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bGrupo de Dinâmica Orbital e Planetologia, Univ. Estadual Paulista – UNESP, 12516-410 Guaratinguetá, SP, Brazil
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Abstract

The present paper studies the powered Swing-By maneuver when performed in an elliptical system of primaries. It means that there is
a spacecraft travelling in a system governed by the gravity fields of two bodies that are in elliptical orbits around their center of mass. The
paper particularly analyzes the effects of the parameters relative to the Swing-By (V inf�; rp;w), the orbit of the secondary body around the
primary one (e; m) and the elements that specify the impulse applied (dV ; a) to the spacecraft. The impulse is applied when the spacecraft
passes by the periapsis of its orbit around the body, where it performs the Swing-By, with different magnitudes and directions. The inclu-
sion of the orbital eccentricity of the primaries in this problem makes it closer to reality, considering that there are many known systems
with eccentricities different from zero. In particular, there are several moons in the Solar System which orbits are not circular, as well as
some smaller bodies, like the dwarf planet Haumea and its moons, which have eccentricities of 0.25 or even larger. The behavior of the
energy variation of the spacecraft is shown in details, as well as the cases where captures and collisions occur. The results show the con-
ditions that optimize this maneuver, according to some given parameters, and how much can be obtained in terms of gains or losses of
energy using the best conditions found by the algorithm developed here.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The ‘‘Powered Swing-By Maneuver” is a technique
where a spacecraft approaches a celestial body and uses
its gravity field to modify its trajectory, but combined with
an impulse delivered to the spacecraft by a propulsion sys-
tem. It is a more complex maneuver compared to the pure
gravity ‘‘Swing-By Maneuver”, where only the gravity field
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of the celestial body performs the modification of the tra-
jectory. The advantage of the ‘‘Powered Swing-By Maneu-
ver” is to have more energy and more flexibility in the
effects, because the application of the impulse during the
close approach gives larger variations of energy when com-
pared to a maneuver that uses the impulse far from the
close approach point (Prado, 1996).

The pure gravity maneuver is well studied in the litera-
ture, and many practical applications are known.
Minovitch (1961) authored one of the first and most impor-
tant documents in this field. He showed the basic facts
about Swing-Bys when applied to spacecraft trajectories.
A description of the works developed by Minovitch is
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available in Dowling et al. (1991, 1992). Regarding practi-
cal applications, Flandro (1966) designed the Voyager mis-
sions, based in the equations developed by Minovitch.
After that, Swing-Bys in the large planets of the Solar Sys-
tem were used to get energy to help the spacecrafts to reach
their goals. The Galileo mission also used the pure gravity
Swing-By maneuver, like shown in D’Amario et al. (1981,
1982) and Byrnes and D’Amario (1982). Other missions
using this maneuver are shown in NASA (2010, 1999–
2012). The missions Messenger and BepiColombo to Mer-
cury are also very important and they are described in
McNutt et al. (2004, 2006), Grard (2006) and Jehn et al.
(2008). Another interesting aspect of this problem is the
possibility of using multiple swing-bys, as shown in Ross
and Scheeres (2007) and Formiga and Prado (2014).

This maneuver can also contribute to the capture of space-
crafts by celestial bodies, like shown in Nock and Upholf
(1979), Lynam et al. (2011) and Brasil et al. (2015). Some
authors considered this maneuver combined with a passage
of the spacecraft by the atmosphere of a planet, known as
‘‘aero-gravity assisted maneuver‘‘, as shown in Lewis and
McRonald (1992), Sims et al. (1995, 2000), Lohar et al.
(1996), Bonfiglio et al. (2000), Lavagna et al. (2005),
Armellin et al. (2007) and Gomes et al. (2015). A combination
of low thrust and gravity assists are used in McConaghy et al.
(2003), Okutsu et al. (2006) and Santos et al. (2008). Maneu-
vers considering a cloud of particles are studied in Gomes
and Prado (2010). The particular case of powered Swing-By
maneuvers, in the circular case, are studied in Prado (1996),
Silva et al. (2013a, 2013b) and Ferreira et al. (2015).

The present paper studies a version of this problem where
the powered Swing-By maneuver is made in a situation
where the two primaries of the system are in elliptical orbits
around their common center of mass. Elliptical systems are
numerous in the real world and there are several studies
related to this dynamics. Broucke (1969) presented a study
about the stability of periodic orbits in the restricted elliptical
three-body problem. A good example of a highly eccentric
system in the Solar System is the dwarf planet Haumea,
which has a moon with eccentricity close to 0.25 (Sanchez
et al., 2016). A first look at maneuvers in this system is
shown in Ferreira et al. (2016). Also very related to the pre-
sent research, Prado (1997) studied the pure gravity Swing-
By maneuver (without impulse) in the elliptical case.

In this sense, this research complements those previous
papers by studying the powered version of the maneuver,
but performed in systems where the orbits of the primaries
are elliptical.

The mathematical model given by the ‘‘Elliptical
Restricted Three-Body Problem (ERTBP)‘‘ is well known
in the literature (Szebehely, 1967) and it is used here. It
focuses on the study of the motion of a body with negligible
mass around two massive bodies that are orbiting their com-
mon center of mass in elliptical orbits. There are no analyt-
ical solutions and numerical integration is the most common
approach used to search for trajectories under this model.
This is the technique used in the present paper.
The main goal of the present paper is to analyze the evo-
lution of the energy of the spacecraft as a function of the
parameters that describe the maneuver. Concerning the
gravity part of the maneuver, the parameters are: V inf�,
the velocity of the spacecraft when approaching the celes-
tial body; rp, the radius of the periapsis, which is the dis-
tance of the closest approach between the spacecraft and
the celestial body during the whole maneuver; and w, the
angle of approach, which is the angle between the line of
periapsis and the line connecting both primaries. Regard-
ing the impulse, the parameters required to specify the
maneuver are: dV , the magnitude of the impulse; and a,
the angle that defines the direction of the application of
the impulse, measured with respect to the direction of the
motion of the spacecraft. It is also necessary to specify
the orbits of the primaries, which is made by given the orbi-
tal eccentricity (e) and the true anomaly of the secondary
body in its orbit around the primary at the moment where
the maneuver is performed (m). The semi-major axis of the
orbit is not specified, because the canonical system of units
is used and so this parameter is one.

