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a b s t r a c t 

Entropy ( H ) is the main subject of this article, concisely written to serve as a tutorial introducing two 

feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). 

The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C ++ source- 

codes and enriched with example applications on restricted-vocabulary speech recognition and image 

synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the 

outcome of a partially pre-tuned deep neural network architecture which fuses important information, 

bringing a cutting-edge point-of-view for both DSP and PR communities. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Objective and text structure 

This is the third in a set of tutorials I have recently published

ith the same objective: innovative usage of humble and well-

nown concepts for the benefit of both digital signal processing

DSP) and pattern recognition (PR) communities. The preceding

exts, [23] and [24] , were respectively dedicated to the exploration

f relevant aspects of energy by means of proposed methods A 1 , A 2 

nd A 3 , and zero-crossing rates (ZCRs), according to the techniques

ntroduced as B 1 , B 2 and B 3 . Successfully, I employed those formu-

ations for neurophysiological signal analysis, texture characterisa-

ion, text-dependent speaker verification, speech classification and

egmentation, image border extraction and biomedical signal pro-

essing. Energy, that is used to express the potential to perform

ork, as well as ZCRs, which are commonly applied to elementary

pectral content analysis, act disparately in correlation to entropy

 H ) [13,70] , the feature explored in this article. 

Despite the emerging deep learning (DL) technologies em-

loyed for automatic feature learning [22,34] , handcrafted fea-

ure extraction (FE), i.e., the situation in which the system en-

ineer chooses the appropriate features to be extracted from

he signal under analysis, continues to play an important role
E-mail address: guido@ieee.org 

URL: http://www.sjrp.unesp.br/˜guido/ 

t  

d

ttp://dx.doi.org/10.1016/j.inffus.2017.09.006 
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n DSP and PR. Particularly, I demonstrate that H , by itself, ob-

ained based on two proposed approaches for FE from both

nidimensional (1D) and bidimensional (2D) data, has flagrant

otential, as also evidenced in relevant scientific articles pub-

ished last year [11,17,20,42,50,51,53,81,84,86] and a few years ago

6,15,21,37,56,57,62,63,73,75,83] . Similarly to the characterization of

CRs as neurocomputing agents [24] , H is shown to be the out-

ome of a specifically tuned deep neural network (DNN) that fuses

mportant information, bringing an innovative point-of-view for

oth DSP and PR communities. Furthermore, experiments and ap-

lications on restricted-vocabulary speech recognition and image

ynthesis reassure the efficacy of the proposed techniques. 

Compromised with a balance among creativity, simplicity and

ccuracy , exactly as in [23] and [24] , this paper is organised as

ollows. A review on H accompanied by some of its recent ap-

lications is the theme of the next subsection. Section 2 , oppo-

itely, describes the proposed approaches in detail and my partic-

lar point-of-view about H for both 1D and 2D signals. Proceeding,

ection 3 presents some numerical examples which complement

he theoretical explanations, easing their comprehension. Illustra-

ive experiments and applications involving 1D and 2D signals can

e found in Section 4 and, lastly, I conclude the paper. Following

y previous rationale, as indicated in [24] -pp.1 with respect to ar-

icle [23] , I emphasise the importance of those articles, suggesting

heir readings beforehand for a better understanding of the ideas

iscussed herein. 

http://dx.doi.org/10.1016/j.inffus.2017.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2017.09.006&domain=pdf
mailto:guido@ieee.org
http://www.sjrp.unesp.br/~guido/
http://dx.doi.org/10.1016/j.inffus.2017.09.006
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Fig. 1. The way normalisations should be interpreted for the example set s [ ·] = 

{ �, •, ◦, ◦, �, �, �, �} . UoS means “unit of space”. 
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1.2. A review on entropy and its applications 

The records I found on the Web of Science website show that

the first published article about H is dated from 1900 [82] . As sci-

ence advances, H has been at the forefront of research in a diver-

sity of fields such as general physics [39] , thermodynamics [10] , as-

trophysics [8] , statistical mechanics [67] , genetics [65] , economics

[46] and arts [1] . In order to understand its essence, focusing par-

ticularly on the field of Information Theory, where the DSP and PR

communities find utility [19,49] , the readers are first requested to

reflect on the meaning of information [39] -pp.117, as follows. The

exposition hereafter is inspired by the traditional article [68] pub-

lished in 1948 by Claude Shannon 

1 , who is considered the father

of Information Theory, and by additional respected bibliographical

materials. 

Let p i = 

αi 
M 

= 

1 
(M/αi ) 

, (0 ≤ i < K ) and (0 ≤αi < M ), be the proba-

bility [59] of the i th distinct datum , i.e., symbol, in a set s [ ·] =
{ s 0 , s 1 , s 2 , . . . , s M−1 } of size M with K distinct symbols. Conse-

quently, there are αi symbols within M matching the i th expec-

tation or, equivalently, there is one among 1 
(M/αi ) 

. Specifically, the

denominator ( M / αi ) represents the normalised number of possibil-

ities for the i th symbol, with the normalisation interpreted in such

a way that each subset of repeated elements is converted into an

unique size representative of size equal to that of the entire subset.

Furthermore, ( M / αi ) written based on a certain alphabet β pro-

duces words for which the length corresponds to what we know

as information . 

Assume, as an example, the 8-sample long set s [ ·] =
{ �, •, ◦, ◦, �, �, �, �} . The probabilities of stars, bullets, circles and

diamonds are, respectively, p 0 = 

1 
(M/α0 ) 

= 

1 
(8 / 1) 

= 

1 
8 , p 1 = 

1 
(M/α1 ) 

=
1 

(8 / 1) 
= 

1 
8 , p 2 = 

1 
(M/α2 ) 

= 

1 
(8 / 2) 

= 

1 
4 and p 3 = 

1 
(M/α3 ) 

= 

1 
(8 / 4) 

= 

1 
2 .

Thus, the corresponding normalised number of possibilities for

each star, bullet, circle and diamond is (8 / 1) = 8 , (8 / 1) = 8 ,

(8 / 2) = 4 and (8 / 4) = 2 . Fig. 1 illustrates the physical meaning

of the normalisations. Regarding the star, only one unit of space

among eight is required for its placement; thus, there are eight

possibilities to place it. The same holds true for the bullet. In rela-

tion to both circles in the original set, the normalisation converts

them in only one double-length circle and forces it to occupy two

original units of space among eight; thus, there are four possible

placements for the bigger circle. Lastly, the four original diamonds

are converted, due to the normalisation, into only one larger
1 Had he not passed away in 2001, Dr Shannon would have celebrated his 100 th 

birthday on April 30, 2016. 

a  

p  

L  

d  
iamond which occupies four original units of space, implying that

here are only two possible placements for this enlarged symbol. 

When choosing the binary basis [30] , i.e., = 2 , as being the al-

habet, “0” and “1” are the only existing characters, known as bits,

hich compose the corresponding words. Particularly, 

• “0 0 0”, “0 01”, “010”, “011”, “100”, “101”, “110” and “111” are the

2 3 = 8 possibilities for placing stars, implying that three bits

are needed to express such locations; 
• “0 0 0”, “0 01”, “010”, “011”, “100”, “101”, “110” and “111” are also

the 2 3 = 8 possibilities for placing bullets, which consequently

require three bits to express such locations; 
• “00”, “01”, “10” and “11” are the 2 2 = 4 possibilities for placing

circles, which require two bits to express such locations; 
• “0” and “1” are the 2 1 = 2 possibilities for placing diamonds,

which require only one bit to express such locations. 

Instead of written and counted, the number of bits

n each case may be easily calculated by means of the

ase β = 2 logarithms of the normalized possibilities ( [30] -

p.8), i.e., log β ( M 

α0 
) = log β ( 1 

p 0 
) = log 2 (8) = 3 , log β ( M 

α1 
) =

 og β ( 1 
p 1 

) = l og 2 (8) = 3 , log β ( M 

α2 
) = log β ( 1 

p 2 
) = log 2 (4) = 2 and

og β ( M 

α3 
) = log β ( 1 

p 3 
) = log 2 (2) = 1 . These values are the lengths,

.e., the number of bits, of the words in each case, which corre-

pond to their information . 

