones,
so that a new size can be set.

void border_extraction(double** m, int* N, int* M)

double mean = 0; /| adjust mean to be zero
for(int p=0; p < (xN); p++)

for(int ¢ = 0; ¢ < (*M); +)

mean+ = m[p][q]/(double)((*M) (xN));

for(int p=0; p < («N); p+ +)

for(int g =0:q < (+*M); q + +)
, mipllg]— = mean;
int X =; /| the desired value, i.e., number of image divisions to produce &;.
In the example of Figure~??, it was set to 127
int total_size_of f = X x X;
double xf = new double[total_size_of_f];
for(int i = 0;i <total_size_of f;i + +)

flil=0;
int L1 = (int)((xN)/(double)(X));
int L2 = (int)((xM)/(double)(X));
for(int i = 0;i <((int)((«xN)/(double)(X)))*X - 1;i+ +)

for(int j = 0;j <((int)((+*M)/(double)(X)))*X;j + +)
0p1:0 SInt)(i/L2)) (X)H(Ant)(G/L1) 1+ =(m[i][j] + m[i + 1][j] <

for(int i = 0;i <((1nt)((*N)/(double)(X)))*X i++)
for(int j = 0;j <((int)((+*M)/(double)(X)))*X - 1;j
0y1:0: FICNt)(E/L2))(X))+H((nt)(j/L1))]+ (m[lllll * m[l][l +1] <

double highest_ZCR = 0; || image normalisation
for(int | = 0;l <total_size_of_f;l + +)
if(f[1]> highest_ZCR)
highest_ZCR = f[l];
for(int | = 0;] <total_size_of_f;l + +)
f[1]/ = highest_ZCR;
for(int k = 0;k <t0tal_size_of_f;k ++) || image synthesis
for(int = (int)(k/(double)(X)); p < (int)(k/(double) (X)) +
(mt)((*N)/(double)(X)) -1;p++)
for(int q = k/X q < k%X + (int)((*M)/(double)(X)) — 1;q +
+)
m[pllq] = 255 = f[k];
«N = X; || adjust size
«*M = X; [| adjust size
}

study, time-frequency features [69] served as input to a Support
Vector Machine (SVM) [70] dedicated to examine the four-second
sustained /a/ vowel sounds, as in the word “dogma”, emitted by
people enrolled in our system. Similarly, in this experiment, I use
speech data digitalised at 22, 050 Hz, 16-bit [71], using a wideband
microphone in a sound cabinet, from fourteen healthy subjects and
from fourteen individuals with Reinke’s edema in their larynx. All
the twenty-eight voices were accredited by medical professionals
based on specific hardware tools which allow precise image exam-
inations and detailed vocal analyses.

Initially, the radiation effects from the speakers’ lips were re-
moved, as a pre-processing stage known as pre-emphasis [48]-
pp.168 [72]-pp.25, before applying the proposed approach. The
first-order finite impulse response (FIR) high-pass filter [13] whose
coefficients are g[-] = {1, —0.95} was used, via convolution [13], to
perform this task. Considering s[-], of length M, as being an input

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 267

Table 1
Results obtained from the experiment on biomedical signal analysis.

Value chosen for

C 19.9% 24.9% 33.3%
Corresponding [190) = [199 =5 [10] = |J00)—4 |10]|J00] =3
value of T

PAS HS PAS HS PAS HS

confusion matrix HS 0 7 HS 25 HS 1 6

Corresponding PAS 7 0] PAS 7 0] PAS 6 1}
7 _ 100% 75 = 85.71% 616 _ 8571%

Resulting matrix
sensibility (% of
accuracy)

speech signal, the procedure is:

St < sk —(095.5,.) . (1<k<M)

