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a b s t r a c t 

Recently much research has been conducted towards finding fast and accurate pattern classifiers applied 

to Structural Health Monitoring (SHM) systems. In this way, researchers have proposed new methods 

based on Fuzzy ARTMAP Network (FAN) in order to enhance the success rate for structural damage clas- 

sification applied to SHM applications. Conversely, the performance of methods based on FAN is very 

dependent of its setup parameters. In several SHM approaches in the literature, authors have proposed 

selecting those parameters by using several attempts (empirical and manual selection) and keeping them 

fixed for all cases in the resulting analysis, hampering the success rate of the neural network. To over- 

coming that, this paper introduces a new strategy for enhancement of structural damage identification 

focusing on supervised learning of FAN by using Particle Swarm Optimization (PSO) for selecting optimal 

setup parameters automatically for the FAN algorithm. Also, the Kappa coefficient is used as an objec- 

tive function to be maximized through the PSO algorithm. As a result, the optimum setup parameters 

improved the success rate while the damage identification is being carried out. Indeed this proposed 

method is certainly very promising and constitutes a novelty. The proposed method achieves more than 

75% hit rate that is significantly higher than the state-of-the-art approaches as presented in this paper. 

Furthermore, this approach yields a 20% improvement when considering the worst case scenario. Hence, 

this approach shows a practical application of expert and intelligent systems applied to damage identi- 

fication in SHM systems. To conclude, the proposed approach successfully identifies structural damage 

with accuracy and efficiency. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

g  

t  

s  

3  

r  

u  

f  

i  

t  

n

j

a  

o  

s  

p

 

t  

s  

a  

t  

t  

t  

a  

h

0

. Introduction 

Global aviation has increased mainly due to the large fleet

rowth prospects for the next years. According to Lewis (2012) ,

he capacity for aircraft delivery has been significantly increased

ince the 90 s. For example, in 1980 the ability was 30%, rising to

6% and 50% in 1990 and 20 0 0, respectively. In 2010 the number

ose to 60% and the forecast for 2031 is hitting 65%. Likewise, the

se of advanced composite materials in aeronautical structures has

ollowed the same trend of fleet growth. Unlike metals, compos-

tes are made up from combinations of different materials both in

heir composition and shape. Accordingly, the constituent materi-
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ls retain their identities in the compounds and do not dissolve

r merge completely into one another, although they act in uni-

on. Moreover, these materials are much more complex when com-

ared to metallic materials due to their anisotropic characteristics. 

Nevertheless, composite structures are also susceptible to struc-

ural failure. The most commons types of damage in composite

tructures, which are in operation, consist of: environmental dam-

ge, impact, fatigue, local cracking, debonding, delamination, frac-

ure and erosion of the fiber ( Duan & Ye, 2002 ). Therefore, Struc-

ural Health Monitoring (SHM) methods have been widely inves-

igated over the last few decades because they allow us to evalu-

te various types of structures under different conditions. Evalua-

ion of such structures must be carried out after having been used

or a certain period of time in order to prevent failures. Hence,

ithin the whole context of structures, one of the most impor-

ant and promising applications is structural evaluation of aircraft.

or example, a survey was conducted which shows that nearly 61%
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of structural analysis in aircraft is carried out by visual inspec-

tion. Around 31% uses another form of Non-Destructive Evaluation

(NDE) methods and additionally the inspection is carried out in an

unplanned manner. Only 8% use NDE techniques with a planned

maintenance schedule ( Brand & Boller, 1999 ). 

SHM methods based on the Electromechanical Impedance (EMI)

have been applied and found useful for evaluating damage in

composite structures. Methods based on the EMI principle, as

applied to SHM, were initially proposed by Liang, Sun, and

Rogers (2014) and certainly the method constitutes an impor-

tant aspect of Non-Destructive Evaluation (NDE). Currently, sev-

eral papers based on EMI have been produced. Actually there

is a vast literature about the EMI features and its applications

( Baptista & Vieira Filho, 2009; Liang et al., 2014; Park & Inman,

2007; Park, Cudney, & Inman, 2000; Park, Sohn, Farrar, & Inman,

2003 ). This technique requires that the structure is excited in a

frequency range through appropriate transducers PZT (Lead Zir-

conate Titanate) glued to the structure under evaluation. The mon-

itored structure, including the PZT, is represented by an electrome-

chanical model of mass-spring with a single degree of freedom

( Liang et al., 2014 ). Such method uses PZT transducers glued onto

the monitored structure and requires a voltage excitation of low

amplitude (typically less than 3 V) to produce a forced excitation

of the structure. Generally, in this technique, the excitation signal

scans over a range of variable frequency from zero up to thou-

sands of Hz generating small wavelengths for the excitation sig-

nal, which contribute significantly to the ability in detecting small

damage states often missed by low frequency methods ( Baptista

& Vieira Filho, 2009; De Oliveira, Vieira Filho, Lopes, & Inman,

2016; Park & Inman, 2007 ). In practice, a variable frequency source

makes the structure vibrate at its natural frequencies and these

responses are used to estimate the Frequency Response Function

(FRF) and then compute EMI. Indeed, the presence of damage

will change these natural frequencies causing shifts in frequency

and amplitude. Nonetheless, when applied to composite materi-

als these methods are challenging due to increased damping in

the impedance signatures ( Na & Lee, 2012 ) provided by compos-

ites. PZT patches cover a small sensing area, around 0.4 m (radius),

when applied to aluminum structures ( Park et al., 2003 ). Yet the

coverage area of the PZT may be drastically reduced for a com-

posite structure by using higher frequencies (EMI-based methods),

constituting in a difficult problem, one of the most pressing in the

field of SHM ( Na & Lee, 2012; Park & Inman, 2007 ). 

Previously, several different approaches based on Artificial Neu-

ral Networks (ANN) in the context of SHM applications have been

addressed in literature ( Lopes Jr, Park, Cudney, & Inman, 20 0 0; Pa-

patheou, Dervilis, Maguire, Antoniadou, & Worden, 2015; Saxena &

Saad, 2007 ). Recently, new classes of artificial networks such as the

Probabilistic Neural Network (PNN) and the Fuzzy ARTMAP Net-

work (FAN) have shown very promising results for structural dam-

age identification. One reason for the increasing effort s in the re-

lated research is that those methods can be applied to different

types of structures and several different damage scenarios. For ex-

ample, methods based on PNN, applied to damage identification

in SHM, are addressed in Na and Lee (2013), Palomino, Steffen,

and Finzi Neto (2014) and Selva, Cherrier, Bundinger, Lachaud, and

Morlierb (2013) . According to Na and Lee (2013) , methods based

on PNN present a faster training procedure and they are easier to

implement than the traditional Back-Propagation based methods.