Generally, log β ( 1 p i 
) expresses information in terms of the num-

er of elements required to write 1 
p i 

possibilities for placements

ased on alphabet β , i.e., 

he amount of information for the i th symbol is 

log β

normalised number of possibilities 

for the i th symbol ︷ ︸︸ ︷ (
1 

p i 

)
︸ ︷︷ ︸ 

information, i.e., number of elements required 

to write (1 /p i ) using alphabet β

. 

n order to obtain a global quantification for the information in

he entire set s [ ·], the more natural procedure corresponds to the

alculation of the weighted sum of the independent amounts of

nformation, where the probabilities of occurrences are the respec-

ive weights. Thus, 

 = 

K−1 ∑ 

i =0 

p i · log β

(
1 

p i 

)
. (1)

lternatively and taking into account the property of logarithms

hich states that log( 1 x ) = −log(x ) , ∀ x ∈ � 

+ , Eq. (1) may be rewrit-

en as 

 = −
K−1 ∑ 

i =0 

p i · log β (p i ) , 

hat is the most traditional way used to express entropy. In our

revious example, H = − ∑ K−1 
i =0 p i · log β (p i ) = −∑ 3 

i =0 p i · log 2 (p i )

 −((p 0 · log 2 (p 0 )) + (p 1 · log 2 (p 1 )) + (p 2 · log 2 (p 2 )) + (p 3 · log 2 (p 3 )))

 −(( 1 8 · log 2 ( 
1 
8 )) + ( 1 8 · log 2 ( 

1 
8 )) + ( 1 4 · log 2 ( 

1 
4 )) + ( 1 2 · log 2 ( 

1 
2 ))) 

 

3 
8 + 

3 
8 + 

1 
2 + 

1 
2 = 

7 
4 bits. 

Deservedly also known as Shannon’s entropy, H may alterna-

ively be understood as a measure of unpredictability of informa-

ion content, whereas it equals zero upon a concrete and fully pre-

ictable outcome, i.e., when K = 1 and p 0 = 1 . Particularly con-

erning our example, the unpredictability of the normalised dia-

ond is the lowest: there are only two possible placements for it,

s seen in Fig. 1 . In contrast, normalised circles have a higher un-

redictability because there are four possible placements for them.

astly, both normalised stars and bullets present the highest unpre-

ictabilities amongst the symbols with eight possible placements.
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Fig. 2. Two square waves: clean and noisy, respectively drawn in red and blue. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ttention is required to the fact that neither the particular mean-

ng of the symbols in s [ ·] nor the specific positions they occupy

ffect the value of H . 

In order to provide an additional example, the reader is

equired to let s [ ·] = { 7 , 7 , 7 , 5 , 5 , 5 } be the input vector under

nalysis. Among M = 6 , there are only K = 2 different sym-

ols, or events, in s [ ·], which correspond to “7” and “5”. Thus,

he respective probability vector derived from s [ ·] is p[ ·] =
 probability of ‘ 7 ’ , probability of ‘ 5 ’ } = { 3 6 , 

3 
6 } = { 1 2 , 

1 
2 } , implying

hat H(s [ ·]) = − ∑ K−1 
i =0 p i · log β (p i ) = − 1 

2 · log β ( 1 2 ) − 1 
2 · log β ( 1 2 )

 −log β ( 1 2 ) . Similar inputs, such as, for instance, s [ ·] =
 5 , 5 , 5 , 7 , 7 , 7 } , s [ ·] = { 5 , 7 , 5 , 7 , 5 , 7 } or s [ ·] = { 5 , 5 , 7 , 7 , 5 , 7 } ,
ake to the same value for H . Additionally, if other symbols re-

lace “7” and “5”, implying, for instance in s [ ·] = { 1 , 1 , 1 , 9 , 9 , 9 } ,
 [ ·] = { 6 , 8 , 8 , 6 , 6 , 8 } or s [ ·] = {−1 , −1 , 4 , 4 , 4 , −1 } , H is still the

ame. Letting β = 2 , H corresponds to average number of bits re-

uired to represent the digital signal s [ ·]. Optionally, bases β = 10 ,

= e ≈ 2 . 7182818 and β = π ≈ 3 . 1415927 may be adopted so that

 represents, respectively, average number of “digits”, number of

nats” and number of “slices”. 

Fundamentally and in comparison to the concepts of ene.g.

23] and ZCR [24] , entropy can reveal characteristics from the sig-

al under analysis which are unlikely found based on those fea-

ures. The humble example shown in Fig. 2 illustrates this capac-

ty. Assuming that a fixed-length window is adopted to analyse the

ignals, neither energy nor ZCRs can be successfully employed to

istinguish between the clean and the noisy square waves, drawn

espectively in red and blue. On one hand, the energy from both

ignals is practically the same because the positive spikes of the

inusoidal-like noise compensate the amplitude of the negative

nes. Accordingly and regarding the ZCRs, both curves cross zero

xactly the same number of times in a certain interval. On the

ther hand, the noisy signal requires more information to be char-

cterised in comparison to its clean version because they differ

n terms of the number of distinct amplitude values they contain.

hus, entropy can easily distinguish the signals whereas both en-

rgy and ZCRs fail to do so. 

Overall, entropy has supported a considerable number of DSP

nd PR algorithms in the fields of speech and audio processing,

mage treatment and biomedical signal analysis. In paper [60] , au-

hors successfully use neural-scaled entropy (NSE) and cochlear-

caled entropy (CSE) in order to predict the effects of nonlinear

requency compression on speech perception due to sensorineu-

al hearing loss (SNHL). In speech synthesis, the major limitations

mposed with the use of tree-clustered context-dependent hidden

emi-Markov models adopted are fruitfully circumvented by the

uthors of paper [40] based on entropy. 

Speech emotion recognition algorithms, such as those devel-

ped by the authors of paper [72] , have been frequently based

n entropy, sometimes associated with time-frequency analysis

TFA). Similarly, TFA has been associated with entropy in order to
valuate speech dysfluencies and stuttering, as reported in paper

29] . Speech intelligibility in noisy environments, another relevant

heme, can be predicted with CSE evaluation, as documented in

12] and [74] . Entropy has also played an important role in speech

ecognition, as shown by the authors of papers [48,54,78] . Partic-

lar types of speech signals may be accurately characterized with

he use of entropy, as the authors of paper [85] demonstrate. 

Relevant issues on the relationship between entropy and music

re documented in article [14] . Music characterization and genre

lassification by means of entropy is explored in article [61] . Ac-

ordingly, Meragi’s songs are evaluated with a combined entropy-

ractal approach in paper [4] . Another interesting related approach

an be found in article [44] in which authors characterise mu-

ic styles based on entropy. Coupled to a hidden markov model

HMM) and a multilayer perceptron (MLP), music and speech sig-

als are segmented on the basis of entropy according to article [2] .

aximum entropy learning is the fundamental concept for the de-

elopment of a useful frequency component restoration algorithm,

s shown in article [36] . Particular emotions expressed by pop mu-

ic singers are found on the basis of entropy, being retrieved on

he basis of the procedures presented in article [33] . Finally, online

usic identification is the theme of article [77] , in which the au-

hors successfully work with almost ten thousand songs and reach

ver 90% of accuracy. 

Image processing and computer vision are singular fields for

hich entropy plays a relevant role. Coloured images are seg-

ented based on entropy according to the proposals found in arti-

le [7] . Similarly, entropy is associated with a combination of uni-

imensional fuzzy classifiers in order to segment images as shown

n paper [79] . An entropy-based watermarking scheme is success-

ully implemented in article [47] , robust against traditional signal

rocessing attacks. Noisy spectral image fusion is the focus of arti-

le [87] , in which the authors apply entropy to minimize the neg-

tive effects of noise on the selections of image features. Segmen-

ation of river images on the basis of cross entropy is explored in

aper [69] , more accurate than the traditional Chan–Vese’s model. 

In paper [45] , the authors propose the use of maximal entropy

andom walk on a graph for tampering localization in digital im-

ge forensics. Interestingly, the authors of paper [5] introduce an

ntropy-based method for segmenting the bone regions contained

n X-ray images from their surrounding muscles and tissues. An

lignment method for inverse synthetic aperture radar image for-

ation, a hyper-spectral image segmentation using Renyi entropy

nd a fuzzy image texture analysis and classification approach are,

espectively, the topics of papers [80] , [64] and [58] . Importantly,

 new uncertainty measure for image segmentation called average

ntropy is defined by the authors of paper [43] . 