Likewise any usual classification scheme, this approach intends to
offer the classifier a set of fixed-length feature vectors, implying
that B; is useless. On the other hand, both B, and B; output a
set of T elements regardless of M, being the latter a preferable
method because it allows the regularity of ZCRs to be analysed
along a period. From Section 1.2 we have learnt that ZCRs are more
likely to capture the fundamental frequencies of the speech signals,
i.e., their pitch [12] (Fp), disregarding the resonances of the vocal
tract, also known as being the formants (F;, F, ...), which corre-
spond to their higher frequencies. Complementarily, based on the
fact that Bs intrinsically normalises the frequencies it captures, the
proposed approach registers only the way pitches vary, disregard-
ing their values themselves. Thus, for any speaker, HS is expected
to keep an almost linear variation in response to the regular and
non-excessive effort performed by the vocal folds and associated
organs during vibration. On the other hand, PAS usually shows ir-
regular variations due to an excessive, and sometimes irresponsive,
effort performed by the speakers’ vocal system.

Assuming that seven signals from each class were adopted as
being their representative models and the other seven were used
to test the proposed approach, an ordinary absolute distance (AD)
measurement [73] was selected to serve as the classifier. The dis-
tances from each testing vector to all the template models are
registered, then, the class for which the lowest one belongs to,
guides the assignment. Table 1 shows the best results obtained

for all the possible (174)2 = (7!(+17)!)2 = (3432)? hold-out cross-
validations procedures [74], considering different options for C.

The respective accuracies suggest that a finer analysis, i.e., C =
19.9%, is required to characterise important data. For C = 33.3%,
excessive information is grouped together in each of the T = 3 co-
efficients of the feature vectors, causing the misclassification of one
PAS member that was labelled as being an HS one. Although for
C =24.9%, there are also incorrect assignments, HS members la-
belled as being PAS do not cause serious consequences, as in the
previous case in which the opposite occurs.

The above-mentioned characteristics of HS and PAS allow a rel-
ative generalisation of the results presented in Table 1, despite
the modest size of the database, for which the lack of volunteers
and the rigorous accreditations prevented further expansion. Thus,
I consider a meaningful and relevant outcome was obtained. De-
tailed comparisons with similar state-of-the-art algorithms, such
as those documented in [68,75-79], were avoided because their
databases and pathologies differ, however, the proposed approach
is overall as accurate as, and much simpler than, those strategies.
Furthermore, AD was purposely selected to play the role of the
classifier just to emphasise the relevance of the ZCR-based features,
i.e., due to the potential solution offered by the latter, the former,
consisting of the simplest existing possibility, performs an effort-
less job.

5. Conclusions

This study, dedicated to our neurocomputing community, was
carefully written, polished and reviewed to serve as a tutorial on
ZCRs for both 1D and 2D DSP applications designed for PRKbS. All
the concepts I described correspond to the outcome of a wide and
detailed research work. The readers can observe that, despite the
fact that ZCRs are well known in the literature, the different ways
I show their applicability, majorly concerning the 2D cases, are to-
tally new.

Specifically, three methods for feature extraction based on ZCRs
were presented just after the literature review section: B;, which
is the simplest one and is intended to produce variable-length fea-
ture vectors, is useful to search for a specific event or character-
istic in a digital signal, such as word segmentation or the distinc-
tion between voiced and unvoiced frames of a speech signal. B,, on
the other hand, for which an application on image border extrac-
tion based on analysis and re-synthesis was exhibited, is adopted
to inspect how ZCRs are distributed along the time, or space, in
different levels of resolution. Finally, Bs, exemplified for the dis-
tinction of healthy and pathologically-affected biomedical signals,
is usefull in searching for the possible variabilities of ZCRs as time
or space advances. Three different types of normalisations, named
TA, PA and EA, were also designed to work together with B; and
B,. Furthermore, sixteen algorithms, sixteen figures, six numerical
examples and one table were included in the text.

The readers may have learnt from many references, such as
[1], that the ordinary PRKbS require a classifier to be associated
with the features extracted from raw data. The more such features
linearly separate the mixed data from different classes in a cor-
rect manner, the less exquisite the classifier should be, and vice-
versa. Particularly based on the example applications described in
Section 4, I highlight one aspect of the proposed approaches: the
simplest existing classifiers, i.e.,, HT and AD, were used, implying
that the ZCR-based features brightly performed their work. Possi-
bly, this is due to the fact that ZCRs are, by themselves, neurocom-
puting agents, as shown in Section 2. To treat much more com-
plex problems, the potential of ZCRs may be enlarged by associat-
ing them with different types of neural networks [80], SVMs [[81-
83]], hidden markov models (HMMs) [84], paraconsistent [85], and
others.

