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Abstract A full computer-based methodology is proposed
for electromagnetic transient simulations in power cables
characterized by an arbitrary cross-section geometry. The
frequency-dependent parameters of the cables are calcu-
lated using finite element method, and the three-phase cable
modeling is carried out using modal decoupling and fitting
techniques. The multiconductor representation of a sector-
shaped cable is possible from the calculation of a constant
and real modal transformation matrix, resulting four inde-
pendent propagation modes (three phases and cable shield),
which are modeled from the inclusion of frequency effect in
the classic Bergeron method. The currents and voltages are
expressed as a system of differential equations, which are
presented as state equations and solved using numerical inte-
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gration methods. The proposed modeling technique allows
the inclusion of time-variable and nonlinear elements during
electromagnetic transient simulations in the time domain,
which is not possible from frequency-domain models that
are solved using inverse transforms. The proposed model
is validated from results simulated using numerical Laplace
transform and exact modal transformation matrix for calcu-
lation of phase currents and voltages.

Keywords Power cables · Electromagnetic transients ·
Frequency-dependent parameters · State equations

1 Introduction

The impact of alternative power sources, distributed gen-
eration and smart grids has been widely discussed in the
present conjuncture of power systems in many countries.
However, the proposal of alternative power sources (e.g.,
wind farms and solar energy) requires new technologies
for integration of different power sources (distributed gen-
eration) in the same conventional power grid by means of
alternative techniques for power transmission and distribu-
tion. For example, underground cables have been preferred
to overhead transmission and distribution lines in several
countries in Europe and North America due to environmen-
tal and political issues (Kariyawasam et al. 2011; Orton
and Samm 1997). Submarine and underground cables are
widely used for interconnection of offshore wind farms and
shore-based electrical distribution systems (Gouda and Dein
2015; Lazaropoulos 2014; Marshall et al. 2013; Kabalci
et al. 2012; Papadopoulos et al. 2013). The development of
other new offshore systems and renewable energy sources
is being continuously encouraged as well as new techniques
for electrical power transport using various configurations of
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compact power cables with reduced cross section and non-
conventional conductors’ shape.

Low-voltage underground cables are widely used for
power distribution in urban and populated areas in many
countries. The power distribution by underground cables,
instead overhead lines, provides several advantages in envi-
ronmental and technical terms.Although underground power
distribution iswell established inmany countries, a full atten-
tion has been given for design of new power cables and
impact of recent applications in smart grids on the distribu-
tion grids using conventional underground cables (Gouda and
Dein 2015; Lazaropoulos 2014;Marshall et al. 2013). An up-
to-date research on new technologies, for underground power
distribution, is the use of non-conventional compact cables
for electrical power and telecommunication signal transmis-
sion (Lazaropoulos 2014). It represents an asymmetric cable
with four conductors: three sector-shaped conductors and a
cylindrical shield conductor. The referred underground cable
can provide a broadband communications platform for sev-
eral applications in smart grids, such as advanced metering
infrastructure, demand information, wide-area networking,
storage/distribution grid management (Kabalci et al. 2012).

Compact power cables are also applied for very specific
situations, as for oil exploration on offshore platforms (Salles
et al. 2010). Submarine machines are operated using umbili-
cal cables composed of more than one independent three-
phase power circuit with variable frequency and voltage.
In addition, hydraulic steel tubes and independent conduc-
tors for signal transmitting are integrated in the same power
cable. Furthermore, submarine power cables are used for
interconnection of offshorewind farms and shore-based elec-
trical transmission/distribution systems (Chien and Bucknall
2006).

Nowadays, sector-shaped cables have been used in low-
and medium-voltage distribution grids because they present
a smaller diameter for the same conductor cross section
compared to cylindrical conductors of conventional coaxial
and umbilical cables (Kariyawasam et al. 2011). However,
sector-shaped cables could be used in several other appli-
cations, such as interconnection of offshore wind farms and
power/telecommunication transmission.

An increasing effort is also observed in the development
of new technologies applied for AC and DC power transmis-
sion using underground coaxial cables and non-conventional
sector-shaped cables. Modeling techniques and alternative
methods for parameter calculation of power cables have
been continuously included in the technical literature (Brito
et al. 2016; Bonyadi-ram et al. 2012; Gudmundsdottir 2014).
Non-conventional conductor shapes are designed in order
to compact even more the cross section of power cables
and also improving the power transmission capacity. On the
other hand, power cables with reduced cross section and
compact configurations require a more robust electrical insu-

lation, alternative methodologies for parameter calculation
and modeling techniques for electromagnetic transient sim-
ulations (Bonyadi-ram et al. 2012).

In this context, this paper proposes amulticonductor mod-
eling using modal decoupling for electromagnetic transient
simulations in sector-shaped cables. The model is devel-
oped directly in the time domain using fitting techniques,
without inverse transform and convolutions, which enables
the inclusion of nonlinear and time-variable elements during
simulations (switching, insulation failure, short circuit, etc.).
The series impedances and admittance of the sector-shaped
cable are calculated using the finite element method (FEM)
because most analytical methods are restricted to conven-
tional coaxial and umbilical cables (Kariyawasamet al. 2011;
Bonyadi-ram et al. 2012; Hafner and Luz 2015). The pro-
posedmethodology represents a full procedure for simulation
of electromagnetic transient in power cables with arbitrary
cross sections, since the parameter calculation to modeling
using frequency-dependent equivalent circuits directly in the
time domain.

