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a b s t r a c t 

This article introduces the second generation of the Discrete Shapelet Transform (DST-II), a tool created 

for fusing three types of information: time, frequency and shape-related. Considered a particular Discrete 

Wavelet Transform (DWT), it allows a productive time-frequency-shape (TFS) joint analysis. In the pro- 

posed approach, both the procedure to attain the corresponding filters coefficients and the interpretation 

of the transformed signal are simplified in relation to the usage of its predecessor, i.e., the DST. Through- 

out the article, the DST-II formulation is described in detail, including a numerical example, a prototype 

for use in a diversity of fields and an application on spike and overlap sorting, reassuring the efficacy of 

the new transform. 
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. Introduction 

Since Alfréd Haar, the father of wavelets, introduced funda-

ental concepts in 1909 [1] and Ingrid Daubechies, the mother

f wavelets, brightly consolidated them decades later [2] , the Dis-

rete Wavelet Transform (DWT) [3] has been placed at the fore-

ront of signal analysis, fusing two types of information: tempo-

al and spectral. Through the years, many other scientists have

ublished their relevant contributions to the field of wavelet the-

ry. Palghat Vaidyanathan, Martin Vetterli, Stéphane Mallat, David

onoho, Gilbert Strang and others are examples of unforgettable

ames, just to mention a few. Additionally, our information fu-

ion community has continuously presented DWT-based and DWT-

nspired advances, as shown in [4–13] . 

In order to further evolve ordinary wavelet analysis, the Dis-

rete Shapelet Transform (DST) was recently created and presented

o the scientific community, as documented in [14] , in a previous

ooperative work of mine. Exactly as the Discrete Wavelet Trans-

orm (DWT) does [15] , the DST allows the time-support of fre-

uencies to be found, however, with a special advantage: concomi-

antly, it quantifies the degree of similarity between the signal

nder analysis and a pre-specified shape. Its work principle con-

ists of a fractal-based criterion [16] used to redefine the original
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aubechies’ DWTs in such a way that a time-frequency-shape (TFS)

oint analysis is performed. Thus, the DST fuses three types of in-

ormation: temporal, spectral and shape-related. 

On one hand, the original DST formulation demonstrated that

FS joint analysis is feasible. On the other, my objective this time

s to improve that technique by defining the second generation of

he transform, i.e., DST-II. Particularly, the new tool replaces the

ractal-based criterion used for shape matching by a correlation-

ased formulation, favouring the solution of the non-linear system

f equations that produces the filters coefficients and allowing a

implified interpretation of the transformed signal. Thus, the DST-

I is better than its predecessor for joint TFS analysis, stimulating

ts usage in a diversity of fields. 

In suggesting possible future trends for the scientific com-

unity, this paper is organised as follows. Supported by a

hort review on DSTs and the original Daubechies’ DWT, pre-

ented in Section 2, Section 3 introduces the DST-II and its inverse

IDST-II). Proceeding, Section 4 shows a numerical example, while

ection 5 describes the tests and results obtained during the anal-

sis of simulated and biological data and, lastly, Section 6 reports

he conclusions that are followed by the references. Readers of this

rticle are strongly encouraged to learn my previous piece on the

riginal DST [14] before proceeding any further. 

http://dx.doi.org/10.1016/j.inffus.2017.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.07.004&domain=pdf
mailto:guido@ieee.org
http://www.sjrp.unesp.br/~guido/
http://dx.doi.org/10.1016/j.inffus.2017.07.004
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2. A short review 

2.1. DSTs: the first generation 

A deep review on DSTs is superfluous due to the detailed de-

scription presented previously in [14] . However, there are a few

important points to be mentioned regarding the elements associ-

ated with that transform. Similarly to the ordinary DWT, they are: 

