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Abstract
This paper assesses different applied pattern recognition algorithms to decide the most appropriate power factor compensator
for a particular point of common coupling. Power factor, current unbalance factor, total demand distortion, voltage harmonic
distortion and reactive power daily variation, as well as human expertise, are the key parameters used to set each recognition
algorithm. These algorithms are then trained with a series of both simulation and experimental data. Numerical results
consistently indicate the decision-tree algorithm with depth 20 as the best classifier for power factor improvement in terms
of all metrics considered in this work.
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1 Introduction

The increase in nonlinear loads, the severity of harmonic
pollution, and the load unbalance in electrical power sys-
tems have attracted the attention of power system engineers
to develop proper solutions for modern electrical power
systems. Some examples of industrial nonlinear loads that
might generate harmonic currents or load unbalance are: arc
furnace, induction furnace, adjustable-speed drives (ASDs),
welding machines, and power electronic loads.

Regarding the harmonic currents, it is known that the flow
through the system impedance results in nonsinusoidal volt-
age drops, which can affect the grid voltage quality (Das
2015; IEEE P519 2015). In three-phase systems, harmonics
can also cause current unbalance and excessive neutral cur-
rents. Consequently, the injected harmonics, reactive power,
unbalance, and excessive neutral currents may decrease the
system efficiency and the power factor (IEEE 2010; Tenti
et al. 2011). Theymay also cause severe disturbances to other
consumers. Thus, this subject has become extremely impor-
tant regarding power quality (PQ) aspects, revenue metering,
and measurement issues (IEEE 2010).

Different from the reactive power drawn by a linear
balanced load, the harmonic currents cannot be easily com-
pensated by the use of capacitors and inductors. In this
case, passive or active harmonic filters are usually required
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to minimize harmonic and reactive power flow. More-
over, if unbalanced three-phase loads are considered, the
definition of the compensator may be even more sophisti-
cated.

In this scenario, the decision ofwhich compensator should
be used is generally based on the expertise of the power sys-
tem engineers. Bymeans of careful analysis and simulations,
these specialists might indicate proper solutions in order to
mitigate the disturbances and control PQ indices according to
the standards limits. Thus, the specialist’s knowledge plays
a critical role in the decision-making process. This profes-
sional, however, needs to deal with an enormous amount of
data. In such context, the development of automatic analytic
tools becomes very important for evaluating and identifying
several PQ disturbances and their respective suitable solu-
tion.

Indeed, the growing number of pattern recognition appli-
cations in the last few decades is noteworthy, specially due
to the increasing need for automation in different segments
of society. This demand has been met by the evolution of
digital processors, signal processing techniques, as well as
the amount of digital information on the Internet. Applica-
tions of pattern recognition can be found in machine vision,
robotics, biometrics, information retrieval, and instrumenta-
tion, likewise in power systems (Ribeiro et al. 2013; Bollen
and Gu 2006).

Several researchers have published power system appli-
cations based on pattern recognition algorithms (PRAs)
(Samantaray2013; Jamehbozorg andShahrtash2010;Saman-
taray 2009; Galil et al. 2004; Biet 2013; Gaouda et al.
2002, 2001; Moravej et al. 2015; Livani and Evrenosoglu
2013; Cerqueira et al. 2008; Axelberg et al. 2007; Rodriguez
et al. 2014; Monedero et al. 2007; Hajian and Foroud
2014; Lieberman et al. 2011). For example, different clas-
sification methods such as decision tree (DT) (Samantaray
2013; Jamehbozorg and Shahrtash 2010; Samantaray 2009;
Galil et al. 2004; Barbosa and Ferreira 2013), k-nearest
neighbor (K-NN) (Biet 2013; Gaouda et al. 2002, 2001),
support vector machines (SVMs) (Moravej et al. 2015;
Livani and Evrenosoglu 2013; Cerqueira et al. 2008; Axel-
berg et al. 2007), and different types of artificial neural
networks (ANNs) (Gaouda et al. 2001; Rodriguez et al.
2014; Monedero et al. 2007; Andreoli et al. 2013) have
been developed for different PQ applications. However,
for power factor improvement, this approach is still miss-
ing. The choice of a suitable classifier in this case is very
important to avoid a bad classification, resulting in an inap-
propriate compensator, which could be less effective than
other potential options or could lead to unstable condi-
tions.

