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Abstract The objective of the present paper is to derive a
set of analytical equations that describe a swing-by maneu-
ver realized in a system of primaries that are in elliptical
orbits. The goal is to calculate the variations of energy, ve-
locity and angular momentum as a function of the usual ba-
sic parameters that describe the swing-by maneuver, as done
before for the case of circular orbits. In elliptical orbits the
velocity of the secondary body is no longer constant, as in
the circular case, but it varies with the position of the sec-
ondary body in its orbit. As a consequence, the variations of
energy, velocity and angular momentum become functions
of the magnitude and the angle between the velocity vector
of the secondary body and the line connecting the primaries.
The “patched-conics” approach is used to obtain these equa-
tions. The configurations that result in maximum gains and
losses of energy for the spacecraft are shown next, and a
comparison between the results obtained using the analyti-
cal equations and numerical simulations are made to validate
the method developed here.
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1 Introduction

The gravity assist, or swing-by, is a maneuver where the
spacecraft makes a rotation around the secondary body of
a system composed by two celestial bodies, with the pur-
pose of using the relative motion of this body with respect to
the main body to modify its trajectory (velocity, energy and
angular momentum). The maneuver can either increase or
decrease the velocity of the spacecraft and, consequently, its
energy and the whole trajectory. The gain or loss of energy
can be favorable to the mission, if the goal is an escape or
capture of the spacecraft by the body (Havnes 1969; Horedt
1972, 1974, 1976; Cline 1979; Nock and Upholf 1979;
Bao et al. 2015). The main focus is the fuel economy and,
consequently, the reduction in the cost of the mission.

Several works related to swing-by trajectories were de-
veloped and are available in the literature. One of the first
was made by Minovitch (1961), followed by Clarke (1962),
Niehoff (1966), Hollister and Prussing (1966), Deerwester
(1966), Diehl and Myers (1987), and Qi and Xu (2015),
among others. In terms of practical applications, consider-
ing missions that used this type of maneuver, Flandro (1966)
designed the Voyager missions, which were later sent to
the outer planets. The gravity assist was also applied to
the mission Galileo, which was sent to Jupiter (D’Amario
et al. 1981, 1982; Byrnes and D’Amario 1982), Mariner 10
and the Messenger missions sent to Mercury (Dunne and
Burgess 1978; McNutt et al. 2004, 2006; Grard 2006); and
LCROSS, which was launched in 2009 and, after five days
from launching, made a swing-by around the Moon with
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the goal of entering a polar orbit around the Moon (NASA
2009).

Broucke (1988) made an analytical study of the gravity
assist maneuver, presenting the increment of velocity, en-
ergy and angular momentum, for a system where the pri-
maries are in circular orbits and in planar motion. The re-
sults are written as functions of the three basic parame-
ters that determine the swing-by maneuver, which are the
angle and velocity of approach and the periapsis distance
(Broucke 1988). This paper also examined in detail the pa-
rameters for the maximum gain and the maximum loss of
energy to cover different aspects of the problem. It is also
performed numerical explorations using the restricted three-
body problem to classify the types of orbits resulting from
this maneuver. After that, Prado (1996) made an exten-
sion of this work to include the application of an impulse
at the spacecraft during the close encounter to get more
effects from the maneuver. In a sequence, Casalino et al.
(1999a) expanded this analytical study to cover the situation
where the impulse is applied in different points of the tra-
jectory. There are several other works considering the study
of the swing-by maneuver combined with an impulse in
the spacecraft based on numerical integration (Prado 1997;
Casalino et al. 1999b; Santos et al. 2008; Silva et al. 2013;
Ferreira et al. 2015, 2017a, 2017b, 2017c; Piñeros and Prado
2017).