More recently, methods based on FAN applied to SHM have been

proposed in the literature as follows. Firstly, FAN methods along

with wavelets were proposed in Lima et al. (2014a, b ). Therein, the

results hit a success rate of 100% for failure identification. Unfortu-

nately, the authors used only simulated scenarios in the implemen-

tation. Ali, Saidi, Mouelhi, Morello, and Fnaiech (2015) pinpoint

that the Simplified Fuzzy ARTMAP Network (SFAN) presents sev-
ral advantages due to being superior suited for either implemen-

ation in large-scale systems or on-line based methods and also

resents the best performance in terms of training/testing speed

hen compared to the Back-Propagation network. Subsequently,

e Oliveira and Inman (2016) propose a method based on SFAN ap-

lied to structural damage assessment in composite structures by

sing the EMI. The method is promising but it requires expert in-

ervention for the analyses of the best setting parameters for SFAN.

e Oliveira and Inman (2017) present a comparative analysis of

FAN and PNN algorithms in the context of identifying structural

amage growth. In that paper the authors addressed an analysis

n terms of the influence of the SFAN setup parameters by vary-

ng those parameters through different values. They point out that

FAN setup parameters have a substantial influence on the SFAN

erformance. It is important to mention that the authors carried

ut the analysis based on experimental tests (several attempts) to

hoose the best setup parameters. In essence, the authors conclude

hat although SFAN is much more suited then PNN in the con-

ext of damage growth. Also, the choice of SFAN setup parame-

ers requires substantial effort and time. To be complete, in many

pproaches shared in literature ( Ali et al., 2015; De Oliveira & In-

an, 2016, 2017; Lima et al., 2014a, b ) the authors have fixed the

etup parameters constituting a drawback because each application

roblem/dataset has different features demanding variable setup

arameters in order to improving the success rate during damage

dentification. 

In order to enhance the success rate, FAN/SFAN methods re-

uire an expert to choose the best setup parameters (choice pa-

ameter α, training rate β , network vigilance parameter ρ and

atch tracking ε) for both training and test phases. According to

ranger, Renniges, Sabourin, and Oliveira (2007) FAN performance

epends on a set of user-defined hyper-parameters which should

e carefully tuned to each specific problem. The authors also point

ut that there are other different solutions, however they focused

n exploring the influence of the vigilance parameter, leaving aside

thers (choice parameter, training rate and match tracking). They

lso mention that the wrong choice of setup parameters may

ead to overtraining and degrading the capacity of generalization

f the network. As a solution, they propose using the PSO algo-

ithm to optimize FAN hyper-parameters values. Garcia-Breijo, Gar-

igues, Sanchez, and Laguarda-Miro (2013) address an embedded

FAN method which was implemented on a microcontroller for

ood classification. They also point out that the problem of choos-

ng the best SFAN parameters setup. They proposed using different

raining rates ( β) and vigilance parameters ( ρ) values in order to

earch for the best recognition rates to select the smallest weight

atrix and map field sizes. Unfortunately, they did not mention

ow to choose the best choice parameter ( α) and match tracking

 ε). De Oliveira and Inman (2016, 2017 ) mention that SFAN param-

ters were chosen based on several attempts (practical tests) which

emands a long time and constitutes difficulty with the method.

s observed from the literature, there is no consensus about the

est way to choose the FAN/SFAN setup parameters and certainly

t still constitutes in an open field for more investigation. 

From a critical review of the research literature, optimum setup

arameters must improve the success rate while the damage iden-

ification is being carried out. Hence, a method which allows

hoosing those optimal parameters automatically is certainly very

romising and also constitutes a novelty. A promising and forth-

oming way to obtain optimal FAN parameters consists of using

he Particle Swarm Optimization (PSO) algorithm ( Granger et al.,

007 ). Unfortunately, PSO based methods have not been applied

o SHM approaches until recently. Only a few efforts have focused

n SHM-PSO based methods. This previous research is summarized

n the following. One of the earliest works on SHM-PSO proposed

he use of a hybrid optimization along with a simplex method to
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Fig. 1. (a) Electromechanical coupling between the PZT patch and the host struc- 

ture; (b) circuit used for exciting the set PZT/structure. 
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dentify delamination in laminated beams ( Qian, Cao, Su, & Chen,

012 ). Han, Xu, Wang, and Tian (2014) suggest an Efficient Man-

ging Particle Swarm Optimization (EMPSO) for high dimension

roblems to estimate defect profile from magnetic flux leakage

ignals. The experimental results demonstrated that the inversing

echnique based on EMPSO is capable of estimating 2-D defect

rofiles and outperforms the inverse technique. In the same way,

lanloeuil, Nurhazli, and Veidt (2016) propose using PSO for op-

imal sensor placement to improve the damage identification in

n SHM approach. Santos et al. (2016) address a method based

n Memetic algorithm along with PSO to improve the stability

nd reliability of the expectation-maximization algorithm applied

o damage identification on bridges. Also, the chaotic PSO algo-

ithm was used to determine support vector machine parameters

or predicting model of dam displacement ( Su, Wen, Chen, & Tian,

016 ). Summarizing the previously presented work, the majority

f them have only focused on optimizing sensors placement or es-

imating/identifying somewhat specific within those methods in-

tead of using to compute SFAN optimal setup parameters as pro-

osed here. 

The literature shows clearly that there is still not sufficient re-

earch on identifying structural damage progression in composite

aterials. Furthermore, it is evident that there is a lack of using

 combination of Kappa-PSO and FAN along with EMI when ap-

lied to monitor the progress of structural damage in SHM sys-

ems. Thus the proposed method presents a novel SHM approach.

t is also important to highlight that the research presented here

s a continuation of previous authors work related to identifying

amage growth by using SFAN ( De Oliveira & Inman, 2016, 2017 ).

nlike existing studies, a major contribution of this work consists

f a new and reliable strategy for improving the identification of

amage progression in composite structures, via SHM by focusing

n using PSO based method to automatically select optimal FAN

arameters. In order to evaluate the proposed methodology, exper-

mental tests are conducted based on the EMI technique by us-

ng structural response signals in the time-domain. Validation of

he proposed method is carried out in a unidirectional composite

late with four attached PZT patches. Damage growth scenarios are

imulated by loosening bolts to three different levels. Also, the re-

aired structural condition is also considered by retightening the

olts. Therefore, the results show that it can identify various struc-

ural conditions with accuracy, reliability, and efficiency. Further, in

rder to demonstrate the superiority of the proposed methodology

he results are compared with others recently proposed in litera-

ure. 

In summary, the main contributions of this paper are: 

• A method which takes advantage of the supervised learning of

FAN by using PSO along with the EMI technique in order to get

an enhanced performance compared to other work presented in

the SHM literature. In the context of identifying the progression

of structural damage several tools and techniques from intelli-

gent diagnosis have been combined. 
• A method to reduce the practical cost to select optimal param-

eters of the FAN classifier is presented. As a consequence, this

method, which relies on concepts that the optimum setup pa-

rameters, is directly related to enhancing the success rate while

the damage identification is being performed. 
• The proposed method uses the Kappa coefficient as an objective

function to be maximized through the PSO algorithm in order

to automatically select the best FAN setup parameters. 

