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a b s t r a c t 

The development of various heuristics has enabled optimization in simulation environments. Neverthe- 

less, this research area remains underexplored, primarily with respect to the time required for conver- 

gence of these heuristics. In this sense, simulation optimization is influenced by the complexity of the 

simulation model, the number of variables, and by their ranges of variation. Within this context, this pa- 

per proposes a method capable of identifying the best ranges for each integer decision variable within 

the simulation optimization problem, thereby providing a reduction in computational cost without loss 

of the quality in the response. The proposed method combines experimental design techniques, Discrete 

Event Simulation, and Data Envelopment Analysis. The experimental designs called orthogonal arrays are 

used to generate the input scenarios to be simulated, and super-efficiency analysis is applied in a Data 

Envelopment Analysis model with variable returns to scale to rank the input scenarios. The use of the 

super-efficiency concept enables to distinguish the most efficient input scenarios, which allows for the 

ranking of all the orthogonal array scenarios used. The values of the variables of the two input scenar- 

ios that present the highest values of super-efficiency are adopted as the new range of the optimization 

problem. To illustrate this method’s use and advantages, it was applied to real cases associated with inte- 

ger simulation optimization problems. Based on the results, the effectiveness of this approach is verified 

because it delivered considerable reductions in the search space and in the computational time required 

to obtain a solution without affecting the quality. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

In the last 40 years, Discrete Event Simulation has increasingly

een used by decision-makers in a wide range of fields ( Banks,

arson II, Nelson, & Nicol, 2009; Law, 2015 ). The flexibility, versa-

ility, and potential for analysis offered by this method have driven

he adoption of simulation ( Jahangirian, Eldabi, Naseer, Stergioulas,

 Young, 2010; Xu, Huang, Chen, & Lee, 2015 ). Identified as one of

he most commonly used research techniques in multiple sectors,

imulation enables the study of complex systems in a more rapid,

ore flexible, and more economic fashion than experimentation

ith real systems, which consumes a greater amount of resources

 Law, 2015; Shen & Wan, 2009 ). 
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One drawback to simulation is the fact that it provides statis-

ical estimations for a single unique problem unless a sensitivity

nalysis is applied ( Hillier & Lieberman, 2010 ). Without optimiza-

ion software, analysts would be forced to simulate each input sce-

ario individually (with different numerical and logical program-

ing requirements that must be altered manually by the analyst

n each simulation run) based on the real-world situation to search

or the simulation model with variable arrangements that produces

he most desirable results ( Law & McComas, 2002 ). 

With the aim of overcoming this hurdle, the concept of simula-

ion optimization appeared in the 1990s as a viable option ( Fu et

l., 20 0 0; Pasupathy & Ghosh, 2014 ) and has been widely accepted

n the market, as evidenced by the availability of simulation

oftware with integrated optimization routines ( Alrabghi & Tiwari,

015, Banks et al., 2009; Better, Glover, & Kochenberger, 2015;

igueira & Almada-Lobo, 2014; Fu, 2015; Fu et al., 2014; Kleijnen,

015 ). 

Although advancements have occurred in the realm of opti-

ization, a common criticism that remains is that when these
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commercial software packages are presented with more than one

decision variable, the solution time usually grows significantly

( Harrel, Ghosh, & Bowden, 2004; Tenne & Goh, 2010 ). Furthermore,

according to Hillier and Lieberman (2010) , despite advancements

in optimization software, simulation is still considered a relatively

slow and costly means of studying chaotic and dynamic systems.

Complex random systems require great investment in terms of

money and time for programming and analysis, without even con-

sidering computational costs. 

In an attempt to move beyond this obstacle, many studies have

concentrated on development of methods for optimization, i.e.,

metaheuristics, which increase optimization efficiency by seeking

solutions within acceptable computational time ( Bachelet & Yon,

2007; Dellino, Kleijnen, & Meloni, 2010; Lin, Sir, & Pasupathy, 2013;

Martins et al., 2013; Siegmund, Bernedixen, Pehrsson, Ng, & Deb,

2012; Willis & Jones, 2008 ). However, few studies have examined

placing a limit on the optimization search space and thus working

only with the most significant variables and the best range of val-

ues for each variable. Among these investigations, factorial designs

stand out in their attempt to identify the significant variables for

problems and concentrate the optimization process on these vari-

ables ( Besseris, 2012; Kleijnen, 1998; Kleijnen, 2017; Montevechi,

Miranda, & Friend, 2012 ). 

Therefore, this study aims at defining the best variation ranges

for each integer decision variable, thus reducing the search space

and the computational time involved in the optimization process

through simulation while reaching an optimal solution. In a way

to meet its objective, this study proposes a method to integrate Or-

thogonal Arrays, Discrete Event Simulation, and Data Envelopment

Analysis (DEA) with variable returns to scale (DEA BCC) combined

with the concept of super-efficiency. 

