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Abstract One of the major challenges in stream ecology is
the development of computational models that can predict
aspects of the community structure of organisms from these
ecosystems when they are subject to natural or artificial envi-
ronmental fluctuations. To contribute towards this aim, we
conducted a study whose main goal was to evaluate the effi-
ciency and accuracy of different architectures of multilayer
artificial neural networks (ANNs) in predicting the species
richness and abundance of macroalgae based on environmen-
tal variables of tropical streams.We used data from 82 streams
located in southern Brazil, where species richness, macroalgal
abundance, and environmental parameters were measured. A
set of 20 environmental parameters measured directly in the
stream was used as explanatory variables. The performance of
the ANN architectures was assessed using two different pieces
of software (random combinatorial and exhaustive) and the
coefficient of determination (R2) and mean-squared error
(MSE). For both species richness and macroalgal abundance,
the best ANN architectures were obtained using random com-
bination software and the performance parameters showed a
combination of high R2 and very low MSE. Our results sug-
gest that computational models that are constructed based on
ANN frameworks can be efficient and accurate in predicting

the species richness and abundance of stream macroalgae
from environmental data. Therefore, considering that models
based on linear relationships have often failed, we recommend
the application of ANNs as a tool to estimate species richness
and abundance of lotic macroalgae from environmental data,
in the management, conservation, and biomonitoring pro-
grams of tropical stream ecosystems.
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Introduction

Currently, there is a growing concern about the biomonitoring
and conservation of biodiversity, especially aquatic ecosys-
tems (Ormerod 2014), including lotic ones. Predictive models
can be useful tools to deal with these issues; thus, a huge
challenge for stream ecologists is to construct models that
can predict the richness, abundance, and distribution of taxa
based on environmental and spatial factors. When working
properly, these models have been very useful and can be used
to (1) predict the characteristics of biota only based on envi-
ronmental and spatial factors, which simplifies the effort of
future sampling in ecological investigations (e.g., Oppel et al.
2012; Bucklin et al. 2015; Rovzar et al. 2016), (2) predict
changes in biota due to corresponding changes in environ-
mental and spatial factors (e.g., Pottier et al. 2013; Wisz
et al. 2013), and mainly, (3) predict the features of the biota
before the occurrence of anthropogenic interference (e.g.,
Blois et al. 2013; Catford et al. 2013; Graham et al. 2015).
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The predictive model approach has been used in large bio-
monitoring programs. Many of these models are built based
on Reference Conditions (nonimpacted sites or those with
minimal environmental impacts), according to the Reference
Conditions Approach (RCA) (Bailey et al. 2004). RCA
models aim to build tools capable of estimating community
attributes (e.g., taxa richness) under natural conditions. In this
context, the impact grade of a given location can be measured
as the difference between the observed values and those esti-
mated by the model based on Reference Conditions. RCA
supports the theoretical bases of large biomonitoring programs
such as River Invertebrate Prediction and Classification
(RIVPACS) (Wright 1995), Australian River Assessment
System (AUSRIVAS) (Simpson and Norris 2000), and
Benthic Assessment of Sediment (BEAST) (Reynoldson
et al. 1995).

Although the principles of predictivemodel construction of
lotic ecosystems have the potential to be applied to any aquatic
organism, most biomonitoring programs have focused on
macroinvertebrates, and models that use primary producers
remain scarce (Almeida and Feio 2012; Feio and Dolédec
2012). Among the organisms in lotic environments, benthic
macroscopic algae (macroalgae Bsensu^ Sheath and Cole
1992), offer high potential in biomonitoring programs, mainly
when the aim is the trophic state evaluation (Branco and
Pereira 2002; Peres et al. 2009; Cantonati et al. 2012;
Stancheva et al. 2012). The use of macroalgae in biomonitor-
ing relies on the fact that they are one of the most important
primary producers in rivers and streams (Dell’Uomo 1991;
Branco et al. 2010), and they are easily recognizable in the
field (at least at the genus level), which makes their use quite
convenient (Dell’Uomo 1991; Branco et al. 2010). The under-
standing that composition, richness, and abundance of
macroalgae are strongly influenced by both biotic and abiotic
processes (Dudley 1992; Branco and Necchi Júnior 1996;
Verb and Vis 2001; Necchi Júnior et al. 2003) reinforces the
idea that these organisms represent a good model for environ-
mental biomonitoring programs.