Then, the objective of the present paper is to make an ana-
lytical study of the pure gravity swing-by maneuver (without
impulse), presenting the equations for the velocity, energy
and angular momentum variation as functions of the basic
parameters of the swing-by, for systems where the primary
bodies are in elliptical orbits. Prado (1997) and Ferreira et al.
(2017a) performed numerical studies for systems in ellipti-
cal orbits, using the elliptic restricted three body problem,
but in both cases considering also an impulsive maneuver.
Those studies showed interesting aspects of the problem, in-
dicating the necessity of making analytical studies for the el-
liptical case, similar to those available for the circular prob-
lem.

Next, Sect. 2 presents the definition of the problem. In
Sect. 3, the configurations of maximum gains and losses of
energy are shown. In Sect. 4, a comparison is made between
the results obtained by the analytical and numerical method
and, finally, the conclusions of the work are shown.

2 Formulation of the problem

This study considers a system with primary bodies in ellip-
tical orbits around a common center of mass. The spacecraft
(M3) makes the maneuver around the secondary body (M2)
and uses the gravity of this body to modify its trajectory.
The variations of velocity, energy and angular momentum

Fig. 1 Geometry of the swing-by maneuver in an elliptical system

are calculated with respect to the primary body (the one with
a larger mass) of the system (M1).

The derivations of the equations follow the usual approx-
imation given by the “patched-conics” model, as done in the
circular case (Broucke 1988). This is a method to simplify
the calculations of the trajectory of a spacecraft in a multi-
body environment. When the spacecraft is within the sphere
of influence of a body (Bate et al. 1971), the gravitational
force of the other body is neglected. The trajectory is then
analyzed by splitting the total motion of the spacecraft in
three parts dominated by the “two-body” dynamics. The first
part is when the spacecraft is within the sphere of influence
of the largest central body and the gravitational force of the
smaller body is disregarded, so the system considered is the
“spacecraft–largest body”. From this step it is possible to
find the geometry and the velocity of approach of the space-
craft with respect to the smaller body of the system. Then
comes the second part of the motion, and the study considers
now the “two-body” system “spacecraft–secondary body”.
It gives the geometry and velocity for the spacecraft when
leaving the secondary body. Then, the third and last part
of the motion considers the “two-body” “spacecraft–largest
body” again, after the maneuver. After those three steps the
new orbit of the spacecraft is obtained, based on a series of
three “two-body” problems.

The numerical study integrates the equations of mo-
tion of the Elliptic Restricted Three-Body Problem (Szebe-
hely 1967), obtaining the trajectories always considering the
presence of all the bodies involved in the system.

An important effect of the eccentricity of the primaries,
as far as the swing-by maneuver is considered, is that this
eccentricity and the true anomaly of the secondary body at
the time of the maneuver change the behavior of the velocity
of the secondary body with respect to the first primary ( �V2),
which is no longer constant. This is a very important pa-
rameter in the effects generated by this maneuver. Figure 1
shows the geometry of the maneuver for the elliptical case,
adapted from the circular maneuver (Broucke 1988).

In this figure, P is the periapsis of the orbit of the space-
craft around the secondary body. The periapsis radius of the
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Fig. 2 Velocity vectors involved in the swing-by maneuver for an el-
liptical system

orbit of the spacecraft around the secondary body is rp , and
�Vp is the velocity at this point. ψ is the angle of approach,
which defines the orientation of the swing-by maneuver. The
velocity of the secondary body around the center of mass of
the system is �V2, which, in the case of elliptical orbits, varies
according to the position of the body in its orbit. (180◦ − β)
is the angle between �V2 and the line connecting the pri-
maries. �Vinf− and �Vinf+ are the velocities of approach and
departure with respect to M2, respectively. These velocities
are equal in magnitude, so Vinf− = Vinf+ = Vinf, but not in
terms of directions. Their components are calculated from
Fig. 2. The total deflection of the maneuver is denoted by
2δ, where sin δ = 1

(1+ rpV 2
inf

μ
)

, with μ being the gravitational

parameter of the secondary body.
Equations (1) and (2) present the components of the ve-

locities �Vinf− and �Vinf+:

�Vinf− :
{

Ẋ = Vinf cos(90◦ + ψ − δ) = −Vinf sin(ψ − δ),

Ẏ = Vinf sin(90◦ + ψ − δ) = +Vinf cos(ψ − δ),

(1)

�Vinf+ :
{

Ẋ+ = Vinf cos(90◦ + ψ + δ) = −Vinf sin(ψ + δ),

Ẏ+ = Vinf sin(90◦ + ψ + δ) = +Vinf cos(ψ + δ).