Orthogonal arrays are used in this study for a pre-assessment

of the search space of the simulation optimization problems, be-

cause these arrays are experimental designs covering several vari-

ables with multiple levels; the orthogonal arrays are popular in

Taguchian optimization; see Taguchi (1987) . 

Data Envelopment Analysis (DEA) consists of a methodology

for a comparative measurement of the efficiency of Decision Mak-

ing Units (DMUs) ( Cooper, Sieford, & Tone, 2007 ). The classic DEA

models developed by Charnes, Cooper, and Rhodes (1978 ) consider

a constant return to scale, it is named DEA CCR, referring to the

first letters of the surnames of their authors. Banker, Charnes, and

Cooper (1984 ) had modified this DEA model to include a variable

return to scale, this model is named DEA BCC, referring to the first

letters of the surnames of their authors. 

The DEA enables the identification of reference DMUs and gen-

erate an efficient border. In classic DEA models, DMUs with effi-

ciency indexes equal to one are considered efficient, while those

with efficiency indexes lower than one are inefficient. However,

several DMUs may have efficiency indexes equal to one. 

In this case and with a view to deal with such limitation,

Andersen and Petersen (1993) have proposed the super-efficiency

concept. The method promotes an alteration in the formulation

of the DEA BCC model, allowing efficient DMUs to have efficiency

indexes over one, and, this way, enabling to rank the most effi-

cient DMUs. Therefore, based on the super-efficiency ranking, it is

possible to reduce the search space of the optimization problem

through the identification of the orthogonal array most efficient

scenarios and, as consequence, incrementing the process efficiency.

Recently, Miranda, Montevechi, Silva, and Marins (2014 ) pro-

posed a new Fuzzy-DEA-BCC model to obtain optimum variation

intervals for decision variables, to improve DEA’s discrimination

power under occurrence of uncertainty and seeking for reduction

in search space and computational solution times when compared

to conventional simulation optimization techniques. They adopted

orthogonal array to generate the necessary quantity of DMUs, and
he output variables were generated by simulation. The Fuzzy-DEA-

CC model was applied to two mono- and multi objective prob-

ems, and it presented good results which confirmed its reliabil-

ty and applicability. However, it can be difficult to apply this pro-

edure to large-scale problems because it involves mathematical

omplexity that requires advanced knowledge of Operations Re-

earch techniques from the analyst involved in the simulation. 

Here, we proposed the classical DEA BCC model, also using

rthogonal array, as simpler and innovative alternative than the

uzzy DEA BCC model ( Miranda et al., 2014 ) to analyze the super-

fficiency. The new procedure reduces search space in the opti-

ization problems without compromising the solution quality, and

t allows solving real, complex, and large-scale problems, with sub-

tantial decrease in the associated computational time. 

To address the proposed objectives, this paper is organized into

our more sections. Section 2 presents the literature review upon

hich the study is based, Section 3 describes the proposed op-

imization procedure, Section 4 applies the proposal to simula-

ion models and discusses the obtained results, and finally, Section

 summarizes the study conclusions. 

. Literature review 

.1. Simulation optimization 

The overwhelming majority of simulation optimization prob-

ems in such fields as manufacturing, logistical, and transport sys-

ems; supply chains, medical fields, and other applications are too

omplex to be modeled analytically. In these cases, simulation pro-

ides a useful method for evaluating the performance of these

omplex systems but can present deficiencies when applied in iso-

ated situations. Thus, in many cases, the coupling of simulation

nd optimization is necessary ( Lee, Chew, Teng, & Chen, 2008 ). 

According to Fu (2002) , Simulation Optimization can be defined

s the process of seeking out the best combination of the decision

ariables. 

Swisher et al . (20 0 0) goes on to state that the simulation model

ecision variables domain may be both discrete, continuous, or a

ixture of these two. The type of decision variable as well as its

ariation range will influence the search space and the optimiza-

ion method that will be used. 

Additionally, according to Nelson (2010) , many decision vari-

bles in simulation optimization problems are discrete, which in-

reases the difficulty in obtaining solutions and a gap exists in the

iterature on this topic. 

Fu (1994) defines a traditional minimization problem with a

ingle objective via simulation as: 

in f 
(
θ
)

(1)

ubject to: θ∈ �

ith f( θ) = E [ ψ( θ, ω)] as the expected value for the estimated sys-

em performance based on the simulation model, ψ j ( θ, ω) indicat-

ng the observed performance values derived from the discrete or

ontinuous decision variables belonging to the feasible set �, ω
epresents the pseudorandom numbers (PRNs), θ is a controllable

ector of p parameters, and � is the constraint set on θ. 

