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Abstract

Oocyte meiotic resumption is triggered by the ovulatory gonadotropin surge; in cattle, angiotensin II (AngII) and prostaglan-
dins (PG) are key mediators of this gonadotropin-induced event. Here, we tested the hypothesis that progesterone (P4) is also
involved in oocyte meiotic resumption induced by the gonadotropin surge. In Experiment I, P4 induced nuclear maturation in a
ose-dependent manner using a coculture of follicular hemisections and cumulus-oocyte complexes. In the second experiment,
sing an in vivo model, an injection of mifepristone (MIFE; P4 receptor antagonist) at the antrum of preovulatory follicles

prevented GnRH-induced oocyte meiotic resumption in vivo. In Experiment III (coculture system similar to that of Experiment
I), MIFE prevented stimulatory effects of AngII on resumption of meiosis, but saralasin (AngII receptor antagonist) did not inhibit
P4 actions. In Experiments IV and V, fibroblast growth Factor 10 (FGF10; known to suppress steroidogenesis in granulosa cells),
locked AngII-but not P4-induced oocyte meiotic resumption. Therefore, we inferred that AngII is upstream to P4 in a cascade
o induce meiotic resumption. Previously, we had reported that AngII acted throughout the PGs pathway to modulate nuclear
rogression. In Experiment V, indomethacin inhibited resumption of meiosis induced by P4, providing further support to the

AngII-P4 sequential effect on meiotic resumption. In conclusion, we inferred that AngII, P4 and PGs are sequential steps in the
ame pathway that culminates with bovine oocyte maturation.

2012 Elsevier Inc. All rights reserved.
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1. Introduction

The preovulatory gonadotropin surge triggers a cas-
cade of events that culminates with ovulation and nuclear
oocyte maturation. Recently, angiotensin II (AngII) has
been recognized as one of the earliest mediators of
gonadotropin-induced ovulation and oocyte maturation

* Corresponding author. Tel: �55 55 3220 8752; fax: �55 55 3220
8484.
E-mail address: bayard@ufsm.br (P.B. Gonçalves).

093-691X/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
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[1–3]. The positive effect of AngII in these processes is
mediated through a Type 2 receptor [1]. Furthermore, the
concentration of AngII and expression of its receptors
(AT2) within the follicle increased during the interval
between the gonadotropin surge and ovulation (Siqueira,
et al, unpublished data). Other studies provided additional
evidence that AngII regulated secretion of progesterone
(P4) and prostaglandins (Pg), hormones involved in ovu-
lation [4,5]. In granulosa cell culture, AngII upregulated
expression of cyclooxygenase 2 (COX-2), the rate-limit-

ing enzyme for PG production [3].
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During follicle development, bovine oocytes remain
arrested at prophase of the first meiotic division, and
resume meiosis after the preovulatory LH surge [6], or
after removal from the follicular environment [7]. The
presence of follicular wall fragments in a coculture
system with cumulus-oocyte complexes (COCs) pre-
vents meiotic resumption [8]. This coculture system is

good model to study the role of factors that act
hrough follicular cells on oocyte nuclear maturation
9,10]. Using this coculture system, we reported that
ngII acted through a PG pathway to mediate gonad-
tropin-induced oocyte meiotic resumption [2].

The cyclooxygenase pathway is a classical mediator
f LH-induced ovulation and nuclear oocyte maturation
n cattle [11–15]. Progesterone is another key element
n the ovulatory cascade and oocyte maturation
13,14,16]. Indeed, there are indications that PGs are
ownstream factors to this steroid; in that regard, a
onadotropin surge stimulates an increase in intrafol-
icular P4, which acts by binding to its nuclear receptor

and increasing abundance of mRNA for COX2 [14].
The role of P4 on oocyte nuclear maturation in cattle
emains controversial. Nuclear and membrane proges-
erone receptors are present in bovine COCs, and reg-
lated during in vitro maturation in the presence of FSH
nd LH [16]. Although Sirotkin [17] reported a stimu-
atory effect on oocyte meiotic resumption, more recent
tudies concluded that P4 was not necessary to promote

nuclear maturation, cumulus expansion, and early em-
bryo development [18,19].