Lastly, it is important to notice that, once they are used for

E, entropy-based feature vectors are usually associated with spe-

ific classifiers, such as those documented in [52] and [76] which

escribe a graph-based semi-supervised learning algorithm and a
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Algorithm 2 C/C ++ source-code to calculate H from the input sig- 

nal s [ ·] of length M . 

double entropy_1D(double* a,int M) 
{ 
double* s=new double[ M]; //auxilia array to avoid 

changes in the original signal 
for(int i = 0 ; i < M; i + + ) 

s[ i ]=a[ i ]; 
//bubble sort algorithm begins 
double xch; //exchange auxilia variable 
int there_were_an_exchange; 
do 

{ 
there_were_an_exchange=0; //no exchange in the cur- 

rent traverse 
for(int i = 0 ; i < M − 1 ; i + + ) 

if( s [ i ] > s [ i + 1] ) 
{ 
xch=s[ i ]; 
s[ i ]=s[ i + 1 ]; 
s[ i + 1 ]=xch; 
there_were_an_exchange=1; //flag to signal- 

ize an exchange 
} 

}while(there_were_an_exchange); //no exchange in 

the current traverse implies that s [ ·] is arranged in as- 
cending order 
//bubble sort is over. Now, re-quantisation takes place 
int D = ; //Define here the quantisation, just in case. 
Comment this line for no re-quantisation. 
// D corresponds to the number of divisions chosen for the 
re-quantised amplitude axis. 
for(int i = 0 ; i < M; i + + ) // Comment this line for no re- 
quantisation. 

s[ i ]=((int)(s[ i ]/((double)( D )))) ∗D ; // Comment this line 
for no re-quantisation. 
//re-quantisation is over. Now, H is calculated. 
double H = 0 ; 
int p = 0 ; 
int c = 1 ; 
do 

{ 
while(( s [ p] == s [ c] )&&( c < M)) 

c + + ; 
H− = ((c − p) / ((double )(M))) ∗ log2((c −

p) / ((double )(M))) ; 
p = c; 
c + + ; 
}while( c < = M); 

delete[] s; 
return( H); 
} 

t  

p  

c  

t  

t  

t  

e  

t  
fuzzy k-means clustering scheme, respectively. Overall, the reviews

presented in this section cover the state-of-the-art in the field so

that readers get involved with entropy. 

2. The proposed approaches 

2.1. Calculating H in practice 

Prior to studying the proposed approaches, C 1 and C 2 , the read-

ers are provided with the pseudo- Algorithm 1 , created for calculat-

Algorithm 1 Procedure to calculate H from the input signal s [ ·] of

length M . 

BEGINNING 

INPUT : ensure that s [ ·] , the original signal under analysis
of length M and indexed from 0 to M − 1 , is available ; 
STEP 1 : rearrange s [ ·] in ascending order using your
preferable method, such as Bubble Sort [38] ; 
STEP 2 : optionally, traverse s [ ·] adjusting its samples ac-
cording to the quantisation defined ( D ) ; 
STEP 3 : calculate the probability p i of each distinct ele-
ment in s [ ·] ; 
STEP 4 : once the basis β is defined, calculate the entropy

of s [ ·] , i.e., H(s [ ·]) = −∑ 

k 

p i · log β (p i ) ; 

OUTPUT : H(s [ ·]) is provided ; 
END. 

ing the entropy of a digital signal s [ ·] of length M . Different types

of signals, such as speech, music and image, may use the same

method, there existing no need for specialities. First, s [ ·] is tra-

versed using a bubble-sorting [38] procedure which holds a log-

arithmic order of time complexity [3] to arrange its elements in

ascending order, consequently favouring the computation of the

number of distinct symbols and their probabilities. Any other sort-

ing strategy might be used as well. 

The second step of the algorithm is peculiar, offering the possi-

bility to re-quantise s [ ·]. Recalling that the quantisation of a dig-

ital signal reflects the step-size adopted for dividing its ampli-

tude axis during digitalisation [55] , re-quantisation may be partic-

ularly interesting in practice whenever the highest possible preci-

sion is not required. Thus, this process avoids close values of am-

plitude, which might be distinct due to noise or artefacts, to incon-

veniently increase the number of different symbols, hindering the

analysis. The sorted vector s [ ·] = {−10 0 0 , 80 , 1499 . 98 , 1500 . 01 , 

150 0 . 0 02 , 150 0 . 03 , 120 0 0 , 320 0 0 } exemplifies such an issue. Con-

sidering the overall signal amplitude, i.e., 32 , 0 0 0 − (−10 0 0) =
33 , 0 0 0 , for most of the practical applications the four values close

to 1500 could be adjusted to become an unique one. Duly, if s [ ·] is
not re-quantized, those values will be interpreted as distinct sym-

bols, disturbing the expected value for H in practice. 

The third and fourth steps, respectively referring to the cal-

culation of the required probabilities and the entropy, take place

as soon as the sorting and optional re-quantisation are complete.

Algorithm 2 contains the complete source-code in C/C ++ program-

ming language [71] . It implements bubble-sort with a for loop in-

side a do-while repetition which continues until a certain traverse

of s [ ·] does not require any of its neighbouring elements to be ex-

changed, implying that the vector is sorted as intended. The differ-

ences between variables c and p are strategically used to account

how many identical, or close in case of re-quantisation, symbols

exist; all of which surely grouped together due to the previous

sorting. 

Although the preceding description adopted to calculate H con-

cerns only 1D inputs for which the M -sample long signal s [ ·] is
aken into account, the procedures are easily extended to 2D in-

uts. In order to do so, the matrix m [ ·][ ·] with N rows and M

olumns is considered as being the input signal. Coherently with

he 1D case, the positions of the symbols in m [ ·][ ·] do not mat-

er, and so, H ( m [ ·][ ·]) is obtained by simply converting the ma-

rix into a ( N · M )-sample long vector that contains all the original

lements of m [ ·][ ·] and then calculating the entropy of that vec-

or. Algorithm 3 shows the complete source-code in C/C ++ that
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Fig. 3. H is the weighted sum of K isolated partially pre-tuned SVMs, forming a deep structure. Theoretically, the number of hidden elements in each SVM is infinity. 

Algorithm 3 C/C ++ source-code to calculate H from the input ma- 

trix m [ ·] with N rows and M columns. 

double entropy_2D(double** m,int in_row,int in_col,int 
N,int M) 
{ 
double* s =new double [ N ∗ M] ; 
for(int i = in _ row ; i < N; i + + ) 

for(int j = in _ col; j < M; j + + ) 
s [( j − in _ col) + ((i − in _ row ) ∗ (M))] = m [ i ][ j] ; 

return(entropy_1D( s, N ∗ M)); 
} 
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mplements the conversion and, then, taking advantage of its 1D

ersion, performs the calculation. 

.2. Entropy calculation: a deep neural network outcome 

In this subsection, an interesting point-of-view is offered to

he readers. The use of logarithm property log β (x ) = 

ln (x ) 
ln (β) 

al-

ows the equivalence H = − ∑ K−1 
i =0 p i · log β (p i ) = −∑ K−1 

i =0 p i · 1 
ln (β) 

·
n (p i ) = 

∑ K−1 
i =0 p i · ln (p i )(− 1 

ln (β) 
) . Additionally, the expansion of

n ( x ) using Taylor’s series [35] allows to rewrite H so that 

 = 

K−1 ∑ 

i =0 

p i · ln (p i ) ·
(
− 1 

ln (β) 

)

= 

K−1 ∑ 

i =0 

p i ·
(

2 

∞ ∑ 

n =1 

1 

2 n + 1 

(
p i − 1 

p i + 1 

)2 n +1 
)

·
(
− 1 

ln (β) 

)

= 

(
− 2 

ln (β) 

)
·

K−1 ∑ 

i =0 

p i ·
( ∞ ∑ 

n =1 

1 

2 n + 1 

(
p i − 1 

p i + 1 

)2 n +1 
)

= 

(
− 2 

ln (β) 

)
︸ ︷︷ ︸ 
constant value 

·
K−1 ∑ 

i =0 

p i ·
((

p i − 1 

p i + 1 

)
+ 

1 

3 

(
p i − 1 

p i + 1 

)3 

+ 

1 

5 

(
p i − 1 

p i + 1 

)5 

+ · · ·
)

. 

ig. 3 , which graphically represents the proposed formulation, cor-

oborates the fact that, independently of the multiplication by

he constant −2 
ln (β) 

, H is the weighted sum of K scalars, with p 0 ,

 1 , ..., p k −1 as the corresponding and pre-defined weights. Particu-

arly, each scalar corresponds to the output of an isolated support

ector machine (SVM) [18,32] . For each SVM, the initial element,

he hidden elements and the output element are, respectively, pas-

ive, active non-linear polynomial-like kernels [32] and active lin-

ar. On one hand, passive elements just forward their inputs to the

orresponding outputs. On the other, active elements process their

nputs, modifying them accordingly. 