Kleijnen, Van Beers, and Van Nieuwenhuyse (2010) wrote that

imulation optimization problems are generally difficult to solve or

P-Hard and claim the disadvantages lie in the fact that simula-

ion model output data originate from implicit functions and are

xposed to noise caused by the PRNs. Furthermore, depending on

he number of decision variables in the simulation model and the

anges of the decision variables, the optimization process can be-

ome complex due to the computational demands and the time

nvolved in convergence of these algorithms. 
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.2. Data envelopment analysis (DEA) 

According to Cook and Seiford (2009) , DEA is a methodology

sed to perform a comparison of the relative efficiencies of DMUs.

nother important characteristic of the DEA models is that they

llow consideration of incommensurability, that is, the presence of

ifferent measurement units for the input and output matrix ele-

ents ( Tamiz, Jones, & El-Darzi, 1995 ). 

The DEA models enable users to identify DMUs that are bench-

arks for the other models under analysis, thus creating an ef-

ciency boundary. The classic DEA CCR and DEA BCC models are

efined as follows. 

In their original model, Charnes et al. (1978) used Fractional

rogramming to obtain the input and output variable weights, as

hown in ( 2 )–( 5 ): 

ax w 0 = 

s ∑ 

r=1 

u r y r0 / 

m ∑ 

i =1 

v i x i 0 (2) 

ubject to: 
 

s ∑ 

r=1 

u r y r j / 

m ∑ 

i =1 

v i x i j 

) 

≤ 1 , j = 1 , 2 , . . . , n (3)

 r ≥ 0 , r = 1 , 2 , . . . , s (4)

 i ≥ 0 , i = 1 , 2 , . . . , m (5)

here j are the DMU indices; n is the total number of DMUs; r ∈
 1, … ,s } is the output index, where s is total the number of out-

uts; i ∈ { 1, … ,m } is the input index, where m is the total number

f inputs; y rj is the r th output for the j th DMU; x ij is the i th input

or the j th DMU; u r is the weight associated with the r th output;

 i is the weight associated with the i th input; w o is the relative ef-

ciency of DMU 0 , which is the DMU under evaluation; and y r0 and

 i0 are respectively the outputs and inputs for DMU 0 . 

It can be observed that when w 0 =1, DMU 0 is efficient com-

ared with the other units considered in the model; w 0 < 1 im-

lies that the DMU is inefficient. 

The model given by ( 2 )–( 5 ) is not linear; however, it can be lin-

arized as shown in ( 6 )–( 10 ), thus generating the input-oriented

EA CCR model ( Charnes et al., 1978 ) that presents a constant re-

urn of scale: 

ax w 0 = 

s ∑ 

r=1 

u r y r0 (6) 

ubject to: 

m 

 

i =1 

v i x i 0 = 1 (7) 

s 
 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j ≤ 0 , j = 1 , 2 , . . . , n (8)

 r ≥ 0 , r = 1 , 2 , . . . , s (9)

 i ≥ 0 , i = 1 , 2 , . . . , m (10)

In a similar procedure, it is possible to formulate the output-

riented DEA CCR model ( Charnes et al., 1978 ). 

For cases in which it is interesting to consider variable returns

f scale, the input-oriented DEA BBC model ( Banker et al., 1984 )

iven by ( 11 )–( 16 ) was developed, and the main difference be-

ween the DEA BCC and DEA CCR models is the addition of the

ree variable c 0 : 

ax w 0 = 

s ∑ 

r=1 

u r y r0 + c 0 (11) 
ubject to: 

m 

 

i =1 

v i x i 0 = 1 (12) 

s 
 

r=1 

u r y r j −
m ∑ 

i =1 

v i x i j + c 0 ≤ 0 , j = 1 , 2 , . . . , n (13)

 r ≥ 0 , r = 1 , 2 , . . . , s (14)

 i ≥ 0 , i = 1 , 2 , . . . , m (15)

 0 f ree (16) 

In a similar procedure, it is possible to formulate the output-

riented DEA BCC model ( Banker et al., 1984 ). 

Banker et al. (1984) commented that a DMU that is consid-

red efficient by BCC also would be considered efficient by the CCR

odel; however, the inverse of this statement will not necessarily

e true. Furthermore, according Cooper et al. (2007) , the DEA BCC

odel is invariant to the application of linear transformations to

he inputs and/or outputs values involved, which does not occur in

he DEA CCR model. 

The DEA BCC model was chosen for use with the methodology

roposed herein, primarily due to the stochastic and non-linear na-

ure of simulation and the multiple inputs and outputs in the sim-

lation models. These inputs and outputs are the DMUs for the

EA model, as shown in Section 4.1 , and have different returns of

cale. 