Follicular cells secrete factors that prevent oocyte
meiotic resumption before the LH surge. The family of
fibroblast growth factors (FGFs) is composed of more
than 20 factors, largely studied for their roles in em-
bryogenesis and oogenesis. Buratini, et al [20] reported
that the bovine theca cells and oocytes expressed
FGF10. Expression of FGF10 receptor (FGFR2IIIb)
was identified in theca [21], granulosa [20], and cumu-
lus cells [22]. Furthermore, FGF10 in the granulosa cell
culture inhibited steroidogenesis [20] and AT2 expres-
sion [23]. Activation of FGF receptors (FGFRs) ap-
peared to be involved in inhibition of germinal vesicle
breakdown (GVBD) in mice [24]. Conversely, Zhang,
et al [25] reported that FGF10 improved bovine oocyte
maturation, cumulus expansion and subsequently em-
bryo development in medium containing estradiol and
in the absence of follicular cells.

The information summarized above provided an im-
petus to investigate interactions between FGF10 and
factors involved in triggering bovine oocyte meiotic

resumption. In the present study, a combination of in 5
vivo and in vitro experiments were conducted to test the
hypothesis that P4 plays a role in regulation of oocyte

eiotic progression induced by gonadotropin surge in
oncert with AngII and PGs. In an in vitro experiment,
nteractions of P4 and AngII with FGF10 (an antis-

teroidogenic factor recently described as an important
regulator of follicular development) were studied, with
regards to their roles in resumption of meiosis.

2. Materials and methods

All experimental procedures were reviewed and ap-
proved by the Federal University of Santa Maria Ani-
mal Care and Use Committee (23081.004717/2010–53
CCR/UFSM). All chemicals used were purchased from
Sigma Chemical Company (St. Louis, MO, USA), un-
less otherwise indicated in the text.

2.1. Preparation of follicular hemisections, oocyte
recovery and nuclear maturation

Bovine ovaries at various stages of the estrous cycle
were obtained from an abattoir and transported to the
laboratory in saline solution (0.9% NaCl) at 30 °C
containing 100 IU ml�1 penicillin and 50 �g ml�1

streptomycin sulfate. Procedures for follicle dissection
and culture procedures were previously validated in our
laboratory [2,9,10]. Briefly, transparent follicles, 2 to 5
mm in diameter, were selected and dissected from ovar-
ian stromal tissue, and sectioned into halves. Follicular
hemi-sections were washed in TCM 199 containing
0.4% bovine serum albumin (BSA) and randomly dis-
tributed into four-well culture dishes (Nunc, Roskilde,
Denmark) containing culture medium with the desired
treatment. There were eight follicular halves per 200 �l
of medium. Dishes were incubated for 2 h before add-
ing COCs.

The COCs were aspirated from follicles 3 to 8 mm
in diameter, recovered under a stereomicroscope, and
selected according to Leibfred and First [26]. Grades 1
and 2 COCs (n � 10 to 30) were randomly distributed
into treatments and cultured in an incubator at 39 °C in
a saturated humidity atmosphere containing 5% CO2 in
air and 95% air, for either 7, 15, or 24 h, depending on
the experiment. The culture medium used was TCM
199 containing Earle’s salts and L-glutamine (Gibco

RL, Grand Island, NY, USA) supplemented with 25
M HEPES, 0.2 mM pyruvic acid, 2.2 mg ml�1 sodium

bicarbonate, 5.0 �g/ml LH (lutropin-V, Bioniche, ON,
Canada), 0.5 �g/ml FSH (Folltropin-V, Bioniche),
0.4% fatty acid-free BSA, 100 IU ml�1 penicillin, and

0 �g ml�1 streptomycin sulfate. At the end of the
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culture period, cumulus cells were removed by vortex-
ing for 5 min and oocytes were fixed with 4% para-
formldehyde for 15 min, followed by permeabilization
of the nuclear membranes with 0.5% Triton X-100.
After 2 h, oocytes were fixed, stained with Hoechst
(33,342) and mounted under a coverslip with
Vectashield (Vector Laboratories, Burlington, Ontario,
L7N 3J5, Canada) for nuclear evaluation. Oocytes were
classified according to their nuclear chromatin config-
uration using a fluorescent microscope as germinal ves-
icle (GV), GV breakdown (GVBD), metaphase I (MI),
anaphase I (AI), telophase I (TI), and metaphase II
(MII). In all experiments, all treatments were repeated
three times.