(2)

The velocity of the spacecraft relative to M1, before the
close encounter, is given by �Vi = �Vinf− + �V2 and, after the
close encounter, it is �Vo = �Vinf+ + �V2. The variation of the
velocity of the spacecraft is given by � �V = �Vo − �Vi , with
components �Ẋ and �Ẏ given by Eq. (3):

{
�Ẋ = −2Vinf sin δ cosψ,

�Ẏ = −2Vinf sin δ sinψ.
(3)

Then, the variation of the velocity as a function of the
fundamental parameters of the swing-by is

�V = |� �V | = 2Vinf sin δ. (4)

Note that the effect of the secondary body gravity ba-
sically consists in rotating the velocity vector by an an-
gle 2δ. The next step is to calculate the energy variation,
which is given by �E = 1

2 ( �V 2
o − �V 2

i ), or �E = �V2.� �V
(Broucke 1988; Barger and Olsson 1973). Decomposing the
orbital velocity of the secondary body in the plane, the re-
sult is �V2 = (−V2 cosβ,V2 sinβ), where β = cos−1(−Vr

V2
).

Vr = e
√

(1−μ)

a(1−e2)
sinν is the radial velocity of the secondary

body and V2 =
√

(1 − μ)( 2
d

− 1
a
) the respective magnitude.

a is the semi-major axis of the orbit of the primary, e the

eccentricity, ν the true anomaly of M2, and d = a(1−e2)
1+e cosν

the
distance between the primary bodies.

Therefore, the variation of energy of the spacecraft, as
a function of the three independent parameters related to
the swing-by and the parameters related to the eccentric or-
bit of the secondary body around the primary, is given by
�E = 2VinfV2 sin δ cos(ψ + β). So, combining the above
equations, it is possible to get a complete closed formula for
the variation of energy, which is shown in Eq. (5), as a func-
tion of the parameters related to the swing-by maneuver and
the orbit of the secondary body around the primary:

�E = 2Vinf

√√√√(1 − μ)

(
2

a(1−e2)
1+e cosν

− 1

a

)
sin δ cos(ψ + β).

(5)

In the elliptical case, β = 90◦ when the secondary body
is in the apoapsis or periapsis of its orbit around the main
body. In these cases the energy variation is reduced to �E =
−2Vinf

√
(1 − μ)( 2

a(1−e2)
1+e cosν

− 1
a
) sin δ sinψ , which is similar

to the circular case (Broucke 1988), except for the differ-
ence when computing the velocity V2, which is different in
both situations.

Figure 3 shows the energy variation (in canonical units)
as a function of eccentricity and true anomaly of the sec-
ondary body for a generalized Earth–Moon system. This is
a system where the ratio of the masses and the radius of
the two bodies involved in canonical units, so the distance
between the centers of the primaries is used as a unit, are
the same of the Earth–Moon system, but the eccentricity is
varied to study the effects of this parameter in the swing-
by maneuver. The parameter values of rp = 1.1 for radius of
the Moon, Vinf = 1.0 canonical unit (c.u.) and ψ +β = 360◦
are used. One canonical unit of velocity is defined as the ve-
locity of the secondary body around the primary body.

Note that in regions where the true anomaly (ν) is less
than 90° or greater than 270°, the energy variations are in-
creasing functions of the eccentricity and, in the regions
where true anomaly (ν) is between 90° and 270°, decreasing
functions of the eccentricity. The maximum energy variation
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Fig. 3 Energy variation (c.u.) in the generalized eccentric Earth–Moon
system

is approximately 6.0 c.u. and it occurs for the extreme values
of the eccentricity and true anomaly. The minimum energy
variation is in the region where the eccentricity is greater
than approximately 0.6 and for ν close to 180°.