In this context, predictive model construction able to effi-
ciently and accurately estimate variations in richness and
abundance of stream macroalgae, based on easily measurable
environmental variables, could facilitate the progress of
stream biomonitoring studies that use these organisms.
Richness and abundance are important properties of the com-
munity structure, and they are also metrics affected by both
natural and anthropogenic factors (Ferreira et al. 2014;
Hrivnák et al. 2014; Klose et al. 2015; Teittinen et al. 2016).
Taxa richness is one of the most intuitive measures of com-
munity diversity level, and it has been universally used as an
important descriptor of the community structure. Specifically
in stream algae case, studies have shown that taxa richness of
these communities is affected by environmental factors
(Teittinen et al. 2016), including those of anthropogenic

origins (Verb and Vis 2001, 2005; Schneider et al. 2013;
Barinova et al. 2016; Oberholster et al. 2016). Thus, despite
the need to use this metric carefully (Stevenson 2014), algae
richness is one good attribute for identifying spatial and tem-
poral changes and for biomonitoring at community level.

Algae abundance has also been treated as a very important
metric in the identification of anthropogenic perturbations in
aquatic ecosystems, since the excessive increase in algal bio-
mass is one of the most usual effects of eutrophication (Yang
et al. 2012). Based on this assumption, this parameter of com-
munity structure and functioning, used alone or in association
with other measures, has been largely applied in biomonitor-
ing studies (e.g., Rakocevic-Nedovic and Hollert 2005; Rier
and Stevenson 2006; Stevenson et al. 2006; Peres et al. 2010).
Birk et al. (2012) showed, for instance, based on an overview
of almost 300 assessment methods, that algal abundance is
one of the most used biological metric to evaluate water qual-
ity in European lakes. In addition, a great sign of the relevance
of this biological metric for water quality program in rivers is
the use of algal abundance data, despite the differences in
methodological protocols, by several programs of environ-
menta l agenc ies . The European Projec t for the
Standardization of River Classification protocol (STAR,
http://www.eu-star.at/frameset.htm), for instance, uses
macroscopic benthic algae abundance (estimated according
to the percentage of the bottom covered area) as one of the
metrics to evaluate changes in benthic algae communities.

Classical ecological studies on lotic macroalgae have
shown that it is generally difficult to reliably predict the rich-
ness and abundance of species from environmental data using
classical linear relationships (Hu and Xie 2006; Branco et al.
2009). Therefore, modern computing techniques, including
artificial neural networks (ANNs), have been successfully ap-
plied to solve similar complex ecological problems. Examples
of the application of ANNs in predictivemodels for ecological
issues include the estimation of tree biomass and organic car-
bon in forests (Schoeninger et al. 2008), the prediction of the
richness of aquatic insects in running water (Park et al. 2003;
Goethals et al. 2007), the abundance and species succession of
cyanobacteria (Recknagel 1997), and the modeling of macro-
phyte indices (Gebler et al. 2014), among several others (see
examples in Lek and Guégan 1999).

Artificial neural networks are computational techniques
(learning algorithms) that are inspired by the operation of
typical biological neuronal networks, in which neurons re-
ceive stimuli for their dendrites, process them in their cell
bodies, and then propagate the signal to other neurons through
axons and synaptic endings (Kovács 2002). When performing
artificial neural processing, the ANNs use data pairs from a
dataset (each input data or independent variable is paired to an
output data or dependent/response variable) to perform a large
number of calculations, enabling them to learn the patterns of
relationship between input and output data (Lippmann 1987).
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This ability to learn is defined as the capacity for self-
organization or plasticity (Rumelhart et al. 1986). During the
learning process, the ANNs progressively modify the inter-
connection patterns among its elements (neurons), so that
the computational properties of the network are also modified,
facilitating and improving its learning performance
(Rumelhart et al. 1986). After training, the ANNs can be used
to estimate the response variable based on independent
variables.