The remainder of the paper is organized as follows: firstly, the

ain theoretical fundamentals are addressed. Secondly, the pro-

osed method, which is based on using supervised learning of FAN

ia the Kappa-PSO algorithm, is presented. Subsequently, the ex-

erimental setup and results are presented followed by compar-
son with other state-of-the-art solutions. Finally, the paper con-

ludes highlighting advantages and remarks of the proposed ap-

roach. 

. Theoretical fundamentals 

.1. Time-domain analysis based on the Electromechanical Impedance 

A technique based on the Electromechanical Impedance (EMI)

or SHM systems was originally proposed by Liang et al. (2014) and

as been improved by several other authors ( Annmandas & Soh,

010; Chaudhry, Lalande, Ganino, Rogers, & Chung, 1996; Cortez,

ieira Filho, & Baptista, 2012; Giurgiutiu & Zagrai, 2002; Sun,

haudhry, Liang, & Rogers, 1995; Vieira Filho, Baptista, & In-

an, 2011; Yang, Liu, Annamdas, & Soh, 2009; Zagrai & Giurgiu-

iu, 2001 ). This technique is a Non-Destructive Evaluation (NDE)

ethod which is based on the Frequency Response Function (FRF).

he monitored structure, including the PZT, is represented by an

lectromechanical model of mass-spring with a single degree of

reedom as presented in Fig. 1 (a) ( Liang et al., 2014 ). In Fig. 1 (a), M,

 and K represent mass, spring constant and damping coefficient

espectively. Exciting the PZT using a sinusoidal source V X (with

mplitude V xP and angular frequency ( ω)) will produce a current I

ith amplitude I P and phase � . Thus, the electrical impedance of

he PZT (Z E ( ω)) is given as follows ( Liang et al., 2014 ): 

 E ( ω ) = 

Vx 

I 
= 

1 

j ωa 

(
ε̄ T 33 −

Z ( ω ) 

Z ( ω ) + Z a ( ω ) 
d 

2 
3x ̂

 Y 

E 
xx 

)−1 

(1) 

here Z a ( ω) and Z( ω) represent the mechanical impedances for

he transducer and monitored structure, respectively. In Eq. (1) ,

¯ T 33 , 
ˆ Y 

E 
xx , d 2 

3 x ′ a , and j represent dielectric constant, Young’s mod-

lus, electric field constant, geometric constant and imaginary unit

espectively. Note from Eq. (1) that any variation in terms of

he structural impedance will cause changes into the electrical

mpedance of the PZT patch and this in turn causes changes in the

MI signatures. 

In EMI-based techniques, the structure is excited in an appro-

riated frequency range through the attached PZTs, which are also

sed as sensors to capture the signal responses from the struc-

ure. In general, the results from these measurements are used

o determine FRF and subsequently the EMI. Generally, statistical

ndices are computed from EMI signatures and then used to de-

ect structural damage. The most common indices are Root Mean

quare Deviation (RMSD), Correlation Coefficient Deviation Metric

CCDM) and Mean Absolute Percentage Deviation (MAPD). These

ndices are computed using signals obtained from the structure in

ealthy condition, known as baseline, as well as signals obtained

rom the structure under test. Further details about EMI in SHM

ystems are found in the follow references ( Liang et al., 2014; Park

t al., 2003 ). 

Recently, then EMI technique has been developed through

ontributions on several fronts and applications including sig-

al processing, statistical methods and new circuits for excita-

ion/reception of signals from the PZT/structure. The proposed



4 M.A. de Oliveira et al. / Expert Systems With Applications 95 (2018) 1–13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Architecture of the Fuzzy ARTMAP neural network. 
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method uses the EMI principle, however the analysis is carried

out in the time-domain without computing either FRF or the EMI.

The EMI-based time-domain analysis is a recent development and

was first presented in Vieira Filho et al. (2011) . The authors pro-

posed multilevel wavelet decomposition via time responses ob-

tained from a piezoelectric wafer in an impedance-based method.

The above work compares the EMI based on the Frequency Re-

sponse Function (FRF) to the wavelet based method in the time-

domain using RMSD and CCDM indices to detect structural dam-

age. Cortez et al. (2012) and De Oliveira and Inman (2016, 2017 )

also provided progress in using EMI in the time-domain applied to

SHM applications. 

Time-domain analysis can be carried out considering the exci-

tation circuit of the PZT/structure developed by Baptista and Vieira

Filho (2009) and as presented in Fig. 1 (b). Denoting a sinusoidal

excitation signal V X with frequency ω and peak voltage V xP , the

circuit analysis can be mathematically represented in two ways.

First, the traditional method based on the frequency response

which requires the transfer function of the circuit is given by 

V y ( ω ) 

V x ( ω ) 
= 

Z 

Z + R S 

(2)

where Z represents the impedance of PZT/structure and R S is a pre-

cision resistor used to limit the current through the PZT. From the

transfer function, the time response V y can be obtained through

inverse Laplace or Fourier Transform considering the excitation sig-

nal V X . 

The second way uses the definition of PZT impedance, which is

given by 

Z ( ω ) = 

V y ( ω ) 

I ( ω ) 
(3)

where Z ( ω) represents the impedance of PZT/structure, V y ( ω)

voltage, I( ω) the excitation current at the PZT and ω the angular

frequency. Considering the phase � , the impedance can be writ-

ten as ( Cortez et al., 2012 ) 

Z ( ω ) = 

V y 

I 
cos (�) + j 

V y 

I 
sin ( �) (4)

where j represents the imaginary unit. Considering the resistor for

limiting the current through R S , the impedance can be written as

follows ( Cortez et al., 2012 ) 

Z Re = R s 
V y 

V x − V y 
cos ( �) (5)

Z Im 

= R s 
V y 

V x − V y 
sin ( �) (6)

where Z Re and Z Im 

represent the real and imaginary parts of

impedance, respectively. In general, the real part of the EMI

presents higher sensitivity than the respective magnitude of the

imaginary part for damage detection. Owing to that, many au-

thors consider only the real part of the EMI for SHM applications

( Park et al., 2003 ). From Eq. (5) , if the excitation voltage and the

resistor R S are kept constant (in phase and peak), the response

voltage (V y ) is directly correlated with the impedance variation.

The same analysis can be carried out to the imaginary part of the

impedance. 