• p [ · ] and q [ · ], so that q k = (−1) k p N−k −1 , form the quadrature

mirror filter (QMF) [3] pair of finite impulse response (FIR) fil-

ters [17] with support-size N ≥ 4 used for signal analysis, being

N even. They present, respectively, low-pass and high-pass fre-

quency responses with not necessarily linear phases [17] . Ac-

cordingly, these are the filters used in conjunction with Mal-

lat’s algorithm [18] to obtain the transformed signal from the

input, exactly as in the original DWTs for which they are usu-

ally known as h [ · ] and g [ · ]; 

• p̄ [ ·] , so that p̄ k = p N−k −1 , and q̄ [ ·] , so that q̄ k = (−1) k +1 
p k , form

the pair of filters used for signal re-synthesis. In the scope of

the DWT, they would be respectively known as h̄ [ ·] and ḡ [ ·] ; 
• �(x ) = 

∑ 

k p k �(2 N − k ) and �(x ) = 

∑ 

k q k �(2 N − k ) , respec-

tively known as major shapelet and minor shapelet , correspond

to scaling and wavelet functions of the DWT [3] , i.e., �( x ) and

�( x ); 
• the conditions P̄ [ z] = Q[ −z] , Q̄ [ z] = −P [ −z] and P̄ [ z] P [ z] +

Q̄ [ z] Q[ z] = 2 z −N+1 , all in Z domain [17] , imply that p[ ·] , q [ ·] , p̄ [ ·]
and q̄ [ ·] form a perfect-reconstruction filter bank (PRFB) [3] . 

Particularly, the procedure to obtain the DST filter q [ · ] is the

same used to generate the Daubechies’ filter g [ · ], as reviewed

ahead, albeit with one difference: the former formulation replaces

one vanishing moment condition from the latter by a fractal-based

matching equation. The DST-II, however, is based on a different ap-

proach. 

Complementarily, it is important to recall that the DST( s [ · ])

preserves the length of the input signal s [ · ], hereafter referred to

as X , that is a power of 2. Furthermore, X allows for the decompo-

sition until level j = 

(
log(X ) 
log(2) 

)
. Once s [ · ] is decomposed, two other

signals with lengths X 
2 are produced: master and second-rated . The

former and the latter result, respectively, from the convolution of

s [ · ] with p [ · ] and the convolution of s [ · ] with q [ · ], both fol-

lowed by a downsampling by 2 and a wrap-around procedure [18] .

Lastly, the concatenation of master with second-rated characterizes

the DST. From the former, the decomposition can continue recur-

sively until reaching the highest possible level. DST-II inherits all

the terminology and decomposition procedures from DST. 

2.2. The discrete Daubechies’ transform 

There are distinct ways to explain how the Daubechies’s

wavelets [3] were constructed. Particularly, that of my current

interest, which first produces the high-pass filter, i.e., g [ · ] with

support-size N , and then generates the other elements, i.e., h [ · ],

h̄ [ ·] , ḡ [ ·] , �( x ) and �( x ), based on it, will be reviewed here. The

specific procedure is: 

• STEP Daub 1 : Force g [ · ] to have unitary energy so that the DWT

preserves that of the input signal, i.e., 

N−1 ∑ 

k =0 

g k 
2 = 1 . (1)

This condition is equivalent to others, as 
∑ N−1 

k =0 
h k = 

√ 

2 , imply-

ing that the scaling function has one non-vanishing moment; 
• STEP Daub 2 : Impose N 
2 vanishing moments on the wavelet func-

tion, i.e., 

N−1 ∑ 

k =0 

g k k 
b = 0 , (2)

for b = 0 , 1 , . . . , N 2 − 1 ; 

• STEP Daub 3 : Define N 
2 − 1 orthogonality conditions related to

the translations of the filter so that the transformation matrix

used to carry out Mallat’s algorithm [18] is orthogonal, allowing

signal re-synthesis based on its transpose: 

N−1 ∑ 

k =0 

g k g k +2 l = δ0 ,l , (3)

being δ the Dirac delta and l ∈ Z; 
• STEP Daub 4 : Group together the only equation of step Daub 1 ,

the N 
2 equations of step Daub 2 and the N 

2 − 1 equations of step

Daub 3 , resulting in a non-linear system of N equations in N un-

knowns. Then, solve the system using any iterative numerical

procedure, such as Gauss-Siedel, Jacobi or Newton’s methods

[20] , to obtain the high-pass filter g [ · ]. 