2.2. Cattle, superovulation protocol, and ultrasound-
guided intrafollicular injection

The superovulation protocol and intrafollicular in-
jection procedures were previously described [2]. Five
cycling cows (Bos taurus taurus), multiparous, with
body condition scores of 3 and 4 (1 � thin to 5 �
obese) were submitted to the 9-d “progesterone/FSH-
based” superovulation protocol. On day 9 of the pro-
gesterone treatment, the number of follicles in each
ovary was evaluated by transrectal ultrasonography,
and all follicles 5 to 11 mm in diameter were aspirated
using a vacuum pump, leaving no more than the three
largest follicles in each ovary. On the afternoon of Day
10, after the intravaginal device had been removed,
each ovary was examined with transrectal ultrasonog-
raphy, a map of the follicles was prepared, and all
follicles �12 mm in diameter were subjected to intra-
follicular injections.

Intrafollicular injections were done with a 7.5 MHz
transducer attached to a biopsy guide and a scanner
(AquilaVet Scanner; Pie Medical Equipment BV,
Maastricht, the Netherlands). A system with two sterile
needles was used, as previously described [1]. Briefly,
the ovary was manipulated to introduce the needle into
the follicle via the ovarian stroma at the base of the
follicle. When the ovary and follicle were in position,
the outer needle was advanced until the image of its tip
became visible on the screen, 3 to 5 mm from the
follicle. At this moment, a second operator pushed the
inner needle forward until the image of the needle tip
was visible within the follicle. Treatments were then
injected into the follicle. To obtain the desired final
concentration inside the follicle, the dose of each treat-
ment was calculated based on the volume of follicular
fluid, estimated by the linear regression equation V �

�685.1�120.7 D, where V corresponded to the esti-
mated follicular volume and D to the diameter of the
follicle to be injected [1]. The injection volume per
follicle ranged from 80 to 110 �l, approximately 10%
f follicular fluid volume. Cows were excluded from
he experiment if the injected follicle had a reduction in
iameter �1 mm within 2 h after injection (evidence of
eakage).

.2.1. Experiment I: progesterone induced oocyte
uclear maturation in vitro

The first experiment was designed to assess the P4

effect on nuclear maturation. Oocytes (n � 565) cul-
tured with follicular hemisections treated were with 0,
10, 100, 1,000 or 10,000 ng/ml of P4. After 22 h of
ulture, oocytes were considered mature when classi-
ed as AI, TI, or MII.

.2.2. Experiment II: effect of progesterone
ntagonist on lh-induced meiotic resumption in vivo

Five cows were primed for superovulation and ma-
ipulated to have no more than three follicles �12 mm
n each ovary at the time of injection. For each cow,
ollicles in the right ovary were treated to obtain a final
oncentration in follicular fluid of 1 �M of mifepristone
MIFE group; n � 10), whereas those from the left
vary were treated with 0.9% saline (control group;
� 10). Immediately after the intrafollicular injections,

he cows were given 100 �g of gonadorelin acetate im
Profertil, Tortuga, Brazil), a GnRH agonist. Fifteen h
fter GnRH treatment, cows were ovariectomized by
olpotomy. The COCs were recovered and processed as
escribed above. Oocytes at GVBD or MI stages were
onsidered as having resumed meiosis.

.2.3. Experiment III: progesterone mediates AngII-
nduced meiotic resumption in vitro

The COCs (n � 540) were selected and distributed
mong the following seven groups for 15 h of culture:
ositive and negative controls; AngII (10�11

M); AngII
plus MIFE (1 �M; P4 antagonist); P4 (100 ng/ml), P4 plus
aralasin (10�5

M; AngII antagonist); and AngII plus sara-
asin. In all groups, except the positive control, follic-
lar hemisections and COCs were cocultured. Oocytes
n MI or latter stages were considered to have normal
esumption of meiosis.