To study this problem, an algorithm is developed to
numerically integrate the equations of motion under differ-
ent initial conditions to find the trajectories of interest. This
algorithm makes the numerical integrations of the orbit of
the spacecraft in positive times (with the inclusion of the
impulse) and negative times (without the inclusion of the
impulse). Those numerical integrations are performed until
the spacecraft is far from the secondary body, so they allow
the calculations of the energy before and after the maneu-
ver, which gives the total variations. Using this technique,
the results focus on measuring the variation of energy given
by the Powered Swing-By Maneuver, to find the best direc-
tion to apply the impulse to reach some specific goals, like
maximizing or minimizing the energy gains or losses.

2. Dynamical system

As explained before, the studies performed here are
based on the mathematical model given by the ‘‘Elliptical
Restricted Three-Body Problem (ERTBP)‘‘ (Szebehely,
1967). The system is formed by two bodies with finite
masses, called primaries and denoted by M1 and M2; being
M1 the main body with the largest mass and M2 the sec-
ondary body. There is also a third body with negligible
mass, called M3, that moves under the gravitational forces
of the two primaries. In the present case, it represents a
spacecraft moving around the two bodies. This spacecraft
makes a close approach with M2, whose study is the main
goal of the present paper. The study is limited to the plane
of the primaries, since this is the case with more practical
applications. The two primaries M1 and M2 are moving
around their common center of mass in elliptical orbits.
The canonical system of units is used and it is abbreviated
by ‘‘c.u.”. It has the following properties: the mass of M2 is
given by l ¼ m2

ðm1þm2Þ (with m1 and m2 the real masses of M1

and M2) and the mass of M1 is (1� l), such that the total
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mass of the system is unitary; the gravitational constant is
also unitary; the unit of distances is the semi-major axis of
the orbit of the two primaries and the unit of time is
defined such that the orbital period of the primaries is 2p.

To write the equations of motion, the fixed reference sys-
tem (Szebehely, 1967) is used in the study presented here.
There are other choices, like the rotating and the rotating-
pulsating reference systems (Szebehely, 1967). They are
equivalent, and the choice for the fixed system is made just
to simplify the transformations of variables. In this system,
the equations of motion are given by Eq. (1).

€x ¼ �ð1� lÞðx� x1Þ
r31

� lðx� x2Þ
r32

;

€y ¼ �ð1� lÞðy � y1Þ
r31

� lðy � y2Þ
r32

ð1Þ

where r1 is the distance between M1 and M3; r2 the distance
between M2 and M3; x1 ¼ �lr cos m, y1 ¼ �lr sin m,
x2 ¼ ð1� lÞr cos m and y2 ¼ ð1� lÞr sin m are the positions
of M1 and M2, respectively, in the fixed reference system
originating in the center of mass of the system.

The distance between the primaries is given by

r ¼ að1�e2Þ
1þe cos m, where a is the semi-major axis (a = 1 as

explained before) and m is the true anomaly of M2 relative
to M1. Fig. 1 describes the maneuver and show the impor-
tant variables involved.

The algorithm developed to study this problem inte-
grates the equations of motion, so it is possible to obtain
the energy variation of the spacecraft, calculated by the dif-
ference of the energy after and before the maneuver. The
final orbit is the one obtained after the Powered Swing-
By maneuver. The magnitude and direction of the impulse
is varied to search for the best values, according to the goal
of the maneuver. Therefore, the final algorithm has the
steps shown next.
Fig. 1. Description of the maneuver.
(i) The initial conditions of the spacecraft are set at the
periapsis of the orbit of the spacecraft around M2

(xp; yp; _xp and _yp). This is done by using the initial val-

ues of the variables described before: V inf�, the veloc-
ity of approach of the spacecraft with respect to M2;
rp, the periapsis distance; w, the angle of approach; e,
the orbital eccentricity of the primaries; and m, the
true anomaly of the secondary body at the moment
where the maneuver is performed;

xp ¼ ð1�lÞð1�e2Þ
1þe cos m cos mþ rp cosðwþ mÞ

8>>>>

yp ¼ ð1�lÞð1�e2Þ

1þe cos m sin mþ rp sinðwþ mÞ
_xp ¼ ð1�lÞe sin mffiffiffiffiffiffiffi

1�e2
p cos m� ð1�lÞð1þe cos mÞffiffiffiffiffiffiffi

1�e2
p sin m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

inf� þ 2l
rp

q
sinðwþ mÞ

_yp ¼ ð1�lÞe sin mffiffiffiffiffiffiffi
1�e2

p sin mþ ð1�lÞð1þe cos mÞffiffiffiffiffiffiffi
1�e2

p cos m

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

inf� þ 2l
rp

q
cosðwþ mÞ

>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ
(ii) The orbit is integrated backwards in time until the
spacecraft reaches a distance where it can be assumed
that the motion spacecraft-main primary is keplerian.
This value is in the range from 0.3 to 0.5 c.u.
(1 canonical unit = 1 c.u. =M1 �M2 distance). A
test is made to choose the best value. At this point
all the important parameters of the spacecraft before
the maneuver can be measured: velocity, position,
energy, angular momentum, etc.