• STEP Daub 5 : Obtain the filter h [ · ] so that h k = (−1) k +1 
g N−k −1 

in order to complete the analysis filter pair. If the inverse DWT

(IDWT) is required, obtain the filters h̄ [ ·] and ḡ [ ·] , so that h̄ k =
h N−k −1 and ḡ k = (−1) k +1 

h k , characterizing the re-synthesis fil-

ter pair. Lastly, in order to discover the shapes of orthonor-

mal basis associated with the analysis filter pair, as explained

in [21] , obtain the scaling function �(x ) = 

∑ 

k h k �(2 N − k ) and

the wavelet function �(x ) = 

∑ 

k g k �(2 N − k ) . 

. The DST-II 

.1. DST-II definition and formulation 

The components of the DST and the DST-II are just the same,

.e., p [ · ], q [ · ], p̄ [ ·] , q̄ [ ·] , �( x ) and �( x ). The easiest way to calcu-

ate them is to obtain, first, the analysis filter q [ · ] for which a few

estrictions apply regarding the DST-II: 

1. the filter support-size is N ≥ 6. This is required due to the

fact that the DST-II has N 
2 − 2 vanishing moments in its mi-

nor shapelet, equivalently to the wavelet function, as detailed

ahead. Therefore, N < 6 would produce no vanishing moment in

such function, disturbing the proposed transform; 

2. the filter support-size is necessarily even, as in the DWT theory

[3] , otherwise a perfect-reconstruction can not be achieved; 

3. the signal to be matched, m [ · ], representing the pattern to be

identified by the DST-II, has necessarily an odd size equal to

N + 1 . 

The particular procedure to determine q [ · ] is: 

• STEP Shp 1 : Force the filter to have unitary energy so that the

DST-II preserves that of the input signal, i.e., 

N−1 ∑ 

k =0 

q k 
2 = 1 . (4)

• STEP Shp 2 : Impose N 
2 − 2 vanishing moments for the major

shapelet function, i.e., 

N−1 ∑ 

k =0 

q k k 
b = 0 , (5)

for b = 0 , 1 , . . . , N − 3 ; 
2 
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Fig. 1. The example matching signal m [ · ]. 
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• STEP Shp 3 : Define N 
2 − 1 orthogonality conditions as in the

Daubechies’ transform: 

N−1 ∑ 

k =0 

q k q k +2 l = δ0 ,l ; (6) 

• STEP Shp 4 : Characterize both the required matching conditions,

i.e., MC 1 and MC 2 : 

N−1 ∑ 

k =0 

q k m k = 0 (7) 

and 

N−1 ∑ 

k =0 

q k m k +1 = 0 . (8)

• STEP Shp 5 : Group together the only equation of step Shp 1 , the
N 
2 − 2 equations of step Shp 2 , the N 

2 − 1 equations of step Shp 3 

and both matching equations of Shp 4 , resulting in a non-linear

system of N equations in N unknowns. Then, solve the system

using any iterative numerical procedure as to obtain the high-

pass filter q [ · ]. 

• STEP Shp 6 : Obtain the filter p [ · ] so that p k = (−1) k +1 
q N−k −1 

in order to complete the analysis filter pair. If the inverse

DST-II (IDST-II) is required, obtain the filter p̄ [ ·] so that p̄ k =
p N−k −1 and the filter q̄ [ ·] so that q̄ k = (−1) k +1 

q k , character-

izing the re-synthesis filter pair. Lastly, in order to learn the

shapes of orthonormal basis associated with the analysis fil-

ter pair, as explained in [14] , obtain the major shapelet func-

tion �(x ) = 

∑ 

k p k �(2 N − k ) and the minor shapelet function

�(x ) = 

∑ 

k q k �(2 N − k ) . 