Moving forward, due to its property of invariance to linear

ransformations, the DEA BCC model allows the use of data that

resent negative values, which can occur in stochastic simulation

odels, e.g., in the case of a variable associated with profit that

ould turn negative in the case of financial loss. The solution pro-

osed in the literature for this case is to add a positive value to

he inputs and/or outputs values of each DMU. 

Finally, according to Azadeh, Moghaddam, Asadzadeh, and Ne-

ahban (2011) , if the output values are given in the form of ratios,

uch as production, productivity and waste rates, and these are the

ype of problems addressed in this work, the DEA BCC model is the

ost frequently applied. 

For Banker, Charnes, Cooper, Swarts, and Thomas (1989) , to

nable suitable discrimination of the DMUs in a traditional DEA

odel, one should verify whether the number of DMUs meets

golden rule): 

 ≥ Max { ( ms ) , 3 ( m + s ) } (17) 

here n is the total number of DMUs; m is the total number of

nputs and s is total the number of outputs. 

Classic DEA models consider DMUs with w 0 =1 as efficient and

MUs with w 0 < 1 as inefficient. This situation occurs if there is

 possibility that multiple DMUs may have w 0 =1; i.e., it is dif-

cult to differentiate between DMUs. To address this limitation,

ndersen and Petersen (1993) proposed a concept known as super-

fficiency, which determines the difference between DMUs that

resent w 0 =1. For ( Bal et al., 2010 ) the use of super-efficiency al-

ows an increase in the DMU discrimination. This concept will be

sed in this study together with the techniques covered in the fol-

owing sections. 

For use of the super-efficiency approach in a DEA BCC model,

ndersen and Petersen (1993) suggest the removal of restriction

 13 ) from the model but only for the DMU under analysis, thus

nabling the DMUs to attain levels greater than 1, which may facil-

tate the elaboration of an efficiency ranking for those DMUs that

riginally presented w =1. 
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Table 1 

Taguchi’s orthogonal array and full factorial design. 

Orthogonal array L16 (4 4 ) Full factorial (2 4 ) 

A B C D A B C D 

1 1 1 1 1 1 1 1 

1 2 2 2 4 1 1 1 

1 3 3 3 1 4 1 1 

1 4 4 4 4 4 1 1 

2 1 2 3 1 1 4 1 

2 2 1 4 4 1 4 1 

2 3 4 1 1 4 4 1 

2 4 3 2 4 4 4 1 

3 1 3 4 1 1 1 4 

3 2 4 3 4 1 1 4 

3 3 1 2 1 4 1 4 

3 4 2 1 4 4 1 4 

4 1 4 2 1 1 4 4 

4 2 3 1 4 1 4 4 

4 3 2 4 1 4 4 4 

4 4 1 3 4 4 4 4 
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2.3. Orthogonal arrays 

Ballantyne, Van Oorschot, and Mitchell (2008) note that the

process of simulation optimization for complex systems with mul-

tiple input variables can require a considerable amount of time and

consume extensive resources in terms of personnel and financial

impacts. For systems with only a few levels, Antony (2006) recom-

mends the use of factorial strategies, i.e., full, or fractional designs,

which typically work with two levels, i.e., one lower and one upper

level ( Montgomery, 2009 ). 

Complex processes involving four or more input variables with

three or more levels require a larger number of experiments for

thorough optimization. One alternative approach is the use of or-

thogonal array ( Taguchi, 1987 ), which reduces the number of nec-

essary experiments and makes it possible to analyze and deter-

mine the most important input variables. 

Taguchi, Chowdhury, and Wu (2005 ) define the orthogonal ar-

ray as a matrix of numbers arranged in lines and columns in a way

that each pair of columns is orthogonal to the other. When used in

an experiment, each line represents an experimental situation, and

each column a specific factor or condition that may be altered. Ac-

cording to Taguchi et al. (2005 ) an orthogonal matrix enables the

evaluation of the impact of each parameter independently. 

In fact, this array allows for the consideration of k input vari-

ables with l levels while testing each level of each variable in a

balanced manner ( Ross, 1996 ). In these arrays, the number of ex-

periments needed is recognized by the index that accompanies the

L abbreviation (Latin Square). A L8 experiment, for instance, refers

to an experiment with eight experiments, disregarding any repli-

cations ( Ross, 1996 ). For Roy (2010) , orthogonal arrays usually de-

fine other ratings that show the number of factors involved in each

array. For instance, the orthogonal array L16 (4 4 ) foresees the per-

formance of 16 experiments in 4 columns, being each column the

combination of 4 levels. 

In this paper, orthogonal array is used as a pre-evaluation phase

of the search space during optimization to generate a more diver-

sified experimental matrix. The orthogonal arrays are selected as a

function of the number of variables involved and their ranges, and

the experimental matrix guides the running of the simulation in-

put scenarios. The efficiency for each input scenario is determined

by a DEA BCC model. 

