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Abstract

Several space-based climate engineering methods, including shading the Earth with a particle ring for active cooling, or the use of
orbital reflectors to increase the total insolation of Mars for climate warming have been considered to modify planetary climates in a
controller manner. In this study, solar reflectors on polar orbits are proposed to intervene in the Earth’s climate system, involving near
circular polar orbits normal to the ecliptic plane of the Earth. Similarly, a family of displaced polar orbits (non-Keplerian orbits) are also
characterized to mitigate future natural climate variability, producing a modest global temperature increase, again to compensate for
possible future cooling. These include deposition of aerosols in the stratosphere from large volcanic events. The two-body problem is
considered, taking into account the effects of solar radiation pressure and the Earth’s J 2 oblateness perturbation.
� 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Simple climate models help to explain the natural vari-
ability of the Earth’s climate system (McGuffie and
Henderson-Sellers, 2005). These models show that Earth’s
climate can switch from a stable warm state to a cool state
and is sensitive to relative small changes in solar insolation
(Berglund and Gentz, 2001; Emanuel, 2002; Allen et al.,
2006). The periodicity of ice ages (Milankovitch cycles)
(Muller and MacDonald, 1997) can be explained by these
processes. These cycles are due to a combination between
oscillations in the elements of the Earth’s orbit about the
Sun, and periodic changes to the orientation of the Earth’s
spin axis, which change the relative flux of energy received
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by the Earth at polar and equatorial latitudes. Although
the total change in insolation due to Milankovitch cycles
is less than 1%, the distribution of heat input as a function
of latitude seems to be the main effect (e.g. insolation at
high latitudes directly effects the growth and retreat of ice
sheets). Similarly, while human-driven climate warming is
of contemporary concern, volcanic aerosols reflect sunlight
to space and thus reduce solar heating of the Earth, there-
fore large volcanic-driven forcing can have a significant
short-term cooling effect (Angell, 1988; Angell and
Korshover, 1984; Zuev et al., 2015), such as Tambora in
1815 (Hansen et al., 1992) or catastrophic super-volcano
events, e.g. Toba mega-eruption approx. 71,000 years ago
(Zielinski et al., 1996). However, if a period similar to the
‘little ice age’ (1645–1715) recurred (Le Roy Ladurie,
1971; Free and Robock, 1999), or indeed future large
volcanic events occurred, then there could be significant
economic consequences for energy demand and agriculture
(i.e. energy prices and economic stability). Therefore, it is
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interesting to consider active strategies to avoid such short-
term climate change.

Space-based geo-engineering proposals aim to intervene
in the climate system by deliberately modifying the Earth’s
energy balance to reduce or increase the global mean tem-
perature in a controlled manner, with presumed beneficial
effect (McInnes, 2010). For example, space-based solar
shields have been proposed by various authors to decrease
the total solar insolation. Hudson (1991) proposed the

deployment of a 1011 kg ‘space parasol’ at the L1 Lan-
grangian point of the Earth–Sun system to intercept some
desired fraction of the solar radiant energy. Similarly,

McInnes (2002) proposed the use of a 4 � 1011 kg metallic
reflector located sunward of the Sun–Earth interior
Lagrange point to offset increases in mean global surface
temperature. Angel (2006) also considered cooling the
Earth with a cloud of small spacecraft orbited near the
inner Lagrange point. In Earth-orbit-based systems,
Pearson et al. (2006) proposed an artificial planetary ring
about the Earth, composed of passive scattering particles,
delivered from the Earth, Moon, or asteroids, and
attitude-controlled spacecraft with parasols. However,
since thin film devices require terrestrial fabrication and
launch at extremely high cost, it is possible that much sim-
pler partly reflecting disks could be extracted from cap-
tured near Earth asteroids (McInnes, 2006; Sanchez and
McInnes, 2011). Recently, Bewick et al. (2012, 2013) pro-
posed a scheme for dust cloud and heliotropic rings to
reduce the manufacturing requirement for space-based geo-
engineering at the Earth–Sun L1 Lagrangian point and
medium Earth orbits, respectively. The use of mass drivers
to eject material from the asteroid surface, in such a way
that the asteroid would be stabilized near L1, would still
be more efficient than lifting material from the surface of
the Earth.

In the last forty years, similar geo-engineering schemes
have been the subject of numerous studies for a possible
futuristic use of orbiting solar reflectors for illumination-
from-space applications, e.g. providing extra hours of illu-
mination for energy supplies or terraforming schemes
(engineering an Earth-like climate) (Glaser, 1968;
Ehricke, 1979; Oberg, 1981; Canady and Allen, 1982;
Fogg, 1995). However, as early as 1929, Oberth (1972)
had already proposed the use of ‘space mirrors’ for solar
power generation on Earth. The main advantage is the vast
energy leverage delivered by the reflectors which is
obtained in a relatively short time (Maunter and Parks,
1990). Modest-sized reflectors, of about 20–25 m in diame-
ter, have already flown in space, such as the Russian Zna-
mya space mirror experiment (Leary, 1993). Although the
first space mirror experiment (Znamya 2) was a successful,
the spot brightness achievable with reflectors of this size is
a tiny fraction of the mid-day Sun. For example, McInnes
(2002) showed that the required reflector area to increase
the total insolation of Mars by 30%, as part of a large-

scale terraforming effort, is of order 1013 m2 (and mass of
order 1010 kg). Similarly, Bewick et al. (2011) proposed
the use of a set of 300 Sun-pointing orbiting reflectors with
a total system mass of 370 tonnes, to provide sufficient illu-
mination onto the lunar surface to enable the survivability
of missions in the long periods of the lunar night. In this
manner, large-scale geo-engineering appears to be an inter-
esting tool to explore the possibility of climate heating in
order to manage fast cooling events that have occurred in
the distant past.