Summarizing, the DST-II corresponds to the Daubechies’ trans-

orm modified so that the two highest vanishing moments are

eplaced by the matching conditions. MC 1 and MC 2 are defined

n such a way that the scalar products inherent from the DST-

I calculation, based on Mallat’s algorithm, capture the searched

attern { m 0 , . . . , m N } by either matching { m 0 , . . . , m N−1 } with

 q 0 , . . . , q N−1 } or { m 1 , . . . , m N } with { q 0 , . . . , q N−1 } , respectively, de-

ending on the position of m [ · ] within the input signal being an-

lyzed. 

As mentioned above, the procedures used to transform an in-

ut signal s [ · ] to its DST-II and to invert the transformation are

ntirely based on Mallat’s algorithm. They are exactly those de-

cribed in [14] for the DST and in [18] for the ordinary DWT. No-

ably, time complexity for both DST-II and DWT is the same. 

.2. Shape matching and time-frequency analysis 

For shape matching, the DST-II requires a much simpler process

n comparison to its predecessor: the more the i th sample of its

econd-rated part is close to the amplitude 0, the more the cor-

esponding segment of the original signal under analysis matches

 [ · ]. A useful normalized and experimental measure of similarity,

mphasizing the presence of zeros in the DST-II( s [ · ]) turning them

nto the unity, is S = e −(| DST-II 1 (s [ ·]) | ) α , being (0 < α ≤ 1). The closer

 is from 0 or 1, respectively, the less or the more the correspond-

ng segment of the signal under analysis matches m [ · ]. 

Specifically, for the j th level DST-II( s [ · ]), the result S k = 1 for

 = 0 , 1 , 2 , . . . and k within the second-rated sub-band being ex-

mined, implies that the corresponding pattern m [ · ] starts either

t s (k ·2 j −1) or s (k ·2 j ) , with an extension of N points. Attention is

equired to the fact that searching for zeros in the DST( s [ · ]), or

quivalently units in S , implies in the inspection of the second-

ated part of the transformed signal only , not the master . 

For time-frequency analysis, the procedure adopted with the

ST-II is exactly the same used for DWTs and DSTs. It is widely
nown in the related literature and also explained in [19] . This

s the reason why DST-II-based time-frequency analysis is not de-

ailed in this paper. 

. Numerical example: designing a DST-II 

In this section, a DST-II with support-size N = 8 is designed to

atch the signal m [ · ] that is shown in Fig. 1 together with the

umerical values ( sample, amplitude ) for each one of its N + 1 =
 + 1 = 9 points. 

According to the algorithm presented in Section 3 , the following

on-linear system of four groups of equations is required: 

• FIRST group : one equation from step Shp 1 , i.e.,∑ 7 
k =0 (q k ) 

2 = 1 ( f rom equation 4) . 
• SECOND group : two equations from step Shp 2 , i.e., 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

7 ∑ 

k =0 

q k = 0 

7 ∑ 

k =0 

kq k = 0 

( f rom equation 5) . 

• THIRD group : three equations from step Shp 3 , i.e., 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

5 ∑ 

k =0 

q k q k +2 = 0 

3 ∑ 

k =0 

q k q k +4 = 0 

1 ∑ 

k =0 

q k q k +6 = 0 

( f rom equation 6) . 

• FOURTH group : two equations from step Shp 4 , i.e., 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

7 ∑ 

k =0 

q k m k = 0 

7 ∑ 

k =0 

q k m k +1 = 0 

( f rom equations 7 and8) . 

The non-linear system with eight equations in eight unknowns

as the following solution: 

 [ ·] = {−0 . 0834 , 0 . 1505 , 0 . 5719 , −0 . 7055 , −0 . 0091 , 

−0 . 2784 , 0 . 2277 , 0 . 1263 } . 
quivalently, 

p[ ·] = {−0 . 1263 , 0 . 2277 , 0 . 2784 , −0 . 0091 , 0 . 7055 , 0 . 5719 , 

−0 . 1505 , −0 . 0834 };
p̄ [ ·] = {−0 . 0834 , −0 . 1505 , 0 . 5719 , 0 . 7055 , 