To determine if there was a toxic effect of the P4

antagonist, COCs were cultured for 22 h, without fol-
licular hemisections, in the absence or presence of
MIFE (1 �M). Oocytes were considered mature when

classified as AI, TI or MII.
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2.2.4. Experiment IV: effect of FGF10 on AngII-
induced meiotic resumption in vitro

Control COCs were cultured in medium in the ab-
sence (positive control; n � 84) or presence (negative
control; n � 88) of follicular hemisections for 7 h. Four
treatment groups were established; the COCs were cul-
tured in the presence of: a) AngII (10�11

M; n � 83)
with follicular hemisections; b) AngII and FGF10 (100
ng/ml) with follicular hemisections (AngII�FGF10
group; n � 82); c) FGF10 with follicular hemisections
(FGF10�cells group; n � 80); and d) FGF10 without
follicular hemisections (FGF10 group; n � 88). Oocyte
nuclear chromatin configuration was classified as GV
or germinal vesicle breakdown (GVBD).

2.2.5. Experiment V: effect of FGF10 or
indomethacin on progesterone-induced meiotic
resumption in vitro

Control COCs were cultured for 7 h in the absence
(positive control; n � 85) or presence (negative control;
n � 82) of follicular hemisections. Three treatment
groups were established. The COCs were cocultured
with follicular cells in the presence of: a) progesterone
(100 ng/ml; P4 group; n � 84); b) P4 plus FGF10 (100
g/ml; P4 � FGF10 group; n � 80) and c) P4 plus

indomethacin (a COX nonselective inhibitor; 10 �M,
P4�indo group; n � 85). Oocyte nuclear chromatin
configuration was classified as GV or germinal vesicle
breakdown (GVBD).

2.3. Statistical analysis

Data from Experiments I, III, IV, and V were ana-
lyzed using the ANOVA test in a statistical model for
categorical data, using the PROC CATMOD (Categor-
ical Data Analysis Procedures). All in vitro experi-
ments were performed in triplicate. When there were
significant differences, independent variables were
compared using the contrast test. All data were ana-
lyzed using statistical analysis software (SAS; SAS
Institute, Inc., Cary, NC, USA). In Experiment II, mei-
otic resumption was compared using the generalized
linear models from JMP software (SAS Institute, Inc.).

3. Results

3.1. Experiment I: progesterone induced oocyte
nuclear maturation in vitro

The hypothesis tested in this experiment was that P4

induces nuclear maturation in bovine oocytes. Bovine
COCs, recovered from abattoir-derived ovaries, were

cocultured with follicular hemisections for 22 h with
various concentrations of P4. Progesterone induced nu-
clear maturation in bovine oocytes cultured with follic-
ular cells in a dose-dependent manner (Fig. 1). The MII
rate was greatest for oocytes cultured with follicular
cells treated with 100 ng/ml of P4 (P � 0.01).

3.2. Experiment II: effect of progesterone antagonist
on LH-induced meiotic resumption in vivo

Once P4 stimulated nuclear maturation in vitro,
hether the LH-induced resumption of meiosis was
ediated by progesterone was tested using an in vivo
odel. The mean initial diameter of follicles treated
ith progesterone antagonist (MIFE; 12.8 � 0.4 mm)
id not differ from those injected with saline (13.1 �
.5 mm; P � 0.05). From the injected follicles, 20
ocytes were recovered and evaluated (10 per group).
he ability of the LH surge (induced by the GnRH
gonist) to induce resumption of meiosis was impaired
hen follicles were treated with the progesterone re-

eptor antagonist (MIFE; 70, 10 and 20% were GV,
VBD, and MI, respectively; P � 0.01; Fig. 2B). As

xpected, the GnRH agonist induced 90% of meiotic
esumption in oocytes from saline-treated follicles (10,
0, and 80% were GV, GVBD, and MI).

.3. Experiment III: progesterone mediated AngII-
nduced meiotic resumption in vitro

Since the role of AngII in resumption of meiosis
nd ovulation is well established, we tested the hy-
othesis that AngII is an upstream factor to P4 in the
ascade of meiotic resumption. Meiotic resumption
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Fig. 1. Effect of progesterone on nuclear maturation of bovine
oocytes (metaphase II, Anaphase I and Telophase I; Experiment I).
Rates of oocyte maturation (solid bars) and predicted regression line
after coculture of oocytes (n � 565) and follicular hemisections
treated for 22 h with various concentrations of P . The experiment
4

was performed in triplicate.