An ANN can be composed from between one to hundreds
of neurons, usually divided into layers, the so-called multilay-
er neural networks (Haykin 2008). The arrangement of the
layers in an ANN is commonly designated by the term archi-
tecture. A specific architecture is defined by the number of
layers present in the ANN, the number of neurons in each
layer, and the mathematical function in which they propagate
the stimuli to the subsequent layers (Haykin 2008). The archi-
tecture of an ANN is extremely relevant to their performance,
since a network with few neurons might not be able to retain
the learning pattern and, conversely, a network with many
neurons can enter a state of Boverfitting^ (Haykin 2008).
Considering that multilayer ANNs can work with nonlinear
data (Haykin 2008), the application of this type of ANN to
ecological data, such as the determination of the richness and
abundance of species of stream macroalgae based on environ-
mental variables, is quite adequate.

Thus, considering that ANNs represent an effective predic-
tive modeling technique, especially when applied to nonlinear
data (Lek et al. 1996), such as ecological data (Lek and
Guégan 1999), this study was conducted to assess the poten-
tial application of different architectures of multilayer ANNs
in predicting the richness and abundance of macroalgal com-
munities based on the environmental variables of tropical
stream ecosystems under reference conditions.

Materials and methods

Study area, sampling, and ecological data

The streammacroalgae and environmental data were collected
in eighty-nine 10-m long stream segments (first- to third-or-
ders), in reference conditions (nonimpacted sites or those with
minimal environmental impacts) located in ten protected areas
for conservation (National or State Parks) of the four major
biomes of southern Brazil, between latitudes 22°31′10″ S–
33°44′59″ S and longitudes 48°01′08″ W–57°36′05″ W.
Stream macroalgal samples were purposely collected in
protected areas because we based our sampling program on
the Reference Condition Approach (RCA) (Bailey et al.
2004). The central idea of the RCA is to build models based
on reference conditions that allow to predict the attributes of
the biota under natural or minimally impacted condition

(Bailey et al. 2004; Stancheva and Sheath 2016). In addition,
the largest possible data set, including lotic environments with
different characteristics and from distinct biomes (always con-
sidering the Reference Condition, however), was used in order
to allow the maximum possible generalization of the model.

In this study, we used as response variables species richness
and abundance of the macroalgal community. The richness
and abundance of macroalgal species were investigated by
the transect technique, which is a widely used technique in
ecological studies involving this group of organisms (Sheath
and Cole 1992; Branco et al. 2014). In each stream segment,
the presence of each species of macroalgae was recorded and
their respective abundance was estimated (in terms of percent-
age cover) by visual analysis (Sheath and Cole 1992; Branco
et al. 2014). From these data, we calculated the total species
richness (as the sum of all recorded species) and the total
abundance of species (as the sum of the abundances of all
recorded species) for each stream segment.

Samples of each macroalga found in the field sam-
ples were collected, coded, and preserved in 4% form-
aldehyde (Branco and Necchi Júnior 1996; Branco et al.
2014). In the laboratory, the preserved samples were
observed using a Leica trinocular microscope, model
DM1000, and identified at species level whenever fea-
sible. For the identification procedures, at least, ten
measurements were randomly taken of diagnostic struc-
tures in each sample (Branco and Necchi Júnior 1996).
These morphometric analyses were made using an im-
age capture system composed of a Leica video camera
model DFC280 coupled to a microcomputer with the
software Leica IM-50. The complete list of species
identified in this study is given in Online Resource 1.

In addition to the richness and abundance of species, a set
of 20 environmental variables was measured directly in the
streams. These variables were selected based on their wide-
spread use in ecological studies involving lotic organisms
(Allan and Castillo 2007) and because they are recurrently
described as being closely related to the spatial and temporal
distribution of stream macroalgae (Sheath and Cole 1992;
Branco et al. 2014).