Angular momentum is a quantity associated with the
spacecraft rotation. By definition, the angular momentum
is equal to the cross-product between the position and the
velocity vectors, so �C = �d × �V . It is also known that, un-
der the “patched-conics” model, the swing-by changes the
orbit of the spacecraft instantly, so �d , which is the po-
sition of the secondary body with respect to the primary
one at the moment of the maneuver, is constant. Then, if
�C− = �d × �Vi is the angular momentum calculated before
the swing-by and �C+ = �d × �Vo is the angular momentum
calculated after the swing-by, the difference between them
gives the angular momentum variation, which is given by
� �C = �d × ( �Vo − �Vi) = �d × � �V . The magnitudes of �d and
� �V , as well as the angle between them (see Fig. 2), are
known so the calculations are easy:

�C = |� �C| = 2dVinf sin δ sin
(
180◦ + ψ

)
= −2dVinf sin δ sinψ

= −2
a(1 − e2)

(1 + e cosν)
Vinf sin δ sinψ. (6)

Observe that, in this case, the final equation is dependent
on the parameters related to the eccentricity, but not on the
angle β , which characterizes the velocity of the secondary
body. This angle disappears during the development of the
equation, when the velocity variation is obtained.

Figure 4 shows the behavior of the angular momen-
tum variation as a function of the eccentricity and the true

Fig. 4 Angular momentum variation (c.u.) in the generalized eccentric
Earth–Moon system

anomaly of the secondary body, for the generalized Earth–
Moon system explained before, using rp = 1.1 for radius of
the secondary body, Vinf = 1.0 c.u. and ψ = 270◦.

The angular momentum has a behavior opposite to the
energy, increasing around 90◦ < ν < 270◦ and decreasing
when ν < 90◦ and ν > 270◦, according to the increase in
the eccentricity. For this case, the always positive variation
shows that the spacecraft increased the angular momentum
in the second orbit, after the maneuver, when compared to
the first orbit.

3 Configurations of maximum gains and
losses of energy

For systems in circular orbits, the spacecraft loses energy
when 0◦ < ψ < 180◦, with maximum loss when ψ = 90◦;
and it gains energy when 180◦ < ψ < 360◦, with maximum
gain when ψ = 270◦ (Broucke 1988).

For systems in elliptic orbits, by examining Eq. (5), one
can see that Vinf, V2 and sin δ are always positive, since
0◦ < δ < 90◦. It means that it is the orientation of the swing-
by with respect to M2, given by ψ , and the orientation of �V2,
given by β , that defines the signal of the variation of energy.
The negative values, so maneuvers with energy loss, occur
when 90◦ < ψ + β < 270◦, with maximum loss at ψ + β =
180◦. The region of gain is −90◦ < ψ +β < 90◦, with max-
imum gain when ψ +β = 0◦ or ψ +β = 360◦. It can be seen
that the effect of the swing-by is zero when ψ + β = 90◦ or
β + ψ = 270◦. This information is clearly shown in Fig. 5,
which shows �E for a system with 2VinfV2 sin δ = 1.

A map of the energy variation as a function of ψ and β ,
for a system with the same parameters used in Fig. 5, is pre-
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Fig. 5 Energy variation (Eq. (5)) as a function of ψ + β

Fig. 6 Energy variation (Eq. (5)) for a system with 2VinfV2 sin δ = 1,
as a function of β and ψ

sented in Fig. 6. It is possible to see the effects of ψ and β

in the energy variation.
If the analysis is reduced to the cases where ψ = 90◦ and

ψ = 270◦, the energy variation, as a function of β , has the
behavior shown in Fig. 7.

In the situation where ψ = 90◦, the maximum loss of en-
ergy occurs for β = 90◦ and the maximum gain for β =
270◦. In the case where ψ = 270◦, the maximum loss is for
β = 270◦ and the maximum gain for β = 90◦. The energy
variation is zero when β = 0◦ or β = 180◦.