2 Parameter Calculation of Sector-Shaped Cables
using FEM

Sector-shaped power cables are widely used for electri-
cal power distribution in low- and medium-voltage levels.
However, the non-conventional design of the cross section
results in several restrictions in the analytical calculation of
the impedance and admittance parameters. Thus, the finite
element method (FEM) represents a powerful tool for cal-
culation of power cables with non-conventional geometrical
characteristics. The cross section of a sector-shaped cable is
described in Fig. 1, and its geometrical and physical charac-
teristics are presented in Table 1 (Ametani et al. 1980, 2015).

Fig. 1 Sector-shaped cable
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Table 1 Geometrical and physical characteristics of the sector-shaped
cable

Component Radius (mm) σ (MS/m) ε (×ε0) μ (×μ0)

Cores or phases r1 = 19.00 58.14 1.00 1.00

Inner insulator r2 = 25.00 0.000 4.10 1.00

Steel pipe r3 = 27.00 1.100 1.00 500

Outer insulator r4 = 30.00 0.000 2.30 1.00

Although the FEM represents an accurate procedure for
parameter calculation of cables with arbitrary and non-
conventional cross sections, there are well-known analytical
methods in the technical literature. As a first example, there
is an analytical method that proposes the approximation of
an arbitrary cross-section conductor by an equivalent cylin-
drical conductor using an analytical formulation to calculate
the equivalent inner and outer radii (Ametani et al. 1980;
Ametani and Fuse 1992). This analytical approach is not
accurate for the entire frequency range considered in the pro-
posed methodology, especially at high frequencies.

The sub-conductor method represents another
well-established analytical formulation for calculation of
electrical parameters of non-conventional cables. This
method was successfully applied for cylindrical conduc-
tors and after adapted for sector-shaped cables. The cable
is basically divided into three subsections (sector-shaped
conductors) which are subdivided in the radial direction
into elementary sub-conductors. This analytical method
provides accurate results for frequencies no greater than
100 kHz, showing some inaccuracies at higher frequencies
(Kariyawasam et al. 2011; Lucas and Talukdar 1978). On
the other hand, a full-wave formulation for calculating the
modal electromagnetic fields, and corresponding modal cur-
rents and voltages, was recently proposed for multiconductor
coaxial and sector-shaped cables. In contrast with the sub-
conductor method, this last method shows a better accuracy
for a wider range of frequencies (Habib and Kordi 2013).

In fact, there are other important analytical methods in the
technical literature for calculation of cable parameters with
non-conventional cross sections, but only a few methods are
accurate enough considering a wide range of frequencies. In
this context, the FEM represents the most reliable procedure
for validation of the proposed modeling technique.

The electrical parameters of the sector-shaped cable in
Fig. 1 are calculated using the FEM by means of two differ-
ent computational programs: Gmsh and GetDP (Geuzaine
and Remacle 2013; Dular and Geuzaine 2013). The Gmsh is
a finite element mesh generator for pre- and post-processing
applications with parametric input and advanced visualiza-
tion tools (Geuzaine and Remacle 2013). The GetDP is an
open-source finite element solver that can be applied for
multi-physic problems (Dular andGeuzaine 2013). Thus, the

Fig. 2 Cablemodeling (a) and sector-shaped conductormesh (b) using
FEM

first defines the mesh geometry, whereas the second defines
the physical proprieties of the cable (insulation, conductors,
etc.), boundary conditions and simulates the frequency-
dependent current density andmagnetic flux in the phase and
shield conductors. To calculate the series impedance, a mag-
netic vector potential magnetodynamic formulation is used,
and for the calculation of the parallel admittance, an elec-
tric scalar potential electrostatic formulation is applied.More
details about the procedure for calculation of the impedance
and admittance parameters are described in “Appendix.”

The first step to calculate the cable parameters using FEM
is to model the sector-shaped cable in Fig. 1, based on geo-
metric and physical characteristics provided in Table 1. The
shape and mesh density are modeled using the Gmsh with a
variable mesh density from the center of the sector-shaped
conductor to the outer cross-section border, as described in
Fig. 2.

A frequency-dependent current density is observed
through the cross sections of the sector-shaped conductors
because of the skin and proximity effects (Brito et al. 2016;
Ametani et al. 2015). Thus, a more detailed meshing is
required closer to the cross-section borders of the sector-
shaped conductors, as described in Fig. 2b.

Since the sector-shaped cable is modeled using the Gmsh,
the impedance and admittance parameters are calculated fol-
lowing the numerical procedures described in “Appendix,”
using the program GetDP.

The self and mutual inductances are calculated from 10
Hz up to 1 MHz that represents an adequate frequency
range for analysis of electromagnetic transients in power
cables (Kariyawasam et al. 2011; Chien and Bucknall 2006;
Ametani et al. 1980). Figure 3a shows a major current den-
sity at the borders of the sector-shaped conductor because of
the skin and proximity effects in power cables (Brito et al.
2016; Gudmundsdottir 2014).

The global quantities like the voltage drop or the current
intensity, coupling the cable with an external electrical cir-
cuit, are often those which permit to describe the overall
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Fig. 3 Cablemodeling (a) and sector-shaped conductormesh (b) using
FEM

Fig. 4 Self and mutual resistances of the sector-shaped cable

functioning of the system. In this paper, the frequency-
dependent resistances and inductances are calculated using
a circuit relation associated with each conductor (cores and
armor). Figures 4 and 5 show the resistances and the induc-
tances obtained by FEM, respectively.