In each stream segment, we measured the following water
variables, using a Horiba U-10 water analyzer equipped with a
multiparameter probe: temperature, turbidity, specific conduc-
tance, pH, and dissolved oxygen. We also measured the water
content of orthophosphate and total nitrogen (using a Merck,
Spectroquant Nov. 60 spectrophotometer). In addition, we re-
corded the percentage of each substratum type (by visual anal-
ysis) that was available for macroalgal attachment (using the
particle size classes modified from Gordon et al. 1992), the
degree of shading (based on DeNicola et al. 1992), mean
current velocity (measured with a mechanical flowmeter,
General Oceanics 2030R), and mean depth (measured with a
centimeter ruler).
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Artificial neural networks

All environmental parameters measured in the field were used
to construct a supervised training ANN, totaling 20 input vari-
ables, namely water temperature, specific conductance, pH, dis-
solved oxygen, turbidity, current velocity, depth, shading, or-
thophosphate, total nitrogen, rock substrate, boulder substrate,
pebble substrate, gravel substrate, sand substrate, clay substrate,
sand/clay substrate, macrophyte substrate, trunks substrate, and
grit substrate. All data were normalized (varying from −1 to 1),
to achieve a higher efficiency and speed during the ANN train-
ing processes (Zanchettin and Ludermir 2005).

In the network configuration, the environmental variables
represent the input data (independent variables), whereas the
species richness and abundance of species of macroalgae repre-
sent the output data (dependent or response variables), so that
together, environmental data and species richness and abun-
dance represent the input and output pairs of the network
(Fig. 1). Considering the architecture of the network, the input
layer provides environmental data to train theANN,whereas the
intermediate layers provide the understanding of the learning
process and the output layer provides the responses of the
ANN (Fig. 1). Therefore, the output layers are those that are
linked to the results of the desired prediction, which in this study,
are species richness and abundance of stream macroalgae.

The performance of an ANN architecture can be evaluated
based on various performance measures, including the per-
centage of correctly classified instances (CCI) (Fielding and
Bell 1997; Manel et al. 1999) or Cohen’s kappa values (Cohen
1960; Randin et al. 2006). However, when the output of an

ANN are data such as the richness and abundance of species,
Goethals et al. (2007) reported that the performance measures
used are mainly the correlation (r) or determination (R2) coef-
ficient and the root-mean-squared error (RMSE). In this study,
we developed two softwares, which were used to evaluate the
best ANN architecture, considering the coefficient of determi-
nation (R2) and mean-squared error (MSE) as the performance
measures. The R2 was calculated from real species richness
and abundance data (real data) and the results provided by the
ANNs (predicted data), with the ANNs that had the highest R2

and the lowest MSE (Olaya-Marín et al. 2013) being consid-
ered as the best.

The first software, which was the random combinatorial
software, created, trained, validated, and tested several net-
works by random variation in the ANN architecture throughout
successive iterations and, at the end of each iteration, retained
the architecture that showed the best performance. In contrast to
the first software, the exhaustive software, in addition to creat-
ing, training, validating, and testing different ANN architec-
tures, also promoted a nonrandom but exhaustive variation of
all architectural parameters, to explore all possible combina-
tions of ANN architectures. For training the ANNs, the data
from 89 stream segments were divided into a training set (con-
taining data from 63 stream segments), a validation set (13
stream segments), and a test set (13 stream segments).

The learning algorithm used in the ANNs was
Bbackpropagation^ (Lek and Guégan 2000; Park et al.
2003). This algorithm is characterized by two phases. In the
first stage (feed-forward phase), the input variables are pre-
sented to the ANN and their effect propagates to the output

Outputs

Hidden Layers

...

...

Inputs

Water temperature

Specific conductance

pH

Dissolved Oxygen

Turbidity

Current velocity

Depth

Shading

Orthophosphate

Total nitrogen

Rocks

Boulders

Pebbles

Gravel

Sand

Clay 

Sand/Clay

Macrophytes

Tree Trunks
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Direction of information flow

Fig. 1 Schematic illustration of
the three-layered neural networks
used to predict the species
richness and abundance of
macroalgae in streams of southern
Brazil
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layer (response layer), and then, the variation responses are
compared with the real values previously offered to the model.
If the difference between the predicted responses and the real
values previously provided to the model is greater than a
preestablished error, the ANN initiates the second stage of
the learning algorithm (feed-backward phase), where the
weights are adjusted according to a rule of error correction
(in this study, the Bdelta rule^). This error signal is then prop-
agated back into the ANN and their weights are recalculated.
This process is performed repeatedly until the ANN responses
are within the predetermined error (Rumelhart et al. 1986;
Kung 1993; Lek and Guégan 1999, 2000).