Another way to analyze this is to consider the modulus of the

Electromechanical Impedance. From Eqs. (5) and (6) , the modulus

of Electromechanical Impedance |Z| is given by: 

| Z | ∼= 

V y 

V x − V y 
R s (7)

Solving Eq. (7) for the relationship between the voltages yields

Vy ∼= 

| Z | 
| Z | + R S 

Vx (8)
Analyzing Eqs. (5) –(8) , it is clearly possible to identify struc-

ural damage using only the response signals of PZT/structure, be-

ause these signals are directly correlated with the Electromechan-

cal Impedance (since it is guaranteed that the excitation input is

ept constant). 

Hence, in this work, the damage identification considers time-

omain response (V y ) only, without considering FRF or inverse

aplace/Fourier Transform, which by itself is a great advantage in

erms of computational efforts. It simplifies and speeds up the

amage identification in real applications. It is important to point

ut that EMI time-signals (Vy) are used as inputs to compute Eu-

lidean distances throughout this approach. 

.2. Fuzzy-ARTMAP network 

FAN architecture, which has a self-organizing learning network,

as proposed by Carpenter, Grossberg, Markuzon, Reynold, and

osen (1992) . FAN belongs to the family of the adaptive resonance

heory (ART) to avoid restarting the training of the classifier for

ach every input pattern, and so it allows for keeping and ex-

ending the previously obtained knowledge ( Carpenter et al., 1992 ).

he architecture of FAN comprises two fuzzy modules ARTa and

RTb, which have the same structure as the ART1 neural net-

ork, but uses fuzzy logic in its operation ( Araújo et al., 2013 ;

arpenter et al., 1992 ). Also, the Map Field is responsible for link-

ng ARTa with ARTb. Fig. 2 summarizes the architecture of the

AN network. Performance of the FAN depends critically on the

act that its setup parameters are chosen carefully in order to im-

rove the classifier. The FAN parameters are described as follows.

he choice parameter ( α) defines the degree of interference on the

election of the most representative neurons of the weight vector.

he training rate ( β) controls the speed at which the neural net-

ork learns. If β is set to 1 the training time will be shorter. The

igilance parameter ( ρ) seeks to figure out the differences among

nput patterns that create new categories through similarity tests.

he match tracking ( ε) checks if there is matching between the

nput (ARTa module) and output (ARTb module). If not, the vig-

lance parameter of ARTa is increased in order to search for an-

ther index that provides matching. If none of inputs existing in

RTa matches with the outputs of ARTb, then a new input is acti-

ated in ARTa which effects its connection with an output of ARTb.

AN is well-known in the literature and can be further explored in

arpenter et al. (1992) . 
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.3. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic optimiza-

ion technique based on population which was inspired by the

ocial behavior of a flock of birds or school of fish ( Kennedy

 Eberhart, 1995 ). This technique shares many similarities with

volutionary computational methods, such as genetic algorithms,

lthough it does not contain evolutionary operators such as

rossover and mutation. PSO belongs to a class of evolutionary

omputation algorithms that does not employ the concept of "law

f the strongest", or the direct selection function. A solution with

ery low setting values can thus survive for optimizing and poten-

ially go to any point in the solution space ( Eberhart & Shi, 1998 ).

nlike genetic algorithms which were designed to handle binary

ncoding, PSO was designed to provide effective results in solv-

ng global optimization problems in which the encoding values are

eal, thereby making PSO suitable for studies on larger scales. 

Going a step further into the idea of PSO, each particle corre-

ponds to a unique response in the solution space and population

f particles, called a swarm. All particles are associated with po-

itions, which are analyzed according to the evaluation function

 fp ) to being optimized, and velocity values, which define their

ovements. Particles move through the solution space, following

he particles with the best fit. Assuming a d -dimensional solution

pace, the position of the particle i in the swarm containing P -

articles is represented by: 

 i = ( S i1 , S i2 , . . . S id ) (9) 

here, i = 1, 2, …, P. The velocity of the particle is referenced by

he follow vector 

 i = ( V i1 , V i2 , . . . V id ) (10) 

hereas the best previously visited position of the particle is de-

ned as follows: 

 i = ( P i1 , P i2 , . . . P id ) (11) 

For each new iteration q + 1 , the velocity and position of the

article i are updated according to equations bellow: 

 

q +1 

i 
= w 

q V 

q 

i 
+ c 1 r 1 

(
P 

q 

i 
− S q 

i 

)
+ c 2 r 2 

(
P 

q 
g − S q 

i 

)
(12)

 

q +1 

i 
= S q 

i 
+ V 

q +1 

i 
(13)

here P g represents the best global position of the particle in the

warm, w q is the inertial weight of the particle, c 1 and c 2 are pos-

tive constants known as cognitive and social parameters respec-

ively, and r 1 and r 2 are random numbers evenly distributed in the

nterval of [0,1]. The w q regulates the balance between exploitation

nd use. A high weight facilitates a global search (holding), while

 small value of weight tends to facilitate adjustment in a particu-

ar search area (use). This is because the values of the weights are

efined as from a monotonically decreasing function of q . An ap-

ropriate tuning for c 1 and c 2 may result in a faster convergence of

he algorithm and attenuation of the local minimum. 

. Methodology 

The proposed methodology for identifying the progression of

tructural damage, by using Kappa-PSO based method to automat-

cally selecting optimal FAN parameters, is presented in this sec-

ion. In this sense, Fig. 3 summarizes the schematic diagram for

he method. The methodology is done by means of three steps as

escribed in the following subsections. In step 1, the impedance

ignals are obtained based on the EMI principle. For this, four PZTs

PZT #1, PZT #2, PZT #3 and PZT #4) considering five different

tructural conditions (Healthy (H), Level 1 (L1), Level 2 (L2), Level
 (L3) and Repaired (R)), for each damage position (P1, P2, P3,

4 and P5) were considered. More details about the experimental

etup are presented in the Section 4 . In step 2, Euclidean distances

re computed from the structural response signals. Euclidean dis-

ances are used as inputs for the FAN algorithm. In step 3, the PSO

ethod is carried out aiming to obtain the optimal FAN parame-

ers. For that, the Kappa coefficient is used as an objective function

o be maximized in order to improve damage identification rates. 

.1. Step 1: structural response signals 

The procedure of exciting the structure is carried out using a

hirp signal for each PZT. The corresponding impedance signal for

ach PZT patch is then sampled separately. In this procedure, each

ZT transducer acts as actuator and sensor at the same time. This

rocedure is well-known in EMI literature and it can be further

xplored in Liang et al. (2014 ) and Park et al. (2003) . Impedance

ignals, for all PZTs patches, are obtained considering the pristine

tructural condition, after each simulated damage has been added

o a structure and finally when all simulated damage is removed

repaired structural condition). Subsequently in the Section 4 is

hown further details of the experimental setup used to obtain all

mpedance signals as well as the damage scenarios. 