In Fig. 4, the curve raa is the self-resistance of the phase
a (impressed current), rab is the mutual resistance between
a and b, whereas rag is the mutual resistance between a and

Fig. 5 Self and mutual inductances of the sector-shaped cable

Fig. 6 Electric field mapping obtained using the FEM

armor g. The self-resistance of the armor rgg is also described
in Fig. 6.

It is important to emphasize that rab is similar to rac and
rbc because the sector-shaped cable has a symmetrical cross
section. The same statement is valid for self and mutual
inductances in Fig. 5.

The capacitance matrix is calculated based on the relation
between electric charge (C/m) and potential difference (V )
impressed between the elements, as properly described in
“Appendix.”

Figure 6 shows that the electric field is not homogeneously
distributed in the cross section of the conductors. The electric
field intensity is more pronounced at the three corners of the
cross section.

Therefore, from the electric field calculated based on the
circuit diagram in “Appendix,” the capacitance matrix can
be calculated following the well-established analytical for-
mulation in the technical literature (Hafner and Luz 2015;
Ametani et al. 2015):
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[C] =

⎡
⎢⎢⎣
601.35 −164.07 −164.07 −273.20
−164.07 601.35 −164.07 −273.20
−164.07 −164.07 601.35 −273.20
−273.20 −273.20 −273.20 2, 034.18

⎤
⎥⎥⎦ (1)

The self and mutual capacitances in (1) present minor vari-
ations compared to capacitance matrix obtained using the
sub-conductor method for the same sector-shaped cable in
reference (Kariyawasam et al. 2011). The capacitance mag-
nitudes are expressed in ηF/km.

3 Multiconductor Representation Using Modal
Decoupling

The modal decoupling represents a well-established tech-
nique for modeling of multiconductor overhead transmission
lines and underground cables. This technique has been
widely used for representation of three-phase power systems,
which are decoupled into three independent propagation
modes. This means that each propagation mode can be mod-
eled as a single-phase line in the frequency domain as a
two-port circuit or directly in the time domain using fitting
techniques (Costa et al. 2010, 2013; Caballero et al. 2015).

The three-phase system decoupling is the most usual
method to model symmetrical and untransposed transmis-
sion systems, which can be solved without the explicit and
complex representation of mutual parameters and electro-
magnetic coupling between conductors (Costa et al. 2013).
The modal decoupling of the impedance and admittance
matrices of the system is carried out by a modal transfor-
mation matrix, as described in (2) and (3) (Costa et al. 2013).

[Zm] = [T ]T [Z ] [T ] (2)

[Ym] = [T ]T [Z ] [T ] (3)

Terms [Z] and [Y ] are impedance and admittance matrices of
a multiconductor line or cable. The modal matrix is denoted
as [T ], where [T ]T and [T ]−1 are the transposed and inverse
forms, respectively. The columns of the modal transforma-
tion matrix [T ] are eigenvectors obtained from eigenvalues
of the matrix product [Y ][Z], which are calculated using the
well-known Newton–Raphson method (Costa et al. 2013).

Applying (2) and (3) to decouple the sector-shaped cable
in Sect. 2, four propagationmodes are obtained and thematri-
ces [Zm] and [Ym] can be expressed as:

[Zm] =

⎡
⎢⎢⎣
Z1 0 0 0
0 Z2 0 0
0 0 Z3 0
0 0 0 Z4

⎤
⎥⎥⎦ ; [Ym] =

⎡
⎢⎢⎣
Y1 0 0 0
0 Y2 0 0
0 0 Y3 0
0 0 0 Y4

⎤
⎥⎥⎦ (4)

From (4), it is possible to verify that each propagation mode
is completely decoupled from others because there are no
mutual terms in the modal impedance and admittance matri-
ces [Zm] and [Ym]. Thus, each propagation model can be
represented as a single-phase line using various frequency- or
time-domain models in the technical literature for simulation
of electromagnetic transients (Costa et al. 2010; Caballero
et al. 2015; Gómes and Uribe 2009).

If each propagation mode is approached as a single-phase
line, the modal currents and voltages (modal domain) can be
expressed in vector form as follows:

[Im] = [
I1 I2 I3 I4

]
(5)

[Vm] = [
V1 V2 V3 V4

]
(6)

There are basically two procedures to calculate the currents
and voltages in (5) and (6), respectively. The first is based on
the two-port representation of each propagationmode, which
the currents and voltages are calculated in the frequency
domain and converted to the time domain using inverse trans-
forms and convolutions (Gómes andUribe 2009). The second
procedure is carried out directly in the time domain, using
fitting techniques and numerical integration methods (Costa
et al. 2010; Caballero et al. 2015). The modeling directly in
the time domain presents several advantages compared to the
method by two-port representation, such as the inclusion of
nonlinear and time-variable elements during simulations.

In sequence, after calculation of the currents and voltages
at the four propagation modes of the sector-shaped cable,
these values are converted to the phase domain using amodal
transformationmatrix, as expressed in (7) (Costa et al. 2013).

[
Iph

] = [T ] [Im]
T ; [

Vph
] = [T ]−T [Vm]

T (7)

The vectors [Iph] and [Vph] are the currents and voltages at
the cores a, b, c and at the armor g of the sector-shaped cable,
as expressed in (8) and (9).