As an example, Table 1 presents an experimental matrix for a

L16 (4 4 ) orthogonal array and full factorial design (2 4 ) for four in-

put variables (A, B, C, D) and four levels (1, 2, 3, 4). 

The example shows that the orthogonal array explores all four

levels for all four input variables that compose the feasible region
n a more diversified manner, whereas the full factorial experimen-

al matrix examines only two levels for each input variable these

wo levels are the levels 1 and 4 (excluding the levels 2 and 3).

he discussion about the power of analysis of both experimental

esigns is beyond the scope of this paper, since only the experi-

ental arrays are used to represent the feasible region of the op-

imization problem. 

. Proposed simulation optimization method 

The procedure proposed in this paper includes the following as-

umptions: 

- The use of orthogonal arrays permits to explore the feasible re-

gion of the simulation optimization problem. 

- By ranking of the most efficient DMUs, the application of DEA

in the orthogonal array makes it possible to reduce the search

space of the simulation optimization problem. 

- With the search space reduction, the computational time re-

quired for solving the simulation optimization problem will be

less than that associated with the full search space to obtain

solutions that are statistically equivalent. 

The proposed method for effective reduction of search space

uring simulation optimization in this work makes use of four

echniques: 

(1) Orthogonal array is applied to select the experimental ma-

trix and generate input scenarios. 

(2) Simulation is used to obtain the input/output data. 

(3) A DEA BCC model is adopted to analyze the efficiency

of each generated input scenario (DMUs) and to rank the

DMUs. 

(4) Simulation optimization is used to obtain the solution. 

Fig. 1 (adapted from Miranda et al., 2014 ) presents the proposed

tep-by-step approach for optimization and assumes that the sim-

lation model has been built, programmed, verified, and validated.

urthermore, all decision variables are integers. 

The steps are described as follows: 

(1) Determine the decision variables ( x 1 , x 2 , x 3 , … , x n ) and the

input variable ranges for each variable. 

(2) Determine the estimator of the objective to be optimized ( y ).

(3) Select the Taguchi’s orthogonal array (L4, L9, L12, L16, L25,

L32, L54, …) as a function of the number of decision vari-

ables and their ranges as well as the minimum number of

DMUs to be analyzed using DEA BCC with the purpose of

meeting the basic rule for number of DMUs ( Banker et al.,

1989 ). 

(4) Execute the chosen orthogonal array combining original sim-

ulation inputs. 

(5) Execute the experiments and store the simulated data for

analysis. 

(6) Determine each input scenario’s super-efficiency by applica-

tion of DEA BCC for the simulated results. 

(7) Rank the most efficient DMUs. 

(8) Set new ranges of variation for each decision variable based

on two most efficient DMUs. Remove from the optimization

process, the variables that possess equal values in both most

efficient DMUs. 

(9) Optimize the simulation model using the new ranges for the

remaining decision variables. 

It should be noted that the first two steps of the proposed

ethod are part of the definition of formulating the optimization

roblem, while the remaining steps are part of the method of solv-

ng the problem. In Fig. 1 , the activities established to the right of
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Fig. 1. Proposed optimization method (adapted from Miranda et al., 2014 ). 
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he main flow (steps 0, 5 and 9) are performed in the simulator or

n the optimization module coupled to the simulator. 

To exemplify the application of the procedure from Fig. 1 , real

ases will be presented in the next section. In accordance with the

ssumptions of this study, the simulation models were validated

nd verified and thus are suitable for simulation optimization. 

. Application of the optimization procedure, results, and 

iscussion 

According to Ahuja, Magnanti, and Orlin (1993) , there are three

ossible approaches for complexity analysis of the proposed pro-

edure: Empirical Analysis, Average-Case Analysis, and Worst-Case

nalysis. This work adopted the Empirical Analysis for testing the

erformance of the proposed procedure on certain classes of prob-

em instances. 

This section describes real cases in which the proposed opti-

ization procedure was implemented. The cases are typical prob-

ems that appear in the manufacturing area and present increasing

umber of scenarios. Note that for design of experiments problems

ith multiple, and different level for each decision variable, the as-

ociated complexity is: 

n 
 

i =1 

l i (18) 

here l i is the number of levels for ith decision variable, and n is

he number of decision variables. 

This study evaluated three classes of simulation optimization

roblems: 

(1) Integer Simulation Optimization problems with the same

number of levels per decision variable. 
(2) Integer Simulation Optimization problems with a different

number of levels per decision variable. 

(3) Integer Simulation Optimization problems where the num-

ber of decision variables changes while the simulation

model remains the same. 