(iii) After that, the initial conditions of the spacecraft are
placed again at the periapsis, like done in step (i). The
impulse is applied, using the variables: dV , the magni-
tude of the impulse; and a, the angle formed by the
impulse vector and the direction of the motion of

the spacecraft. b is the angle between V
!

p� and _x axis.
After that the orbit is integrated forward in time,
until the spacecraft reaches again a distance where
it can be assumed that the motion spacecraft-main
primary is keplerian, in the same form made in step
(i). At this point all the important parameters of the
spacecraft after the maneuver are measured: velocity,
position, energy, angular momentum, etc.

xp ¼ ð1�lÞð1�e2Þ
1þe cos m cos mþ rp cosðwþ mÞ

8>>>>

yp ¼ ð1�lÞð1�e2Þ

1þe cos m sin mþ rp sinðwþ mÞ
_xp ¼ ð1�lÞe sin mffiffiffiffiffiffiffi

1�e2
p cos m� ð1�lÞð1þe cos mÞffiffiffiffiffiffiffi

1�e2
p sin m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

inf� þ 2l
rp

q
sinðwþ mÞ þ dV cosðb�aÞ

V 2

_yp ¼ ð1�lÞe sin mffiffiffiffiffiffiffi
1�e2

p sin mþ ð1�lÞð1þe cos mÞffiffiffiffiffiffiffi
1�e2

p cos m

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2

inf� þ 2l
rp

q
cosðwþ mÞ þ dV sinðb�aÞ

V 2

>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ
(iv) Based on the parameters before and after the maneu-
ver, the variations made by the maneuver can be
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obtained just by direct subtractions of the quantities
involved. Then, it is possible to map the variations
of the desired quantities as a function of all the vari-
ables, to search for the best direction to apply the
impulse for a given geometry and magnitude of the
impulse.

Fig. 1 shows a description of the maneuver. The x and y
axes define the fixed reference system originating in the cen-
ter of mass of the system (CM ). V 2 is the velocity of M2

with respect to M1; m is the true anomaly of the secondary
body, describing the position of M2 with respect to M1. w
(angle of approach) and rp (periapsis distance) specify the
initial position of the spacecraft, defining its orbit. P is
the periapsis of the orbit and the point where the impulse
is applied. The black thin solid line represents the trajectory
of the spacecraft before the impulse, which ends at the peri-
apsis, where the impulse is applied. The dashed thin line is
an imaginary continuation of this orbit, which would be
the orbit of the spacecraft if the impulse was not applied.
At the point P the second part of the orbit starts (black
bold line), representing the trajectory of the spacecraft after
the impulse. The dashed black bold line represents the tra-
jectory that a spacecraft would have before the impulse, if
its orbit was the one after the impulse. The angle a
describes the direction of the impulse, measured with
respect to the direction of motion of the spacecraft. If
�180� < a < 0�, the impulse has a component in the direc-
tion of M2, making the spacecraft to get closer to it. If
0� < a < 180�, the impulse has a component in the oppo-
site direction of M2, making the spacecraft to move away
from it. For a < �90� or a > 90� there is a component of
the impulse that is opposite to the direction of the motion
of the spacecraft, making it to decelerate. In the interval
�90� < a < 90� the spacecraft is accelerated by the impul-
sive maneuver, because the impulse is applied in the direc-
tion of the motion of the spacecraft. The magnitude of the
impulse is denoted by dV . V P� is the velocity of the space-
craft at periapsis before the impulse and V Pþ is the velocity
of the spacecraft after the impulse.
3. Results

The results consist in plotting maps showing the energy
variation as a function of the angle that defines the direc-
tion of the impulse ðDE vs: aÞ for different initial condi-
tions. A system with the mass parameter l ¼ 0:01214,
sizes and distances equivalent to the Earth-Moon system
was used in all the simulations, but different values for
the eccentricity were tested to measure the influence of this
parameter: e ¼ 0:1, e ¼ 0:3 and e ¼ 0:5. The periapsis
radius used in the simulations was rp ¼ 1:1 radius of the
secondary body, to get large effects from the gravity part
of the maneuver. For the angle of approach w, several val-
ues were used, to cover the full range of possibilities, from
0� to 360�, in steps of 45�. The true anomaly ðmÞ received
the values: 0�, 90�, 180� and 270�, so covering the regions
of maximum gains, maximum losses and zero variation
of energy, with respect to the pure gravity maneuver. The
magnitude of the impulse dV ranges from 0.1 km/s to
4.0 km/s. It gives a total of 960 different sets of initial con-
ditions. They were numerically integrated with the direc-
tion of the impulse a ranging from �180� to 180�, in
steps of 1.0�, thus resulting in 346,560 trajectories with dif-
ferent energy variations.

3.1. Effects of the geometry of the maneuver

Fig. 2 and Table 1 show the results when using eccentric-
ity equal to 0.1, true anomaly equal to 0� (so M2 is at the
periapsis of its orbit around M1 when the close approach
occurs), and different values for the angle of approach w
and the magnitude of the impulse. There is one curve for
each value of the magnitude of the impulse and one plot
for each value of the angle of approach. The true anomaly
zero was chosen because this is the location that gives the
maximum variation of energy for the pure gravity assisted
maneuver, if all the other parameters are fixed (Prado,
1997). Due to the similarity of the results, only the plots
for w = 0�, 90�, 180� and 270� are shown. Several charac-
teristics are visible in the results. The first one is the
expected increase of the energy variation with the magni-
tude of the impulse. Although this result is expected, the
plots shown here can quantify those increases, which help
to decide the best magnitude to be used in a real maneuver.
The end points of the lines shown in Fig. 2 are due to
regions of captures or collisions.

Table 1 shows better some important points. To under-
stand many of those points it is necessary to take into
account that the impulse modifies the trajectory of the
spacecraft in several aspects. It includes the modification
of the angle of approach. So, the values for the angle of
approach shown in the results are the ones with respect
to a pure gravity maneuver. This value is used because it
is necessary to design the orbit that takes the spacecraft
to the periapsis of the orbit to receive the impulse but, after
the impulse is applied, the real values of the angle of
approach is modified and it depends on the application
of the impulse.

For w ¼ 0�, where there is no energy variation for a pure
gravity maneuver, the optimum direction of the impulse is
near zero, which means that it is applied in the direction of
the motion of the spacecraft. It is consistent with the idea
that, since there is no contribution in the pure gravity
maneuver, it is important to get the most variation of
energy possible from the impulse. This situation occurs
when applying the impulse in the direction of the motion
of the spacecraft. The direction of the impulse is near zero,
but always positive, to send the spacecraft away from M2,
which makes the real angle of approach to be in the region
of gains of energy (180� < w < 360�). This value is reduced
when the magnitude of the impulse increases, because in
this situation the powered part of the maneuver has a
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Fig. 2. Variation of energy as a function of the direction of the impulse for e ¼ 0:1 and m ¼ 0�.