The work presented in this paper aims to investigate the
feasibility of using orbiting reflectors on polar orbits in
order to explore the possibility of an increase of the total
planetary insolation of 0.5% (equivalent to increasing the
mean global temperature by 0.5 K) to mitigate against pos-
sible large scale climate cooling (Teller et al., 2004). As sug-
gested in McInnes (2010), two candidate orbits for solar
reflectors will be evaluated: a Sun-synchronous frozen
polar orbit normal to the ecliptic plane of Earth and dis-
placed, non-Keplerian circular orbits. In principle, reflector
orbits normal to the Sun-line are more efficient than orbits
in the ecliptic plane. This fixed orientation provides addi-
tional solar energy transferred to the surface of the Earth.
However, reflectors deployed directly in Keplerian orbits
about the Earth are strongly perturbed by solar radiation
pressure. In this case, displaced circular orbits are an inter-
esting alternative to manage the momentum accumulated
by the reflectors. They are essentially circular, near polar
orbits but, due to the effect of solar radiation pressure,
the orbits are displaced behind Earth along the anti-Sun
line (McInnes and Simmons, 1992). In this light, the two-
body problem is considered for polar and displaced orbits,
including solar radiation pressure (SRP) and the effect of
the Earth’s oblateness, the J 2 effect. It will be shown that
SRP and solar reflector orientation has a significant effect
on the orbital evolution. Additionally, the J 2 term will be
considered to obtain analytical expressions for the required
pitch angle and characteristic acceleration of non-
Keplerian equilibrium solutions in a rotating frame of ref-
erence. The linear stability of the orbit families will be also
investigated. Finally, using the reflector mean distance
from the Earth, the area-to-mass ratio and the angle of
incidence, the required total reflector area for a 0.5%
increase in total insolation will be found.

The remainder of the paper is organized as follows.
Section 2 describes a zero-dimensional energy balance
model (EBM) and the basic concept for illumination from
space. Section 3 describes the necessary conditions to
achieve Sun-synchronous frozen orbits considering SRP
and the J 2 effect, and numerical experiments for different
values of reflector orientation and characteristic accelera-
tion. Section 4 determines the existence and stability of a
family of displaced circular orbits when viewed from an
internal frame of reference. Section 5 discusses the mass
required to fabricate the solar reflector utilizing the polar
orbits found in the previous sections. Finally, the conclu-
sions together with the discussion are drawn in Section 6.



Fig. 1. (a) Solar reflector on a polar orbit and radial, transverse and normal (RTN) frame, (b) Solar radiation force.
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2. Climate engineering

In order to investigate the response of the Earth’s cli-
mate to large-scale engineering interventions, it is necessary
to determine a relation between global mean temperature
and solar insolation, in such a way that the engineering
requirements for the fabrication of the space-based solar
reflectors can be obtained.

2.1. Energy balance model (EBM)

The simplest method of considering the climate system
of the Earth is in terms of its global energy balance
(McGuffie and Henderson-Sellers, 2005). Based on the
principle of conservation of energy, the EBM represents
an accounting of the balance between the total incoming
radiation received from the Sun and outgoing radiation,
i.e., radiation reflected and emitted from the Earth, includ-
ing the atmosphere.

The lowest order model is the zero dimensional model,
which considers the Earth as a single point in space having

a global mean effective temperature T . Although it does not
have the potential of numerical General Circulation Mod-
els (GCM), the zero dimensional model provides globally
averaged estimates of the climate responses. From this per-
spective, the total energy received from the Sun per unit

time is 4pR2I , where R ¼ 6371 km is the radius of the Earth
and I ¼ 342:5 W m�2 is the total solar insolation.1

Similarly, the reflected solar radiation per unit time is

4pR2IaE and the emitted infrared radiation per unit time

is 4pR2�rT 4, where aE � 0:3 is the mean planetary albedo,

�� 0:62 is the mean emissivity and r¼ 5:67�10�8 W m�2

K�4 is the Stefan–Bolztman constant. Hence, the mean
temperature can be estimated by considering the radiation
balance,
1 The solar insolation is defined in terms of solar flux F ¼ 1370 W m�2

as I ¼ F =4.
4pR2I ¼ 4pR2IaE þ 4pR2�rT 4: ð1Þ
In this case, an initial estimate of the mean Earth’s tem-

perature can be obtained from Eq. (1) as

T ¼ I 1 � aEð Þ
�r

� �1=4

; ð2Þ

which yields an estimated mean temperature of 14�, a value
approximately similar with the observed annual average
temperature for the Earth.
2.2. Reflection of light onto a planetary surface

The basic concept for illumination from space is shown
in Fig. 1(a). In this figure, the solar reflectors are in a polar
orbit. The Sun’s rays are emanating from the left. Note
that the solar reflector orientation is defined by the unit
vector n normal to the reflector surface. In addition, the
angle of incidence is defined by the reflector pitch angle
a, i.e., the angle between the reflector normal and the unit
vector s of the incoming sunlight.