Therefore, assuming the use of PRA, the aim of this paper
is to determine the most suitable classifier for the develop-
ment of an automatic system, which may be able to indicate

the most appropriate power factor compensator for a certain
point of common coupling.

Following, Sect. 2 presents some examples of pattern
recognition applications in power systems. In Sect. 3, the
authors present the main characteristics of the proposed
methodology to evaluate different PRAs regarding the prob-
lem of power factor improvement. Section 4 presents the
performance indices used for classifiers evaluation. InSect. 5,
the authors compare the classification results by means of
computational simulations. Experimental results are dis-
cussed in Sect. 6, while the main conclusions are described
in Sect. 7.

2 Pattern Recognition Applications in Power
Systems

Pattern recognition techniques are automated tools for
decision-making processes (Ribeiro et al. 2013; Bollen
and Gu 2006). In recent years, pattern recognition meth-
ods have been widely used in power systems. Examples
in power systems include fault analysis (Jamehbozorg and
Shahrtash 2010;Moravej et al. 2015; Livani andEvrenosoglu
2013), power quality (Galil et al. 2004; Gaouda et al. 2001;
Cerqueira et al. 2008; Axelberg et al. 2007; Rodriguez et al.
2014; Monedero et al. 2007; Hajian and Foroud 2014; Upad-
hyaya et al. 2015), electrical machines (Biet 2013; Junior
et al. 2014; Palácios et al. 2016; Santana et al. 2017),
and flexible AC transmission systems (FACTS) (Samantaray
2013). Pattern recognition provides tremendous flexibil-
ity benefits. This section provides some of the theoretical
concepts that will be referred to in subsequent sections.
Examples and strategies will be given to support the pro-
cess of adopting pattern recognition in the context of power
systems.

2.1 Decision Tree Classifier

Decision tree is a data structure consisting of a root node,
decision nodes, and leaf nodes. The DT algorithm allows
for simplification by pruning techniques, which reduce the
size of the tree according to a user-defined level. The algo-
rithm can produce either DT or rules in the form of: “if,”
“then” or “else.” The advantage of this proposal is the repre-
sentation, which is more understandable than other methods
like neural networks (NNs) (Galil et al. 2004). However, DT
has the disadvantage of only working with linearly separable
data.

Recently, DT has been found highly successful for power
system applications as FACTS (Samantaray 2013), fault clas-
sification (Jamehbozorg and Shahrtash 2010; Samantaray
2009) and power quality (Galil et al. 2004). In (Saman-
taray 2013), the authors presented a data-mining model for
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fault-zone identification of a flexible AC transmission sys-
tem. Moreover, a comparison between DT and SVM, which
will be discussed later on, is performed for this kind of prob-
lem.

In (Jamehbozorg and Shahrtash 2010), researchers con-
sider fault classification in single-circuit transmission lines
in which conventional methods as mathematical operations
on voltages and current could not classify the faults. By
means of DT, however, the authors showed that the proposed
method could classify the faults with reasonable accuracy. In
(Samantaray 2009), a new approach for fault-zone classifica-
tion on transmission lines equipped with thyristor-controlled
series compensator (TCSC) andunifiedpowerflowcontroller
(UPFC) using DT is presented. The authors showed that the
processing time of SVM is higher compared to the proposed
DT.

In (Galil et al. 2004), DT has been utilized for the classi-
fication of PQ. The wavelet transform is utilized to produce
representative attribute vectors. TheDT results for classifica-
tion are compared with the artificial neural networks’ results.

2.2 K-Nearest Neighbor Classifier

K-nearest neighbor (K-NN) is a supervised learning algo-
rithm that finds the first K minimum distances’ points, and
the decision is made based on the group that has the majority
minimum distances. It can produce any arbitrary complex
surface to separate the classes based on the configuration of
the sample points and their distance relations to each other.
The closeness is usually measured in terms of Euclidean dis-
tances.

The literature is very rich with solutions that use the K-
NN pattern recognition technique. Regarding power system
applications (Biet 2013), K-NN was applied to a diagnosis
method to find rotor faults. In (Gaouda et al. 2002), K-NN is
applied to classify different power quality disturbances such
as sags, swell, and harmonics. The wavelet transform and
multiresolution signal decomposition are used for extracting
attributes from different distorted signals.