Table 1
Maximum energy variation and the corresponding a for the case of Fig. 2 (e ¼ 0:1 and m ¼ 0�).

dV ðkm=sÞ w ¼ 0� w ¼ 90� w ¼ 180� w ¼ 270�

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0.1 0.4841 6.0 �1.4616 13.0 0.0941 �154.0 1.9248 �9.0
0.3 1.3987 6.0 �0.9778 14.0 0.6733 165.0 2.4384 �13.0
0.5 2.2784 6.0 �0.4206 15.0 0.7087 129.0 2.9611 �16.0
1.0 4.462 4.0 1.1637 17.0 0.7816 �21.0 4.3881 �18.0
1.5 6.734 3.0 2.9572 18.0 1.6928 �13.0 6.0203 �19.0
2.0 9.1525 3.0 4.9422 18.0 2.8683 �9.0 7.8651 �19.0
2.5 11.7415 2.0 7.1177 19.0 4.2817 �7.0 9.9222 �20.0
3.0 14.5125 2.0 9.4857 19.0 5.9199 �5.0 12.1901 �20.0
3.5 17.4721 1.0 12.0479 19.0 7.7757 �4.0 14.6673 �20.0
4.0 20.625 1.0 14.8058 19.0 9.8448 �4.0 17.3524 �20.0
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larger participation, compared to the gravity part of the
maneuver.

Considering the case w ¼ 90�, where there are maximum
losses of energy in the pure gravity maneuver, the optimum
directions for the impulse increases, but remains in the pos-
itive region, also giving a component for the velocity of the
spacecraft opposite to the direction of M2. It is in agree-
ment with the principle that, since there are losses of energy
from the gravity part of the maneuver, it is better to place
the spacecraft as far as possible from the celestial body,
such that it minimizes the loss of energy. The impulse also
modifies the angle of approach, removing it from the value
of the maximum loss of energy (w ¼ 90�). On the other
side, to get the most variation of energy possible from
the impulse, its direction should be as close as possible to
the direction of the motion of the spacecraft. In order to
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have a compromise between those two effects, the optimum
solutions have positive values for the direction of the
impulse. The angle representing the direction of the
impulse gets larger when the magnitude of the impulse
increases, representing the fact that an increase in the mag-
nitude allows stronger modifications in the orbit, making
large changes in the angle of approach. Since this situation
represents the maximum loss of energy, modifications in
this geometry give effects much stronger than in the previ-
ous case, w ¼ 0�, which is near a region of no effects from
the gravity part of the maneuver.

The case w ¼ 180� is another situation where there is no
energy variation in the pure gravity maneuver. The main
difference from the case w ¼ 0� is that, now, a retrograde
impulse increases the turning angle of the spacecraft and
shift the angle of approach to the region of energy gains
ð180� < w < 360�Þ. It is visible for impulses up to 0.5 km/
s. After this value the impulse is applied in the direction
of the motion of the spacecraft, to get more energy from
the powered part of the maneuver, but with negative val-
ues, to make the spacecraft to get closer to M2 to increase
the gains coming from the gravity part of the maneuver,
since now it gives gains of energy. Remember that a nega-
tive value also shift the angle of approach to the region of
gains of energy.

The geometry with w ¼ 270� represents the case with
maximum gains of energy for the pure gravity maneuver.
So, it is better to make the spacecraft to get as close as pos-
sible to the celestial body. The optimum directions for the
impulse moves to the negative region, to send the space-
craft to the direction of M2. When the magnitude of the
impulse increases, the direction of the impulse increases
in magnitude. It happens because larger impulses can make
stronger effects in the geometry, which is once again in a
region very sensitive to this effect, since it is near the region
of maximum gains of energy.

In general, it is noted that, for small values of the mag-
nitude of the impulse, the gravity gains of the maneuver
dominates the scenario and the maximum and minimum
gains of energy are located in the same regions predicted
by the standard maneuver, w ¼ 270� and w ¼ 90�, respec-
tively. In the cases of zero gain of energy for the pure grav-
ity maneuver (w ¼ 0� and w ¼ 180�), the impulse is applied
such that it shifts the angle of approach to the region of
gains of energy. Another observation that can be made is
related to the sign of the variation of energy. It is possible
to find regions of positive variations of energy even in
geometries of maximum losses of energy (w ¼ 90�). In the
situations of neutral variation of energy for the pure grav-
ity maneuver (w ¼ 0� and w ¼ 180�), the powered maneu-
ver can always obtain gains of energy, as expected. The
case w ¼ 0� gives larger variations of energy compared to
the case w ¼ 180�. The reason in that to shift the angle of
approach to the region of gains of energy, in the case
w ¼ 0�, the impulse has to be applied in the direction of
motion of the spacecraft, so getting more effects from the
powered part of the maneuver. It is the opposite in the case
w ¼ 180�, where the impulse needs to be applied in the
opposite direction of motion of the spacecraft, to get more
energy from the gravity part of the maneuver, but then it
losses energy from the powered part of the maneuver.

Fig. 3 and Table 2 show the effects of the true anomaly
of the secondary body in the variation of energy, as a func-
tion of the same parameters used in Fig. 2. The eccentricity
used is e ¼ 0:1 and the true anomaly assumes the values:
0�, 90�, 180�, and 270�. The results show that the optimum
directions to apply the impulse are always negative, since
the angle of approach is 270� and the maneuver tries to
get the largest possible variation of energy from the gravity
part of the maneuver. The true anomaly does not change
this fact. To understand the effects of this parameter, it is
necessary to remember that the variation of energy is pro-
portional to the velocity of M2, which is higher at the peri-
apsis. This rule is followed by the first line of Table 2, for a
magnitude of the impulse of 0.1 km/s. The variation of
energy is maximum for m ¼ 0� and minimum for
m ¼ 180�. For larger values of the magnitude of the
impulse, it is very difficult to make predictions for the
energy variations. The important parameter is the angle
between the velocity vector of M2 with respect to M1 and
the velocity of the spacecraft with respect to M2 at periap-
sis. Those variables are modified by the true anomaly ofM2

and the impulse. The final result of these effects is an inver-
sion in the variation of energy and the maximum gains of
energy moves to the true anomaly 180�, with the minimum
at m ¼ 0�. This is done to maximize the angle between the
velocity vector of M2 with respect to M1 and the velocity
of the spacecraft at periapsis. It means that the results
shown here are required to find the best maneuvers..