If we refer again to Fig. 1(a) and assume only the loss
related to the angle of incidence, the total energy reflected
by the mirror is FA cos a, where F is the solar flux and A is
the total reflective area. Similarly, the total energy reflected

onto the Earth’s surface is 4pR2dI , where dI is the radiant
intensity on the Earth. Since the energy reflected from the
mirror is equal to the energy radiated on the Earth, then
the increase in insolation can be estimated as

dI ¼ FA

4pR2
cos a: ð3Þ

The new surface temperature can therefore be written as

T ¼ I 1 � aEð Þ þ dI
er

� �1=4

: ð4Þ

Now that the single energy balance model has been
described, family of orbits to manipulate the solar insola-
tion will be considered.
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3. Sun-synchronous orbit

A Sun-synchronous orbit is a geocentric orbit which
combines the altitude of the satellite and the inclination
of the orbit, in such a way that, an object on that orbit will
ascend or descend over any given point of the Earth at the
same local mean solar time (Tscherbakova et al., 1999).
This orbit is achieved when the speed of precession of the
osculating orbital plane is approximately one degree per
day with respect to the celestial sphere to keep pace with
the Earth’s revolution around the Sun. A frozen orbit is
an orbit where the mean argument of the perigee, the
eccentricity and the inclination remain constant (Coffey
et al., 1994). In this light, Sun-synchronous frozen orbits
are one of the most frequently used orbits for Earth science
missions (e.g. remote sensing). The typical Sun-
synchronous orbit tends to be near-polar and slightly retro-
grade. Thus, a solar reflector could be deployed directly in
a Sun-synchronous frozen orbit and its orientation could
also be fixed as the reflector orbits normal to the Sun-
line, providing an additional benefit over orbits in the eclip-
tic plane (McInnes, 2010).
3.1. Orbital dynamics

In the two-body problem, the plane of any orbit will
remain fixed with respect to an inertial frame as the Earth
rotates beneath it, i.e., the orbital elements do not change
with time in the inertial reference coordinates. However,
the non-spherical gravitational potential perturbation, as
well as the solar radiation pressure force (SRPF), could
cause this plane to slowly shift. Thus, in this study J 2

and solar pressure perturbations are considered to model
the dynamics of the solar reflector. The variations of the
orbital elements are governed by the Gauss’ form of the
planetary equations. The dynamical equation of motion
of the solar reflector can be written as (Battin, 1987)

da
dt

¼ 2e sin f

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p pr þ
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

nr
pt;

de
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p
sin f

na
pr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

na2e
ap
r
� r

� �
pt;

di
dt

¼ r cos f þ xð Þ
na2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p pw;

dX
dt

¼ r sin f þ xð Þ
na2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p
sin i

pw; ð5Þ

dx
dt

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p
cos f

nae
pr þ

p
eh

sin h 1 þ 1

1 þ e cos f

� �� �
pt

� r cot i sin f þ xð Þ
na2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p pw;

df
dt

¼ h
r2

þ 1

eh
h2

l
cos f pr � r þ h2

l

� �
sin f pt

� �
;

where X is the right ascension of the ascending node (or
simply ‘node’), x is the argument of perigee, f is the true
anomaly, r ¼ a 1 � e2ð Þ= 1 þ e cos fð Þ is the distance from
the Earth, p ¼ a 1 � e2ð Þ is the semi-latus rectum,

n ¼ ffiffiffiffiffiffiffiffi
l=a

p
is the mean motion, h ¼ ffiffiffiffiffiffi

lp
p

is the angular

momentum, and pr; pt; pw are the acceleration components
of the perturbation force p along radial r̂, transverse t̂

and normal ŵ ¼ r̂� t̂ directions (RTW frame), respec-
tively, as shown in Fig. 1(a). The perturbing acceleration
p is expressed analytically as follows (Battin, 1987):

pr ¼ � 3

2

J 2lR2

r4
1 � 3 sin2 i sin2 xþ fð Þ	 
þ T r;

pt ¼ � 3

2

J 2lR2

r4
sin2 i sin 2 xþ fð Þ þ T t; ð6Þ

pw ¼ � 3

2

J 2lR2

r4
sin 2i sin xþ fð Þ þ T w;

where J 2 ¼ 0:00108263 is a dimensionless constant corre-
sponding to oblateness of the Earth, l ¼ 398600:440 km3

s�2 is the gravitational parameter of the Earth (Bate
et al., 1971), and T r; T t; T w are the radial, transverse and
normal acceleration components, respectively, of the solar
radiation force T as shown in Fig. 1(b).

The classical orbit elements are defined in the J200
Earth-Centered Internial (ECI) frame, where X -axis points
to the J2000 equinox, Y -axis lies in the Earth’s equatorial
plane orthogonally to the X -axis, and Z-axis is directed
to the Earth’s north pole.