.2. Step 2: computing Euclidean distances 

This approach compute Euclidean Distances (ED) from the ob-

ained impedance signals, using the developed MatLab ® software,

aking into account the signals of the healthy structural condition

baseline) as a reference by the following ( De Oliveira & Inman,

016, 2017 ): 

1 ( BL , L1 ) = 

√ 

n ∑ 

j=1 

(
B L j − L 1 j 

)2 
(14) 

here, BL and L1 represent the healthy (baseline) and damaged

tructural (1/4 turn) conditions respectively. For the other struc-

ural conditions (H, L2, L3 and R) the same procedure is also car-

ied out. A similar procedure is applied to each PZT patch and

amage positions (P1, P2, P3, P4 and P5). Computed EDs are used

o form the dataset for training and testing phases. This dataset is

sed to feed the FAN classifier. 

.3. Step 3: supervised learning of FAN by using the Kappa-PSO 

lgorithm 

Under this approach, the ARTa module is fed with the EDs val-

es, which are computed from the obtained structural impedance

ignals, while the ARTb module has five recognition categories

hich are associated with five structural conditions (H, L1, L2, L3

nd R). Both modules are linked by a Map Field module (Fab)

hich associates inputs of the ARTa with outputs of the ARTb by

sing the match tracking procedure in order to maximize the cor-

ect classification for identifying of structural damage ( Fig. 2 ). Ow-

ng to the four FAN parameters (choice ( α), training ( β), vigilance

 ρ) and match tracking ( ε)) have substantial influence on FAN per-

ormance; therefore, instead of using an expert to selecting optimal

arameters we propose using the Kappa-PSO algorithm to obtain

utomatically these optimal parameters as shown in the following.

For that, the PSO algorithm, explained previously, considers

ach particle as a FAN with a 4-dimensional solution space, where

ach dimension represents an indicator of optimal setup parame-

ers required for classifying of various structural conditions. Thus,

he components of the particle position i in the solution space are

efined, based on Eq. (9) , by the following: 

 

q 
i 

= 

(
S q 

11 
, S q 

12 
, S q 

13 
, S q 

14 

)
(15) 
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Fig. 3. Summarized schematic diagram for the proposed methodology. 
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here, 

S 
q 
11 

- vigilance parameter of ARTa module ( ρ) 

S 
q 
12 

- choice parameter ( α) 

S 
q 
13 

- training rate ( β) 

S 
q 
14 

- match tracking ( ε) 

It is important to point out that the choice of these parameters

for composing the particle position is essential to the evolution

of the FAN ( Carpenter et al., 1992; Carpenter, Grossberg, & Rosen,

1991; Granger et al., 2007 ). In this approach, the Kappa coefficient

is used as the objective function by the PSO algorithm to assess the

quality of the particles. The procedure follows the guidelines sum-

marized in Fig. 4 , which requires establishing this optimal param-

eters setup for the FAN classifier. Under this approach, qmax indi-

cates the maximum number of iteration in which the optimization

process will run; P is the population size of particles; Vmax indi-

cates the maximum velocity that particles can move themselves;

w 0 means initial inertial weight; c 1 and c 2 are positive constants

that represent cognitive and social parameters, respectively; r 1 and

r 2 are random numbers uniformly distributed in a range of [0, 1].

Extra details about PSO along with FAN are found in Eberhart and

Shi (1998) and Granger et al. (2007) . 

Essentially this approach proposes using FAN as the damage

classifier algorithm along with the PSO metaheuristic algorithm

which is used to determine an optimum parameter configuration

that maximizes the identification rate of structural damage in SHM

systems. As mentioned, the Kappa coefficient is also used as the

objective function by the PSO algorithm to assess the quality of

the particles. The Cohen’s Kappa coefficient is a metric of agree-

ment introduced firstly to the area of psychology in Cohen (1960) .

The original intention of Kappa was to measure the level of agree-

ment or disagreement of a group of people observing the same

phenomenon. In practice, both success rate and Kappa are com-
uted from the confusion matrix. However, the main difference

etween them is that the success rate is only computed by us-

ng the principal diagonal of the confusion matrix whereas Kappa

nalyses the whole matrix. In this approach, we have a confusion

atrix M with five rows and five columns . Hence, the Kappa co-

fficient (K), which measures the observed proportional agreement

Po) between the existing and predicted classes over the training

asis after removing the proportion of coincidence by chance (Pe),

s defined as follows: 

 = 

Po − Pe 

1 − Pe 
(16)

o = 

TH + TL 1 + TL 2 + TL 3 + TR 

N 

(17)

e = 

( C1 ∗L 1 ) + ( C2 ∗L 2 ) + ( C3 ∗L 3 ) + ( C4 ∗L 4 ) + ( C5 ∗L 5 ) 

N 

2 
(18)

ere, 

TH- Number of H samples classified as true; 

TL1- Number of L1 samples classified as true; 

TL2- Number of L2 samples classified as true; 

TL3- Number of L3 samples classified as true; 

TR- Number of R samples classified as true; 

C1- Number of H, L1, L2, L3 and R samples classified as H; 

C2- Number of H, L1, L2, L3 and R samples classified as L1; 

C3- Number of H, L1, L2, L3 and R samples classified as L2; 

C4 - Number of H, L1, L2, L3 and R samples classified as L3; 

C5- Number of H, L1, L2, L3 and R samples classified as R; 

L1- Number of H samples classified as H, or L1, or L2, or L3 or

R; 

L2 - Number of L1 samples classified as H, or L1, or L2, or L3 or

R; 
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Fig. 4. Flowchart containing the whole procedure used to selecting the FAN optimal parameters by using the Kappa-PSO algorithm. 
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L3- Number of L2 samples classified as H, or L1, or L2, or L3 or

R; 

L4 -Number of L3 samples classified as H, or L1, or L2, or L3 or

R; 

L5- Number of R samples classified as H, or L1, or L2, or L3 or

R; 

N - Total of classified samples. 

It is important to point out that H, L1, L2, L3 and R refer to

uclidean distances computed considering the following structural

onditions: Healthy, damaged (Level 1, Level 2, Level3) and Re-

aired, respectively. 

In short, the interpretation of K can be made as follows: the

earest to zero is K, it means that the sorted units occurred by

hance, on the other hand when K approaches 1, the agreement

etween the correct classes and predicted tends to the “exact”

 Cohen, 1960 ). 

. Experimental setup 

In order to evaluate the proposed methodology, experimental

ests were carried out as follows. Firstly, a composite plate was at-

ached to an aluminum table which has twelve threads at differ-
nt points using also twelve sets composed of bolts and washers.

he plate was only in contact with the table at those twelve points

hrough the washers. The thickness of each washer is 2 mm and its

iameter is 6 mm. The composite plate (ACP Composites) consists

f a carbon fiber unidirectional pre-impregnated with epoxy resin

f size 500 mm × 300 mm × 1.5 mm. Secondly, four piezoceramic

isks (PSI-5H4E/Piezo Systems), called PZT #1, PZT #2, PZT #3 and

ZT #4, were bonded to the composite plate at different distances

s shown in Fig. 5 . Each PZT has external diameter of 31.8 mm. 