Fig. 4 and Table 3 are made to measure the effects of the
eccentricity in this maneuver. The eccentricity is now 0.3,
the angle of approach is 270� and the true anomaly is var-
ied to assume the same values used before: 0�, 90�, 180� and
270�. Once again, all the directions of the impulses are neg-
ative, sending the spacecraft to the direction of M2 to get
more variation of energy from the gravity part of the
maneuver. The magnitude of this angle increases with the
magnitude of the impulse, because larger impulses can
make stronger effects in the geometry, leading to larger
gains in energy from the combined maneuver. It is also
noted that the maximum gains of energy moves from the
angle of approach 270� when the impulse increases, repre-
senting the fact that the geometry is modified by the
impulse and the true anomaly of M2. The increase of the
eccentricity modifies the point where this inversion occurs
and now a large value for the magnitude of the impulse
is required to move the angle of approach that gives max-
imum variation of energy from 270�.

Fig. 5 and Table 4 show in more details the effects of the
eccentricity of the primaries. The true anomaly of M2 is
fixed in 0� and the angle of approach in 270�. The eccentric-
ity is varied to assume the values 0.0, 0.1, 0.3 and 0.5. As
explained before, it is very difficult to make predictions
of the results. Even the rule of negative values for the direc-
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Fig. 3. Variation of energy as a function of the direction of the impulse for e ¼ 0:1 and w ¼ 270�.

Table 2
Maximum energy variation and the corresponding a for the case of Fig. 3 (e ¼ 0:1 and w ¼ 270�).

dV ðkm=sÞ m ¼ 0� m ¼ 90� m ¼ 180� m ¼ 270�

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0.1 1.9248 �9.0 1.8228 �11.0 1.6809 �17.0 1.7819 �15.0
0.3 2.4384 �13.0 2.4197 �15.0 2.2971 �21.0 2.3040 �19.0
0.5 2.9611 �16.0 3.0262 �17.0 2.9385 �22.0 2.8480 �21.0
1.0 4.3881 �18.0 4.6835 �19.0 4.7394 �24.0 4.3722 �23.0
1.5 6.0203 �19.0 6.5835 �20.0 6.8516 �25.0 7.0047 �22.0
2.0 7.8651 �19.0 8.7361 �21.0 9.279 �25.0 8.1973 �23.0
2.5 9.9222 �20.0 11.1417 �21.0 12.0194 �25.0 10.4976 �23.0
3.0 12.1901 �20.0 13.7990 �21.0 15.0706 �25.0 13.0528 �23.0
3.5 14.6673 �20.0 16.7068 �21.0 18.4307 �25.0 17.3258 �22.0
4.0 17.3524 �20.0 19.8641 �21.0 22.0982 �25.0 18.9199 �23.0
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tion of the impulse is no longer followed for the case
e = 0.5 and, for smaller values of the magnitude of the
impulse, the values are positive. It is also noted that, for
smaller values of the magnitude of the impulse, the
expected rule of getting more variation of energy from
the largest eccentricity is followed. This is due to the largest
velocity of M2 with respect to M1. This rule does not hold
for larger values of the impulse and the variations of energy
reduce with the increase of the eccentricity. Remember that
the goal is always to maximize the angle between the veloc-
ity vector of M2 with respect to M1 and the velocity of the
spacecraft at the periapsis.
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Fig. 4. Variation of energy as a function of the direction of the impulse for e ¼ 0:3 and w ¼ 270�.

Table 3
Maximum energy variation and the corresponding a for the case of Fig. 4 (e ¼ 0:3 and w ¼ 270�).

dV ðkm=sÞ m ¼ 0� m ¼ 90� m ¼ 180� m ¼ 270�

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0.1 2.2062 �1.0 1.8895 �5.0 1.4769 �24.0 1.7946 �18.0
0.3 2.6180 �5.0 2.5166 �9.0 2.1985 �27.0 2.2051 �22.0
0.5 3.0284 �8.0 3.1360 �11.0 2.9665 �28.0 2.6427 �24.0
1.0 4.1148 �11.0 4.7725 �14.0 5.1751 �29.0 3.8917 �25.0
1.5 5.3199 �13.0 6.5944 �15.0 7.8195 �30.0 5.3718 �25.0
2.0 6.6537 �13.0 8.6217 �16.0 7.0127 �29.0 7.0799 �25.0
2.5 8.1178 �14.0 10.858 �17.0 9.0900 �30.0 9.0114 �25.0
3.0 9.7116 �14.0 13.3049 �17.0 18.3566 �30.0 11.1627 �24.0
3.5 11.4342 �14.0 15.9618 �17.0 22.7282 �30.0 13.531 �24.0
4.0 13.2847 �14.0 18.8284 �17.0 27.5265 �30.0 16.1141 �24.0
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The results also showed that the energy variation is
directly proportional to the magnitude of the impulse in
most cases. This conclusion is not applicable in some situ-
ations, for trajectories at the borders of the plots (relative
to x-axis). It is due to the influence of a in those cases. This
is the angle that defines the direction of the impulse. As

shown in Fig. 1, a is the angle between V
!

p� and dV
!
, where

V
!

p� is the velocity of the spacecraft at periapsis before the
powered maneuver. When the impulse is applied in the
direction of motion of the spacecraft a is zero. The analysis
of a can be divided in four parts: (i) 0� < a < 90� where the
impulse has a component in the direction of motion of the
spacecraft and another component in the direction oppo-
site to M2, making the spacecraft to move away from the
body; (ii) 90� < a < 180�, where the spacecraft also moves
away from M2, but the other component is opposite to the
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Fig. 5. Variation of energy as a function of the direction of the impulse for m ¼ 0� and w ¼ 270�.