In relation to noisy inputs, B3 is less influenced than B; and
B, when the noise, regardless of being white, pink, red, and so
on [7,13], is uniformly distributed along the signal under analysis.
This is because that method describes the way ZCRs vary, instead
of counting them, implying that the artifacts introduced affect the
entire signal more or less in the same manner, vanishing their ef-
fect over Bs.

Concluding, the proposed approaches provide a valid contribu-
tion for both young researchers, who are expected to take advan-
tage of the fundamental concepts and basic inputs drawn from
DSP and PRKbS theory, and experienced professionals, for whom
this text may serve as an initial insight to the project of fruit-
ful and prominent algorithms. As mentioned in [1], this study also
draws the DSP and PRKbS scientific communities’ attention to con-
sider the use of ZCRs, somewhen in conjunction with signal en-
ergy [1] or other features, to conform creativity, simplicity, and
accuracy.

All the data used during the experiments, excluding TIMIT
which is controlled by the Linguistic Data Consortium (LDC), are
available to the scientific community upon prior request > so that
the procedures could be reproduced. Further research related with
ZCRs focuses both on minor changes in the proposed approaches

3 Please, send requests to guido@ieee.org

268 R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269

so that more specific issues are properly addressed. An intriguing
open question: are there humbler features than ZCRs which are ca-
pable of achieving similar or better results for basic spectral signal
description?

Acknowledgements

[am very grateful to CNPQ - “Conselho Nacional de Pesquisa e
Desenvolvimento”, in Brazil, for the grants provided, through the
process 306811/2014-6, to support this research.

References

[1] R.C. Guido, A tutorial on signal energy and its applications, Neurocomputing
179 (2016) 264-282.

[2] J. Xu, A multi-label feature extraction algorithm via maximizing feature vari-
ance and feature-label dependence simultaneously, Knowl. Based Syst. 98
(2016) 172-184.

[3] Q. Zhou, H. Zhou, T. Li, Cost-sensitive feature selection using random forest: se-
lecting low-cost subsets of information features., Knowl. Based Syst. 95 (2016)
1-11.

[4] L. Yijing, Adapted ensemble classification algorithm based on multiple classi-
fication systems and feature selection for classifying multi-class unbalanced
data., Knowl. Based Syst. 94 (2016) 88-104.

[5] S. Garcia, J. Luengo, F. Herrera, Tutorial on practical tips of the most influential
data preprocessing algorithm in data mining., Knowl. Based Syst. 98 (2016)
1-29.

[6] Y. Meng, J. Liang, Y. Qian, Comparison study of orthonormal representations of
functional data in classification., Knowl. Based Syst. 97 (2016) 224-236.

[7] S.M. Alessio, Digital Signal Processing and Spectral Analysis for Scientists: Con-
cepts and Applications, 1, Springer, 2016.

[8] B. Stroustrup, The C++ Programming Language, 4, Addison-Wesley Professional,
2013

[9] M. Steenbeck, A contribution to the behavior of short AC arcs during the cur-

rent zero crossing., Z. Phys. 65 (1-2) (1930) 88-91.

[10] EM. Young,].C. Grace, Zero crossing intervals of a sine wav in noise., J. Acoust.
Soc. Am. 25 (4) (1953) 832.

[11] J.P. Ertl, Detection of evoked potentials by zero crossing analysis., Electroen-
cephalogr. Clin. Neurophysiol. 18 (6) (1965) 630-631.

[12] L. Deng, D. O’Shaughnessy, Speech Processing: A Dynamic and Optimiza-
tion-oriented Approach, CRC Press, 2003.

[13] A.V. Oppenheim, R.W. Schafer, Discrete-time Signal Processing, 3, Prentice-Hall,
2009

[14] S. Haykin, B.V. Veen, Signals and Systems, 2, Wiley, 2002.