The inspection of Fig. 3 clearly favours the stating that the com-

lete structure is composed of four layers, from which only the

rst is passive. Notably and according to recent results [22] , three
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Fig. 4. Combining features based on H with a knowledge-based classifier. 
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active layers are enough to characterise the proposed architecture

as being that of a deep network, i.e., H by itself consists of the

outcome of an information fusion procedure from K distinct and

particularly tuned SVMs. 

Lastly, the readers know that features such as H are usually

employed as input to pattern-matching or knowledge-based clas-

sifiers. Specifically when the latter type of classifier is adopted, as

shown in Fig. 4 , the entire algorithm matches that of a depper net-

work and, therefore, has a considerable potential to solve classifica-

tion tasks. Hopefully, this particular point-of-view motivates both

the DSP and PR communities to use H . Once both the algorithms

designed to calculate H are presented and complemented with my

particular point-of-view which characterises H as the outcome of a

partially pre-tuned deep neural structure, the readers are ready to

understand both methods I propose, i.e., C 1 and C 2 , as detailed in

the next subsections. On one hand, C 1 is inspired both by A 1 and

B 1 , respectively from [23] and [24] . Accordingly, C 2 draws inputs

from both A 2 and B 2 , which are described in the same references.

On the other hand, the procedure employed to define A 3 [23] and

B 3 [24] , which is based on the analysis of cumulative amounts of

energy and ZCRs, does not admit any extension to be used with H .

Particularly, considering a signal frame of length L 1 and another of

length L 2 , both starting at the same point and with L 2 > L 1 , then

H ( L 2 ) is not necessarily higher than H ( L 1 ), preventing the use of

that strategy. This is the reason why such a method, that would

possibly be called C 3 in analogy with A 3 and B 3 , is not defined in

this article. 

2.3. The proposed method C 1 

Similarly to A 1 [23] and B 1 [24] , C 1 is the simplest method pro-

posed in this work. For 1D input signal s [ ·] of length M , it consists

of a sliding rectangular window, w , of length L traversing the sig-

nal so that, for each placement, H is calculated over that position.

Each subsequent positioning overlaps in V % the previous one, being

the over-content at the end, that is insufficient to cover a window,

disposed. The restrictions (2 ≤ L ≤ M ) and (0 ≤ V < 100) necessarily

apply. 

As I explained in [23] -pp.2 for energy, entropy-based hand-

crafted FE also requires s [ ·] to be converted into a feature vec-

tor, f [ ·], of length T = � (100 ·M) −(L ·V ) 
(100 −V ) ·L � , being � · � the floor operator.

In this case, each f k , (0 � k � T − 1) , corresponds to H computed

over the k th position of the window w . As it is also documented

in [23] -pp.2, f [ ·] requires normalisation prior to its use as an in-

put for a classifier, with the relative entropy [66] as the proper

method. It allows H-based evaluations by comparisons, particularly

forcing the highest H in f [ ·] to be 1 and adjusting the remaining,

proportionally, within the range (0 ∼ 1). The procedure consists of

dividing each individual value in f [ ·] by the highest unnormalised

H contained in it, which is the one computed over the window

placement named w h , i.e., 

f r ← 

f r 

H(w h ) 
, (0 � r � T − 1) . 
he proposed approach can be easily extended to a 2D signal,

 [ ·][ ·], with N rows and M columns, which represent, respectively,

he height and width of the corresponding image, so that the

eature vector, f [ ·], contains not only T , but T · P elements, where

 = � (100 ·N) −(L ·V ) 
(100 −V ) ·L � . During the analysis, m [ ·][ ·] is traversed along

he horizontal orientation based on T placements of the square

indow w of side L , being L < M and L < N . Then, the process is

epeated for each one of the P shifts along the vertical orientation.

Identically as in A 1 [23] and B 1 [24] , for both 1D and 2D signals,

espectively, C 1 is only capable of generating a T , or a T · P , sample-

ong vector f [ ·] if the value of L is subjected to the value of M , or M

nd N . Thus, the value of L intrinsically depends on the length of

he input 1D signal s [ ·], or the dimensions of the input 2D matrix

 [ ·][ ·], creating a disadvantage: irregular, temporal or spatial anal-

sis. Oppositely, the advantage is that a few sequential elements of

 [ ·], obtained by predefining L, T and P , allow the detection of some

articular event in the 1D or 2D signal under analysis. 

Algorithms 4 and 5 contain the C/C ++ implementations for C 1 

lgorithm 4 C/C ++ source-code for C 1 in 1D. 

// . . . 
// ensure that s [ ·] , with length M, is available as input
int L = / * the desired positive value, not higher than M * / ; 
int V = / * the desired positive value, lower than 100 * / ; 
int T = (int)(( 100 ∗ M − L ∗ V )/(( 100 − V ) ∗L )); 
double highest _ H = 0 ; 
double ∗ f = new double[ T ]; // dynamic vector declaration 

for(int k = 0 ; k < T ; k + + ) 
{ 
f [ k ] = entropy _ 1 D (& s [ k ∗ ((int )(((100 − V ) / 100 . 0) ∗

L ))] , L ) ; 
if ( f [ k ] > highest _ H) 

highest _ H = f [ k ] ; 
} 

for(int k = 0 ; k < T ; k + + ) 
f [ k ] / = highest _ H; 

// at this point, the feature vector, f [ ·] , is ready 
// . . . 

n 1D and 2D, respectively. Additionally, Figs. 5 and 6 illustrate the

ay C 1 works for both 1D and 2D inputs, respectively. 

.4. The proposed method C 2 

C 2 , analogously to C 1 , focuses on windowing s [ ·], or m [ ·][ ·],
lbeit with differences. In the former method, no overlaps take

lace and the window length for 1D, or the rectangle sizes for

D, changes according to the granularity adopted. Thus, as in A 2 

23] and B 2 [24] , C 2 provides different levels of resolution to anal-

se the input signal, being this the main incentive to choose it.

articularly, the feature vector generated from C 2 is defined as be-

ng the concatenation of Q sub-vectors of different dimensions, i.e.,

f [ ·] = { ξ1 [ ·] } ∪ { ξ2 [ ·] } ∪ { ξ3 [ ·] } ∪ . . . ∪ { ξQ [ ·] } . 



R.C. Guido / Information Fusion 41 (2018) 161–175 167 

Fig. 5. C 1 applied to an 1D input signal s [ ·]. Since A 1 , described in [23] , inspires C 1 , this diagram is inherited from that article, in which the only differences are the 

components of the feature vector f [ ·]. 

Fig. 6. C 1 applied to a 2D input signal m [ ·][ ·]. Once again, since A 1 , described in [23] , inspires C 1 , this diagram is inherited from that article, in which the only differences 

are the components of the feature vector f [ ·]. 
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For 1D, each sub-vector ξ i [ ·], (1 ≤ i ≤ Q ), results from dividing

 [ ·] in T non-overlapping sequential windows, being T a prime

umber in order to avoid one sub-vector to be a linear combina-

ion of another, and then calculating the corresponding normalised

ntropies, i.e., 

• subvector ξ 1 [ ·] is obtained by letting L = � M 

2 � , which that its

size is T = 2 ; 
• subvector ξ 2 [ ·] is obtained by letting L = � M 

3 � , which that its

size is T = 3 ; 
• subvector ξ 3 [ ·] is obtained by letting L = � M 

5 � , which that its

size is T = 5 ; 
• . . . 
• subvector ξQ [ ·] is obtained by letting L = � M 

X � , which that its

size is T = X . 