[
Iph

] = [
Ia Ib Ic Ig

]
(8)[

Vph
] = [

Va Vb Vc Vg
]

(9)

The modal transformation in (7) can be accomplished in
frequency-domain models using the same transformation
matrix [T ], which is composed of complex and frequency-
dependent values. However, the same modal transformation
matrix cannot be used for line/cable models in the time
domain. In this case, the real and constant Clarke’s matrix is
an alternative approach for modeling of three-phase systems,
which is not the case of the proposed sector-shaped cable that
presents four propagation modes (Costa et al. 2010, 2013).
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Fig. 7 Impedance values of each propagation mode of the sector-
shaped cable: modal resistance Rm (a) and modal reactance Xm (b)

4 Fitting a Modal Transformation Matrix for
Cable Modeling in the Time Domain

The modal matrices in (4), [Zm] and [Ym] can be obtained
as a function of [Z] and [Y ], using the exact transformation
matrix [T ] that was introduced in Sect. 3 in (2) and (3). The
modal resistance and reactance that compose the impedance
of each propagationmode of the sector-shaped cable in Fig. 1
are described in Fig. 7.

Figure 7 shows the resistance and reactance values of the
modal impedances that compose the matrix [Zm], with four
propagation modes resulted from the modal decoupling of
the sector-shaped cable in Fig. 1. The real and imaginary
terms of the modes 1 and 2 are practically overlapped, as
shown in Fig. 7a, b, respectively.

The modal admittance matrix [Ym] is composed only by
imaginary terms that represent the capacitive reactances of
each propagation mode, where the modal capacitances are
constant, such as expressed in the phase domain in (1). This
way, [Ym] can be expressed by a constant capacitance matrix
in ηF/km:

[Cm] =

⎡
⎢⎢⎣
765.41 0 0 0
0 765.41 0 0
0 0 1210.10 0
0 0 0 1097.40

⎤
⎥⎥⎦ (10)

The modal admittance matrix can be expressed as a function
of the capacitance matrix [Cm] and the angular velocity ω as
follows:

Fig. 8 Real components of the exact modal transformation matrix [T ]

[Ym] = jω [Cm] (11)

All propagation characteristics (propagation function, wave
propagation velocity and impedance characteristic of each
propagation mode) can be obtained from the impedance and
admittance matrices [Zm] and [Ym].

The four propagation modes of the cable can be obtained
using the matrix [T ], but the conversion of the modal cur-
rents and voltages to phase values in (7) cannot be carried
out from a transformation matrix composed of complex
and frequency-dependent terms, because the cable model-
ing is developed directly in the time domain and requires
a real and constant transformation matrix with dimension
four by four. In this context, the behavior of the complex
and frequency-dependent terms in [T ], obtained from the
impedance and admittance parameters of the sector-shaped
cable, is evaluated in order to find a suitable real and constant
transformation matrix [Tc]. The real parts of each compo-
nent of [T ], obtained using the Newton–Raphson method,
are described as a function of the frequency in Fig. 8.

The frequency range in Fig. 8 is from10Hz up to 0.3MHz,
for a more detailed observation of the frequency-dependent
behavior of the real components in [T ]. These components
are practically constant for frequencies up to10Hzandhigher
than 0.3MHz,which are not explicit in the frequencywindow
in Figs. 7 and 8 in order to highlight the variations between
200 Hz and 2kHz.

Figure 8 shows that some real components present oscilla-
tions in short-frequency intervals between 100Hz and 1 kHz.
In sequence, for frequencies higher than 1 kHz, all real com-
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Fig. 9 Imaginary components of the exact modal transformation
matrix [T ]

ponents converge to constant values in the great frequency
range up to 1 MHz. On the other hand, Fig. 9 shows that the
imaginary components of the first two rows oscillate around
zero from 10 Hz up to 0.3 MHz. For frequencies higher than
10 kHz, all imaginary components in [T ] are approximately
null up to 1 MHz.

The imaginary components of the last two rows in [T ]
showed the same low oscillations and converging to zero, as
in Fig. 9. From these observations, constant and real values
can be chosen to compose an approximated transformation
matrix, whereas the imaginary components can be neglected.
Another possibility is to fit a constant and real modal trans-
formationmatrix based on the electromagnetic transient to be
simulated. For example, for transient simulations composed
of low frequencies (e.g., switching impulse), real compo-
nents between 10 and 200 Hz are selected from Fig. 8 to
compose an approximated transformation matrix [Tc] with
real and constant terms, as proposed in (12).

[Tc] =

⎡
⎢⎢⎣
0.79 0.19 0.59 0.05
−0.57 0.59 0.59 0.05
−0.22 0.78 0.59 0.05
0 0 0.23 1.05

⎤
⎥⎥⎦ (12)

For transient simulations characterized by a wide range of
frequencies, such as a steep-front impulse, real component
values above 1 kHz should be considered (Fig. 7), which can
be also assumed as constant terms in the frequency range
from 1 kHz up to 1 MHz. Thus, for simulation of fast and
impulsive transients (e.g., atmospheric impulse), the approx-
imated modal transformation matrix [Tc] can be fitted using
high-frequency terms from figure, as expressed in (13).