[15] S. Arora, Computational Complexity: a modern approach, Cambridge University
Press, 2009.

[16] S. Goswami, P. Deka, B. Bardoloi, D. Dutta, D. Sarma, A novel approach for
design of a speech enhancement system using NLMS adaptive filter and ZCR
based pattern identification., in: Proceedings of the 2013 1st International Con-
ference on Emerging Trends and Applications in Computer Science (ICETACS),
2013, pp. 125-129.13-14.

[17] H.-M. Park, RM. Stern, Spatial separation of speech signals using amplitude
estimation based on interaural comparisons of zero-crossings., Speech Com-
mun. 51 (1) (2009) 15-25.

[18] A. Ghosal, R. Chakraborty, R. Chakraborty, S. Haty, B.C. Dhara, S.K. Saha,
Speech/music classification using occurrence pattern of ZCR and STE., in: Pro-
ceedings of the Third International Symposium on Intelligent Information
Technology Application (IITA), 3, 2009, pp. 435-438.

[19] R.R. Shenoy, C.S. Seelamantula, A zero-crossing rate property of power comple-
mentary analysis filterbank outputs., IEEE Signal Process. Lett. 22 (12) (2015)
2354-2358.

[20] A.V. Levenets, C.E. Un, Method for evaluating periodic trends in measured
signals based on the number of zero crossings., Meas. Tech. 58 (4) (2015)
381-384.

[21] R.R. Shenoy, C.S. Seelamantula, Spectral zero-crossings: localization properties
and application to epoch extraction in speech signals., in: Proceedings of the
International Conference on Signal Processing and Communications (SPCOM),
2012, pp. 1-5.

[22] M. Jalil, FA. Butt, A. Malik, Short-time energy, magnitude, zero crossing rate
and autocorrelation measurement for discriminating voiced and unvoiced seg-
ments of speech signals., in: Proceedings of the International Conference on
Technological Advances in Electrical, Electronics and Computer Engineering
(TAEECE), 2013, pp. 208-212.

[23] R.G. Bachu, S. Kopparthi, B. Adapa, B.D. Barkana, Voiced/unvoiced decision for
speech signals based on zero-crossing rate and energy., in: K. Elleithy (Ed.), Ad-
vanced Techniques in Computing Sciences and Software Engineering, Springer,
2010, pp. 279-282.

[24] Y.-. 1. Kim, H.-. Y. Cho, S.-. H. Kim, Zero-crossing-based channel atten-
tive weighting of cepstral features for robust speech recognition: the ETRI
2011 CHIiME challenge system., in: Proceedings of the Interspeech, 2011,
pp. 1649-1652.

[25] SJ. An, RM. Kil, Y.-. I. Kim, Zero-crossing-based speech segregation and recog-
nition for humanoid robots., IEEE Trans. Consum. Electron. 55 (4) (2009)
2341-2348.

[26] A.S. Zandi, R. Tafreshi, M. Javidan, Predicting epileptic seizures in scalp EEG
based on a variational bayesian gaussian mixture model of zero-crossing in-
tervals., IEEE Trans. Biom. Eng. 60 (5) (2013) 1401-1413.

[27] M. Phothisonothai, M. Nakagawa, A complexity measure based on modified
zero-crossing rate function for biomedical signal processing., in: Proceedings
of the 13th International Conference on Biomedical Engineering (ICBME), 23,
2009, pp. 240-244.

[28] M.IL Khan, M.B. Hossain, A.E.M.N. Uddin, Performance analysis of modified zero
crossing counts method for heart arrhythmias detection and implementation
in HDL,, in: Proceedings of the International Conference on Informatics, Elec-
tronics and Vision (ICIEV), 2013, pp. 1-6.

[29] C.-. H. Wu, H.-. C. Chang, P--. L. Lee, Frequency recognition in an SSVEP-based
brain computer interface using empirical mode decomposition and refined
generalized zero-crossing., J. Neurosci. Methods 196 (1) (2011) 170-181.