In order to match the system engineer’s objectives, Q may vary.

In regard to the 2D case, each sub-vector is produced by fram-

ng m [ ·][ ·] using T · P non-overlapping rectangles, being T = P prime

umbers, and then calculating the corresponding normalised en-

ropies, i.e., 
• subvector ξ 1 [ ·] is determined by letting L = � M 

2 � to obtain T =
2 , and then by letting L = � N 2 � to obtain P = 2 so that m [ ·][ ·] is
divided in T · P = 2 · 2 = 4 non-overlapping rectangles; 

• idem to subvector ξ 2 [ ·], obtained by letting L = � M 

3 � and then

L = � N 3 � , which that T = 3 and P = 3 , respectively, originating

T · P = 3 · 3 = 9 non-overlapping rectangles; 
• idem to subvector ξ 3 [ ·], obtained by letting L = � M 

5 � and then

L = � N 5 � , which that T = 5 and P = 5 , respectively, originating

T · P = 5 · 5 = 25 non-overlapping rectangles; 
• . . . 
• idem to subvector ξQ [ ·], obtained by letting L = � M 

X � and then

L = � N X � , which that T = X and P = X, respectively, originating

T · P = X · X = X 2 non-overlapping rectangles. 

Figs. 7 and 8 illustrate, respectively, the sliding window for 1D

nd the sliding rectangle for 2D over a hypothetical signal. Comple-

entarily, Algorithms 6 and 7 contain the respective implementa-

ions for 1D and 2D. 
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Fig. 7. 1D example for C 2 assuming Q = 3 : (a) sliding window, with length L = � M 
2 
� = � 20 

2 
� = 10 traversing s [ ·] in order to compose ξ 1 [ ·]; (b) sliding window with length 

L = � M 
3 
� = � 20 

3 
� = 6 traversing s [ ·] in order to compose ξ 2 [ ·]; (c) sliding window with length L = � M 

5 
� = � 20 

5 
� = 4 traversing s [ ·] in order to compose ξ 3 [ ·]. The window 

positions do not overlap and the symbols w i indicate the i th window position, for i = 0 , 1 , 2 , . . . , T − 1 . Since A 2 , described in [23] , inspires C 2 , this diagram is inherited from 

that article, in which the only differences are the components of the feature vector f [ ·]. 
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3. Numerical examples 

In order to clarify the proposed approaches, one numerical ex-

ample follows for each case: methods C 1 and C 2 , both in 1D and

2D, based on hypothetical data. 

3.1. Numerical example for C 1 in 1D 

Problem statement : Let s [ ·] = { 1 , 3 , 2 , 4 , 4 , 5 } , implying in M =
6 , and L = 4 be the window length, with overlaps of V = 50% . Ob-

tain the feature vector, f [ ·], according to the method C 1 using the

base β = 2 . 

Solution : The feature vector, which has length T =
� (100 ·M) −(L ·V ) 

(100 −V ) ·L � = � (100 ·6) −(4 ·50) 
(100 −50) ·4 � = 2 , is obtained as follows: 

• w 0 [ · ], which covers the sub-signal {1, 3, 2, 4}, contains four

distinct elements implying that f 0 = −∑ 3 
i =0 p i · log 2 (p i ) =

( 1 4 log 2 (4) + 

1 
4 log 2 (4) + 

1 
4 log 2 (4) + 

1 
4 log 2 (4)) = ( 1 2 + 

1 
2 + 

1 
2 + 

1 
2 ) 

= 2 ; 
• w 1 [ · ], which covers the sub-signal {2, 4, 4, 5}, contains

three distinct elements implying that f 0 = −∑ 2 
i =0 p i · log 2 (p i ) =

1 2 4 1 1 1 1 
( 4 log 2 (4) + 4 log 2 ( 2 ) + 4 log 2 (4)) = ( 2 + 2 + 2 ) = 1 . 5 ; 
In order to normalise the feature vector, obtaining the relative

ntropies, each component of f [ ·] is divided by its highest. Thus, it

ecomes { 2 2 , 
1 . 5 
2 } = { 1 , 0 . 75 } . 

.2. Numerical example for C 1 in 2D 

Problem statement : Let m [ ·][ ·] = 

(1 2 3 4 
4 2 4 6 
7 8 8 10 

)
, implying in N =

 and M = 4 . Assume that the square window has size L = 2

ith overlaps of V = 50% . Obtain the feature vector, f [ ·], following

ethod C 1 using β = 2 . 

Solution : The feature vector with length T · P = � (100 ·M) −(L ·V ) 
(100 −V ) ·L � ·

 

(100 ·N) −(L ·V ) 
(100 −V ) ·L � = � (100 ·4) −(2 ·50) 

(100 −50) ·2 � · � (100 ·3) −(2 ·50) 
(100 −50) ·2 � = 3 · 2 = 6 is ob-

ained as follows: 

• w 0 [ · ][ · ] covers the sub-matrix 
(

1 2 
4 2 

)
, which contains three

distinct elements implying that f 0 = −∑ 2 
i =0 p i · log 2 (p i ) =

( 1 log 2 (4) + 

2 log 2 ( 
4 ) + 

1 log 2 (4)) = ( 1 + 

1 + 

1 ) = 1 . 5 ; 
4 4 2 4 2 2 2 
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Fig. 8. 2D example for C 2 assuming Q = 3 subvectors: [above] sliding square with length {� M 
2 
� x � N 

2 
�} = {� 10 

2 
� x � 20 

2 
�} = 5 x 10 traversing m [ ·][ ·] in order to compose ξ 1 [ ·]; [mid- 

dle] sliding square with length {� M 
3 
� x � N 

3 
�} = {� 10 

3 
� x � 20 

3 
�} = 3 x 6 traversing m [ ·][ ·] in order to compose ξ 2 [ ·]; [below] sliding square with length {� M 

5 
� x � N 

5 
�} = {� 10 

5 
� x � 20 

5 
�} = 

2 x 4 traversing m [ ·][ ·] in order to compose ξ 3 [ ·]. Again, w i indicates the i th window position, for i = 0 , 1 , 2 , . . . , (T · P) − 1 , with no overlap. Dashed squares represent the 

sliding window in all possible positions. Once again, since A 2 , described in [23] , inspires C 2 , this diagram is inherited from that article, in which the only differences are the 

components of the feature vector f [ ·]. 

 

 

 

 

 

 

• w 1 [ · ][ · ] covers the sub-matrix 
(

2 3 
2 4 

)
, which contains three dis-

tinct elements implying the same previous result, i.e., 1.5; 

• w 2 [ · ][ · ] covers the sub-matrix 
(

3 4 

4 6 

)
, which also contains three

distinct elements implying the same previous result, i.e., 1.5; 

• w 3 [ · ][ · ] covers the sub-matrix 
(

4 2 

7 8 

)
, which contains four

distinct elements implying that f 0 = −∑ 3 
i =0 p i · log 2 (p i ) =
( 1 4 log 2 (4) + 

1 
4 log 2 (4) + 

1 
4 log 2 (4) + 

1 
4 log 2 (4)) = ( 1 2 + 

1 
2 + 

1 
2 + 

1 
2 ) = 2 ; 

• w 4 [ · ][ · ] covers the sub-matrix 
(

2 4 
8 8 

)
, which contains three dis-

tinct elements implying, as shown above, in the result 1.5; 

• w 5 [ · ][ · ] covers the sub-matrix 
(

4 6 

8 10 

)
, which also contains four

distinct elements implying in the result 2; 
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Algorithm 5 C/C ++ source-code for C 1 in 2D. 

// . . . 
// ensure that m [ ·][ ·] , with height N and width M, is avail- 
able as input
int L = / * the desired positive value, not higher than the 
higher between M and N * / ; 
int V = / * the desired positive value, lower than 100 * / ; 
int T = (int)(( 100 ∗ M − L ∗ V )/(( 100 − V ) ∗L )); 
int P = (int)(( 100 ∗ N − L ∗ V )/(( 100 − V ) ∗L )); 
double highest _ H = 0 ; 
double ∗ f = new double[ T ∗ P ]; // dynamic vector declara- 
tion 

int k = 0 ; 
for(int i = 0 ; i < T ∗ L ; i + = L ) 

for(int j = 0 ; j < P ∗ L ; j+ = L ) 
{ 
f [ k ] = entropy_2D( m, i, j, L, L ); 
if ( f [ k ] > highest _ H) 

highest _ H = f [ k ] ; 
k + + ; 

} 
for(int i = 0 ; i < T ∗ P ; i + + ) 

f [ i ] / = highest _ H; 
// at this point, the feature vector, f [ ·] , is ready 
// . . . 