Work presented by Gong et al. (2012) on orbital dynam-
ics using solar sails obtains analytical expressions for the
SRPF components, such that, the conditions of a Sun-
synchronous frozen orbit are satisfied. Firstly, setting the
transverse component equal to zero (i.e. T t ¼ 0), the
semi-major axis and the eccentricity remain constant over
one orbital period (Gong et al., 2012). Therefore, the nor-
mal of the reflector lies in the plane spanned by the position
vector and Z-axis. In addition, the variation of the inclina-
tion is equal to zero over one orbital period when the argu-
ment of perigee is a multiple of p=2 (i.e. x ¼ �kp=2) (Gong
et al., 2012). Therefore, a Sun-synchronous frozen orbit is
finally achieved when the argument of perigee always
remains constant over one orbital period and the node
keeps pace with the Sun-line. According to Gong et al.
(2012), the radial and normal components of the SRPF
that satisfy the Sun-synchronous conditions can be
obtained as

T r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
a 1 � e2ð Þ

r
cos i n� þ 3lJ 2R2

4a4 1 � e2ð Þ5=2
1 � e cos2 i
� �

;

T w ¼ � lJ 2R2 sin 2i

2 1 � e2ð Þ3=2a4e sinx
� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 1 � e2ð Þ

ae2

r
sin i n�
sinx

;

ð7Þ
where n� ¼ 0:9856 deg/day is the mean motion of the Sun.
Note that Eq. (7) is singular for circular orbits.

Denoting by / the angle between the reflector normal
and the normal component in the RTN frame (see Fig. 1
(b)), then the SRPF in the RTN frame is given by
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T r ¼ T sin/;

T t ¼ 0; ð8Þ
T w ¼ T cos/;

where T is the magnitude of the SRPF. Thus,

/ ¼ tan�1 T r

T w
: ð9Þ

If the angle between the reflector normal and the radial
vector remains constant, then Eqs. (7)–(9) permit the semi-
major axis of a Sun-synchronous frozen orbit, as well as
the solar radiation force, to be obtained as a function of
the classical orbit elements for a given angle /:

a ¼ �
3lJ2R2

4 1�e2ð Þ5=2 1 � e cos2 ið Þ þ lJ2R2 sin 2i

2 1�e2ð Þ3=2e sinx
tan/ffiffiffiffiffiffiffil

1�e2

p
cos i n� þ 2

3

ffiffiffiffiffiffiffiffiffiffiffi
l 1�e2ð Þ

e2

q
sin i n�
sinx tan/

0B@
1CA

2=7

;

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ T 2

w

q
tan/:

ð10Þ
In this manner, Fig. 2 shows the semi-major axis and the

magnitude of SRPF as a function of inclination for a near-
circular orbit (i.e. e ¼ 0:05) and different given values of /.
The argument of perigee was chosen following the
Sun-synchronous frozen condition x ¼ �p=2.

Fig. 2(d) suggests that SRPF is minimum when the incli-
nation of the frozen orbit is about 112� and the semi-major
axis is about 9362 km, regardless of the angle /. This
Fig. 2. Semi-major axis (a,b) and SRPF (b,c) as a function of inclination
inclination is approximately equal to the inclination of
the plane perpendicular to the Earth’s ecliptic plane, which
is inclined to Earth’s equatorial plane by an angle e of
about 23.4�. In addition, no significant variation of semi-
major axis and inclination with regards to the eccentricity,
such that the SRPF is minimum, was found. Therefore,
Fig. 2 identifies an initial condition for which the variation
of classical orbit elements is minimized. The Keplerian ele-
ments identified through Eq. (10) are now used as initial
conditions for a numerical propagation of Eq. (5), forward
in time, over a period of 5 years. The numerical integration
of Eq. (5) is performed through the Bulirsch–Stoer
algorithm (Stoer and Bulirsch, 1980; Press et al., 1992),
programmed in the C language, choosing a dimensionless

step size h ¼ 1:0 � 10�3 and setting a local truncation error

of 1:0 � 10�9.
Once the initial parameters of the orbital dynamics are

found, the solar acceleration components T r; T t, and T w

in Eq. (6) to perform the numerical propagation are deter-
mined by

T r ¼ j cos2 a cos/;

T t ¼ 0; ð11Þ
T w ¼ j cos2 a sin/;

where j is the characteristic acceleration of the reflector
(McInnes, 2004) and the pitch angle a can be obtained
from the relation cos a ¼ n � s (see Fig. 1(a)). The accelera-
tion induced by the SRPF is defined by j ¼ 2Pr�1

A where
for a near-circular orbit, i.e. e ¼ 0:05, and different given values of /.
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P is the solar radiation pressure at the distance of Earth

from the Sun (4:46 � 10�6 Nm�2) and rA is the mass per
unit area of the reflector.

The unit vectors n and s of the reflector normal and the
sunlight, respectively, in the RTN frame are given by Gong
et al. (2012)

n¼ sin/ 0 cos/½ �T; ð12Þ
s¼�R3 xþfð ÞR1 ið ÞR3 Xð Þ cosk� cose sink� sine cosk�½ �T; ð13Þ
where superscript ‘T’ means transpose, e ¼ 23:4	 is the
mean obliquity of the ecliptic, k� is the longitude of Sun
measured in the Earth’s equatorial plane from X-axis,
and the transition matrices are given by

R1 hð Þ¼
1 0 0

0 cosh sinh

0 �sinh cosh

264
375; R3 hð Þ¼

cosh sinh 0

�sinh cosh 0

0 0 1

264
375:

ð14Þ
Assuming that the longitude of the Sun is a linear func-

tion of time, then

k� ¼ k�0 þ n�t: ð15Þ
Here, k�0 is the initial solar longitude at the instant

when the reflector is deployed in the Sun-synchronous fro-
zen orbit. The other four parameters (x; f ; i;X) in Eq. (13)
can be found from the numerical solutions of Eq. (5).
Fig. 3. Classical orbit elements of a Sun-synchronous orbit and Sun
Figs. 3 and 4 show a numerical simulation of the varia-
tion of the classical orbit elements of the reflector, as well
as the variation of the pitch angle a during 5 years for a
given characteristic acceleration, such that, the reflector
normal remains constant in the RTN frame. The transverse
component of the SRPF is equal to zero to keep the semi-
major axis and eccentricity unchanged over each orbit per-
iod, and the angle between the reflector normal and the
normal component in the RTN frame used for this simula-
tion is / ¼ 55	. The simulation parameters are given in
Table 1.