[Tc] =

⎡
⎢⎢⎣
0.75 0.49 1.0 1.15
−0.55 0.47 1.0 1.15
−1.15 0.9 1.0 0.05
0 1.0 1.0 0

⎤
⎥⎥⎦ (13)

From the proposed approach for the modal transformation
matrix, (7) can be expressed as:

[
Iph

] = [Tc] [Im]
T ; [

Vph
] = [Tc]

−T [Vm]
T (14)

The proposed cable model and methodology for calcula-
tion of an approximated transformation matrix [Tc] can be
validated by comparison with results obtained using the
exact frequency-dependent matrix [T ], cablemodeling based
on the two-port representation of each propagation mode
and numerical Laplace transform (NLT) (Gómes and Uribe
2009).

5 Frequency-Dependent Modeling in the Time
Domain

The frequency-dependent modeling of the sector-shaped
cable is carried out using modal decoupling in the multi-
conductor representation, as described in Sect. 4, and fitting
techniques for inclusion of the frequency effect in the well-
known Bergeron method.

The original Bergeron method represents the active losses
of the system by lumped resistances located at the send-
ing and receiving ends of a single electrical circuit with a
historical current source. In the proposed Bergeron circuit,
these lumped resistances are substituted by an equivalent cir-
cuit that is modeled from a rational function that fits the
frequency-dependent parameters of each propagation mode
of the cable. The distributed parameters of each mode can
be represented as a cascade of frequency-dependent Berg-
eron circuits and state equations, which are solved using
any numerical integration method. From this procedure, the
sector-shaped cable can be modeled directly in the time
domain taken into account nonlinear and time-variable ele-
ments during electromagnetic transient simulations. The
proposed time-domain model can be validated based on sim-
ulations obtained from the cable modeling by equivalent
two-port circuits and NLT.

5.1 Frequency-Dependent Bergeron Circuit

The cable modeling is carried out from the frequency-
dependent parameters fitting in the equivalent Bergeron
circuit, as described in Fig. 10. Thus, each propagation mode
of the cable is modeled as a single-phase line as a function
of the frequency (Caballero et al. 2015).

Terms Ik and Im are equivalent current sources at the
sending and receiving ends of the equivalent circuit, respec-
tively. Sources Ik and Im are known at the state time t from
the past history at time (t − τ ). Terms vk and vm are the
voltages at the sending and receiving ends of the equivalent
circuits, respectively. The impedance characteristic of each
propagation mode Z0 is expressed as a function of the shunt
capacitance and inductance in direct current. The RL circuits
atm and n are obtained froma rational function that is applied
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Fig. 10 Frequency-dependent Bergeron circuit

for fitting the series impedance of the cable, as expressed in
(15) (Gustavsen and Semlyen 1998).

Z (ω) ≈ Zfit (ω) = R′
0 + jωL ′

0 +
∑n

i=1

(
jωR′

i(
jω + R′

i/L
′
i

)
)

(15)

Termω is the angular velocity. The per-unit-length resistance
R′
0 and per-unit-length inductance L ′

0 are values for ω = 0.
The frequency range is fitted as a function of the quantity
of parallel RL circuits in the frequency-dependent Bergeron
circuit in Fig. 10.

There are several fitting procedures available in the tech-
nical literature to obtain an approximated rational function
from a general function, such as Z(ω). However, the vector
fitting algorithm shows to be accurate and robust for smooth
and resonant responses with high-order and wide frequency
bands (Gustavsen and Semlyen 1998).

Considering the frequency-dependent Bergeron circuit in
Fig. 10, indicated by the impedance Z(ω)/2, the relationship
of voltage on the resistors and inductors at the node k is
expressed in (16)–(18):

R′
1

2
(ik0 − ik1) = L ′

1

2

dik1
dt

(16)

R′
2

2
(ik0 − ik2) = L ′

2

2

dik2
dt

(17)

R′
n

2
(ik0 − ikn) = L ′

n

2

dikn
dt

(18)

In (16)–(18), terms ik0, ik1 to ikn are the currents in the resis-
tor R′

0/2 and inductors L
′
1/2 to L ′

n /2, respectively. Following
the Kirchoff’s current law, the current through the resistors
R′
1/2 and R′

n /2 are (ik0 – ik1) and (ik0 – ikn), respectively.

Thus, the general expression is developed associating the
past-history current source Ik(t − τ) with the state current
ik0, which is equivalent to the current ik,m(t) in Fig. 10.

Vk − R0ik0 − R1 (ik0 − ik1) − · · · − Rn (ik0 − ikn)

+Z0 Ik (t − τ) = Z0ik0 (19)

The expressions of the two branches are similar, considering
that the impedance Zfit is divided by two, as described in Fig.
10. In order to simplify the formulation in (19), the per-unit-
length parameters R′

0/2 and L ′
0/2 are denoted as R0 and L0.

The same notation is considered for n parallel RL circuits.

5.2 Representation by State Equations

Figure 10 shows that the frequency-dependent Bergeron
circuit is composed of two similar circuits represented by
(16)–(19), which can be both represented as state equations:

[ .

Ik
]

= [Ak] [Ik] + [Bk] [Sk] (20)

Vector [Ik] represents the currents in L1 to Ln :

[Ik] = [ik1 ik2 . . . ikn]
T (21)

Thus, the derivative of the currents in [Ik] can be expressed:

[ .