Algorithm 6 Fragment of C ++ code for method C 2 in 1D. 

// . . . 

// ensure that s [ ·] , with length M, is available as input

int L ; // window length 

double highest _ H; 

int X[] = { 2 , 3 , 5 , 7 , 11 , 13 , 17 } ; /* vector containing the prime 

numbers of interest. It can be changed according to the experiment 

*/ 

int total_size_of_f = 0 ; 

for(int i = 0 ; i < (int)(sizeof( X)/sizeof(int)); i + + ) // number of el- 

ements in X[ ·] 
total_size_of_f+=X[i]; 

double ∗ f = new double[total_size_of_f]; /* The total size of f [ ·] 
is the sum of the elements in X[ ·] */ 

int jump = 0; // helps to control the correct positions to write in 

f [ ·] 
for(int j = 0 ; j < (int)(sizeof( X)/sizeof(int)) ; j + + ) 

{ 

highest _ H = 0 ; 

for(int k = 0 ; k < X[ j] ; k + + ) 

{ 

L = (int)(M/X[ j]) ; 

f [ jump + k ] = entropy_1D( & s [ K ∗ L ] , L ); 

if( f [ jump + k ] > highest _ H) 

highest _ H = f [ jump + k ] ; 

} 

for(int k = 0 ; k < X[ j] ; k + + ) 

f [ jump + k ] / = highest _ H; 

jump+ = X[ j] ; 

} 

// at this point, the feature vector, f [ ·] , is ready . 

// . . . 

Algorithm 7 Fragment of C ++ code for method C 2 in 2D. 

// . . . 

// ensure that m [ ·][ ·] , with height N and width M, is available as 

input

int L 1 , L 2 ; 

double highest _ H; 

int X[] = { 2 , 3 , 5 , 7 , 11 , 13 , 17 } ; /* vector containing the prime 

numbers of interest. It can be changed according to the experiment 

*/ 

int total_size_of_f = 0 ; 

for(int i = 0 ; i < (int)(sizeof( X)/sizeof(int)); i + + ) // number of el- 

ements in X[ ·] 
total_size_of_f+=pow( X[ i ] , 2 ); 

double ∗ f = new double[total_size_of_f]; /* The total size of f [ ·] 
is the sum of the squares of the elements in X[ ·] */ 

int jump = 0; // helps to control the correct positions to write in 

f [ ·] 
for(int i = 0 ; i < total_size_of_f; i + + ) 

f [ i ] = 0 ; 

int w = 0 ; 

for(int k = 0 ; k < (int)(sizeof( X)/sizeof(int)); k + + ) 

{ 

w = 0 ; 

highest _ H = 0 ; 

L 1 = (int)( N/X[ k ] ); 

L 2 = (int)( M/X[ k ] ); 

for(int i = 0 ; i < N − L 1 ; i + = L 1 ) 

for(int j = 0 ; j < M − L 2 ; j+ = L 2 ) 

{ 

f[jump+w] = entropy_2D( m, i, j, L 1 , L 2 ); 

if(f[jump+w] > highest _ H) 

highest _ H = f[jump+w]; 

w = 0 ; 

} 

for(int i = jump; i < jump + pow( X[ k ] , 2 ); i + + ) 

f [ i ] / = highest _ H; 

jump+=pow( X[ k ] , 2 ); 

} 

// at this point, the feature vector, f [ ·] , is ready . 

// . . . 
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Accordingly, in order to normalise the feature vector to

et the relative entropies, each component of f [ ·] is divided

y its highest, i.e., 2, thus becoming { 1 . 5 2 , 
1 . 5 
2 , 

1 . 5 
2 , 

2 
2 , 

1 . 5 
2 , 

2 
2 } =

 0 . 75 , 0 . 75 , 0 . 75 , 1 , 0 . 75 , 1 } . 
.3. Numerical example for C 2 in 1D 

Problem statement : Let s [ ·] = { 1 , 2 , 4 , 6 , 6 , 6 , 6 , 5 , 3 , 1 } , imply-

ng in M = 10 . Assuming that Q = 2 , with no overlaps between

indow positions, obtain the feature vector, f [ ·], following the

ethod C 2 and using β = 2 . 

Solution : The feature vector is composed by the concatena-

ion of Q = 2 sub-vectors, i.e., f [ ·] = { ξ1 [ ·] } ∪ { ξ2 [ ·] }} , which are

btained as follows: 

• the first subvector, ξ 1 [ ·], arises from two non-overlapping win-

dows, w 0 [ ·] = { 1 , 2 , 4 , 6 , 6 } and w 1 [ ·] = { 6 , 6 , 5 , 3 , 1 } , which are

positioned over s [ ·]. Both the windows contain four different el-

ements, among five. The corresponding results are: 

ξ1 0 = 

∑ 3 
i =0 p i · log 2 ( 

1 
p i 

) = ( 1 5 · log 2 (5)) + ( 1 5 · log 2 (5)) + ( 1 5 · log 2 

(5)) + ( 2 5 · log 2 ( 
5 
2 )) = 

2 . 3220 
5 + 

2 . 3220 
5 + 

2 . 3220 
5 + 

2 ·1 . 3220 
5 = 1 . 922 

and 

ξ1 1 = 

∑ 3 
i =0 p i · log 2 ( 

1 
p i 

) = ( 2 5 · log 2 ( 
5 
2 )) + ( 1 5 · log 2 (5)) + ( 1 5 · log 2 

(5)) + ( 1 · log 2 (5)) = 

2 ·1 . 3220 + 

2 . 3220 + 

2 . 3220 + 

2 . 3220 = 1 . 922 
5 5 5 5 5 
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• the second subvector, ξ 2 [ ·], comes from three non-overlapping

windows, w 0 [ ·] = { 1 , 2 , 4 } , w 1 [ ·] = { 6 , 6 , 6 } and w 2 [ ·] = { 6 , 5 , 3 } ,
which are positioned over s [ ·], discarding its last element, i.e.,

the amplitude 1. The three windows contain three, one and

three different elements, among three. The corresponding re-

sults are: 

ξ2 0 = 

∑ 2 
i =0 p i · log 2 ( 

1 
p i 

) = ( 1 3 · log 2 (3)) + ( 1 3 · log 2 (3)) + ( 1 3 · log 2 

(3)) = 

1 . 5850 
3 + 

1 . 5850 
3 + 

1 . 5850 
3 = 1 . 5850 

; 

ξ2 1 = 

∑ 0 
i =0 p i · log 2 ( 

1 
p i 

) = (1 · log 2 (1)) = 0 

and 

ξ2 2 = 

∑ 2 
i =0 p i · log 2 ( 

1 
p i 

) = ( 1 3 · log 2 (3)) + ( 1 3 · log 2 (3)) + ( 1 3 · log 2 

(3)) = 

1 . 5850 
3 + 

1 . 5850 
3 + 

1 . 5850 
3 = 1 . 5850 

The concatenation of both sub-vectors produce f [ ·] =
 1 . 922 , 1 . 922 , 1 . 5850 , 0 , 1 . 5850 } . Now, each sub-vector is nor-

alised separately. Expressly, each component of ξ 1 in f [ ·] is

ivided by 1.922 and each component of ξ 2 in f [ ·] keeps divided

y 1.5850, i.e., the highest values in each group. Thus, f [ ·] becomes

 

1 . 922 
1 . 922 , 

1 . 922 
1 . 922 , 

1 . 5850 
1 . 5850 , 

0 
1 . 5850 , 

1 . 5850 
1 . 5850 } = { 1 , 1 , 1 , 0 , 1 } . 

.4. Numerical example for C 2 in 2D 

Problem statement : Let m [ ·][ ·] = 

(0 1 2 2 
4 5 6 7 

8 8 10 12 
3 0 1 2 

)
, implying that

 = 4 and M = 4 . Assume that Q = 2 with no overlaps between

indows. Obtain the feature vector, f [ ·], following method C 2 us-

ng β = 2 . 