Table 4
Maximum energy variation and the corresponding a for the case of Fig. 5 (m ¼ 0� and w ¼ 270�).

dV ðkm=sÞ e ¼ 0 e ¼ 0:1 e ¼ 0:3 e ¼ 0:5

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0.1 1.7971 �13.0 1.9248 �9.0 2.2062 �1.0 2.6737 8.0
0.3 2.3617 �17.0 2.4384 �13.0 2.618 �5.0 2.9804 4.0
0.5 2.9429 �19.0 2.9611 �16.0 3.0284 �8.0 3.2821 1.0
1.0 4.5526 �21.0 4.3881 �18.0 4.1148 �11.0 4.057 �4.0
1.5 6.4183 �22.0 6.0203 �19.0 5.3199 �13.0 4.8869 �6.0
2.0 8.5455 �22.0 7.8651 �19.0 6.6537 �13.0 5.7814 �7.0
2.5 10.933 �22.0 9.9222 �20.0 8.1178 �14.0 6.7428 �8.0
3.0 13.5788 �22.0 12.1901 �20.0 9.7116 �14.0 7.7721 �8.0
3.5 16.4813 �22.0 14.6673 �20.0 11.4342 �14.0 8.8687 �8.0
4.0 19.6391 �22.0 17.3524 �20.0 13.2847 �14.0 10.0324 �8.0
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motion of the spacecraft and it slow down its motion. This
situation may result in captures or collisions; (iii)
�90� < a < 0�, where the spacecraft tends to approach
M2 with a component in the direction of the secondary
body and the other component in the direction of the
motion of the spacecraft; and (iv) �180� < a < �90�,
where the spacecraft is slowed down by a component of
the impulse against the motion of the spacecraft and the
other component in the direction of M2, which is the region
most favorable for captures and collisions.

3.2. Effects of the approach angle

A more detailed study of the effects of the angle of
approach (w) can also be made. This angle defines the posi-
tion of the periapsis with respect to the secondary body.
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Fig. 6. Energy variation for e ¼ 0:1, m ¼ 270�, dV ¼ 0:5 and dV ¼ 2:0 km=s for different w.
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When 0� < w < 180� the spacecraft is passing in front of
the secondary body, so it is decelerated by M2 and it loses
energy. The maximum loss occurs when w ¼ 90�. If
180� < w < 360�, the spacecraft is passing behind M2 and
it is accelerated, so gaining energy. The maximum energy
gain occurs when w ¼ 270� For w ¼ 0� and w ¼ 180� the
effect of the pure gravity maneuver is null. This conclusion
comes from the equation that gives the energy variation for
the standard Swing-By maneuver (Broucke, 1988). Eþ is
the energy of the second orbit; E� the energy of the first
orbit, V 2 the velocity of M2 relative to M1 and d is the cur-
vature of the trajectory of the spacecraft. The equation is
(Broucke, 1988):

Eþ � E� ¼ �2V inf�V 2 sin d sinw ð4Þ
Fig. 6 and Table 5 show some results for the ‘‘Powered

Swing-By Maneuver‘‘. They confirm that the angle of
approach plays an important role in the energy gains.
For a maneuver in the circular case with no impulse, the
case w ¼ 270� would give the maximum variation of
energy. But, it is important to remember that the impulse
and the eccentricity of the primaries change the real value
of the angle of approach. The numerical results show that
the case w ¼ 315� has some points with higher variation of
energy. It happens because this combination makes the real
angle of approach to get closer to the maximum point
(w ¼ 270�), while orbits with w ¼ 270� are deviated from
Table 5
Maximum energy variation and the corresponding a for the case of Fig. 6
(e ¼ 0:1 and m ¼ 0�).

w ð�Þ dV ¼ 0:5 km=s dV ¼ 2:0 km=s

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0 2.2784 6.0 9.1525 13.0
45 0.8131 11.0 7.3981 11.0
90 �0.4206 15.0 4.9422 18.0
135 �0.0914 �132.0 2.9641 18.0
180 0.7087 129.0 2.8683 �9.0
225 1.7953 �39.0 5.2489 �29.0
270 2.9611 �16.0 7.8651 �19.0
315 3.1518 �2.0 9.3545 �8.0
this maximum point by the impulse. It is also noted that
the case w ¼ 0� has larger variations of energy, because it
is a case where the impulse modifies the trajectory and
put the angle of approach in the region of gains of energy,
as explained before. It is also noted that the minimum vari-
ation of energy did not occur exactly at w ¼ 90�, also due
to the modification of the angle of approach by the
impulse. These facts emphasize the importance of the pre-
sent study, because only the numerical solutions can find
the regions of maximum and minimum variations of energy
in this more complex maneuver.
3.3. Effects of the eccentricity

The physical effect of the eccentricity is to increase the
velocity of M2 with respect to the center of mass of the sys-
tem, since it is no longer constant. V 2 is larger when M2 is at
periapsis and smaller when it is in the apoapsis of the orbit.
As shown by Eq. (4), the variation of energy of the spacecraft
is proportional to V 2. The results are shown for fixed values
of m, dV and w. Fig. 7 shows the spacecraft energy variation
for M2 at the periapsis of the orbit (m ¼ 0�), with angle of
approach w ¼ 90�, and two values for the magnitude of
the impulse: dV ¼ 0:1 km=s and dV ¼ 2:0 km=s. This is
the situation with loss of energy, so the main effect of increas-
ing the eccentricity is to get larger losses of energy. The peaks
for every line are near zero, with respect to the direction of
the impulse. There is a very uniform behavior for
dV ¼ 0:1 km=s. The case with dV ¼ 2:0 km=s results in
stronger effects in the geometry and the results are less uni-
form and less predictable, as explained before. It is also
noted the appearances of captures and collisions, since now
the impulse is capable of making stronger modifications in
the orbit of the spacecraft (see Table 6).
3.4. Effects of the true anomaly of M2 (m)

The true anomaly of M2 (m) describes the position of the
secondary body with respect to M1. For m ¼ 0�, M2 is at the
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Fig. 7. Energy variation for m ¼ 0�, w ¼ 90� and different eccentricity.