For a constant direction of the SRPF in the RTN frame
with transverse component equal to zero, the semi-major
axis and the inclination of a near-circular orbit practically
remain unchanged for several years as shown in Fig. 3 and
Fig. 4. Note that, although the variation of these two orbi-
tal elements, including the eccentricity, is small, their long-
term evolution is determined by the Earth’s motion around
the Sun. However, the variation of the argument of perigee
leads to a loss of synchronization with the sunlight direc-
tion as shown in Fig. 3. Therefore, the reflector normal
angle / should be adjusted to control the Keplerian ele-
ments to follow their desired values and achieve a Sun-
synchronous orbit as suggested by Gong et al. (2012).
The design of an attitude control for a large solar reflector
spacecraft introduces engineering challenges (Hedgepeth
et al., 1981). For example, Borggräfe et al. (2014, 2015)
angle variation with / ¼ 55	 and j ¼ 1:0 mm/s2 during 5 years.



Fig. 4. Classical orbit elements of a Sun-synchronous orbit and Sun angle variation with / ¼ 55	 and j ¼ 5:0 mm/s2 during 5 years.

Table 1
Parameters of the reflector orbit.

a0 e0 i0 X0 x0 f 0 k�0

9346.6 km 0.001 112.2� 0� �90� 0� 90�
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proposed the development of optically controlled reflector
films to control the solar pressure force and hence the
deflected shape. Wang et al. (2015) presented an inflatable
reflector which support structure is mainly composed of a
central hub, a support rib, a support torus, and a tension
system. On the other hand, the Sun angle changes period-
ically as the Earth rotates around the Sun as shown in
Figs. 3 and 4, which leads to a variation of the SRPF. Since
the inclination is about 112� during the 5 years of simula-
tion, the oscillation amplitude of the Sun angle increases
when the sunlight is not perpendicular to the orbit plane.

One of the disadvantages of the Keplerian Sun-
synchronous polar orbits found in this section is the
altitude, as shown in Fig. 2. Space debris cannot be ignored
for solar reflectors deployed on medium altitude orbits.
Additionally, a reflector at altitude d from the Earth’s sur-
face will project a spot of diameter of order Ds 
 0:0093d,
assuming a perfectly flat reflecting surface (Canady and
Allen, 1982). Therefore, for orbiting reflectors placed in a
polar orbit with an altitude of d ¼ 3000 km, the spot diam-
eter is approximately 30 km. It would be necessary to
deploy a large number of reflectors to increase the total
insolation. On the other hand, the Keplerian Sun-
synchronous polar orbits obtained in this section show a
large variation of the Sun angle as shown in Fig. 3 and
Fig. 4. In this light, a family of Earth-centered non-
Keplerian orbits will now be discussed in the next section,
which permits the deployment of a reflector with a displace-
ment of many times the radius of the Earth. Note that, the

distance d must be less than 1:4 � 106 to project a spot of
size less than the mean Earth’s diameter (12,742 km).
4. Earth-centered displaced polar orbits

The existence of displaced circular two-body orbits has
been considered by various authors with applications for
solar sails, orbiting reflectors to engineer Mars’ climate
and multiple mirrors to survive the lunar night (McInnes
and Simmons, 1992; Dankowicz, 1994; McInnes, 2004,
2010; Bewick et al., 2011). As shown in Fig. 5, this family
of orbits can be generated by orienting the reflector, in such
a way, that a component of the SRPF exerted on the reflec-
tor is directed normal to the orbit plane (McInnes and
Simmons, 1992). The momentum accumulated by the
reflector due to SRPF is then offset by the z-component
of the local gravitational force. In this manner, a family
of circular near polar orbits, but displaced behind Earth
in the anti-Sun direction, permits a reflector to be deployed
at a distance from the Earth’s surface, such that, the



Fig. 5. Solar reflectors on a displaced polar orbit along the Sun-line.
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diameter of the spot projected on the surface of the Earth
will be of the order of the diameter of the Earth, as demon-
strated at the end of this section.
4.1. Equation of motion

In order to investigate this family of displaced orbits, a
perfectly reflecting space mirror at position r will be consid-
ered in a rotating frame of reference, with the origin of the
frame at the Earth’s center. The axis of rotation x will be
directed along the Sun–Earth line, and the Y-axis of the
inertial coordinate system XYZ is the axis of rotational
symmetry, as shown in Fig. 5. Similarly, the reflector nor-

mal will be defined by a unit vector n ¼ 0 sin a cos a½ �T
fixed in the rotating frame of reference, the characteristic
acceleration of the reflector will be denoted by j and the

Sun-line will be defined by a unit vector s ¼ 0 0 1½ �T . There-
fore, with respect to the inertial frame of reference, the
reflector must rotate once per orbit due to the reflector atti-
tude being fixed in the rotating frame of reference. In this
analysis, it is assumed that the Sun-line is fixed.