−0 . 0091 , 0 . 2784 , 0 . 2277 , −0 . 1263 };
q̄ [ ·] = { 0 . 0834 , 0 . 1505 , −0 . 5719 , −0 . 7055 , 0 . 0091 , −0 . 2784 , 

−0 . 2277 , 0 . 1263 } . 
In order to find �( x ) and �( x ) by using the filters coefficients,

he normalization 

∑ N−1 
k =0 

p k = 2 is first required, since the area un-

er the major shapelet is unitary as in the DWT. Proceeding this
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Fig. 2. The major shapelet and minor shapelet functions, without normalization. 
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way, we note that the major shapelet, recursively defined using

the dilation equation �(x ) = 

∑ 

k p k �(2 N − k ) for a system of sup-

port N = 8 , does not exist outside the interval [0 − 7] . We therefore

get: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�(0) = p 0 �(0) 
�(1) = p 0 �(2) + p 1 �(1) + p 2 �(0) 
�(2) = p 0 �(4) + p 1 �(3) + p 2 �(2) + p 3 �(1) + p 4 �(0) 
�(3) = p 0 �(6) + p 1 �(5) + p 2 �(4) + p 3 �(3) + p 4 �(2) 

+ p 5 �(1) + p 6 �(0) 
�(4) = p 1 �(7) + p 2 �(6) + p 3 �(5) + p 4 �(4) + p 5 �(3) 

+ p 6 �(2) + p 7 �(1) 
�(5) = p 3 �(7) + p 4 �(6) + p 5 �(5) + p 6 �(4) + p 7 �(3) 
�(6) = p 5 �(7) + p 6 �(6) + p 7 �(5) 
�(7) = p 7 �(7) 

or MT = T , being 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

p 0 0 0 0 0 0 0 0 

p 2 p 1 p 0 0 0 0 0 0 

p 4 p 3 p 2 p 1 p 0 0 0 0 

p 6 p 5 p 4 p 3 p 2 p 1 p 0 0 

0 p 7 p 6 p 5 p 4 p 3 p 2 p 1 
0 0 0 p 7 p 6 p 5 p 4 p 3 
0 0 0 0 0 p 7 p 6 p 5 
0 0 0 0 0 0 0 p 7 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and T = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�(0) 

�(1) 

�(2) 

�(3) 

�(4) 

�(5) 

�(6) 

�(7) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Thus, matrix T with scaling function values is the eigenvector of

M corresponding to eigenvalue 1. Using the normalizing condition∑ 

k �(k ) = 1 , we get: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(p 0 − 1)�(0) = 0 

p 2 �(0) + (p 1 − 1)�(1) + p 0 �(2) = 0 

p 4 �(0) + p 3 �(1) + (p 2 − 1)�(2) + p 1 �(3) + p 0 �(4) = 0 

p 6 �(0) + p 5 �(1) + p 4 �(2) + (p 3 − 1)�(3) + p 2 �(4) 
+ p 1 �(5) + p 0 �(6) = 0 

p 7 �(1) + p 6 �(2) + p 5 �(3) + (p 4 − 1)�(4) + p 3 �(5) 
+ p 2 �(6) + p 1 �(7) = 0 

p 7 �(3) + p 6 �(4) + (p 5 − 1)�(5) + p 4 �(6) + p 3 �(7) = 0 

p 7 �(5) + (p 6 − 1)�(6) + p 5 �(7) = 0 

(p 7 − 1)�(7) = 0 

�(0) + �(1) + �(2) + �(3) + �(4) + �(5) 
+�(6) + �(7) = 1 

. 

Since p 0 , . . . , p 7 � = 0 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�(0) = �(7) = 0 

(p 1 − 1)�(1) + p 0 �(2) = 0 

p 3 �(1) + (p 2 − 1)�(2) + p 1 �(3) + p 0 �(4) = 0 

p 5 �(1) + p 4 �(2) + (p 3 − 1)�(3) + p 2 �(4) 
+ p 1 �(5) + p 0 �(6) = 0 

p 7 �(1) + p 6 �(2) + p 5 �(3) + (p 4 − 1)�(4) 
+ p 3 �(5) + p 2 �(6) = 0 

p 7 �(3) + p 6 �(4) + (p 5 − 1)�(5) + p 4 �(6) = 0 

p 7 �(5) + (p 6 − 1)�(6) = 0 

�(1) + �(2) + �(3) + �(4) + �(5) + �(6) = 1 

. 