Table 6
Maximum energy variation and the corresponding a for the case of Fig. 7
(m ¼ 0� and w ¼ 90�).

e dV ¼ 0:1 km=s dV ¼ 2:0 km=s

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0.0 �1.2852 16.0 5.9348 21.0
0.1 �1.4616 13.0 4.9422 18.0
0.2 �1.6466 9.0 3.9697 15.0
0.3 �1.8323 5.0 3.0127 10.0
0.4 �2.0313 �6.0 2.0351 4.0
0.5 �2.3872 �15.0 4.3606 �78.0
0.6 �3.0241 0.0 �0.3050 0.0
0.7 �3.8249 �2.0 �1.7057 �5.0
0.8 �5.1829 �12.0 �3.6217 114.0
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periapsis and, for m ¼ 180�, M2 is at the apoapsis. There-
fore, m influences the magnitude and direction of the veloc-
ity of M2 (V 2), which then influences the variation of
energy. For this study m assumed the values 0�, 90�, 180�
and 270�. The results are shown in Fig. 8 and Table 7.
(a)

Fig. 8. Energy variation for e ¼ 0:1, w ¼ 27
For dV ¼ 0:3 km/s, the variations of energy follows the
expected behavior of having the maximum variations of
energy when M2 is at the periapsis, because the velocity
of M2 is larger, and the minimum variations occur when
M2 is at the apoapsis. For dV ¼ 1:5 km=s the powered part
of the maneuver dominates the scenario and the best value
for the true anomaly cannot be predicted without the
numerical analysis. In most cases the position where M2

is at the periapsis has even the minimum variation of
energy. The final results come from a combination of all
of the conditions discussed above.

3.5. Captures and collisions

There are several maneuvers ending in captures or colli-
sions of the spacecraft with M2. A capture is a situation
where the spacecraft remains around the secondary body
with negative two body energy during the total integration
period. A collision is when the spacecraft crash with the
secondary body.
)b(

0�, and different true anomalies of M2.



Table 7
Maximum energy variation and the corresponding a for the cases shown in
Fig. 8 (e ¼ 0:1 and w ¼ 270�).

m ð�Þ dV ¼ 0:3 km/s dV ¼ 1:5 km/s

DEmax ðc:u:Þ a ð�Þ DEmax ðc:u:Þ a ð�Þ
0 2.4384 �13.0 6.0203 �19.0
90 2.4197 �15.0 6.5835 �20.0
180 2.2971 �21.0 6.8516 �25.0
270 2.3040 �19.0 7.0047 �22.0

Fig. 10. Spacecraft trajectory resulting in collision for e ¼ 0:1, m ¼ 0�,
w ¼ 270�, dV ¼ 0:5 km=s and a ¼ �156�.

Fig. 11. Spacecraft trajectory resulting in capture for e ¼ 0:3, m ¼ 180�,
w ¼ 90�, dV ¼ 0:5 km=s and a ¼ �180�.
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In most cases the captures and collisions occurred for
values of a near the border of the plots. It happens because
those values correspond to situations where the component
of the impulse decelerates the spacecraft, acting in the
direction opposite to the motion of the spacecraft. For sit-
uations where there is also a component sending the space-
craft to the direction of M2, the amount of captures and
collisions are significantly higher. For all cases, when
dV ¼ 0:1 km=s, there were no captures and collisions,
because this magnitude of the impulse is not large enough
to generate those situations. Next, some trajectories result-
ing in collisions are shown. The black solid line represents
the trajectory of the spacecraft and the red line represents
the surface of M2.

Fig. 9 shows one trajectory ending in collision for = 0.1,
m ¼ 0�, w ¼ 0�, dV ¼ 0:3 km/s and a ¼ 144�. The space-
craft leaves M2 due to the positive value of a, it is deceler-
ated, and then it returns back to collide with M2.

Fig. 10 shows one trajectory colliding with M2 for
e ¼ 0:1, m ¼ 0�, w ¼ 270�, dV ¼ 0:5 km=s and a ¼ �156�.
In this case there was a temporary capture before the colli-
sion. The black solid line is the trajectory of the spacecraft
and the red line the surface of M2.

Next, Figs. 11 and 12 show trajectories resulting in the
capture of the spacecraft by M2. The trajectory shown in
Fig. 11 has an impulse with component in the opposite
Fig. 9. Spacecraft trajectory resulting in collision for e ¼ 0:1, m ¼ 0�,
w ¼ 0�, dV ¼ 0:3 km/s and a ¼ 144�.

Fig. 12. Spacecraft trajectory resulting in capture for e ¼ 0:5, m ¼ 0�,
w ¼ 180�, dV ¼ 1:5 km=s and a ¼ 155�.
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direction of the motion of the spacecraft, which reduces its
velocity and causes the capture. The data are: e ¼ 0:3,
m ¼ 180�, w ¼ 90�, dV ¼ 0:5 km/s and a ¼ �180�. Fig. 12
shows the trajectory for e ¼ 0:5, m ¼ 0�, w ¼ 180�,
dV ¼ 1:5 km/s and a ¼ 155�, which is similar to the previ-
ous one, but that appears in a situation of larger eccentric-
ity of the primaries (e = 0.5).