[30] D. Guyomar, M. Lallart, K. Li, A self-synchronizing and low-cost structural
health monitoring scheme based on zero crossing detection., Smart Mater.
Struct. 19 (4) (2010).Article Number: 045017, 2010.

[31] L. Florea, C. Florea, R. Vranceanu, C. Vertan, Zero-crossing based image pro-
jections encoding for eye localization., in: Proceedings of the 20th European
Signal Processing Conference (EUSIPCO), 2012, pp. 150-154.

[32] S. Watanube, T. Kotnatsu, T. Saito, A stabilized zero-crossing representation in
the wavelet transform domain and its extension to image representation for
early vision., in: IEEE TENCON - Digital Signal Processing Applications, 1996,
pp. 496-501.

[33] J.G. Daugman, Pattern and motion vision without laplacian zero crossings., J.
Opt. Soc. Am. A-5 (7) (1988) 1142-1148.

[34] K.-. L. Du, M.N.S. Swamy, Neural Networks and Statistical Learning, Springer,
2014.

[35] N. Nedjaha, EM.G. Fran A§ a, M.D. Gregorio, L.M. Mourelle, Weightless neural
systems., Neurocomputing 183 (2016) 1-2.

[36] H.C.C. Carneiro, EM.G. Franca, PM.V. Lima, Multilingual part-of-speech tagging
with weightless neural networks., Neural Netw. 66 (2015) 11-21.

[37] G.G. Lockwood, 1. Aleksander, Predicting the behaviour of g-RAM networks.,
Neural Netw. 16 (1) (2003) 91-100.

[38] T.E. Quatieri, Discrete-time Speech Signal Processing: Principles and Practice,
Upper Saddle River, NJ: Prentice Hall, 2001.

[39] W. Chou, B.H. Juang, Pattern Recognition in Speech and Language Processing,
Boca Raton: CRC Press, 2003.

[40] H. Beigi, Fundamentals of Speaker Recognition, New York: Springer, 2011.

[41] R.C. Guido, LS. Vieira, S. Barbon Jr., A neural-wavelet architecture for voice
conversion., Neurocomputing 71 (1-3) (2007) 174-180.

[42] T. Ogunfunmi, M. Narasimha, Principles of Speech Coding, CRC Press, 2010.

[43] K. Skoruppa, et al., The role of vowel phonotactics in native speech segmenta-
tion., J. Phonet. 49 (2015) 67-76.

[44] TIMIT speech corpus. linguistic data consortium (LDC), https://catalog.ldc.
upenn.edu/LDC93S1.

[45] C. Kim, K.-. d. Seo, Robust DTW-based recognition algorithm for hand-held
consumer devices., IEEE Trans. Consum. Electron. 51 (2) (2005) 699-709.

[46] X. He, L. Deng, Discriminative Learning for Speech Recognition, Morgan and
Claypool Publishers, 2008.

[47] B. Atal, L. Rabiner, A pattern recognition approach to voiced-unvoiced-si-
lence classification with applications to speech recognition., IEEE Trans. Audio,
Speech, Lang. Process. 1 (24) (1976) 201-212.

[48] J. Harrington, S. Cassidy, Techniques in Speech Acoustics, The Netherlands:
Kluwer Academic Publishers, 1999.

[49] OJ. Rosanen, U.K. Laine, T. Altosaar, An improved speech segmentation quality
measure: the r-value, in: Proceedings of the Interspeech, 2009, pp. 1851-1854.

[50] S. Brognaux, T. Drugman, HMM-based speech segmentation: improvements of
fully automatic approaches., IEEE-ACM Trans. Audio, Speech, Lang. Process. 24
(1) (2016) 5-15.

[51] A. Stan, et al., ALISA: an automatic lightly supervised speech segmentation and
alignment tool., Comput., Speech Lang. 35 (2016) 116-133.

[52] R.H. Baayen, C. Shaoul, J. Willits, M. Ramscar, Comprehension without segmen-
tation: a proof of concept with naive discriminative learning., Lang., Cognit.,
Neurosci. 31 (1) (2016) 106-128.