Experimental tests were conducted by using the acquisition sys-

em proposed in Baptista and Vieira Filho (2009) . Their system

as developed on the LabVIEW 

® platform and makes use of a

ational Instruments Data Acquisition (DAQ) device, model USB-

259 ( Figs. 5 and 6 ). The acquisition system is responsible to excite

he structure using a chirp signal varying from 20 kHz to 180 kHz.

he amplitude of excitation, for each PZT, was also swept through

ve different voltage levels: 1 V, 2 V, 3 V, 4 V and 5 V. Resistors R

re used to limit the current through PZTs and they were set to

 k Ω . Further details about the experimental setup are found in De

liveira and Inman (2016, 2017 ). 

The structure was excited considering the pristine condition

nd its correspondent signal for each PZT was stored as the base-
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Fig. 5. Representation of the general diagram for the acquisition system (dimensions in millimeters). 

Fig. 6. Experimental set up including: the composite plate containing four PZTs patches, DAQ and laptop running the acquisition software. 
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line (BL). At a different time, a second dataset was also obtained

considering the pristine structural condition (called H). Posteri-

orly, structural damage was simulated by loosening bolts at three

different levels called L1, L2 and L3. The levels L1, L2 and L3

represent the progression of structural damage due to loosening

bolts by a 1/4, 1/2 and 1/1 turns respectively. Afterwards, the

repaired structural condition was also evaluated by retightening

bolts (R). This procedure was carried out for all positions P1, P2,

P3, P4 and P5 by considering all five different levels of excitation

signals. 
c  
. Experimental results 

In order to evaluate the proposed methodology, this section

resents the experimental results. Firstly, structural response sig-

als were obtained considering various structural conditions, po-

itions of damage and PZTs (using the aforementioned acquisition

ystem). Fig. 7 present some of the data. Fig. 7 (a) depicts the real

art of the impedance for PZT #1 and position P1. Signatures are

hown for four different structural conditions: healthy (H), level L1

1/4 turn), level L2 (1/2 turn) and level L3 (1/1 turn). As observed,

hange in the impedance signatures caused by damage insertion
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Fig. 7. Signatures considering various structural conditions (Healthy, Level L1, Level L2 and Level L3) at the position P1: (a) real part of the impedance for PZT #1; (b) time 

responses for PZT #1; (c) real part of the impedance for PZT #2; (d) time responses for PZT #2. 

Table 1 

Distribution of EDs at position P1 into datasets for PZTs #1 and 

#2. 

Structural conditions PZT #1 PZT#2 

Training Test Training Test 

Healthy (H) 15 10 15 10 

Level L1 15 10 15 10 

Level L2 15 10 15 10 

Level L3 15 10 15 10 

Repaired (R) 15 10 15 10 

Total 75 50 75 50 
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Table 2 

Overall success rates for FAN and Kappa-PSO-FAN 

methods, considering four PZTs and all damage po- 

sitions. 

Positions PZTs FAN Kappa-PSO-FAN 

P1 PZT #1 98% 100% 

PZT #2 50% 56% 

PZT #3 70% 74% 

PZT #4 82% 84% 

P2 PZT #1 82% 86% 

PZT #2 68% 84% 

PZT #3 70% 72% 

PZT #4 58% 70% 

P3 PZT #1 80% 86% 

PZT #2 56% 70% 

PZT #3 100% 100% 

PZT #4 84% 84% 

P4 PZT #1 46% 74% 

PZT #2 42% 52% 

PZT #3 40% 60% 

PZT #4 68% 88% 

P5 PZT #1 56% 60% 

PZT #2 32% 54% 

PZT #3 68% 68% 

PZT #4 74% 75% 

L

l  

a

 

s  

a  

o  

(  

o  

p  

i  

c  

t

 

t  

a  

d  
s extremely subtle even for the position P1, which is placed very

lose to PZT #1. Fig. 7 (b) shows the corresponding structural time

esponses. Once again, changes caused by damage are almost im-

erceptive. In the same way, Fig. 7 (c) and (d) present the real part

f the impedance and structural time response respectively, under

he same conditions, for PZT #2. PZT #2 is placed almost 200 mm

ar away from position P1 and the changes caused by damage are

lso extremely subtle. Despite the structural change being sub-

le, the proposed method (Kappa-PSO-FAN) overcomes this limi-

ation, thereby improving the damage identification procedure as

resented in the following. 

Secondly, Euclidean distances were computed from the ob-

ained response signals, in the time domain, as in Eq. (14) . EDs

re used to form dataset for training and testing phases, which are

sed as input to the FAN classifier. Table 1 summarizes datasets for

tructural conditions related to the position P1 considering PZT #1

nd PZT #2. Similar datasets were also performed for other dam-

ge positions (P2, P3, P4 and P5) and PZTs (PZT #3 and PZT #4). 

Thirdly, datasets are used as input to the FAN classifier. Four

AN (one for each PZT) were implemented for position P1 to an-

lyze various structural conditions. A similar procedure was car-

ied out for other damage positions (P2, P3, P4 and P5). FAN setup

arameters, ρ = 0.78, α = 0.25, β = 1 and ε = 0.01, were considered

or both training and testing procedures. Setup parameters were

hosen according to De Oliveira and Inman (2017) . It is important

o mention that the method codes the training labels, for all meth-

ds presented here, as 1 for H, 2 for L1, 3 for L2, 4 for L3 and 5

or R. The output test is also labeled as 1, 2, 3, 4 and 5 for H, L1,
2, L3 and R respectively. Damage identification is carried out off

ine and then the success rate for each structural condition/PZT is

utomatically computed. 

As a result, Table 2 summarizes the success rates for FAN con-

idering all positions of structural damage. Here, the success rates

re considered as the ability of the classifier to distinguishing vari-

us structural conditions: Healthy (H), Level L1 (1/4 turn), level L2

1/2 turn), level L3 (1/1 turn) and repaired (R). For example, FAN

btained a rate of 98% for PZT #1 when the damage was placed at

osition P1, which means that our system was successfully able to

dentifying all five classes of structural conditions with 98% of ac-

uracy. As showed in Fig. 5 , the damage position P1 is placed close

o the PZT #1. 

When the damage is far away from PZT patches, it is expected

hat the success rate of the classifier tends to decrease proportion-

lly due to the drastic reduction of change in the structural con-

itions caused by damage. Hence, the success rate for position P2,



10 M.A. de Oliveira et al. / Expert Systems With Applications 95 (2018) 1–13 

Table 3 

Obtained PSO parameters after the optimization pro- 

cess has been performed. 