All ANNs were constructed using the MATLAB modeling
environment (Beale et al. 2015).

Results

The predictivemodels of macroalgal species richness revealed
three possible architectures of ANNs for each software used to
process the data (Table 1). Among these six possible net-
works, RCS1, obtained using random combinatorial software,

showed the best results, since this network produced a high
determination coefficient (R2 = 0.83) associated with a very
low value of the mean squared error (MSE = 0.018) (Table 1).
Additionally, a comparison of the values predicted by RCS1
with the real values from the field showed that this particular
network was extremely accurate in predicting the richness of
macroalgal species (Figs. 2 and 3). Considering the sampling
error of RCS1, measured by the comparison of the species
richness values predicted by the model and from the values
observed in each sampling point, the macroalgal species rich-
ness was precisely estimated for 39 sampling sites
(representing 44% of all streams), whereas for 82% sampling
sites (73 of the 89 streams), the maximum error was only one
species and for 96.6% of sites (86 of the 89 streams), the
maximum error was two species.

Considering the prediction ofmacroalgal abundance values
(in terms of percentage coverage), we also identified three
possible architectures of ANNs for each software used
(Table 2). Among the six possible network architectures,
RCS2, which was also obtained using random combinatorial
software, showed the best results, since it recorded the highest
coefficient of determination (R2 = 0.76), associated with an

Table 1 Comparison of
architectural parameters,
correlation values (R2), and mean
square error (MSE) between the
best artificial neural networks
obtained by Random
Combinatorial and Exhaustive
software built to predict the
species richness of macroalgae in
lotic environments of southern
Brazil

Architectural parameters Random Combinatorial Software Exhaustive Software

RCS1 RCS2 RCS3 ES1 ES2 ES3

NN first layer 28 12 7 26 28 21

NN second layer 13 7 4 10 11 10

TFF first and second tansig tansig logsig tansig logsig tansig

TFF second and output logsig tansig logsig logsig tansig logsig

TRF trainrp trainrp trainrp trainrp trainlm trainrp

R2 - Trainning set 0.85 0.79 0.71 0.98 0.92 0.79

R2 - Validation set 0.74 0.72 0.64 0.87 0.74 0.72

R2 - Testing set 0.83 0.74 0.69 0.29 0.59 0.69

MSE 0.018 0.026 0.044 0.040 0.060 0.050

NN numbers of neurons, TFF transfer function, TRF training function
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Fig. 2 A comparison of modeled
(by RCS1) and observed values of
number of species of stream
macroalgae in lotic environments
in southern Brazil
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extremely low value of the mean squared error
(MSE = 1.2 × 10−11) (Table 2). The RCS2 recorded a strong
correlation among the predicted and the observed values,
showing a huge and consistent similarity between the curves
of abundance produced by the model and the real data (Figs. 4
and 5). In this context, for 52.8% of the sampling sites (47 of
the 89 streams), the error in predicting abundance was less
than 3% of the percentage cover. If we consider the maximum
acceptable error as being 5%, RCS2 showed an even higher
performance, with 71.9% of the sampling sites (64 of the 89
streams) showing predicted values below this limit.

Discussion

Streams are highly dynamic ecosystems where biotic and en-
vironmental interactions are complex and natural disturbances
are relatively common (Hart 1992; Lake 2000). In these envi-
ronments, macroalgae often have an erratic distribution and it
is very difficult to identify reliable relationships among the

richness and abundance of species and environmental factors
by statistical or mathematical methods based on linear models
(Necchi Júnior et al. 2000; Hu and Xie 2006; Branco et al.
2009). Considering this limitation, the construction of predic-
tive models based on abiotic features and that provides good
prediction of structure of lotic macroalgal communities has
become a huge challenge and linear approaches can be
inefficient.