The main advantage of K-NN in comparison with other
algorithms is its good classification accuracy formixedpower
quality problems (Gaouda et al. 2001). On the other hand,
K-NN is computationally expensive in the search for the K
nearest neighbors, mainly when the data set is very large.
In addition, K-NN may provide inaccurate results for high-
dimensional spaces (more than 10–15 dimensions) (Beyer
et al. 1999).

2.3 Support Vector Machines Classifier

Cortes and Vapnik introduced SVM as a pattern recognition
method. This supervised learning technique can be applied to
either classification or regression. When it is used for pattern

recognition, it searches a hyperplane that completely sepa-
rates a data set. SVMs can also extend this to a nonlinear
decision boundary using the kernel method.

Applications within power systems using SVM are, for
instance, fault analysis or classification (Moravej et al. 2015;
Livani and Evrenosoglu 2013), power quality event classi-
fication (Cerqueira et al. 2008), and voltage disturbances
classification (Axelberg et al. 2007). In (Moravej et al. 2015),
the authors presented the limitation of some distance relay
functions in the presence of UPFC. The SVM classifier
is employed for fault-type identification, fault-loop status
supervision, and fault-zone detection.

In (Livani and Evrenosoglu 2013), the wavelet transform
is utilized to extract transient information from the recorded
voltages, and SVM is used to classify the fault type in the
transmission networks. In (Cerqueira et al. 2008), the authors
presented two versions of a novel classification method for
power quality event classification based on SVM. In (Axel-
berg et al. 2007), the authors suggested a SVM classification
system for voltage disturbances such as fault or transformer
energizing.

The SVMs based on the decision boundary margin max-
imization have better generalization ability compared to DT
and neural network (NN). Besides, the SVMs do not need
expert knowledge for classification purpose in contrast to
fuzzy-based approaches (Moravej et al. 2015). As advan-
tages, the number of support vectors increases when the size
of the training set increases.

2.4 Multilayer Perceptron Classifier

Multilayer perceptron (MLP) is a feed-forward NN typically
consisting of an input layer, one or several hidden layers,
and one output layer. MLP networks are very useful for the
classification of input signals when these cannot be defined
mathematically. The algorithm can be trained to learn the
existing relationships between input and output data (includ-
ing nonlinear). Once they have been learned by example, they
can be generalized. However, MLP has difficulties in deter-
mining a proper architecture, such as the number of hidden
layers and nodes. TrainingMLPs is time-consuming without
guaranteeing the global minimum (Lieberman et al. 2011).

Artificial neural networks for the classification of power
systemdisturbances and faults have been extensively studied;
some of the previous work can be found in (Rodriguez et al.
2014) and (Monedero et al. 2007). In (Rodriguez et al. 2014),
a new dual neural network-based methodology to detect and
classify single and combined PQ disturbances is proposed. A
neural network is used to classify sags, swells, spikes, notch-
ing, flickers, harmonics, and inter-harmonics. In (Monedero
et al. 2007), the researchers presented a system based on neu-
ral networks for the classification of electrical disturbances
in real time.
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Fig. 1 Schematic diagram of the proposed methodology

All in all, many challenges in power systems have already
been solved using different pattern recognition algorithms.
However, power factor improvement, reactive and harmonic
compensation are still open challenges.

3 ProposedMethodology for Evaluating
Pattern Recognition Algorithm for Power
Factor Improvement

Considering each previously mentioned PRA, one at a time,
this section proposes amethodology to develop eleven differ-
ent classifier models, which will be compared to each other,
in order to determine themost suitable classifier for the devel-
opment of an specialized system capable of pointing out the
most proper power factor compensator for a certain instal-
lation. The proposed work consists of two stages: training
and testing. In the first stage, we show the generation of an
historical database with a known set of input-labeled and
known responses (labels or classes) used in off-line train-
ing and development of classifier models. In the test stage,
the generated classifying models are evaluated using a test
database by means of computational simulation. Finally, the
models are tested using real data samples, in order to evaluate
the PRA algorithms with real cases.

Figure 1 shows four blocks that are used in the proposed
methodology to evaluate each classifier model (DT, K-NN,
SVM, and MLP).