H
o
m
s

o
t
(
t
t
w
m

4

v

m t a com

1783L.C. Siqueira et al. / Theriogenology 77 (2012) 1779–1787
was inhibited when the COCs were cocultured with
follicular hemisections (Fig. 2A; positive vs. nega-
tive controls). With this model, AngII or P4 induced
meiotic resumption (61 and 66%, respectively, com-
pared with 32% of the negative control; P � 0.01).

owever, AngII did not induce resumption of mei-
sis when saralasin or MIFE was present in the
aturation medium. Independent of the presence of

aralasin, most oocytes reached MI in the presence of P4.
A further experiment was done, culturing COCs without
follicular hemisections for 22 h, with or without MIFE, to
exclude a detrimental effect on oocyte maturation.
Oocytes treated with MIFE reached a similar rate of nu-
clear maturation (88%) to that of oocytes cultured in the
control medium (85%).

3.4. Experiment IV: effect of FGF10 on AngII-
induced meiotic resumption in vitro

Our hypothesis was that FGF10 has a negative role
in the resumption of meiosis induced by AngII. In the
absence of follicular cells, the rate of meiotic resump-
tion rate was not different between the positive control
and FGF10-treated COCs after 7 h of culture (Fig. 3A).
Also, FGF10 did not affect the ability of follicular cells
to prevent oocytes from resuming meiosis. However,
FGF10 inhibited the AngII effect in follicular cells.
When oocytes were cultured simultaneously with AngII
and FGF10, 32% achieved GVBD, whereas 62% of
those cultured only with AngII achieved GVBD (P �
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Fig. 2. Effect of angiotensin II (AngII), progesterone (P4) or progeste
A) or in vivo (Panel B). in vitro, bovine cumulus–oocyte complexes
plus mifepristone (MIFE), P4, P4 plus saralasin, and AngII plus saralas
and intrafollicular injected with saline (n � 10) or MIFE (n � 10). Af

aturation stage (Experiment II). a-cWithin a panel, columns withou
0.01; Fig. 3A).
3.5. Experiment V: effect of FGF10 or indomethacin
on P4-induced meiotic resumption in vitro

The role of FGF10 in the oocyte meiotic resumption
induced by P4 was examined. Using a coculture system
f oocytes and follicular hemisections, the P4 effect on
he meiosis resumption was not affected by FGF10
P � 0.05). However, when indomethacin (a nonselec-
ive PG antagonist) was included in the coculture sys-
em of oocytes and follicular hemisections, the P4 effect
as inhibited, implicating prostaglandins in P4-induced
eiosis resumption (Fig. 3B).

. Discussion

In the present study, we tested the hypothesis that P4

is an intermediate factor between AngII and PGs in the
meiotic resumption stimulatory cascade. The main
findings were 1) progesterone induced meiosis resump-
tion, in a concentration-dependent manner, of bovine
cumulus-enclosed oocytes cultured with follicle walls;
2) MIFE inhibited GnRH-induced oocyte meiotic re-
sumption in vivo; 3) MIFE inhibited oocyte meiotic
resumption induced by AngII in vitro, whereas an An-
gII receptor antagonist did not interfere with the P4

stimulatory effect; 4) P4-induced oocyte meiotic re-
sumption was blocked by indomethacin (cox non-se-
lective inhibitor) in vitro; and 5) FGF10 inhibited An-
gII-but not P4-induced oocyte meiotic resumption in
itro. Previously, using the same in vitro coculture

system of bovine cumulus-enclosed oocytes and follic-

P4 +
saralasin

AngII +
saralasin

lls

Saline MIF

a

c

b

b

B

tagonist on the cascade of oocyte meiotic resumption in vitro (Panel
40) were cocultured for 15 h with follicular cells and AngII, AngII
eriment III). in vivo, follicles (�12 mm) were challenged with GnRH
, oocytes were obtained by follicular aspiration to access the nuclear
mon superscript differed (P � 0.05).
P4

icular ce

b

rone an
(n � 5
in (Exp
ter 15 h
ular hemisections, we reported that AngII acted through
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PGs to mediate LH-induced oocyte meiotic resumption
[2] and that AngII, in synergism with LH, induced P4

and PG synthesis in the bovine dominant follicle
(Siqueira, et al unpublished). Based on all of these data,
we inferred that AngII is upstream to P4 in a pathway to
induce oocyte nuclear maturation that is initiated by a
gonadotropin surge and stimulates production of PGs.