3.6. Maximum energy variations

After all the results and explanations made up to now,
some plots show the maximum variations of energy and
the respective direction of the impulse as a function of
the angle of approach, for different eccentricities of the pri-
maries. The true anomaly of M2 at the moment of the clos-
est approach was varied to consider the same values used
before: m ¼ 0�, m ¼ 90�, m ¼ 180�, m ¼ 270�. The magnitude
of the impulse assumed the values 0.1, 0.3, 0.5, 1.0, 2.0, 2.5,
3.0, 3.5, 4.0 km/s. The results are shown in Figs. 13–15 for
the situations where e ¼ 0:1, e ¼ 0:3 and e ¼ 0:5, respec-
tively. The idea is to summarize all the analyses made up
to this point.
(a) °

(c) °

Fig. 13. Maximum variation of energy and direction
In that sense, the variations of energy shown in Fig. 13
(e = 0.1) show in some more detail some results already
noted and explained. It quantifies how much the variation
of energy increases with the magnitude of the impulse. For
smaller values for the magnitude of the impulse, the curve
follows the results expected from the ‘‘patched conics pure
gravity‘‘ maneuver (Broucke, 1988) and the maximum vari-
ations of energy is located in w ¼ 270�, the minimum in
w ¼ 90�, and the near zero values in w ¼ 0�, and
w ¼ 180�. The increase of the impulse shift those results
and now the maximum variations of energy are located
in w ¼ 0�, and w ¼ 360�, with the minimum in w ¼ 180�.
The reason is the shift in the real value of the angle of
approach made by the impulse, as well as the periapsis dis-
tance, which gets the best combination of the gains of
energy coming from the gravity and the powered parts of
the maneuver. This is valid for all the true anomalies used,
but the values of the variations of energy are affected by the
true anomaly. The direction of the impulse remains near
zero most of the times, with some exceptions in cases where
a retrograde impulse is required to increase the gains
obtained from the gravity part of the maneuver.
)b( °

)d( °

of the impulse vs. angle of approach for e ¼ 0:1.
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Fig. 14. Maximum variation of energy and direction of the impulse vs. angle of approach for e ¼ 0:3.
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The variations of energy shown in Fig. 14 (e = 0.3) show
the same characteristics observed in Fig. 13. The main dif-
ference is an increase in the magnitude of the variations of
energy, obtained from the increase of the velocity of M2

around M1. The importance of the true anomaly is also
increased, for the same reason.

Fig. 15 shows the variations of energy for e = 0.5. The
case where m ¼ 0� shows a regular behavior for the maxi-
mum energy variations. For w ¼ 180� the magnitudes of
the maximum energy variations remains very similar, for
different values of dV , compared with the other values of
w. It shows a regular behavior for the energy variations,
similar to the results obtained in the previous cases. The
direction of the impulse has also a regular behavior, having
the form of a sin function. The directions of the impulse
cover a larger range of results for w between 90� and
270�. The case where m ¼ 90� shows a sharp minimum vari-
ation of energy for w ¼ 225� for larger values of the
impulse, with the maximum again near w ¼ 0� and
w ¼ 360�. This pattern is true even for situations with small
values for the magnitude of the impulse.
The trajectory resulting in the maximum variation of
energy occurs when M2 is at the periapsis of its orbit and
the angle of approach is w ¼ 0�, for dV ¼ 4:0 km=s, for
the eccentricities shown in Fig. 16. The dashed lines repre-
sents the first part of the orbit (before the impulse) and the
continuous lines the second part (after impulse). The trajec-
tory (a) is the natural path of the spacecraft in the circular
problem without the impulsive maneuver. It is shown for
comparisons. The (b)–(d) trajectories refer to the eccentric-
ities 0.1, 0.3 and 0.5, respectively.

4. Conclusions

The energy variations in a powered Swing-By maneuver
in the situation where the primaries of the system are in
elliptical orbits were studied. The inclusion of the eccentric-
ity of the primaries gives a more realistic approach to the
problem, in particular if the maneuver is performed in sys-
tems of high eccentricity. It also gives more options to get
more energy from the maneuver, by exploring the varia-
tions of the velocity of M2.



(a) ° )b( °

(c) ° )d( °

Fig. 15. Maximum variation of energy and direction of the impulse vs. angle of approach for e ¼ 0:5.
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These variations of energy can be optimized according
to the needs of the mission and the best direction to apply
the impulse can be found as a function of the magnitude of
the impulse available to the spacecraft.

The initial conditions are the parameters that define the
orbit of the primaries (e; m), the orbit of the spacecraft
(V inf�; rp;w) and the features of the impulse (dV ; a). The
study concentrated in measuring the effects of each one
of these parameters.

The main physical modification made by the inclusion
of the eccentricity (e) is the variation of the velocity (V2)
of M2 with respect to M2, which is constant in the circular
problem. It now depends on the position of M2, which is
defined by its true anomaly (m). The gain of energy coming
from the gravity part of the maneuver is dependent on V2.

The results showed that applying the impulse in a non-
tangential direction optimizes the maneuver, getting more
energy from the powered maneuver. The largest gain of
energy comes from a better combination of the modifica-
tions made by the impulse in the geometry of the trajectory,
which changes the angle of approach and the periapsis dis-
tance, to get more energy from the gravity part of the
maneuver, with the gains obtained directly from the appli-
cation of the impulse.

Maneuvers with small values for the magnitude of the
impulse has more predictable results, following the rules
made by the ‘‘patched conics pure gravity assisted maneu-
ver‘‘. With the increase of the magnitude of the impulse
only a numerical algorithm can give the best direction to
apply the impulse as a function of the other parameters,
which justify the study made in the present paper.

The present study can help the planning of missions
including powered swing-by maneuvers, in particular
with high eccentricities system of primaries, by indicat-
ing the best directions to apply the impulse in several
situations.
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Fig. 16. Trajectories with conditions resulting in maximum variations of energy for m ¼ 0�, w ¼ 0� and dV ¼ 4:0 km=s. The dashed lines represent the first
part of the orbit (before the impulse) and the continuous lines are the second part (after the impulse). Information about the trajectories: (a) e ¼ 0:0,
m ¼ 0�, w ¼ 0�, and dV ¼ 0:0 km=s; (b) e ¼ 0:1, a ¼ 1:0� and DEmax ¼ 20:625 c:u:; (c) e ¼ 0:3, a ¼ 2:0� and DEmax ¼ 16:1766 c:u:; (d) e ¼ 0:5, a ¼ 3:0� and
DEmax ¼ 12:2308 c:u. The symbol + represents the Moon.
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