In this context, ANNs have been treated as a powerful
computational tool, since they can deal with nonlinear rela-
tionships, which are typical for most ecological relationships
(Gevrey et al. 2003; Gebler et al. 2014). Artificial neural net-
works have been used in studies on organisms from freshwa-
ter ecosystems (e.g., Park et al. 2003; Penczak et al. 2012;
Gebler et al. 2014; Lopez-Exposito et al. 2016); however, no
further study has yet been conducted to confirm the perfor-
mance of this approach in predicting the structure (richness
and abundance) of lotic macroalgae communities, which are
among the most important primary producers and are promis-
ing bioindicators of the trophic state in continental running
water (Branco and Pereira 2002; Peres et al. 2010; Cantonati
et al. 2012; Stancheva et al. 2012). In this study, we showed
that some architectures of multilayer ANNs were relatively
efficient in predicting the species richness and abundance of
macroalgae, even in high dynamic systems such as streams.

The most effective ANNs in this study reported relatively
high coefficients of determination (R2) between the predicted
and observed values for both species richness (RCS1) and
abundance (RCS2). In general, the R2 values recorded for
stream macroalgae were similar to or higher than those report-
ed in other studies with other organisms (e.g., Park et al. 2003;
Olaya-Marín et al. 2012; Gebler et al. 2014). Additionally, the
MSE values observed for both species richness and abun-
dance were very low (see Tables 1 and 2), suggesting that
the errors of the models were significantly reduced (Brosse
et al. 1999). Brey (2012), for instance, accepted as reasonable
the accuracy and precision of a neural network to estimate the
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Fig. 3 Correlation plot of modeled (by RCS1) and observed values of
number of species of streammacroalgae in lotic environments in southern
Brazil

Table 2 Comparison of
architectural parameters,
correlation values (R2) and mean
square error (MSE) between the
best artificial neural networks
obtained by Random
Combinatorial and Exhaustive
software built to predict the
abundance of macroalgae in lotic
environments of southern Brazil

Architectural parameters Random Combinatorial Software randômico Exhaustive Software

RCS1 RCS2 RCS3 ES1 ES2 ES3

NN first layer 20 19 8 24 23 20

NN second layer 7 9 3 10 9 11

TFF first and second tansig tansig logsig logsig tansig tansig

TFF second and output tansig tansig purelin logsig logsig tansig

TRF trainlm trainlm trainrp trainlm trainrp trainlm

R2 - Training set 0.87 0.92 0.72 0.94 0.74 0.98

R2 - Validation set 0.79 0.74 0.86 0.46 0.67 0.62

R2 - Testing set 0.69 0.76 0.69 0.58 0.56 0.13

MSE 2.2 × 10−4 1.2 × 10−11 0.046 0.042 0.062 0.043

NN numbers of neurons, TFF transfer function, TRF training function
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productivity and production of benthic macroinvertebrates
with R2 = 0.801 and RMS = 0.083. Similarly, Yoo et al.
(2013) recognized a high predictive ability of a neural network
constructed to estimate the biodiversity of tidal flat habitats
with R = 0.84 (i.e., R2 = 0.71). Olaya-Marín et al. (2013)
reported variation in R2 between 0.52 and 0.77 for ANN
models constructed to predict the richness of fish species in
Mediterranean rivers. Therefore, our results showed that the
ANN technique was able to produce models to predict rich-
ness and abundance of stream macroalgae with uncertainties
within absolutely acceptable levels.

In summary, our results reveal that the use of ANNs offers
great potential in predicting the richness and abundance of
stream macroalgae based on environmental data, since the
models constructed using this technique demonstrated a very
high accuracy. Therefore, we strongly recommend the appli-
cation of ANNs as a tool to estimate the species richness and
abundance of macroalgae in lotic environments in the context
of stream biomonitoring programs from environmental data.
In addition, we also suggest the use of ANNs in investigations
that require the evaluation of the effects of environmental

scenarios on the community structure of these organisms,
whether in purely ecological studies or as part of the manage-
ment and conservation of tropical stream ecosystems.
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