The equation of motion of a solar reflector with respect
to this rotating frame considering the Earth’s gravitational
potential, J 2 effect and uniform radiation field is given by

€rþ 2x� _rþ x� x� rð Þ ¼ T �rV ; ð16Þ
where the first and second derivatives of the coordinates
are taken with respect to the time, the solar radiation accel-
eration T ¼ j cos2 a n and the two-body gravitational
potential, including the J 2 term, is given by

V ¼ � l
r
þ l

J 2

2

R
r

� �2
1

r
3

y
r

� �2

� 1

� �
: ð17Þ

In the rotating frame of reference, circular displaced
orbits require that the first two terms of Eq. (16) must be
vanished. Using Earth-centered cylindrical polar coordi-
nates q; h; zð Þ defined in Fig. 5, the equations of motion
for an ideal specular reflector can be written as (McInnes,
2002)

€q� q _h2 ¼� l
r3
q 1� 3

2
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5
q
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� �2

� 2
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sin2 h� 1
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sin2h; ð18Þ
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q
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� �2

sin2 h� 1

� � !
þ jcos3 a:
Since the axis of symmetry Y is parallel to the Earth’s
polar axis, the left side of the differential Eq. (18) also
depends on the cylindrical polar coordinate h. Thus, we
will use h as a new independent variable instead of time
and perform an average of the resulting equations of
motion over one orbit, in order to make the equilibrium
conditions as a function of radius q and displacement dis-
tance z.

Substituting the chain rule formula _r ¼ x dr=dhð Þ, where

the orbital angular velocity x ¼ _h, and €r ¼ x dx=dhð Þ
dr=dhð Þ þ x2 d2r=dh2

� �
into Eq. (18), and performing the

averaging results in the orbit-averaged equation of
motions, we have
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where the first and second derivatives of the coordinates

are taken with respect to h, i.e., q0 ¼ dq=dh; q00 ¼ d2q=dh2

(similar expressions for x and z coordinates).
For a circular displaced orbit, it is required that

q00 ¼ z00 ¼ 0 and q0 ¼ z0 ¼ x0 ¼ 0. It can be shown that
the required reflector pitch angle a and acceleration j for
an equilibrium solution are given by (McInnes, 2002)

tan a ¼ q
z

� � 1 � xex� �2

1 � 3
2

l
r3 J 2

Rexr

� �2
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j ¼ ex2 1 � 3
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z; ð20Þ
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5
q
r

� �2

� 4

� � !
:

If the space mirror redirects the sunlight towards the
Earth, then it is clear from the geometry of the incident
ray that the pitch angle a must satisfy the relation
a ¼ b=2 (see Fig. 5). The required pitch angle is therefore
given by McInnes (2002)

tan a ¼ tan
1

2
tan�1 q

z

� �� �
: ð21Þ

Therefore, defining this orientation a priori, the required
orbital angular velocity of the reflector in order to ensure
correct illumination of the Earth by the reflector, and the
corresponding reflector acceleration can be obtained from
Eq. (20) as
Fig. 6. Reflector requirements for a displaced polar orbit. Contours
indicate radiation pressure acceleration j (mms�2) and the dashed line
indicates the stability boundary (linear stable orbits if q > 3:1z).
x ¼ ex 1 � z
q

� �
1 � 3

2

l
r3
J 2

Rexr

� �2
 !

tan a

 !1=2

: ð22Þ

From Eq. (20), surfaces of constant reflector accelera-
tion may be generated, with j chosen to be some fixed
value. A section of these surfaces is shown in Fig. 6 in
the q� z plane. It can be seen that the surfaces of constant
reflector acceleration have a rotational symmetry about the
Sun-line. Additionally, for a given reflector acceleration,
orbits with a large radius and small displacement are pos-
sible, and therefore, with a pitch angle of order a 
 45	.
Similarly, orbits with a small radius and large displacement
are also possible for the same acceleration, however, with a
small pitch angle (i.e. a 
 0	). Although orbits with large
displacement are more desirable due to the projected reflec-
tor area being maximized (Canady and Allen, 1982), these
orbits are unstable, as will be demonstrated in the next
section.
4.2. Displaced polar orbit stability

Now that the families of displaced orbits with the appro-
priate reflector orientation have been established, a linear
perturbation analysis will be performed, which in the pre-
sent case provides necessary conditions for stability and
sufficient conditions for instability.

A perturbation d ¼ n x g½ �T will be added to the reflector

position vector at some point r0 ¼ q0 x0 z0½ �T on the nomi-
nal orbit such that r0 ! r0 þ d. The radiation pressure
acceleration remains constant during the perturbation.
Thus, a homogeneous variational equation in the cylindri-
cal components form can be then obtained from the non-
linear equations of motion, Eq. (19) (McInnes, 2004),
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where the re-scaled coordinates are defined as
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ð24Þ

and the linear expansion coefficients of the matrix L are
given by
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and the coefficients Mij (i; j ¼ 1; 3) due to Earth’s oblate-
ness are of the form
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:

It should be noted that the orbital angular velocity was
ignored in the variational system defined by Eq. (23). This
is because all derivatives with respect to x in the linear
expansion vanish, therefore, the linear system of the varia-
tional equation can be reduced to two coupled differential
equations (McInnes, 2004). From this perspective, the
analysis of linear stability will be determined in the q� z
plane.