Ik
]

=
[
ik1
dt

ik2
dt

. . .
ikn
dt

]
(22)

The state matrix [Ak] is expressed in (23) that is a function of
the characteristic impedance Z0 of the Bergeron circuit and
the lumped elements in Fig. 10.

[Ak] =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1
L1

(
−1 + R1

Z0+∑n
i=1 Ri

)
R1
L1

(
R2

Z0+∑n
i=1 Ri

)
· · · R1

L1

(
Rn

Z0+∑n
i=1 Ri

)

R2
L2

(
R1

Z0+∑n
i=1 Ri

)
R2
L2

(
−1 + R2

Z0+∑n
i=1 Ri

)
· · · R2

L2

(
Rn

Z0+∑n
i=1 Ri

)

...
...

. . .
...

Rn
Ln

(
R1

Z0+∑n
i=1 Ri

)
Rn
Ln

(
R2

Z0+∑n
i=1 Ri

)
· · · Rn

Ln

(
−1 + Rn

Z0+∑n
i=1 Ri

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)
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Analogously as in (23), the matrix [Bk] is expressed based
on Z0 and the RL circuit in Fig. 10:

[Bk] =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1
L1

(
1

Z0+∑n
i=1 Ri

)
R1
L1

(
Z0

Z0+∑n
i=1 Ri

)

R2
L2

(
1

Z0+∑n
i=1 Ri

)
R2
L2

(
Z0

Z0+∑n
i=1 Ri

)

...
...

Rn
Ln

(
1

Z0+∑n
i=1 Ri

)
Rn
Ln

(
Z0

Z0+∑n
i=1 Ri

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

Vector [Sk] is composed of the voltage source Vk and the
historical current Ik(t– τ):

[Sk] =
[
Vin (t)
Ik (t − τ)

]
(25)

Term Vin(t) is the input voltage source applied at the sending
end of the Bergeron circuit. From the state-space formula-
tion in (22), ik,m(t) and Vk(t) can be analytically expressed
from elements in [Ik] and [Sk], as expressed in (26) and (27),
respectively (Caballero et al. 2015).

ik,m (t) =
∑n

q=1

(
Rqikq

Z0 + ∑n
i=1 Ri

)

+ 1

Z0 + ∑n
i=1 Ri

Vk + Z

Z0 + ∑n
i=1 Ri

Ik (t − τ) (26)

Vk (t) = Vin (t) − ik,m (t)
∑n

i=1
Ri (1 + iki ) (27)

The formulation of the branch m is similar to k, as described
in Fig. 10. However, if an impedance ZL is connected to the
receiving end at m, the state matrix [Am] can be expressed
as:

[Am] =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1
L1

(
−1 + R1

Z0+ZL+∑n
i=1 Ri

)
R1
L1

(
R2

Z0+ZL+∑n
i=1 Ri

)
· · · R1

L1

(
Rn

Z0+ZL+∑n
i=1 Ri

)

R2
L2

(
R1

Z0+ZL+∑n
i=1 Ri

)
R2
L2

(
−1 + R2

Z0+ZL+∑n
i=1 Ri

)
· · · R2

L2

(
Rn

Z0+ZL+∑n
i=1 Ri

)

...
...

. . .
...

Rn
Ln

(
R1

Z0+ZL+∑n
i=1 Ri

)
Rn
Ln

(
R2

Z0+ZL+∑n
i=1 Ri

)
· · · Rn

Ln

(
−1 + Rn

Z0+ZL+∑n
i=1 Ri

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

The currents through L1 to Ln of both k andm are similar,
which means that [Im] and [Ik] are:

[Im] = [Ik] = [ik1 ik2 . . . ikn]
T (29)

The matrix [Bm] is a single-column vector, since the node m
is not connected to a voltage source, where the impedance
ZL represents an equivalent Thevenin circuit:

[Bm] =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1
L1

(
Z0

Z0+ZL+∑n
i=1 Ri

)

R2
L2

(
Z0

Z0+ZL+∑n
i=1 Ri

)

...
Rm
Lm

(
Z0

Z0+ZL+∑n
i=1 Ri

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

Thematrix [Sm] contains the history current Im(t– τ), voltage
Vm and current im,k , as in (31).

Vm (t) = Vout (t) − im,k (t)
∑n

i=1
Ri (1 + iki ) (31)

ik,m (t) =
∑n

q=1

(
Rqikq

Z0 + ZL + ∑n
i=1 Ri

)

+ Z0

Z0 + ZL + ∑n
i=1 Ri

Im (t − τ) (32)

The voltage on the impedance ZL is represented by the output
source Vout(t), expressed in (33).

Vout (t) = −im,k (t) ZL (33)

The state matrices in (20), for both nodes k and m in Fig. 10,
are dependent of the fitted R and L parameters and the char-
acteristic impedance Z0. The state equations can be solved
using integration methods (Costa et al. 2010; Caballero et al.
2015).

5.3 Cascade of Frequency-Dependent Bergeron Circuits

The line or cable approach by cascade of equivalent circuits
can represent accurately the distributed characteristic of the
electrical parameters. Furthermore, the frequency response
of the model is proportional to the number of equivalent cir-
cuits used in cascade (Costa et al. 2010). Thus, the cascade
representation shows to be a good approach formodeling and

simulation of fast and impulsive electromagnetic transients,
which are composed of a wide range of frequencies.