The simulation models were implemented using the ProModel

oftware ( ProModel, 2016 ). The case studies represent large-scale

roblems in which discrete event simulation is often used to sup-

ort decision-making. The cases exemplify the use of the method

or reducing the search space. It should be noted the method

eveloped herein can be applied to any simulation optimization

roblem if the problem presents the same assumptions already

ited. 

.1. First class of simulation optimization problems 

.1.1. Case study 1 

The first case study is taken from a Brazilian telecom company

hat produces transponders sold to several countries. The simu-

ation model was effectively verified and validated such that the

odel represents the system that both researchers and systems

pecialists sought to optimize. The model was programed in the

roModel software and consists of eight locations, seven entities

nd eight resources. The Appendix brings the probability distribu-

ions (adherence tests) for the times of the simulated processes

nd the conceptual model for the case study. 

For this first case study, the decision variables were defined

s number of workbenches (types 1 and 2) denoted by ( x 1 , x 2 ),

nd the number of technical personnel (types 1, 2 and 3) denoted

y ( x , x , x ), which perform different activities that make up
3 4 5 



678 R.d.C. Miranda et al. / European Journal of Operational Research 262 (2017) 673–681 

Table 2 

Decision variables for original search space - case study 1. 

Decision variables (integers) 

x 1 Number of workbenches, Type 1 1 ≤ x 1 ≤ 5 

x 2 Number of workbenches, Type 2 1 ≤ x 2 ≤ 5 

x 3 Number of technical personnel, Type 1 1 ≤ x 3 ≤ 5 

x 4 Number of technical personnel, Type 2 1 ≤ x 4 ≤ 5 

x 5 Number of technical personnel, Type 3 1 ≤ x 5 ≤ 5 
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the production cell. The decision variables are integers. Table 2

presents this information. 

The optimization objective was to find the best combination of

variables to maximize the estimator of the total production, de-

noted by y . From Table 2 , there are five decision variables, each

one with five levels, and the total level number calculated by ( 18 )

is: 
∏ 5 

i =1 l i = 3 , 125 scenarios. 

Orthogonal array L25 was chosen for the quantity of variables

and the variation of the levels for each. This array covers out 25

experiments, which meets the minimum rule ( Eq. 17 ). 

Once the array was defined, an experimental matrix was gen-

erated and is presented in Table 3 . The input scenarios from the

experimental matrix were simulated in ProModel. The simulation

run length for each input scenario is one month of simulated op-

erations in the production cell, and the data for each estimator of

the objective function were stored to calculate the super-efficiency.

The number of necessary replications for each scenario was calcu-

lated considering the minimum number of data needed for the ap-

plication of the parametric tests (normality test and t -test) and the

calculus proposed by Banks et al. (2009 , p. 4 45–4 49), and turned

out to be 30. 

Simulations of the 25 input scenarios and their respective repli-

cations were performed on a computer with an Intel Core 2 Duo

1.58-GigaHertz processor, 2 GigaByte of RAM, and the Windows

(64-bit) operating platform. For the simulation of the 30 replica-

tions of each of the 25 scenarios, common random numbers (CRN)

were used. The entire process lasted slightly less than 25 minutes. 

The software General Algebraic Modeling – GAMS, version

23.6.5 ( Gams, 2015 ), was used to calculate the efficiency related

to each DMU and adapted to calculate the super-efficiency. With

these results, it is possible to relate the efficiency value of each

DMU to each input scenario. These values are listed in Table 3 .

The formulation of the DEA model for the case study is in the

Appendix. 

The analysis of the super-efficiency values ( Table 3 ), ranked the

most efficient DMUs, and it was shown that DMU 17 is the most

efficient followed by DMU 1. Both DMUs are listed in Table 3 . With

the identification of the two most efficient DMUs, a new interval

for each decision variable can be redefined, thus leading to a re-

duction of optimization search space. For instance, for the x 1 vari-

able, the analysis of Table 3 showed that in the most efficient DMU,

such variable was equal to 4, while the second most efficient DMU

was equal to 1, therefore, according to the proposed method, this

variable assumes a new variation range given by 1 ≤ x 1 ≤ 4. Table

3 shows that variable x 5 presented the same value for its most effi-

cient DMUs; namely, the value 1, reducing the number of variables

under evaluation from 5 to 4. The new intervals for the other de-

cision variables are shown in Table 4 . 

With the reduction of the variation interval for each decision

variable, the search space was reduced from 3125 to 120 scenar-

ios, a reduction of 96.16%. The commercial optimizer SimRunner

( SimRunner User Guide, 2002 ) was used to test the efficiency of

this proposal . SimRunner is a robust software package that is avail-

able with ProModel and uses Genetic Algorithms associated with

Evolution Strategies ( Banks et al., 2009 ). 
To confirm the results from case study 1, SimRunner was set to

he same conditions and the same objectives and with the original

ecision variable ranges (see Table 2 ). The results obtained with

he optimization by reducing the search space and with the origi-

al search space of the problem are presented in Table 5 . 