Note that the analysis of the maneuver for an elliptical
system coincides with the circular case when the secondary
body is at the periapsis or apoapsis of its orbit. This is due
to the fact that, in these cases, β = 90◦ and, in the circu-
lar case, β is always 90°. Therefore, the point of maximum
gain of energy occurs when ψ = 270◦ and the maximum
loss when ψ = 90◦, for both cases. The swing-by has zero
energy variation for ψ = 0◦ or ψ = 180◦.

Fig. 7 Energy variation for a system with 2VinfV2 sin δ = 1, ψ = 90◦
and ψ = 270◦

4 Comparison between the results obtained
by the analytical and the numerical
method

The goal of this comparison is to validate the equations de-
veloped in the present paper, as well as to show the differ-
ences in the results for the energy variation when the study
is done analytically, using the “patched conics” approxima-
tion and numerical integrating the equations of motion of the
spacecraft (Eqs. (7) and (8)) given by the elliptical restricted
three-body problem. In this way, it is possible to identify
the errors introduced by the approximations involved in the
analytical developments made here. The focus is not a de-
tailed study of those errors, but just a quick validation of the
analytical equation derived here.

ẍ = −(1 − μ)(x − x1)

r3
1

− μ(x − x2)

r3
2

, (7)

ÿ = −(1 − μ)(y − y1)

r3
1

− μ(y − y2)

r3
2

. (8)

In the above equations, r1 is the distance M1 − M3;
r2 the distance M2 − M3; x1 = −μd cosν, y1 = −μd sinν,
x2 = (1−μ)d cosν and y2 = (1−μ)d sinν are the positions
of M1 (the primary body) and M2 (the secondary body), re-
spectively, in the fixed reference system originated in the
center of mass of the system. M3 is the spacecraft, assumed
to have a negligible mass.

Regarding comparisons measuring the effects of the ana-
lytical approximations in the results for a swing-by maneu-
ver, there are some references in the literature. Prado (2007)
compares the analytical and numerical results of the swing-
by maneuver in the Sun–Jupiter system, considering the or-
bit of the primaries as circular. In this study it is shown
that, for different initial conditions, the error between the
two methods reaches up to ±5%. In the cases where the
error is positive, the “patched-conics” model overestimates
the effects of the swing-by. When the error is negative, the
“patched-conics” model underestimates the effects of the
maneuver. This occurred for conditions with energy changes
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Fig. 8 Energy variations using the numerical method (a) and the abso-
lute error between the methods (b), for e = 0.1

around zero. For these situations the “patched-conics” ap-
proximation method has a limited accuracy. A more detailed
study of this point is available in Negri et al. (2017).

In the present paper, the absolute error between the two
models is presented by the difference between the energy
variation using the patched conics method and the energy
variation using the Elliptical Restricted Three-Body Prob-
lem for the generalized Earth–Moon system. Figure 8 shows
the energy variations using the numerical method and the ab-
solute error between numerical and analytical methods, for
e = 0.1, as a function of the approach angle (ψ ) and the true
anomaly of M2 (ν).

The behaviors of the solutions for the analytical and nu-
merical methods are similar, with differences presented in
the absolute error in the cases analyzed of the same order
of the circular case. This fact indicates that the analytical
equations are correct and give an approximation for the ma-
neuver as good as those used for the circular case. A detailed

Fig. 9 Energy variations using the numerical method (a) and the abso-
lute error between the methods (b), for e = 0.3

study of this point is recently made for the circular case (Ne-
gri et al. 2017). A similar analysis is not in the scope of the
present paper, but should be done to clarify this point. It is
also clear that the largest differences occur when the value
of ψ is around 90°, and this difference reaches the order
of 0.16 c.u. in the case simulated here. The solutions for
180◦ < ψ < 360◦ are symmetrical, just with an inversion in
the sign of the variations of energy, which is positive.

Figure 9 shows the energy variations using the numerical
method and the absolute error, for e = 0.3, as a function of
the approach angle (ψ ) and the true anomaly of M2 (ν).