The solution of this last system offers the answer for the inte-

ger points, whereas the intermediate points satisfy �( x 2 ) = 

∑ 

k p k �

(x − k ) . Thus: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�( 1 
2 
) = p 0 �(1) + p 1 �(0) 

�( 3 
2 
) = p 0 �(3) + p 1 �(2) + p 2 �(1) + p 3 �(0) 

�( 5 
2 
) = p 0 �(5) + p 1 �(4) + p 2 �(3) + p 3 �(2) 

+ p 4 �(1) + p 5 �(0) 

�( 7 
2 
) = p 0 �(7) + p 1 �(6) + p 2 �(5) + p 3 �(4) 

+ p 4 �(3) + p 5 �(2) + p 6 �(1) + p 7 �(0) 

�( 9 
2 
) = p 2 �(7) + p 3 �(6) + p 4 �(5) + p 5 �(4) + p 6 �(3) 

+ p 7 �(2) 

�( 11 
2 
) = p 4 �(7) + p 5 �(6) + p 6 �(5) + p 7 �(4) 

�( 13 
2 

) = p 6 �(7) + p 7 �(6) 

. 

herefore, 

 �(0) , �(1 / 2) , �(1) , . . . , �(13 / 2) , �(7) } 
= { 0 , 1 . 694 , −9 . 483 , 5 . 68 , 35 . 987 , −49 . 438 , 12 . 157 , 69 . 378 , 

−99 . 513 , −18 . 872 , 68 . 523 , −8 . 236 , −6 . 670 , 0 . 787 , 0 } . 
Regarding the minor shapelet, the use of equation �(x ) =

 

k q k �(2 n − k ) implies in �(x ) = QT , with 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

q 0 0 0 0 0 0 0 0 

q 2 q 1 q 0 0 0 0 0 0 

q 4 q 3 q 2 q 1 q 0 0 0 0 

q 6 q 5 q 4 q 3 q 2 q 1 q 0 0 

0 q 7 q 6 q 5 q 4 q 3 q 2 q 1 
0 0 0 q 7 q 6 q 5 q 4 q 3 
0 0 0 0 0 q 7 q 6 q 5 
0 0 0 0 0 0 0 q 7 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For the intermediary points, �( x 2 ) = 

∑ 

k q k �(x − k ) . When

dopting the same procedure used above for the major shapelet

unction, the complete result is 

 �(0) , �(1 / 2) , �(1) , . . . , �(13 / 2) , �(7) } 
= { 0 , 0 . 791 , −4 . 432 , −1 . 020 , 37 . 413 , −39 . 054 , −52 . 307 , 96 . 104 ,

−47 . 637 , 39 . 105 , −40 . 152 , 4 . 896 , 7 . 136 , −0 . 842 , 0 } . 
Fig. 2 shows the major and minor shapelet functions, without

ormalization. 

. Example applications 

.1. The general prototype to use the DST-II, exemplified for simulated

ata 

This experiment, capable to be used as a prototype to find a

attern within a digital signal, takes advantage of the matching

ignal m [ · ], defined in the previous section, and its correspond-

ng DST-II. Particularly, m [ · ] was embedded within the 64-sample

ong signal s [ · ] shown in Fig. 3 , so that: 

• s i = cos ( 27 π i 
8 ) · sin ( 75 π i 

8 ) , (0 � i � 40) ; 
• s i = m i , (41 � i � 49) ; 
• s i = cos ( 295 π i 

32 ) · sin ( 105 π i 
32 ) , (50 � i � 63) . 