The linear stability of the orbit families can be investi-
gating computing the eigenvalues of the system defined
by Eq. (23). In this manner, substituting an exponential

solution of the form bd ¼ bd0 exp khð Þ, where bd ¼ n̂ ĝ
h iT

,

into Eq. (23), the characteristic polynomial of the varia-
tional equation is obtained as

k4 þ tr Lð Þk2 þ det Lð Þ ¼ 0: ð27Þ
If the trace of the matrix tr Lð Þ and its determinant

det Lð Þ are strictly positive, k is purely imaginary, indicat-
ing stable, bound oscillations. Examining numerically the
stability condition, it is found that tr Lð Þ is strictly positive
in the q� z plane, while that the contour line for
det Lð Þ ¼ 0 is represented by the curve q ¼ 3:1z, such that,
det Lð Þ is positive in the region q > 3:1z. Thus, the bound-
ary q ¼ 3:1z, denoted by the dashed line in Fig. 6, divides
into stable and unstable the regions in the q� z plane, with
stable orbits in the region q > 3:1z.

Fig. 7 shows two 15 day Earth-centered orbits, as well as
the variation of the pitch angle for each orbit, obtained by
a numerical integration of the full-nonlinear equations of
motion, Eq. (18). The first plot in the first two rows shows
the x; yð Þ projection, and the second one contains the x; zð Þ
projection. Again, the numerical integration is performed
through the Bulirsch–Stoer algorithm. Orbit I has an initial
radius q0 ¼ 10:0 Earth radii and an initial displacement

z0 ¼ 0:25 Earth radii with a perturbation d ¼ 10�3r0, as
can be seen in Fig. 7(a)-(b). Although the linear analysis
is not sufficient to conclude the stability of orbits with large
radius and small displacement, such that q0 > 3:1z0, the
numerical experiment suggests that orbits with those char-
acteristics are in fact stable, i.e., orbits with a relatively
modest displacement are still able to cancel the momentum
accumulated by the reflector due to solar radiation pertur-
bation by the z-component of the Earth gravitational force,
with the orbit plane remaining normal to the Sun–Earth
line during the 15 day propagation, as shown in Fig. 7(c)
(a 
 45	).

Finally, it can be seen that orbit II (Figs. 7(d)-(e)) repre-
sents a typical unbound orbit, which initial radius q0 ¼ 2:0
Earth radii, initial displacement z0 ¼ 10:0 Earth radii and
similar perturbation. Clearly, a large displacement leads
to the SRPF driving the reflector out of the Earth’s gravi-
tational potential. On the other hand, comparing Fig. 7(c)
and (f), it can be noted that a large displacement reduces
the pitch angle, and therefore, the energy radiated from a
space reflector (Eq. (3)), placed on non-Keplerian orbits
with a z�component much larger than its radius, will be
increased. From this analysis, unstable orbits could then
be more favorable for deploying solar reflectors than
uncontrolled bound solutions. Although unstable, previous
studies have shown the family of non-Keplerian unstable
orbits are strictly controllable (McInnes, 2004). Thus, if
unstable orbits are in principle controllable, a control
scheme will ensure that the reflector pitch angle will
approach zero as shown in Eq. (21). Additionally, note that
a controlled orbit with initial radius q0 ¼ 2:0 Earth radii
and initial displacement z0 ¼ 10:0 Earth radii, will project
a spot of diameter of order Ds 
 545 km, practically twenty
times the diameter of the spot projected by the Keplerian
polar orbits found in this study.

5. Solar reflector fabrication

The mass required to fabricate a solar reflector utilizing
the polar orbits discussed in Sections 3 and 4 will now be
considered. Using Eq. (4), it can be shown that for an
increment of 0:5 K in the Earth’s mean temperature, it
would be necessary to increase solar insolation of
1:7 W m�2, i.e., dI=I ¼ 0:5%. For a characteristics acceler-
ation of 1:0 mm s�2 and 5:0 mm s�2 (values used in the
Keplerian polar orbits obtained in Section 3), corresponds
an area density of order 9.0 gm�2 and 1.8 gm�2, respec-
tively. These values are similar for high performance
square solar sails (McInnes, 2004).

Considering the Sun-synchronous polar orbits shown
in Figs. 3 and 4, it is found that the average reflector
angle a for both orbits is of order 57�. On the other
hand, non-Keplerian orbits with a radius q of 18 Earth
radii and 11 Earth radii, with a small displacement z of
0.25 Earth radii, show an acceleration of 1.0 mm s�2

and 5.0 mm s�2, respectively. Using Eq. (21), the reflector
angle can also be obtained and it is found of order 44� in
both cases. Similarly, displaced orbits with a radius q of 2
Earth radii with large displacements z of 98 Earth radii
and 44 Earth radii, show an acceleration of 1.0 mm s�2

and 5.0 mm s�2, respectively, and a reflector angle of
order 1�. The required reflector area to obtain an increase
dI of 1.7 W m�2 in solar insolation I can therefore be
obtained from Eq. (4) as



Fig. 7. (a) and (b) Uncontrolled stable orbit I (q0 ¼ 10:0 Earth radii, z0 ¼ 0:25 Earth radii, n ¼ 10�3q0; g0 ¼ 10�3z0), (d) and (e) Unstable orbit II (q0 ¼ 2:0
Earth radii, z0 ¼ 10:0 Earth radii, n ¼ 10�3q0; g0 ¼ 10�3z0). Variation of the pitch angle a for orbits I (c) and II (f). First plot: x; yð Þ projection; Second plot:
x; zð Þ projection.
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A ¼ 4pR2

F cos a
dI : ð28Þ

The reflector total mass m is then equal to rAA.
Table 2 shows the mass and area of the reflector

deployed in the orbits considered for characteristic acceler-
ations of 1.0 mm s�2 and 5.0 mm s�2, the mean reflector
pitch angle and the diameter of mirror (denoted by Dr).
As can be seen in Table 2, the use of unstable displaced
orbits could reduce the mass requirements and the size
of the reflector. Note that a mirror diameter of order
500–700 km would envisage many smaller reflectors dis-
tributed about the same orbit (Early, 1989; Angel, 2006;
Pearson et al., 2006).
Table 2
Reflector physical properties.