In Sect. 5.2, the state equations represent a single
frequency-dependent Bergeron circuit. In this section, the
state matrices are introduced for a cascade with h equivalent
frequency-dependent Bergeron circuits, as in Fig. 11.

Each block in Fig. 11 represents a frequency-dependent
Bergeron circuit (Fig. 10). The cascade is represented by (h+
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Fig. 11 Cascade of frequency-dependent Bergeron circuits

1) branches, where the input branch connected to Vin is Zfit/2
and the output branch in the equivalent circuit h is also Zfit/2.
The intermediary interconnected branches from circuit 1 to
h represent Zfit. For example, the receiving end m of the
equivalent Bergeron circuit 1 is Zfit/2 and the sending end k
of the circuit 2 is also Zfit/2, and the interconnection of the
equivalent circuits 1 and 2 results in Zfit. Thus, the current
im,k from the receiving end of (h– 1) is similar to ik,m at the
sending end of h:

i (h)
k,m = −i (h−1)

m,k (34)

The connection of the RL circuits in (h– 1) and h results in
some variations in the state matrix [B] and vector [S], which
are renamed as [Bmk] and [Smk] in (35) and (36), respectively.
The state matrix [A] remains as [Ak].

[Bmk] =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1
L1

(
Z0

2(Z0+∑n
i=1 Ri)

)
R1
L1

( −Z0
2(Z0+∑n

i=1 Ri)

)

R2
L2

(
Z0

2(Z0+∑n
i=1 Ri)

)
R2
L2

( −Z0
2(Z0+∑n

i=1 Ri)

)

...
...

Rn
Ln

(
Z0

2(Z0+∑n
i=1 Ri)

)
Rn
Ln

( −Z0
2(Z0+∑n

i=1 Ri)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

[Smk] =
[
I (h−1)
m (t − τ)

I (h)
k (t − τ)

]
(36)

Thevector [Smk] is composedof the historical current sources
Im(t– τ) in the Bergeron circuit (h– 1) and Ik(t– τ) in the
circuit h, as subscripted in the terms in (36).

From (35) and (36), (20) can be reformulated for two con-
nected Bergeron circuits:

[
İk

]h−1 = [Ak] [Ik]
h−1 + [Bmk] [Smk] (37)

Analogously to (26) and (31), the current flowing from h– 1
to h can be analytically expressed:

i (h−1)
m,k = −i (h)

k,m =
∑n

q=1

(
Rqikq

Z0 + ∑n
i=1 Ri

)

+ Z0

2
(
Z0 + ∑n

i=1 Ri
)

(
I (h−1)
m (t − τ) − I (h)

m (t − τ)
)

(38)

The voltages Vm(t) at the circuit h– 1 and Vk(t) at h are
expressed as:

V (h−1)
m (t) = Z

[
ik0 − I (h−1)

m (t − τ)
]

(39)

V (h)
k (t) = −Z

[
ik0 + I (h)

k (t − τ)
]

(40)

For the input branch, [Ak], [Bk] and [S], in (23), (24) and
(25), respectively, are considered as in (20). For the output
branch, the state matrices [Am] and [Bm] are expressed in
(28) and (30), respectively. At the last Bergeron circuit of
the cascade, [S] is represented solely by the history current
Im(t– τ).

Based on themodeling technique described in this section,
eachpropagationmodeof the sector-shaped cable (Fig. 1) can
be modeled as a cascade of frequency-dependent Bergeron
circuits. The transient currents and voltages for each prop-
agation modes are calculated and then converted to phase
values using (14) and the constant and real transformation
matrices in (12) and (13).

6 Time-Domain Simulations Using the Proposed
Model

The electromagnetic transient simulations obtained from the
proposed modeling methodology are compared to simula-
tions using NLT and the exact frequency-dependent trans-
formation matrix [T ]. The first principal difference between
these two modeling methodologies is that the propagation
modes of the proposed modeling technique are represented
directly in the time domain by fitting techniques, using a
cascade of frequency-dependent Bergeron circuits, whereas
the methodology using NLT represents each mode as a
two-port circuit in the frequency domain. The second dif-
ference between the modeling methodologies is that the
phase currents and voltages simulated from the proposed
methodology are obtained from the modal domain using an
approximated real and constant transformation matrix [Tc],
(12)–(14), whereas the same values in the modeling by NLT
are obtained using the exact modal matrix [T ] in (7). The
proposed modeling methodology can be validated compar-
ing simulations obtained using the NLT, as reference results,
and simulations carried out by the proposed model.

Figure 12 describes the sending end of the phase/core a of
the sector-shaped cable connected to a voltage source U (t)
and other two phases and armor g connected at the sending
end to the ground. The three phases and armor are open at
the receiving end. The sector-shaped cable, represented in
Fig. 12, is 100 km long and has the same characteristics and
parameters calculated in Sect. 2.

The first simulation consists of an unitary voltage step
applied at the sending end of the phase a, by means of the
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Fig. 12 Validation of the proposed modeling methodology

Fig. 13 Voltage transients at the receiving end of the phases a, b, c and
armor g simulated from a switching impulse: NLT (dotted curves) and
proposed modeling (solid curves)

voltage source U (t). Results obtained from the proposed
model, which each propagation mode is represented by 100
Bergeron circuits in cascade, are simulated using the modal
transformation matrix in (12) that is valid for frequencies up
to approximately 400–500 Hz. The voltages at the receiv-
ing end of the sector-shaped cable, simulated using the two
models, are described in Fig. 13.