The optimal values estimated by the optimizer for the decision

ariables were equal only for the variable x 3 ; namely, the value 4.

or the other decision variables, SimRunner found different values,

s shown by the fact that the problem with the original ranges

ould require researchers to hire a greater number of technical

ersonnel of type 2 and type 3 and purchase additional work-

enches of type 2. 

In a way to assure the equality of results for the estimator of

he objective function, the t -test ( Montgomery, 2009 ) was applied

or the difference of the 30 responses regarding each replication

f the solutions found by the optimizer, considering the original

earch space and the reduced search space. To do so, we defined

 ( i, j ) as the optimum estimated by method i with i = 1, 2 (reduced

nd original search space) in replication j with j = 1, …, 30. Com-

uted the 30 differences d ( j ) = y (1, j ) - y (2, j ), the t -test was applied

o these d ( j ). The p -value of the test was equal to 0.758, evidencing

o difference of results, that is, they are equivalent in terms of the

stimated optimal simulation output. 

Continuing the analysis, it can be observed that the optimiza-

ion phase completed 69 experiments before converging while

orking in a reduced range equivalent to 57.5% of the total search

pace and consumed 2.4 hours of computational time. In compar-

son, the solution that considered the original range required 243

xperiments, which is equivalent to only 7.7% of the feasible re-

ion, and consumed approximately 8 hours. 

To validate the assumptions applied and the results produced,

125 input scenarios (related to the total search space) were exe-

uted with 30 replications each, i.e., a total of 93,750 simulations

ere performed. Approximately 106 hours were required to run

ll the input scenarios and their replications. In this sequence, the

fficiency analysis using DEA BCC model was carried out for the

125 input scenarios (number of DMUs) and obtained 1426 effi-

ient DMUs. 

For comparison, the DEA BCC model was also applied to 120

nput scenarios limited by the procedure proposed. In fact, consid-

ring the 120 input scenarios, 73 were efficient, i.e., the proposed

rocedure led to a new search space for the simulation optimiza-

ion problem with approximately 61% of the original efficient input

cenarios. In other words, the proposed procedure provided a re-

uction of the search space from 3125 input scenarios to 120 (a

eduction of approximately 96%) without loss of solution quality. 

Furthermore, it was observed that with generation of 100% of

he possible input scenarios, the optimal solution (the average of

he 30 replications) involved production of 1399 products within

n interval with 95% confidence given by (1395; 1402). This result

s statistically equivalent to that obtained by the proposed method

reduced search space): 1397 products within an interval with 95%

onfidence given by (1393; 1400). 

.2. Other classes of problems 

The same steps, presented for case study 1, were applied to

ther case studies, described in the Appendix of this paper. The re-

ults found for all case studies, with respect to reduction of search

pace and time, are shown in Table 6 . 

Applying the method to the case studies led to an average re-

uction in search space of 97%, and an average reduction in com-

utation time of 40%, with no loss of quality of response reported.
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Table 3 

Experimental matrix and results obtained for case study 1. 

DMU Decision variables Estimator of the 

objective function 

Super-efficiency Ranking 

x 1 x 2 x 3 x 4 x 5 ȳ 

1 1 1 1 1 1 853.77 2.0 0 0 2 

2 1 2 2 2 2 1392.97 1.630 6 

3 1 3 3 3 3 1391.40 1.0 0 0 19 

4 1 4 4 4 4 1393.53 1.370 8 

5 1 5 5 5 5 1392.97 1.0 0 0 20 

6 2 1 2 3 4 1252.93 1.159 15 

7 2 2 3 4 5 1394.50 1.085 16 

8 2 3 4 5 1 1393.47 1.278 10 

9 2 4 5 1 2 851.73 1.0 0 0 21 

10 2 5 1 2 3 1136.77 1.218 13 

11 3 1 3 5 2 1394.30 1.345 9 

12 3 2 4 1 3 851.57 1.0 0 0 22 

13 3 3 5 2 4 1396.43 1.875 4 

14 3 4 1 3 5 1125.00 1.0 0 0 18 

15 3 5 2 4 1 1393.43 1.529 7 

16 4 1 4 2 5 1395.57 1.917 3 

17 4 2 5 3 1 1395.43 2.989 1 

18 4 3 1 4 2 1121.83 1.182 14 

19 4 4 2 5 3 1394.90 1.687 5 

20 4 5 3 1 4 847.63 1.0 0 0 23 

21 5 1 5 4 3 1394.83 1.039 17 

22 5 2 1 5 4 1152.07 1.244 11 

23 5 3 2 1 5 852.07 1.0 0 0 24 

24 5 4 3 2 1 1306.07 1.224 12 

25 5 5 4 3 2 1389.67 0.790 25 

Table 4 

Decision variables for reduced search space – case study 1. 