3.1 Attributes Extraction

Distribution power systems comprise numerous classes of
disturbances, such as voltage or current unbalance, voltage
or current distortion, and low power factor, which will be
considered as relevant attributes for designing a suitable com-

pensator, as shown in Fig. 1. Hence, the applied attributes are
described as follows:

• Short-circuit ratio (ISC/IL) : given by the ratio of short-
circuit current (ISC) and the fundamental component of
the maximum load current (IL) (average value of maxi-
mum demand over the previous 12months) (IEEE 2014);

• Voltage total harmonic distortion (THDV ) : This attribute
is used in order to quantify and evaluate the harmonic
distortion in voltage waveforms;

• Total demand distortion (TDD): given by the harmonic
distortion of current expressed as a percentage of the
maximum load current. Limits on current distortion
depend on the power of the load comparedwith the power
of the supply system at the PCC. The short-circuit cur-
rents at the PCC should be calculated to apply IEEE
criteria of TDD at PCC (IEEE 2014);

• Equivalent Power factor (PFe) : It represents the fraction
of the power supplied by a utility that is used to perform
a useful work. It is frequently used by the utilities to
penalize the customer. In this work, the power factor is
calculated according to STD 1459 (IEEE 2010);

• Voltage unbalance factors
(
KV−

1

)
or

(
KV0

1

)
: indicate

unequal voltage magnitudes at the fundamental fre-
quency, fundamental phase angle deviation, and imbal-
anced levels of harmonic distortion among phases. These
are other important attributes used in this work to indi-
cate the uneven distribution of load through a three-phase
power system. These terms consider the RMS value of
the fundamental positive, negative, or zero sequence and
can be obtained using Fortescue’s symmetrical compo-
nents;

• Current unbalance factor
(
KI−1

)
or

(
KI01

)
: may be caused

by large or unequal distribution of single phase load,
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phase to phase loads or unbalanced three-phase loads.
They are used to evaluate the load unbalance condition
and can also be calculated based on symmetrical compo-
nents;

• Positive-sequence reactive power variation
(
�Q+

1

)
: This

attribute will be used in order to analyze the reactive
power over the time.

3.1.1 Classification: Standards and Adopted Limits

According to Fig. 1, this block is responsible for classify-
ing the input data, by means of the chosen and trained PRA,
Fig. 1, and the calculated attributes, before the final classi-
fication in terms of the reactive power’s variability. At this
point, the specialist’s knowledge is already considered in the
classifier and there is no need for any adaptation of the clas-
sifier rules.

3.1.2 Reactive Power Variation

In order to evaluate the reactive power variations over time,
this step is responsible to check whether the variations are
above or below ±30% average over 24h. Thus, this stage
provides information regarding the required compensator. If
the reactive power variation is above 30%, the compensator
should be “switched” (like thyristor-switched capacitors) to
provide exactly the right amount of reactive power at the right
time according to load requirements. Otherwise, the compen-
sator should provide a constant value of reactive power (like
fixed capacitor banks).

3.1.3 Compensation Solutions

The chosen compensator or solution have a vital role to
play in maintaining supply voltages within the specified
limits, improving the power factor, reducing the harmonic
distortion, and balancing the load currents. Thus, the last
step in Fig. 1 presents a list of possible solutions accord-
ing to the “classification block” and the “reactive power
variation analysis.” Notice that the solution includes low-
frequency compensators (“Fixed” and/or “Switched”) and
high-frequency compensators (like active power filters).

For a particular set of input data, it is clear that the pro-
posed solution partly depends on the available attributes and
limits during the training and classification, but mostly on
the chosen PRA for the classifier construction, as discussed
in next sections.

3.2 Training Stage

This stage is responsible for the training of the chosen PRA
based on the applicable attributes, specialized knowledge,
and a set of historical simulation and measurement data, in

Fig. 2 Flowchart of the training stage

such a way that the resulting decision rules can classify new
samples of a test data, automatically, by simply using the test
data attributes, Fig. 2.

It is worth mentioning that the decision rules for each
PRA are dynamically defined during this stage. Taking, for
example, the DT method, the training process results in an
automatic self-structured DT.