[53] F. Stahlberg, T. Schlippe, S. Vogel, T. Schultz, Word segmentation and pronun-
ciation extraction from phoneme sequences through cross-lingual word-to-
phoneme alignment., Comput., Speech, Lang. 35 (2016) 234-261.

[54] K.G. Estes, C. Lew-Williams, Listening through voices: infant statistical word
segmentation and meaning acquisition through cross-situational learning., Dev.
Psychol. 51 (11) (2015) 1517-1528.

[55] Ok. Rasanen, H. Rasilo, A joint model for word segmentation and meaning
acquisition through cross-situational learning., Psychol. Rev. 122 (4) (2015)
792-829.

[56] L. White, S.L. Mattys, L. Stefansdottir, Beating the bounds: localised timing cues
for word segmentation., J. Acoust. Soc. Am. 138 (2) (2015) 1214-1220.

[57] E. Nery, J.S. Silva, N.C. Ferreira, F. Caramelo, R. Faustino, An algorithm for the
pulmonary border extraction in PET images, Proc. Technol. 5 (2012) 876-884.

[58] L.H. Son, T.M. Tuan, A cooperative semi-supervised fuzzy clustering framework
for dental x-ray image segmentation, Expert Syst. Appl. 46 (2016) 380-393.

[59] X.-. Y. Wang, Pixel classification based color image segmentation using quater-
nion exponent moments., Neural Netw. 74 (2016) 1-13.

http://dx.doi.org/10.13039/501100003593
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0007
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0015
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0028
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0029
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0030
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0031
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0032
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0033
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0034
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0035
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0036
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0037
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0038
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0039
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0040
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0041
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0042
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0043
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0044
https://catalog.ldc.upenn.edu/LDC93S1
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0045
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0046
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0047
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0048
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0049
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0050
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0051
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0052
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0053
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0054
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0055
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0056
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0057
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0058
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0059
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0059

R.C. Guido/Knowledge-Based Systems 105 (2016) 248-269 269

[60] M. Nixon, Feature Extraction & Image Processing for Computer Vision, 3, Aca-
demic Press, 2012.

[61] P. Zhang, T.D. Bui, C.Y. Suen, Wavelet feature extraction for the recognition
and verification of handwritten numerals., Keynote Address at 6th Interna-
tional Program on Wavelet Analysis and Active Media Technology. Available
at http://users.encs.concordia.ca/~bui/pdf/Keynote.pdf.

[62] S.E.N. Correia,].M. Carvalho, R. Sabourin, On the performance of wavelets for
handwritten numerals recognition., in: Proceedings of the 16th International
Conference on Pattern Recognition, 2002, 3, 2002, pp. 127-130.

[63] X. You, L. Du, Y. Cheung, Q. Chen, A blind watermarking scheme using new
nontensor product wavelet filter banks., IEEE Trans. Image Process. 19 (12)
(2010) 3271-3284.

[64] The MNIST database of handwritten digits, Available at http://yann.lecun.com/
exdb/mnist/.

[65] A. Pratondo, C.-. K. Chui, S.-.H. Ong, Robust edge-stop functions for edge-based
active contour models in medical image segmentation., IEEE Signal Process.
Lett. 23 (2) (2016) 222-226.

[66] Z.M. Hadrich A, A. Masmoudi, Bayesian expectation maximization algorithm by
using b-splines functions: application in image segmentation., Math. Comput.
Simulat. 120 (2016) 50-63.

[67] M. Liao, Automatic segmentation for cell images based on bottleneck detection
and ellipse fitting., Neurocomputing 173 (2016) 615-622.

[68] E. Fonseca, R.C. Guido, PR. Scalassara, C.D. Maciel,].C. Pereira, Wavelet
time-frequency analysis and least-squares support vector machine for the
identification of voice disorders., Comput. Biol. Med. 37 (4) (2007) 571-578.

[69] P. Addison, J. Walker, R.C. Guido, Time-frequency analysis of biosignals., IEEE
Eng. Biol. Med. Mag. 28 (5) (2009) 14-29.

[70] R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, 2, Wiley-Interscience,
2000.