Decision variables (Integers) 

x 1 Number of workbenches, Type 1 1 ≤ x 1 ≤ 4 

x 2 Number of workbenches, Type 2 1 ≤ x 2 ≤ 2 

x 3 Number of technical personnel, Type 1 1 ≤ x 3 ≤ 5 

x 4 Number of technical personnel, Type 2 1 ≤ x 4 ≤ 3 

Table 5 

Optimization results for case study 1. 

Decision variables Solution 

Reduced search space 

(Proposed method) 

Original search 

space 

x 1 3 1 

x 2 2 5 

x 3 4 4 

x 4 3 4 

x 5 1 5 

Estimator of the 

objective function 

Responses 

Reduced search space 

(Proposed method) 

Original search space 

ȳ 1397 1398 

Confidence interval 

for ȳ (95%) 

(1393–1400) (1394–1401) 

Computational 

time 

Reduced search space 

(Proposed method) 

Original search space 

(2.4 + 0.42) hours 8.0 hours 
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. Conclusions and recommendations for future studies 

The proposed simulation optimization method was integrated

ith DEA BCC, adapted to the concepts of super-efficiency and or-

hogonal array, and used to determine the best search space. This

ethod produced excellent results for the problems investigated. 
The studied cases, which were associated with real input sce-

arios were modeled using simulation. With the application of this

ethod, reductions of nearly 97% of the search space were attained

ithout loss of response quality. We also wish to point out that,

ith the application of the method, average reductions of 40% in

omputational time were reached in the simulation optimization. 

Furthermore, it should be noted that because it is not a para-

etric analysis tool, DEA enables users to work with data asso-

iated with non-normal probability distributions as well as small

amples. In addition, we solve the problem of incommensurability;

.e. in the input and output matrix represented by the orthogonal

rrays, we could admit different measurement units and different

cales between the variables of decision and responses without the

eed of any data modification. 

The use of the SimRunner optimizer allowed for comparison of

he optimization results with those from the original search space

nd from the reduced space proposed in this paper. In all cases,

imRunner reached equivalent solutions in terms of the estimated

ptimal simulation output ( y ), thus demonstrating that the reduc-

ion in search space leads to optimal solutions for the problem. An-

ther highlight is that in all cases, the reduction in computational

ime obtained with the optimization procedure was significant. 

The reduction of search space allows the feasible region to be

etter explored by SimRunner. In the studied cases, the coverage of

he feasible region after reduction of the search space was signif-

cantly greater resulting in estimated values of the objective func-

ion that often do not differ significantly to those found by the op-

imizer when considered all the search space. 

In this manner, it can be assumed that, it is possible to repre-

ent the feasible region of a simulation optimization problem using

rthogonal array. Additionally, using the super-efficiency analysis

f the results of this array, it is possible to reduce the search space

y ranking the most efficient DMUs using a DEA BCC model. 

With respect to recommendations for future studies, the au-

hors suggest: 

– Application of the proposed procedure in multi-objectives opti-

mization problems. 
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Table 6 

Results for reducing search space and computational time. 

Class / Case 

study 

Original search 

space 

Reduced search 

space 

Reduction (%) Time SimRunner (Original 

search space) Hours 

Time method (Reduced 

search space) 

Reduction (%) 

1 1 3125 120 96.16 8.00 (2.40 + 0.42) h 64.79 

2 15,625 480 96.93 78.50 (45.50 + 3.00) h 38.22 

3 10 0,0 0 0 1200 98.80 11.50 (7.40 + 0.88) h 27.97 

2 4 4320 200 95.40 25.20 (9.60 + 8.5) h 28.17 

5 2488,320 7776 99.70 10.12 (5.18 + 0.62) h 42.69 

6 127,776 484 99.60 7.46 (4.70 + 1.10) h 22.25 

3 7 107,811 15,309 85.80 5.15 (3.34 + 0.81) h 19.42 

8 1331 33 97.50 4.75 (0.70 + 0.72) h 70.11 

9 215,622 1764 99.20 4.72 (2.88 + 0.75) h 23.09 
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– Investigation of other experimental arrays combined with a

DEA in a way to improve the efficiency and the effectiveness

of the proposed method. 

– Testing of the proposed procedure in problems involving con-

tinuous variables. 

– Testing of the proposed procedure using other optimizers. 

– Testing of BiO-MCDEA models to replace the DEA BCC model

( Ghasemi et al., 2014 ). 
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