In this study, we used two experimental models
already established. In the first approach, spontaneous
meiotic progression was inhibited in a coculture system
with oocyte and follicular hemisections [8,9]. With this
model, P4 stimulated oocyte nuclear maturation in a
dose-dependent manner. In the second model, cows
were primed for superovulation and, after a GnRH
challenge, intrafollicular injections guided by ultra-

Follicular cells
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Fig. 3. Effect of fibroblast growth Factor 10 (FGF10) or indomethacin
(INDO-) on AngII- or P4-induced meiotic resumption. Bovine cu-
mulus-oocyte complexes were cultured for 7 h, with or without
follicular hemisections. Both experiments were performed in tripli-
cate. a-cWithin a panel, columns without a common superscript dif-
fered (P � 0.05).
songraphy were performed in the right (treatment) and
left (control) ovaries [1,2]. In this experiment, MIFE
inhibited oocyte meiotic resumption. Progesterone also
participates in the oocyte nuclear maturation in pri-
mates and swine [27,28]. In monkeys, inhibition of
follicular progesterone production by trilostane (steroid
synthesis inhibitor) did not reduce gonadotropin-in-
duced oocyte maturation, but increased the percentage
of degenerated oocytes [27]. In pigs, treatment of COCs
with MIFE modified the pattern of expression of P4

receptors in cumulus and reduced progesterone synthe-
sis [28].

The reason of the lower positive effect at higher
doses of progesterone was unclear. A similar proges-
terone dose–response effect was observed in oxytocin
secretion in bovine granulosa cells cultured in vitro
[29]. Nevertheless, 1,000 and 10,000 ng/ml are supra-
physiologic doses; therefore, reduced support for
oocyte maturation with these doses may not be physi-
ologically relevant. Previous studies demonstrated that
progesterone concentrations in follicular fluid in vivo
increased between Time 0 and 3.5 h after GnRH, de-
creased between 6 and 18 h, with a second increase in
progesterone evident at 24 h [14]. These increases were
concomitant to the upregulation of progesterone recep-
tor mRNA expression in follicular wall [4]. Neverthe-
less, the maximum concentration of progesterone in
follicular fluid between the LH surge and ovulation in
cattle is 250 ng/ml [14].

Previously, others and we reported that P4 (mediated
y AngII) [2] and PGs [30,31] are in the pathway of
ocyte meiotic resumption. Herein, we confirmed the
ypothesis that AngII is upstream to P4 in the cascade
f resumption of meiosis. In Experiment III, a P4 re-

ceptor antagonist prevented AngII stimulatory effects
on resumption of meiosis, but saralasin did not inhibit
P4 actions. There are indications that the stimulatory
effects of AngII on oocyte nuclear maturation are me-
diated by PGs [2]. In Experiment V, indomethacin
inhibited resumption of meiosis induced by P4, suggest-
ng that PGs also mediate this steroid actions. Proges-
erone is essential to induce PG secretion during the
vulatory process [5] and we recently demonstrated
hat AngII has a synergistic action with LH to induce
roduction of P4 and PGs by granulosa cells from large
ominant follicles (Siqueira, et al, unpublished). Based
n these data, we inferred that AngII, P4 and PGs are

sequential steps from the same pathway.
We previously demonstrated that Ang II has no

effect on meiotic resumption in vitro in the absence of
follicular cells [9]. Nevertheless, we also demonstrated

that Ang II is indispensable for bovine oocyte meiotic
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resumption in vivo [2]. Cumulus-oocyte complexes ma-
ured in vitro in media supplemented with BSA and
onadotrophins, (in similar concentrations to those
sed in the present experiments) can synthesize proges-
erone, reaching concentrations of 40 ng/ml after 16 h
f culture [32]. Perhaps these concentrations are not
nough to overcome the negative effect of follicular
ells. Unfortunately, progesterone secretion by COCs
ocultured with follicular hemisections was not mea-
ured.