Solution : The feature vector is composed by the concatenation

f Q = 2 sub-vectors, i.e., f [ ·] = { ξ1 [ ·] } ∪ { ξ2 [ ·] } . They are obtained

s follows: 

• for ξ 1 [ ·], a total of 2 · 2 = 4 non-overlapping windows,

w 0 [ ·][ ·] = 

(
0 1 
4 5 

)
, w 1 [ ·][ ·] = 

(
2 2 
6 7 

)
, w 2 [ ·][ ·] = 

(
8 8 
3 0 

)
and w 3 [ ·][ ·] =(

10 12 
1 2 

)
, are positioned over m [ ·][ ·]. The four mini matrices con-

tain four, three, three and four different elements, among four.

Thus, the results are: 

ξ1 0 = 

∑ 3 
i =0 p i · log 2 ( 

1 
p i 

) = ( 1 4 · log 2 (4)) + ( 1 4 · log 2 (4)) + ( 1 4 · log 2 

(4)) + ( 1 4 · log 2 (4)) = 

1 
2 + 

1 
2 + 

1 
2 + 

1 
2 = 2 

; 

ξ1 1 = 

∑ 2 
i =0 p i · log 2 ( 

1 
p i 

) = ( 2 4 · log 2 ( 
4 
2 )) + ( 1 4 · log 2 (4)) + ( 1 4 · log 2 

(4)) = 

1 
2 + 

1 
2 + 

1 
2 = 1 . 5 

; 

ξ1 2 = 

∑ 2 
i =0 p i · log 2 ( 

1 
p i 

) = ( 2 4 · log 2 ( 
4 
2 )) + ( 1 4 · log 2 (4)) + ( 1 4 · log 2 

(4)) = 

1 
2 + 

1 
2 + 

1 
2 = 1 . 5 

and 

ξ1 3 = 

∑ 3 
i =0 p i · log 2 ( 

1 
p i 

) = ( 1 4 · log 2 (4)) + 

( 1 4 · log 2 (4)) + ( 1 4 · log 2 (4)) + ( 1 4 · log 2 
(4)) = 

1 
2 + 

1 
2 + 

1 
2 + 

1 
2 = 2 . 

• for ξ 2 [ ·], a total of 3 · 3 = 9 non-overlapping windows,

w 0 [ ·][ ·] = (0) , w 1 [ ·][ ·] = (1) , w 2 [ ·][ ·] = (2) , w 3 [ ·][ ·] = (4) ,

w 4 [ ·][ ·] = (5) , w 5 [ ·][ ·] = (6) , w 6 [ ·][ ·] = (8) , w 7 [ ·][ ·] = (8) and

w 8 [ ·][ ·] = (10) , are positioned over m [ ·][ ·], whereas its fourth

row and fourth column discarded. Since the symbols are thor-

oughly predictable due to their uniqueness for all nine mini

matrices, the results are ξ2 0 = 0 ; ξ2 1 = 0 ; ξ2 2 = 0 ; ξ2 3 = 0 ;

ξ2 4 = 0 ; ξ2 5 = 0 ; ξ2 6 = 0 ; ξ2 7 = 0 and ξ2 8 = 0 . 

The concatenation of both sub-vectors produce f [ ·] =
 2 , 1 . 5 , 1 . 5 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } . As in the previous exam-

le, each sub-vector is normalised separately, i.e., each com-

onent of ξ 1 in f [ ·] is divided by 2; and each component

f ξ in f [ ·] keeps unchangeable because its higest element
2 
s 0. Thus, f [ ·] becomes { 2 2 , 
1 . 5 
2 , 

1 . 5 
2 , 

2 
2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } =

 1 , 0 . 75 , 0 . 75 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } . 
. Example experiments and applications 

This section presents two applications for entropy: the first on

mage synthesis and the second on restricted-vocabulary speech

ecognition. Unusual in the current literature, they are respectively

ased on each one of the proposed approaches, i.e., C 1 and C 2 . 

.1. Image synthesis 

Despite its modesty, this experiment is uncommon and peculiar.

articularly based on the 2D version of C 1 with β = 2 , adopting no

e-quantisation and using different possibilities for L , it analyses

onsecutive parts of the original Elsevier logo, assumed as being

he example input, extracting their entropies and then synthesizing

ew images from that set of values. The synthesized signals corre-

pond just to the ( T · P )-sample long feature vectors, obtained from

he corresponding N x M input raw data but graphically shown as

eing T x P matrices. 

The first five subfigures contained in Fig. 9 allow to intuitively

omprehend that, in fact, entropy somehow describes the informa-

ion contained in the signal from which it is calculated, otherwise

he synthesized images would not be similar to its original version,

he one shown in subfigure (f). Complementarily and evidently, the

ore L decreases the more the resolution obtained allows a bet-

er synthesized image, as shown in subfigures (a)–(e). In addition

o β = 2 , the same procedure was repeated for β = e, β = π and

= 10 , resulting in no graphical differences due to the normalisa-

ions required for painting the images. 

The proposed approach permits an interesting connection with

he ideas described in the introductory section of this text, specif-

cally those explained on the basis of Fig. 1 . At that time, I used

tars, bullets, circles and diamonds as being the input symbols to

e analysed with entropy. To carry out such a task, I possibly di-

ated each original unit of space and then produced a novel set

ased on the proportional area each normalized element required

n relation to the total. Comparatively, the analysis and synthesis

rocedure I describe in this subsection conveniently “dilates” the

alue of each image pixel over the window under analysis so that

 unique normalized pixel arises, creating a blurred subimage anal-

gous to its original version. Thus, the synthesized data does not

qual but reasonably approximates the original 2D signal under

nalysis. 

Concluding, this experiment demonstrates that a conveniently

ormalized set of entropies, obtained from segments of a partic-

lar input signal, is capable of approximating the raw data they

ere calculated from. It also allows the definition of a peculiar

cheme for multiresolution analysis, analogous to that provided on

he basis of the Discrete Wavelet Transform [25–28] . Furthermore,

ince ( T · P ) < ( N · M ), an image synthesized on the basis of the pro-

osed approach can be interpreted as one of its possible com-

ressed versions, illustrating the traditional relationship between

ntropy and compression [13,49,70] . 

.2. Restricted-vocabulary speech recognition 

On one hand and as widely known, large-vocabulary speech

ecognisers are usually designed to identify hundreds or thousands

f different words [16,31] . On the other, restricted-vocabulary

peech recognisers do the same job but for distinguishing among a

ew words only, being this my intention. Particularly, raw variable-

ength data in wave format [9] from twenty speakers, including

oung and elderly people, both male and female, were acquired in

uch a way that each subject pronounced the Brazilian Portuguese
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Fig. 9. Five images synthesized using method C 1 in 2D using β = 2 and, lastly, the original Elsevier logo. 

Table 1 

Results for speech recognition when using C 2 with Q = 2 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 7 3 0 0 

“Right” 0 9 0 1 

“Left” 0 0 6 4 

“Up” 0 1 1 8 

Table 2 

Results for speech recognition when using C 2 with Q = 3 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 10 0 0 0 

“Right” 0 10 0 0 

“Left” 0 0 9 1 

“Up” 0 0 0 10 

Table 3 

Results for speech recognition when using C 2 with Q = 4 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 10 0 0 0 

“Right” 0 10 0 0 

“Left” 0 0 10 0 

“Up” 0 0 0 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results for speech recognition when using A 2 with Q = 2 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 9 0 1 0 

“Right” 0 8 0 2 

“Left” 0 0 8 2 

“Up” 2 3 1 4 

Table 5 

Results for speech recognition when using A 2 with Q = 3 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 9 1 0 0 

“Right” 0 10 0 0 

“Left” 1 0 9 0 

“Up” 1 1 1 7 

Table 6 

Results for speech recognition when using A 2 with Q = 4 . 

Actual/predicted ‘down” “right” “left” “up”

“Down” 10 0 0 0 

“Right” 0 8 0 2 

“Left” 0 0 9 1 

“Up” 2 0 0 8 

Table 7 

Results for speech recognition when using B 2 with Q = 2 . 