The first observation that can be made in Fig. 9 is the
deformation of the curves of the energy variation as a func-
tion of ψ and ν, when compared with Fig. 8. Figure 10,
made for e = 0.5, shows that the higher the eccentricity, the
greater these deformations. The absolute error has a small
increase, and it reaches 0.2 c.u. A significant region with
errors around zero is notorious. The solutions for 180◦ <
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Fig. 10 Energy variations using the numerical method (a) and the ab-
solute error between the methods (b), for e = 0.5

ψ < 360◦ are symmetrical, just with the inversion of sign
explained before.

Figure 10 shows the energy variation using the numer-
ical method and the absolute error between numerical and
analytical methods for the case where e = 0.5.

It is noted that the absolute errors reach values up to
0.3 c.u. The region with the highest errors is around ψ =
90◦. As with other eccentricities, when ψ is between 180°
and 360°, with gains of energy due to the gravity, the solu-
tions are symmetrical to the situations where ψ is between
0° and 180°, just with the inversion of sign.

The magnitude of the maximum error for e = 0.1
(Fig. 8b) is approximately 11%, for e = 0.3 (Fig. 9b) ap-
proximately 17%, and for e = 0.5 (Fig. 10b) about 27%,
being larger than 5%, the maximum result obtained for the
circular case in the Sun–Jupiter system (Prado 2007). For the
lowest values of eccentricity, they are similar to the values
obtained in the circular case considering the Earth–Moon

system (Prado 1996). This behavior is expected, since the
same parameters of the Earth–Moon system were used, ex-
cept for the eccentricity, in the present paper. A larger grav-
itational parameter for the system decreases the accuracy of
the analytical model, as detailed in Negri et al. (2017). The
results also show in details that the eccentricity of the pri-
maries makes the velocity of the secondary body around the
primary ( �V2) to have values which are dependent on the po-
sition of M2 in its orbit. For most of the cases with ψ = 270◦
the error is negative, which means that the “patched-conics”
model underestimates the energy gain near the point of
the maximum effect of the swing-by. For the cases with
ψ = 90◦, the patched-conics model also underestimates the
loss of energy of the spacecraft.

5 Conclusions

An analytical study of the swing-by maneuver for a system
with elliptical orbits for the primaries was presented. Equa-
tions were derived to calculate the variation of velocity, en-
ergy and angular momentum for the swing-by maneuver as
a function of the parameters that define the geometry of the
maneuver and the parameters that characterize the elliptical
orbit of the primary bodies.

The swing-by is developed around the secondary body of
the system, and the quantities are obtained with respect to
the main body of the system. The main effect of the eccen-
tricity is the variation in the velocity of the secondary body
with respect to the center of mass of the system. This ve-
locity depends on the position of the secondary body in its
orbit, so it is no longer constant as in the circular case.

Solutions for the energy variation and angular momen-
tum for a system with parameters similar to Earth–Moon,
except for the eccentricity, are presented as functions of the
eccentricity of the orbit and the true anomaly of the sec-
ondary body. The configurations resulting in maximum gain
and maximum loss of energy for the spacecraft are also pre-
sented and compared with the cases with circular orbits.
Comparisons were made between the analytical method,
obtained from the patched conics approximation, and the
numerical method implemented using the elliptic restricted
three-body problem.

The work shows that the position of maximum energy
gain, for eccentric systems, is ψ + β = 0◦ or ψ + β = 360◦
and the position of maximum energy loss is ψ +β = 180◦. If
the secondary body is at the periapsis or apoapsis of its orbit,
the position of maximum energy gain reduces to ψ = 270◦
and the maximum loss to ψ = 90◦. The magnitude of the
absolute error, obtained in the comparison of the analyzed
methods, in several cases is greater than 5%. The magni-
tude of this error tends to increase when the eccentricity in-
creases, reaching the order of approximately 0.16 c.u. for ec-
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centricity of 0.1; 0.2 c.u. for eccentricity of 0.3, and 0.3 c.u.
for eccentricity 0.5.
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