Later, the algorithm presented in Section 3.2 was applied to s [ · ],

sing the first-level DST-II, resulting in the curves shown in Fig. 4 :
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Fig. 3. The input signal s [ · ], containing m [ · ] drawn in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 4. The transformed signal, DST-II 1 ( s [ · ]), and the similarity measure, S , shown in brown and blue, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 5. The similarity measure, S , shown in blue for the DST-II and in pink for 19 other wavelet filters. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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s  
ST-II 1 ( s [ · ]) and S ( DST-II 1 (s [ ·])) using α = 0 . 1 , drawn in brown

nd blue, respectively. In addition to the regular time-frequency

nformation contained in the former, due to the fact that the DST-

I is an ordinary wavelet transform, the presence of m [ · ] within

 [ · ] is confirmed by the corresponding amplitude 1 at the sam-

le 53 of the latter. As explained in Section 3.2 , this sample of

he transformed signal corresponds to the index k = 21 of the sub-

and analyzed because, for a first-level DST-II of a 64-sample long

ignal, the second-rated part starts at index 32, which corresponds

o index 0 of that sub-band. Thus, m [ · ] starts either at s (k ·2 j −1) =
 (21 ·2 1 −1) = s 41 or s (k ·2 j ) = s (21 ·2 1 ) = s 42 . As previously defined, we

ote that m [ · ] actually starts at s 41 , confirming the proposed the-

ry. 

In order to establish a comparison, Fig. 5 shows twenty curves

ivided into two groups: the blue plot and the nineteen pink

lots. Particularly, the former represents S ( DST-II 1 (s [ ·])) , previ-

usly shown in Fig. 4 , and the latter, for which there is no need
 t  
o distinguish among the curves, correspond to S applied to each

ne of the following ordinary wavelet families: Haar, Daubechies

ith support-sizes 4, 6, 8, 10, 20, 30, 40, 50, 60 and 70, Symm-

et with support-sizes 8 and 16, Coiflets with support-sizes 6, 12,

4 and 30, Beylkin with support-size 18 and, lastly, Vaidyanathan

ith support-size 24. Clearly, only the DST-II was capable of iden-

ifying m [ · ] inside s [ · ]. This is expected as only this transform was

ptimized to match m [ · ]. Certainly, the DST-II always identifies the

attern regardless of its amplitude normalization due to the van-

shing Eqs. (7) and (8) specified in Section 3 . 

.2. Analysis of waveform shapes from biological data: spike and 

verlap sorting 

A simple search on the Web of Science webpage returns thou-

ands of pieces of work related to waveform shape matching. Just

o mention a few, [22–27] describe modern approaches which al-
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Fig. 6. The 7 patterns used during the tests: P 1 , ... , P 7 . 

Table 1 

Results for the analyses of P 1 , ... , P 7 based on DST-II with α = 0 . 1 . The 

abbreviation “N.R.” means “no reaction”. 

- P 1 P 2 P 3 P 4 P 5 P 6 P 7 

S ( DST P1 (·)) 1.0 N.R. N.R. N.R. N.R. N.R. N.R. 

S ( DST P2 (·)) N.R. 1.0 N.R. N.R. N.R. N.R. N.R. 

S ( DST P3 (·)) N.R. N.R. 1.0 N.R. N.R. N.R. N.R. 

S ( DST P4 (·)) N.R. N.R. N.R. 1.0 N.R. N.R. N.R. 

S ( DST P5 (·)) N.R. N.R. N.R. N.R. 1.0 N.R. N.R. 

S ( DST P6 (·)) N.R. N.R. N.R. N.R. N.R. 1.0 N.R. 

S ( DST P7 (·)) N.R. N.R. N.R. N.R. N.R. N.R. 1.0 
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low for the detection of pathologies in a subject’s larynx non-

invasively. Authors of the papers [28–30] interpret brain activities

based on electroencephalogram (EEG) analysis. In paper [31] , the

authors characterize patterns of H1, the motion-sensitive neuron of

the fly’s visual system, by means of their waveform shapes. Similar

experiments were also carried out in paper [32] . Thus, this topic is

of fundamental importance, as recently confirmed in [33] . 