The dotted curves represent the results obtained from the
line model using NLT, and the solid curves are the transient
voltages simulated using the proposed time-domain model-
ing. The phases a, b, c and the cable armor g are explicitly
indicated in Fig. 13.

From the same configuration in Fig. 12, the transient
voltages at the receiving end of the cable are simulated con-
sidering an atmospheric impulse applied at the sending end
of the phase a (1.2/50 μs voltage impulse). The modal trans-
formation matrix in (13) is applied for calculation of the
transient voltages at the receiving end of the cable. Dotted
and solid curves are results obtained using NLT and the pro-
posed model, respectively, as described in Fig. 14.

Figures 13 and 14 show that simulations obtained from
the proposed model, using fitting techniques for calculation
of a real and constant modal transformation matrix and a
frequency-dependent equivalent circuit of each propagation
mode, are almost similar to the reference values obtained
using the cable model based on the exact transformation
matrix and NLT.

Fig. 14 Voltage transients at the receiving end of the phases a, b, c and
armor g simulated from an atmospheric impulse: NLT (dotted curves)
and proposed modeling (solid curves)

7 Conclusions

A modeling methodology for power cables with arbitrary
cross sections was proposed for electromagnetic transient
simulations. The proposed methodology presents a detailed
procedure and discussions that approach since the parameter
calculation of sector-shaped cables to the time-domain tran-
sient simulations using well-established and novel modeling
techniques, such as the calculation of a real and constant
modal transformation matrix for cables with more than
three propagation modes and representation using cascade
of frequency-dependent Bergeron circuits.

The proposed model was validated based on results simu-
lated using NLT and the exact modal transformation matrix
for calculation of the transient currents and voltages. The
cable representation using an approximated modal transfor-
mation matrix and frequency-dependent Bergeron circuits
proved to be accurate and without numerical oscillations.

In addition, the proposed modeling methodology can
be extended for conventional umbilical and coaxial power
cables with more than three propagation modes, without
restrictions in the shape of the transversal cross section of
the phase conductors.

Acknowledgements São Paulo Research Foundation – FAPESP
(Procs. 14/17051-0 and 15/10204-8) and National Counsel of Tech-
nological and Scientific Development – CNPq (306142/2015-5)

Appendix: Impedance and Admittance Parameters

The numerical approach for calculation of the self andmutual
parameters of multiconductor cables, including phase con-
ductors and shieldmesh, can be carried out applying a current
of 1.0 A at one of the conductors and calculating the volt-
age at all conductors. In the case of a sector-shaped cable,
there are four conductors: three-phase cores and shield wire
(armor). The self-impedances are calculated dividing the
induced voltage by the impressed current,whereas themutual
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Fig. 15 Cable representation for calculation of the impedance param-
eters

are calculated dividing the induced voltage on other elements
without impressed current (Hafner and Luz 2015). This pro-
cedure is illustrated in Fig. 15.

Initially, considering a current of 1.0 A through the
phase conductor a, the mutual parameters can be calculated
between a and other two phase conductors and armor. The
procedure is valid considering the same current imposed in
phases b or c. Thus, the frequency-dependent impedances of
the sector-shaped cable can be calculated using the FEM, as
a function of the current density (A/m2) and the magnetic
flux (Wb/m).

Figure 15 shows that the cable is composed of phase cores
a, b and c and armor wire g. Thus, from the voltage drops
along the sector-shaped cable, the impedance matrix can be
expressed in (41) (Ametani et al. 2015).

⎡
⎢⎢⎣
Vag − Va′g′
Vbg − Vb′g′
Vcg − Vc′g′
Vgg − Vg′g′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Zaa Zab Zac Zag

Zba Zbb Zbc Zbg

Zca Zcb Zcc Zcg

Zga Zgb Zgc Zgg

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Ia
Ib
Ic
Ig

⎤
⎥⎥⎦ (41)

Terms Zaa, Zbb, Zcc are the self-impedances of the phase
conductors,whereas Zab, Zac and Zbc aremutual impedances.
The impedances Zag, Zbg and Zcg are the mutual terms
between phases a, b and c and the shield/ground wire g,
respectively.

The self and mutual capacitances are considered as invari-
able in power cables and overhead transmissions lines up
to very high frequencies. Therefore, the capacitances are
usually considered constant in transmission line and cable
modeling for electromagnetic transient analysis (Ametani
et al. 2015).

The self and mutual capacitances are calculated as a func-
tion of the electric charge and the voltage at the conductors.
Thus, the capacitance matrix of the sector-shaped cable can
be expressed as (Hafner and Luz 2015; Ametani et al. 2015):

Fig. 16 Circuit representation for calculation of the capacitances

⎡
⎢⎢⎣
Ia − Ia′
Ib − Ib′
Ic − Ic′
Ig − Ig′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Caa Cab Cac Cag

Cba Cbb Cbc Cbg

Cca Ccb Ccc Ccg

Cga Cgb Cgc Cgg

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Vag
Vbg
Vcg
Vgg

⎤
⎥⎥⎦ (42)

The voltage and current vectors at the left hand in (41) and
(42) are implicitly represented in terms of current density,
magnetic flux and electric field, which are obtained using
FEM and following the proposed boundary conditions for
impedance and capacitance calculation in Figs. 15 and 16,
respectively.
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