Parameters Values 

Number of iterations (q) 10 0.0 0 

Number of population particles (P) 5.00 

Initial inertial weight (w 0 ) 0.40 

Random parameter (r 1 ) 0.02 

Random parameter (r 2 ) 0.68 

Cognitive (c 1 ) and social (c 2 ) parameters 2.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Comparison for overall success rates for five different methods con- 

sidering four PZTs and all damage scenarios. Methods based on PNN 

and SFAN were addressed in De Oliveira and Inman (2017) and 

De Oliveira and Inman (2016) respectively. 

Positions PZTs PNN SFAN FAN Kappa-PSO-FAN 

P1 PZT #1 96% 98% 98% 100% 

PZT #4 62% 82% 82% 84% 

P2 PZT #1 72% 82% 82% 86% 

PZT #2 68% 76% 76% 84% 

P3 PZT #3 80% 100% 100% 100% 

PZT #4 60% 84% 84% 84% 

P4 PZT #3 64% 40% 40% 60% 

PZT #4 78% 68% 68% 88% 

P5 PZT #3 48% 68% 68% 68% 

PZT #4 72% 70% 74% 75% 

Table 5 

Comparison among total times for: PNN, SFAN, FAN and Kappa-PSO-FAN. 

References Methods Total time (ms) 

De Oliveira and Inman (2017) PNN 755.500 

De Oliveira and Inman (2016) SFAN 20.336 

Proposed here FAN 21.350 

Proposed here Kappa-PSO-FAN 9620.0 0 0 
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which is placed in a half way between PZT #1 and PZT #2, hit 82%

and 68% respectively. PZT #3 was able to identifying all structural

conditions with 100% of accuracy (for P3). This result was expected

because the damage position (P3) is placed just a few millimeters

from PZT #3. Analyzing the results for position P4, it can be clearly

noticed that the best result was obtained by PZT #4 which hit an

accuracy rate of the 68%. Unfortunately, the proposed method was

not able to identify those structural conditions with precision (over

70%). Finally, the results for position P5 showed that PZT #4 was

able to identify all structural conditions with 74% of accuracy. 

As mentioned, the best setup parameter for FAN is essential

for enhancing the success rates of the classifier. For this reason,

the Kappa-PSO-FAN algorithm is proposed here. Hence, the Kappa-

PSO algorithm was run and the obtained PSO setup parameters

are presented in Table 3 . Also, optimal FAN parameters were com-

puted automatically by using the PSO algorithm and used for both

training and testing procedures. For example, obtained parameters

for PZT #1 and position P1 are: ρ = 0.0097, α = 0.0524, β = 1 and

ε = 0.1438. The number of Kappa-PSO-FAN networks is also the

same that was used for FAN ( Fig. 3 ). 

The results obtained for the Kappa-PSO-FAN based method,

considering the same structural conditions used for the FAN al-

gorithm, are also presented in Table 2 . As observed in Table 2 ,

the success rates for the majority of the PZTs and damage posi-

tions have significantly increased when using the Kappa-PSO-FAN

algorithm. Special highlight can be given for the obtained results

for PZTs #1, PZTs #3 and #4, when damage were applied to po-

sition P4, which presented improvements about 20% plus. Overall,

the success rates hit at least 70% for those PZTs at which are more

propitious to identifying structural damage being located closer to

the damage positions. As a result, Kappa-PSO-FAN gave us an ad-

ditional potential for further development of the methodology to-

wards more precise damage localization and severity evaluation. 

6. Comparison with other state-of-the-art solutions 

In order to demonstrate the enhancement of the proposed

method over the other existing methods in literature, we address

a comparison among the proposed method with two others. It is

noteworthy to mention that there are only two methods which

handle with the identification of progression of structural dam-

age in composite by using neural networks along with EMI ( De

Oliveira & Inman, 2016, 2017 ). In order to have a fair compari-

son, all methods are applied to the same datasets, computer setup

and conditions. Hence, Table 4 shows a comparison among the

proposed methods (FAN and Kappa-PSO-FAN) and those ones pro-

posed in De Oliveira and Inman (2016) (SFAN) and De Oliveira and

Inman (2017) (PNN). For the purpose of brevity, only the most

significant results are shown. It is important to clarify that the

adopted SFAN setup parameters were: ρ = 0.78, α = 0.25 and β = 1

( De Oliveira & Inman, 2017 ). For PNN, the spread constant ( σ ) was

set to 0.1 ( De Oliveira & Inman, 2017 ). Setup parameters for FAN

were the same as proposed in the last section. 
Investigating the results presented in Table 4 , it can be observed

hat the PNN based method presented the worst performance by

aking into account the success rate for identifying structural dam-

ge. It is important to mention that PNN based methods have

een widely recurrent in the SHM literature ( De Oliveira & Inman,

017; Na & Lee, 2013; Palomino et al., 2014; Selva et al., 2013 ).

s observed, results for SFAN and FAN have presented practically

he same performance for the overall success rate when working

n the same conditions. On the other hand, there was a signifi-

ant improvement for SFAN/FAN algorithms when compared with

NN for the majority of the cases analyzed. The last column in

able 4 presents the results considering the Kappa-PSO-FAN algo-

ithm. It is worth noting that the success rates were significantly

mproved over other methods. Special highlight can be given for

he obtained results, considering position P4, for PZTs #3 and #4

highlighted in bold). Results were tremendously enhanced (about

0% plus) when compared with others. The PNN method can be

urther explored in Specht (1998) . 

Another interesting metric consists of the total (train-

ng + testing) time for all methods. Hence, Table 5 presents a com-

arison for all methods taking into account results for PZT#1 and

osition P1. Similar results are found for the other cases. 

As observed from Table 5 , SFAN method presented the best per-

ormance in terms of the total time. This is no surprise that it

roved advantageous due to the fact of the SFAN algorithm runs a

tep ahead of FAN in reducing the computational overhead and ar-

hitectural redundancy which slows down the training of the net-

ork ( Kasuba, 1993; Vakil-Baghmisheh & Pavesic, 2003 ). In short,

FAN consists of an optimized, faster and simplified method of the

riginal FAN. The FAN method obtained a second place with a sub-

le difference in relation to SFAN, followed by PNN. As expected,

appa-PSO-FAN took almost 10 s when considered the same con-

itions as used for FAN, SFAN and PNN. The reason is that the PSO-

AN method runs 100 iterations for each one of the 5 population

articles ( Table 3 ). 

In order to investigate further time consumption, Table 6 de-

icts the influence of the number of iterations on the total time

training + test) and success rate for the Kappa-PSO-FAN method.

or the purpose of brevity, only the results for P5 and PZT #4 are

resented. Analyzing Table 6 , it is clearly evident that the influence

f the increase in the number of iterations is totally insignificant
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Fig. 8. Confusion matrices for position P4: (a) SFAN results for PZT #3; (b) Kappa-PSO-FAN results for PZT #3; (c) SFAN results for PZT #4; (d) Kappa-PSO-FAN results for 

PZT #4. 

Table 6 

Influence of the number of iterations on the total time and suc- 

cess rate while using the Kappa-PSO-FAN method (P5 and PZT 

#4). 