[71] M. Bossi, E. Goldberg, Introduction to Digital Audio Coding and Standards,
Kluwer, 2003.

[72] E. Muller, Invariant Features and Enhanced Speaker Normalization for Auto-
matic Speech Recognition, Logos Verlag, 2013.

[73] V. Serdarushich, Analytic Geometry, CreateSpace Independent Publishing Plat-
form, 2015.

[74] JH. Kim, Estimating classification error rate: repeated cross-validation, re-
peated hold-out and bootstrap., Comput. Stat. Data Anal. 53 (11) (2009)
3735-3745.

[75] Z. Al, 1. Elamvazuthi, M. Alsulaiman, G. Muhammad, Detection of voice pathol-
ogy using fractal dimension in a multiresolution analysis of normal and disor-
dered speech signals., J. Med. Syst. 40 (1) (2016) 1-10.

[76] D. Panek, A. Skalski, J. Gajda, R. Tadeusiewicz, Acoustic analysis assessment
in speech pathology detection., Int. . Appl. Math. Comput. Sci. 25 (3) (2015)
631-643.

[77] M. Alsulaiman, Voice pathology assessment systems for dysphonic patients:
detection, classification, and speech recognition., IETE]. Res. 60 (2) (2014)
156-167.

[78] MJ. Pulga, A.C. Spinardi-Panes, S.A. Lopes-Herrera, L.P. Maximino, Evaluat-
ing a speech-language pathology technology., Telemed. e-health 20 (3) (2014)
269-271.

[79] TL. Whitehill, S. Bridges, K. Chan, Problem-based learning (PBL) and
speech-language pathology: a tutorial., Clin. Linguist. Phonet. 28 (1-2) (2014)
5-23.

[80] S. Haykin, Neural Networks and Learning Machines, 3, Prentice Hall, 2008.

[81] M. Jandel, Biologically relevant neural network architectures for support vector
machines., Neural Netw. 49 (2014) 39-50.

[82] Y. Leng, Employing unlabeled data to improve the classification performance
of SVM and its applications in audio event classification., Knowl. based Syst.
98 (2016) 117-129.

[83] L. Shen, Evolving support vector machines using fruit fly optimization for med-
ical data classification., Knowl. Based Syst. 96 (2016) 61-75.

[84] A.M. Fraser, Hidden Markov Models and Dynamical Systems, Society for Indus-
trial and Applied Mathematics, 2009.

[85] R.C. Guido, S. Barbon Jr., R.D. Solgon, K.C.S. Paulo, L.C. Rodrigues, LN. Silva,
J.PL. Escola, Introducing the discriminative paraconsistent machine (DPM)., Inf.
Sci. 221 (2013) 389-402.

http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0060
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0060
http://users.encs.concordia.ca/~bui/pdf/Keynote.pdf
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0061
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0062
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0063
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0064
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0065
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0065
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0066
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0067
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0068
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0069
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0070
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0070
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0071
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0071
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0072
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0072
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0073
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0074
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0075
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0075
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0076
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0077
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0078
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0078
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0079
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0079
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0080
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0080
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0081
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0081
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0082
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0082
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083
http://refhub.elsevier.com/S0950-7051(16)30100-9/sbref0083

	ZCR-aided neurocomputing: A study with applications
	1 Introduction
	1.1 Objective and tutorial structure
	1.2 A review on ZCRs and their applications

	2 The proposed methods
	2.1 Method B1
	2.2 Method B2
	2.3 Method B3
	2.4 ZCRs are neurocomputing agents

	3 Numerical examples
	3.1 Numerical example for B1 in 1D
	3.2 Numerical example for B1 in 2D
	3.3 Numerical example for B2 in 1D
	3.4 Numerical example for B2 in 2D
	3.5 Numerical example for B3 in 1D
	3.6 Numerical example for B3 in 2D

	4 Example applications
	4.1 Speech classification and segmentation
	4.2 Image analysis and re-synthesis for border extraction
	4.3 Biomedical signal analysis

	5 Conclusions
	 Acknowledgements
	 References