Oocytes remain arrested in germinal vesicle during
ollicle development and are able to reinitiate meiosis
fter the LH surge. The coculture of oocytes and fol-
icular hemisections efficiently inhibits oocyte meiotic
esumption, probably because during the culture pe-
iod, cells from 3 to 8 mm follicles produce inhibitory
actors. Using the coculture system, we can reproduce
he inhibitory effect of the follicle environment and test
f LH-induced factors, e.g. Ang II, progesterone and
rostaglandins, are able to overcome the negative effect
f follicular cells-secreted factor on meiotic resump-
ion.

There were no indications that toxicity was respon-
ible for the inhibitory effects of the antagonists used.
aralasin, MIFE, and indomethacin are safe for cell
iability and function [2,5]. Indeed, in the present
tudy, saralasin did not affected P4-induced meiotic

resumption. Also, MIFE (1 �M) in the absence of fol-
licular hemisections did not impair bovine oocyte nu-
clear maturation (Experminent III), nor did it affect
subsequent embryo development [16]. Recently, it was
demonstrated that progesterone signaling is not essen-
tial for bovine oocyte meiotic resumption in vitro using
trilostane [16]. Based on these data, we inferred that the
progesterone positive effect on oocyte meiotic resump-
tion is mediated through follicular cells in vivo.

In the present study, FGF10 inhibited the positive
effect of AngII, but not of P4 on oocyte meiotic re-
sumption. Although cumulus cells also express FGF10
receptors [22], FGF10 did not affect meiotic resump-
tion rate in the absence of follicular cells. Therefore, we
inferred that FGF10 inhibited meiotic progression by
acting on the follicular wall. Indeed, FGF10 may be
acting on AngII-induced meiotic resumption by modu-
lating steroid production in follicular cells. Type II
receptors for AngII (AT2) are responsible for transduc-
ing AngII positive signal for resumption of meiosis in
oocytes and ovulation [1]. Furthermore, FGF10 down-
regulates the expression of AT2 receptors in follicular
cells [33] and inhibits steroidogenesis [20]. Activation

of FGFR2IIIb (FGF10 receptor) inhibits gonadotropin-
induced progesterone secretion in granulosa cells [34].
Therefore, FGF10 could be exerting its negative effect
through downregulation of AT2 expression, and con-
sequently, decreasing AngII-stimulated progesterone
synthesis or directly inhibiting follicular cell steroido-
genesis. The discrepancy between our results and those
recently reported by Zhang, et al [25] could be due to
differences in culture conditions, such as the presence
of estradiol and the absence of follicular cells in the
system. Nevertheless, further studies are necessary to
elucidate the role of FGF10 on bovine oocyte nuclear
maturation.

Taken together with other studies from our group, it
is possible to propose a model (Fig. 4) in which the
gonadotropin surge stimulates a single cascade of
events to induce ovulation and nuclear oocyte matura-
tion. In this model, gonadotropin surge stimulates An-
gII secretion and upregulates AT2 expression in follic-
ular cells, whereas AngII increases follicular cells
secretion of, P4 that stimulates PGs. Ultimately, this
sequence of events culminates with ovulation of a fer-
tile oocyte.

AngII

LH

ACE
AngI

AngII

P4
AT2

Cox-2

?

FGF10

AT2
P4

AA
PG

Fig. 4. Proposed model for a single cascade of events to induce
ovulation and nuclear oocyte maturation in cattle. Preovulatory go-
nadotropin surge induces an up regulation of Type II angiotensin
receptors (AT2) and follicular Angiotensin converting enzyme ex-
ression (ACE). The FGF10 inhibitory effect to AT2 expression is

overcome by the gonadotropin surge. Upegulation of ACE induces an
increase in follicular Angiotensin II (AngII) synthesis, which will

bind to AT2 to stimulate synthesis of progesterone (P4) and PG.
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In summary, based on the present work, we con-
cluded that P4 in cattle, similar to AngII and PGs,

ediated the resumption of meiotic progression in-
uced by gonadotropin surge. Indeed, based on our
tudy, we speculated that AngII, P4 and PGs are se-
uential steps in the same pathway that culminates with
ocyte maturation.
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