In this spike sorting experiment, which is also inspired in those

documented in [31] , the procedure for pattern classification of bi-

ological data extracted from H1 is repeated using the DST-II. The

seven signals shown in Fig. 6 , the same presented in [14] -pp.2896

and named { P 1 , . . . , P 7 } , were used in such a way that one DST-

II was designed for each N = 31 -sample long signal, i.e., DST-II P1 ,

DST-II P2 , ... , DST-II P7 . Then, 7 · 7 = 49 all-against-all tests were per-

formed, so that the input P i was compared to the set of signals

{ P 1 , . . . , P 7 } by using the corresponding DST-II Pi in the first level

of decomposition. The results obtained when the second-rated part

of the first-level transformed inputs were analyzed are shown in

Table 1 , confirming the efficacy of the procedure. Except for the

seven exact matches, for which S = 1 , we note that there is no

reaction (N.R.) when P i is compared to P j for i � = j . For most of the

cases and considering α = 0 . 1 , the absence of reaction means that

S < 0 . 6 . When the comparisons involve P 1 and P 3 , which are per-

ceptibly the most similar among the patterns, S ≈ 0 . 65 . Particu-

larly, S = 1 whenever the exact pattern is found, regardless of its

amplitude normalisation. The algorithm based on the DST-II can

also be associated with an inspection of the signal energy [32] in

order to restrict the detection to those patterns that are above a

specific threshold. 

Complementing the above-mentioned tests, a set of DSTs-II was

designed and successfully employed to detect all the 6325 spikes

and overlaps contained in the long signal acquired from H1, de-

scribed in [32] -pp.277–278, with 100% accuracy. This reassures the

usability of the proposed approach. 

6. Conclusions 

This paper introduced the second generation of the Discrete

Shapelet Transform, i.e., DST-II, a novel tool for TFS joint analysis

of discrete-time signals. A brief literature review followed by the

detailed construction of the proposed transform were presented,

together with a numerical example, a prototype to search for a

generic pattern in a digital signal and an application on spike and

overlap sorting. 
The new transform extends the traditional DWT decomposition

n such a way that a shape analysis becomes possible, improv-

ng its predecessor, i.e., the DST. The results obtained for pattern

atching and the comparisons with other wavelets reassure the

fficacy of the proposed approach, which may be applied to a va-

iety of signals without restrictions. Although the first generation

f DSTs can also be used to identify patterns contained in a cer-

ain input signal, it requires much more work to build and solve

he non-linear system of equations that produces the filter bank,

s can be clearly seen in paper [14] . Additionally, except by the

rst generation of the DST, there is no other tool designed for TFS

oint analysis. Thus, the contribution of this work for the field of

nformation fusion is clear. 

On one hand, the DST-II presents the following advantages: (i)

t is built to match a pattern within a digital signal, regardless

f its amplitude normalization, (ii) it does not require iterative

raining procedures to learn the pattern as a neural network or a

eep learning algorithm [34] does, (iii) it is easily computed and

resents the same time complexity of any DWT with the corre-

ponding support-size. On the other hand, the main weakness is

hat the DST-II is capable to match one pre-defined pattern, but

ot a set as a statistical learning algorithm does. Furthermore, its

obustness against noise is modest. One special remark is that,

henever a DWT is required for some reason, it can be replaced

y the DST, thus allowing not only a time-frequency but a TFS

oint analysis. Furthermore, both a wavelet analysis and a wavelet-

acket analysis [3] can be performed based on the DST-II. 

An important note: for pattern matching and shape analysis,

he IDST-II is not required, however, depending on the specific ap-

lication, for instance, TFS analysis and compression, where some

oefficients of the transformed signal are modified prior to recon-

truction, the inverse is needed. This justifies the design of orthog-

nal PRFBs and the specification of �( x ) and �( x ). 

For researchers interested in the proposed approach, C/C++

35] source code to design a DST-II from an arbitrary matching sig-

al m [ · ] is available upon prior request 1 . 
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