Number of iterations (q) Total time (s) Success rate (%) 

10 1.040 75 

50 5.390 75 

100 7.770 75 

500 44.480 75 

10 0 0 76.060 75 
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or the success rate while the damage identification is being car-

ied out. Meanwhile, the number of iteration is strictly related to

he total time. It is clear that increasing the number of iterations

or each one of the 5 population particles will cause a noticeable

xpenditure time resources. It is noticeable that choosing an ap-

ropriate tuning for c1 and c2 may result in a faster convergence

f the algorithm and also reduce the local minimum. 

In practice, the confusion matrix is considered a useful tool for

nalyzing how well the classifier can recognize features of different

roups. A comparison between SFAN ( De Oliveira & Inman, 2016 )

nd Kappa-PSO-FAN method is addressed in Fig. 8 . For the pur-

ose of brevity, only the most significant results are present (for

ZTs #3 and #4 and position P4). As observed from Fig. 8 (a), SFAN

ased method, for PZT #3, was only able to identify two struc-

ural conditions (H and R), thereby rendering a very poor result.

ig. 8 (b) presents the results for the Kappa-PSO-FAN algorithm. As

bserved, the results were enhanced especially for L1. On the other

and, the structural condition L3 was not identified. Fig. 8 (c) de-
icts the results for SFAN by using the PZT #4. It is notable that

his PZT was able to identify successfully only three different struc-

ural conditions (H, L3 and R). After applying the Kappa-PSO-FAN

ethod, the results were overwhelmingly improved ( Fig. 8 (d)). It

s clear that at least four structural conditions (H, L1, L3 and R)

ere successfully identified, whereas L2 was identified in 50% of

he cases. Clearly, it is an undisputed fact that the method pre-

ented here was effectively able to successfully identify various

tructural conditions. Hence, one of the more significant findings

o emerge from this study is that this can lead to a novel and effi-

ient SHM method, based on Electromechanical Impedance princi-

le along with Kappa-PSO-FAN, which is also shown to be sensitive

nough to identify the progression of the structural damage. 

.1. Advantages and drawbacks 

The feasibility of the proposed approach is validated based

n EMI-measurement datasets. The advantages of the proposed

ethod can be summarized into two points. Firstly, a novel way

f automatically choosing the FAN setup is proposed. The architec-

ure is inspired by PSO and Kappa. The method has direct implica-

ions in terms of diminishing the time consumption when choos-

ng the best FAN setup parameters: choice, match tracking, vigi-

ance and training. State-of-the-art approaches have manually han-

led the FAN-parameters selection (many attempts) instead. More-

ver, they keep them fixed for all cases in the analysis, hampering

he success rate of the neural network. 

Secondly, the major achievement for application is the abil-

ty to classify insipient damage and its progression. The proposed

ethod maximizes the Kappa coefficient in order to increase the
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success rate when the damage identification is being performed. As

a consequence, the results obtained showed better than the pre-

vious approaches ( De Oliveira & Inman, 2016, 2017 ). The feasibil-

ity of the proposed method implies potential practical applications

in composite materials where incipient damage exists. As a conse-

quence, the method can lead to an increase in safety and reduce

maintenance costs in SHM systems. 

Despite the advantages, improvements of the proposed method

still need to be investigated. The major problem of the current

approach for application in a real-time solution is the time con-

sumption. The PSO algorithm runs many particles, the time con-

sumption is much longer than other FAN-based method presented

in the SHM literature ( De Oliveira & Inman, 2016, 2017 ). To find

the optimal parameters, PSO needs to run several iterations for

each chosen particle which influences the total time. It is im-

portant to point out that we have only shown total time (train-

ing + testing), however if the training phase was conducted off-

line, the test phase may be successfully conducted on line. From

a practical point of view, the majority of SHM applications run off-

line instead. However, fast learning has an important influence on

applications on real-time SHM methods and this should be inves-

tigated in the future. 

Another important limitation lies in the fact that the re-

sults present good performance for damage located within nearly

120 mm of the PZTs, a fault shared by many approaches in the field

of SHM. This is especially true for composites because of their in-

herent damping. It is beyond the scope of this paper to discuss

this limitation in any detail. Notwithstanding, further details about

such limitations can be read in the follow references ( De Oliveira

& Inman, 2016, 2017; Na & Lee, 2012; Park et al., 2003 ). A key

to overcome this limitation consists of adding extras PZTs to the

structure in order to ensure that the maximum distances among

them are of 120 mm (sensors network). 

7. Conclusion and prospects 

This paper has presented an exploration of the suitability of

Kappa-PSO-FAN method applied to monitoring the progression of

structural damage in composite structures. To date, there is no ev-

idence of any another method, focusing in the same issues as pre-

sented here, which aims to monitor the damage progression based

on the EMI technique along with Kappa-PSO-FAN method. In addi-

tion to the fact that the SHM-FAN based method is proposed here

for the first time, the major contribution of this approach consists

of a reliable method to selecting optimal FAN parameters by using

the Kappa-PSO algorithm. 

As a result, the optimum parameters significantly improved the

success rate while the damage identification was being performed.

As observed from these results, the proposed method was also suc-

cessfully able to identify various structural conditions with higher

accuracy rate when using the Kappa-PSO based method. It is im-

portant to highlight that each structural condition was identified

with overall success rate of at least 75% which is considered an

acceptable performance within the neural networks literature. 

Comparing all methods, it can be clearly observed that the pro-

posed method based on Kappa-PSO-FAN significantly enhances the

overall success rate used to identify the progression of structural

damage in composite structures. The intention of the paper is de-

tecting incipient damage and its progression in composite mate-

rials and we believe that this objective was successfully accom-

plished within the limitation of distances from PZTs patches to

damage of 120 mm. Despite challenging, studies focusing on mon-

itoring incipient damage constitute a cutting-edge issue in SHM

systems which require continues thorough investigation. 

Future work will be done through additional features other than

the success rate for measuring the classifier efficiency. In addition,
he full analysis of the error statuses that were presented during

he supervised learning of fuzzy ARTMAP neural using the Kappa-

SO algorithm can lead to a more intelligent and efficient identi-

cation of the progression of structural damage, including damage

lassification. 

Furthermore, an attribute selection technique based on the

appa coefficient and the ARTMAP Fuzzy neural network, to ex-

ract the most significant attributes of the training base and gen-

rate an optimal subset of attributes, can lead to a significant im-

rovement in the damage recognition module. It may also result in

educing the required time. 

In addition an investigation of the variations of the PSO setup

arameters (number of iterations, number of population particles,

nitial inertial weight, random parameters, cognitive and social pa-

ameters) needs to be addressed in order to improve the results

nd reduce the required time. 

It is also recommended that further research will be undertaken

n trying parallel computing techniques to optimize the required

ime consumption. 
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