Orbit type j (mms�2)

Sun-synchronous orbit (Fig. 3) 1.0
Sun-synchronous orbit (Fig. 4) 5.0
Stable displaced orbit (q ¼ 18R�; z ¼ 0:25R) 1.0
Stable displaced orbit (q ¼ 11R; z ¼ 0:25R) 5.0
Unstable displaced orbit (q ¼ 98R; z ¼ 2R) 1.0
Unstable displaced orbit (q ¼ 44R; z ¼ 2R) 5.0

�R ¼ 6371 km (Earth radius).
On the other hand, the fabrication and launching of a

reflector from the Earth with a total mass of order 109 kg
introduces engineering challenges. For comparison, the
total mass of the Great pyramid of Giza is of order

108 kg (McInnes, 2006). In this light, Angel (2006) pro-
posed using electromagnetic launch followed by ion
propulsion to transport a total payload mass of

1:8 � 1010 kg from the Earth to the Earth–Sun L1 Lagrange
point. However, an advanced industrial space capacity
with the ability to exploit extraterrestrial resources would
be able to avoid the launching of the reflector from the
Earth’s surface to the polar orbit. Previous studies suggest
that the mass requirement for the fabrication of a reflector
a (	) Ar (km2) mr (kg) Dr (km)

57 1:1 � 106 1:1 � 1010 680
57 1:1 � 106 2:1 � 109 680
44 8:7 � 105 7:8 � 109 592
44 8:7 � 105 1:6 � 109 592
0.6 6:2 � 105 5:6 � 109 502
1.3 6:2 � 105 1:1 � 109 502
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could be satisfied by M-type asteroids, which are relatively
abundant in Nickel–Iron materials (Gehrels, 1979; Sanchez
and McInnes, 2010, 2011; Sanchez et al., 2012). Assuming
that an asteroid has a bulk density of 7860 kg m�3 (iron
density), and a reflector density of 1.8 gm�2, the material
could be extracted from the surface of the asteroid using
solar concentrators, mass driver equipped landers or by
spin fragmentation (Melosh et al., 1994; Harris, 1996;
Olds et al., 2004) and used to manufacture a thin metallic
film of order 0.1 lm from a M-type asteroid with a radius
of 70 m (Lippmann, 1972). This thickness is clearly chal-
lenging, however terrestrial experiments, performed only
a laboratory scale, have been produced thin metallic film
of comparable thickness (Drexler, 1979).

6. Conclusions

Large-scale geo-engineering proposals for Earth climate
warming using orbiting solar reflectors have been consid-
ered in this paper. Firstly, Sun-synchronous frozen polar
orbits have been presented which are suitable for use by
solar reflectors placed on Keplerian orbits. By considering
the two-body problem, including J 2 perturbation and solar
radiation pressure, initial parameters for Sun-synchronous
frozen orbits have been obtained. Numerical simulations of
near circular orbits showed that, although orbital elements
such as semi-major axis, eccentricity and inclination remain
practically close to the desired values, the variation of the
argument of perigee means that the orbit cannot keep the
Sun-synchronous frozen conditions for a long time with a
fixed attitude. Therefore, an attitude control scheme should
be employed to achieve the Sun-synchronous condition.

In order to avoid the instability presented in Keplerian
orbits, a family of displaced Earth orbits has been investi-
gated. Again, considering the Earth’s gravity and the J 2

effect, the required angular velocity of equilibrium orbits
with respect to a rotating frame and the reflector accelera-
tion have been derived as a function of the radius and dis-
placement of the orbit. It has been show that, with the
same characteristic acceleration, it is possible to obtain a
non-Keplerian orbit with large radius and small displace-
ment or small radius and large displacement. However,
the linear stability analysis and numerical simulations have
shown that only orbits relatively close to the planetary ter-
minator are stable, while orbits with a large displacement
are unstable. Thus, displaced orbits close to the planetary
terminator would be clearly more advantageous for their
use in large-scale climate engineering than Earth-centered
orbits due to their natural stability and that the pitch angle
would remain about 45	, i.e., a control scheme to maintain
the stability and large variations of the Sun angle would be
avoided.

The large scale of the space-based solar reflector makes
it impossible to assemble and lunched from the Earth.
In this manner, exploiting extra-terrestrial resources as
M-type asteroids, has been proposed by several studies
for fabrication of such space mirrors.
Finally, although the non-spherical perturbation is dom-
inated by the J 2 term for low altitude orbits, the inclusion
of J 2 effects in the orbital dynamics increases the accuracy
of the model. Additionally, the analytical expressions of
the required angular velocity and reflector acceleration
for displaced orbits, obtained in this study, can be used
in any two-body system that includes J 2 perturbation
(e.g. Sun–Mars system). Atmospheric drag, a rotating
Sun-line and third-body gravitational perturbations may
be included, in such a way that a more realistic description
of the most suitable orbits for solar reflectors could be
obtained for Earth climate warming.
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