Actual/predicted “Down” ‘Right’ “Left” “Up”

“Down” 10 0 0 0 

“Right” 0 10 0 0 

“Left” 0 0 9 1 

“Up” 0 0 0 10 
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a  
words “left” ( esquerda ), “right” ( direita ), “up” ( sobe ), and “down”

( desce ), totalising eighty words divided in four classes. Ten words

from each class were randomly selected to define the template

models, with the remaining ten being used to test the classifica-

tion accuracy. 

All the speech files were digitalised at 160 0 0 Hz, 16-bit, mono-

channel, for which the original quantization D was kept intact. As

in [24] , the radiation effects from the speakers’ lips were removed

as a pre-processing stage known as pre-emphasis. To do so, the

first-order finite impulse response (FIR) high-pass filter whose co-

efficients are g[ ·] = { 1 , −0 . 95 } was used, via convolution. Assuming

that s [ ·], of length M , is the input speech signal, the procedure is

s k ← s k − (0 . 95 · s k −1 ) , for (1 ≤ k < M ). 

The eighty signals have variable length, implying that C 1 is not

the ideal method for this application. Oppositely, C 2 generates a

T sample-long vector f [ ·] independent of M , being thus chosen to

carry out the task in association with a simple pattern-matching

classifier of T inputs and one output. Specifically, the absolute dis-

tances from each input testing signal to the forty template mod-

els are registered, then, the class which the lowest one belongs to,

guides the assignment by means of a numeric label corresponding

to the classifier output. 

Formatted as confusion matrices, Tables 1–3 show, respectively,

the highest accuracies obtained in 

(
20 
10 

)4 = ( 20! 
10!(20 −10)! 

) 
4 = 184756

holdout cross-validations procedures [41] with Q = 2 , Q = 3 and

Q = 4 , implying that, primarily, the feature vectors contain 2 + 3 =
5 elements, 2 + 3 + 5 = 10 elements and 2 + 3 + 5 + 7 = 17 ele-

ments. Aiming at a better accuracy and following traditional pro-

cedures used for PR, the first-order derivatives of the feature vec-
ors were used instead the original vector themselves. The re-

pective accuracies were 8+8+8+8 
40 = 75 . 00% , 10+10+9+10 

40 = 97 . 50% ,

nd 

10+10+10+10 
40 = 10 0 . 0 0% , suggesting that, in this specific case, a

ore detailed partition is relevant to characterise important infor-

ation. 

In comparison with other features previously explored in

23] and [24] , entropy is the only which acts, independently, as a

eep network, possibly presenting advantages for speech recogni-

ion tasks due to the largely variable nature of such signals [16,31] .

o example, numerical results obtained with the adoption of en-

rgy based on A 2 [23] instead of entropy based on C 2 are listed

n Tables 4 , 5 and 6 . Clearly, the respective accuracies, 9+8+8+4 
40 =

2 . 50% , 9+10+9+7 
40 = 87 . 50% and 10+8+9+8 

40 = 87 . 50% , are not supe-

ior than those obtained with entropy. 

B 2 -based normalized ZCRs [24] were also used for comparisons,

roducing the results listed in Tables 7–9 . Interestingly, the cor-

esponding accuracies, i.e., 10+10+9+10 
40 = 97 . 5% , 10+10+10+10 

40 = 100%

nd 

10+10+10+10 
40 = 100% , are superior than those obtained with the

se of entropy for Q = 2 and Q = 3 only, being equivalent for Q =
 . This is expected since, as shown in [24] , a normalized ZCR acts

s one neuron. Oppositely, entropy, which is a much more dense
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Table 8 

Results for speech recognition when using B 2 with Q = 3 . 

Actual/predicted “Down” “Right’ “Left” “Up”

“Down” 10 0 0 0 

“Right” 0 10 0 0 

“Left” 0 0 10 0 

“Up” 0 0 0 10 

Table 9 

Results for speech recognition when using B 2 with Q = 4 . 

Actual/predicted “Down” “Right” “Left” “Up”

“Down” 10 0 0 0 

“Right” 0 10 0 0 

“Left” 0 0 10 0 

‘Up” 0 0 0 10 
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2 Please, send requests to http://guido@ieee.org . 
tructure as demonstrated in this article, benefits from a finer par-

ition. Thus, it is reasonable to state that both normalized ZCRs and

ntropies are capable of doing the job with an acceptable accuracy,

owever, entropies are more convenient for higher values of Q . 

To avoid misunderstandings and to keep the style of my pre-

ious tutorials [23,24] , attention is required from the readers in

egard to the specific and intended objective of this experiment

nd its corresponding results. Although the use of more dense

lassifiers, such as a knowledge-based learning algorithm instead

f a simple distance metric, would obviously increase the accu-

acies I reported as being lower than 100%, my intention was to

ecessarily use the humblest existing possibility in such a way

hat it just modestly interferes in the process. Thus, the entropy-

ased feature vectors are the principal and fundamental entities

esponsible for the results listed in Tables 1–3 . Additionally, the

ssociation of entropy-based feature vectors with, for instance, an

LP, an HMM or an independent SVM, is enough to provide a fine

unned deeper structure and, consequently, almost ideal confusion

atrices for significantly bigger datasets. 

An interesting topic for discussion: the divisions proportion-

ted by C 2 do not necessarily segment the words into isolated

honemes. Despite not being a traditional procedure in most of

he speech recognition algorithms, the proposed approach, which

s only proper for restricted-vocabulary, was capable of performing

he intended and necessary classifications independent of that sep-

ration. Thus, H-based features extracted using C 2 successfully cir-

umvent this issue, somehow characterizing the information con-

ained in each speech portion, even though it contains more than

ne phoneme. Furthermore, intra-speaker and inter-speaker varia-

ions [31] are also bypassed, up to a certain level, by means of the

xed-length feature vectors obtained when C 2 is adopted. 

. Conclusions 

Taking advantage of my previous tutorials written to serve as

eferences on energy and zero-crossing rates, respectively pub-

ished in [23] and [24] , this subsequent study provided the readers

ith a smoothly written tutorial on entropy. Although quite well

xplored in the related literature, a bibliographical review on this

opic revealed there was room for supplemental studies, as demon-

trated throughout my essay. Consequently, I presented distinct in-

ights on entropy, its calculation and specially the way it may be

nterpreted, i.e., the outcome of a partially pre-tuned deep neural

etwork. 

Aside from the preliminar discussions and inspired on my for-

er tutorials, I introduced two methods for feature extraction

ased on entropy, namely C 1 and C 2 , being both adequate for use

ith 1D and 2D inputs. Numerical examples based on hypothetical

ata complemented the explanations, which were enriched with
/C ++ source codes that implement the algorithms presented.

astly, two modest but innovative example applications were in-

luded in the text: image synthesis from entropy, that was based

n C 1 in 2D, and restricted-vocabulary speech recognition, that was

ased on C 2 in 1D. On one hand, the former technique shows how

o synthesize an image, approximately, from its entropy-based in-

ormation content. On the other, the latter emphasized the em-

edded potential entropy brings for pattern recognition tasks even

hen it is not associated with knowledge-based classifiers. 

In comparison with energy and ZCRs, entropy contrasts and can

ot be, generically, considered better or worse. Instead, it should

e adopted whenever the concept of information is significant and

hows potential to solve the specific problem at hand. Additionally,

ntropy may be associated with ZCRs, which were demonstrated

o be neurocomputing agents [24] , and with energy, that is a more

odest concept [23] , in order to allow more sophisticated solu-

ions. 

Future research directions involving entropy may explore its po-

ential when associated with dense knowledge-based algorithms,

reating super deep architectures. Another possibility is to design

nowledge-based classifiers using the structure shown in Fig. 3 so

hat the corresponding weights are assumed as the initial values

or an optimized learning, consequently creating “quasi-entropic”

eatures that are capable to treat specific problems effectively. Co-

erently with the results shown in Section 4 for image synthesis,

uto-encoders [22,34] might be planned for compression or feature

earning so that the codified features are those “quasi-entropic”. 

I close this essay by noticing that the proposed approaches offer

istinct contributions for both young researchers and experienced

rofessionals, grouping together creativity, simplicity , and accuracy ,

s in [23] and [24] . All the data I used to conduct the experiments

re freely available to the scientific community upon prior request 2 

o that the procedures could be reproduced at any time. 
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