The training data set was developed considering several
simulations of different compensation examples, which have
been generated and characterized by a human specialist, in
order to perform a supervised learning by means of supply-
ing a known set of input-labeled training data (power quality
indicators) and known responses (compensation cases). The
specialist, taking into account the PQ standards limits: equiv-
alent power factor (PFe > 0.92) , the unbalance factors for
the voltages (KV−

1 or KV0
1 < 2%), the unbalance factors

for the currents (KI−1 or KI01 < 20%), total demand dis-
tortion , voltage total harmonic distortion (THDV < 5%),
evaluates extensively the successful simulations and mea-
surement cases. All simulations were performed at a voltage
level between 120V and 69kV. For each type of disturbing
load, a subset of attributes was generated (1355154 samples)
using PSCAD environment. The PSCAD software allows the
use of various control tools to perform parameter modifica-
tion simulation. In addition, the PSCAD allows to perform
the simulation of large power systems. Besides, several real
measurements, evaluated by the specialist, were also added
to this database. The classifier models were built and trained
using the tool “Classification Learner” included in the MAT-
LAB software (Statistics and Machine Learning Toolbox
2017). The Classification Learner App is an application that
can be used to train models for classification of data using
supervised machine learning methods. By using Classifica-
tion Learner, it is possible to explore data, select features,
specify validation schemes, train models, and assess results.
The prediction models developed in this study have been
trained, tested, and evaluatedusing afivefold cross-validation
technique.

The decision tree models were developed using the Clas-
sification and Regression Tree (CART) algorithm (Breiman
et al. 1984). Hence, the leaves represent the classification
results (compensation solutions), and the nodes represent
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attributes. A CART algorithm searches all variables for all
possible values, in order to find the best split. The split crite-
rion used isGini’s diversity index. Three decision treemodels
have been developed using different depths (4, 20, and 100),
which are the highest number of levels used in the decision
tree.

In this work, three K-NN models have been developed
using different K values (1, 3, and 10), which are the number
of neighbors. In addition, the Euclidean distance metric was
used to measure the distance between patterns in this study.

The prediction SVM model developed in this study has
been developed using the linear kernel function and “one-
versus-one” multiclass strategy.

For MLP training, we used as function fitting a two-layer
feed-forward network, with a sigmoid transfer function in
the hidden layer and a linear transfer function in the output
layer. The number of hidden neurons for each MLP model
was 10, 20, 40, and 50, respectively. In addition, for theMLP
training, we used up to 1000 epochs and the backpropagation
learning algorithm.

Regarding the limits used by the specialist to be applied
for the chosen attributes, some come directly from particular
standards, while others do not have specific boundaries in
the literature, and the specialist would usually define them
in each case. In such cases, during the training stage, the
classifier can also set the lacking limits automatically, in order
to achieve the compensation results according to the input
training data.

Regardless of the source, high harmonic voltage levels
and harmonic load currents will lead to operational problems
in the electric power distribution system. These problems
include equipment-heating, over voltage, and load disrup-
tion and have been discussed in IEEE 519 (IEEE 2014).
This standard provides recommended practices for the har-
monic evaluation of electrical power systems and is widely
accepted by industry and utilities. European standard (EN
50160 2004) sets the boundaries for harmonic voltages. IEEE
519 has 5% to the voltage total harmonic distortion limit
and 3% to individual harmonic voltage. In this work, the
authors adopted a conservative limit of 5% for total harmonic
distortion (THDV ) to avoid excessive voltage distortion on
capacitor banks.

Concerning the limits for harmonic current, it is observed
that both IEC (IEC 2008, 1996) and IEEE (IEEE 2014) deal
with the limitation of harmonic currents in low voltage (LV).
However, IEEE 519 considers the short-circuit ratio (ISC/IL)

to take into account the size of the load in regard to the system,
when setting the limits on the harmonic current emission. In
this way, the current harmonic distortion will be evaluated
according to IEEE 519 by means of TDD.

The power factor is considered by the utility for billing
purposes andmay lead tomonthly charges for the consumers.
In this work, the adopted power factor limit was 0.92, accord-

Table 1 Accuracy and speed of classification methods for the training
set

Classification method Training time (s) Accuracy (%)

DT (depth = 4) 14 71.70 ± 1.53

DT (depth = 20) 11 100 ± 0.01

DT (depth = 100) 12 100 ± 0.01

K-NN (K = 1) N/A 100 ± 0.00

K-NN (K = 3) N/A 100 ± 0.01

K-NN (K = 10) N/A 100 ± 0.01

Linear SVM 4987 100 ± 0.01

MLP (10 neurons) 2224 99.90 ± 0.08

MLP (20 neurons) 2648 99.80 ± 0.08

MLP (40 neurons) 3364 99.80 ± 0.08

MLP (50 neurons) 3091 99.89 ± 0.07

ing to the Brazilian Electrical Regulatory Agency (ANEEL
2017).

Regarding the voltage unbalance, the ANSI C84.1-2006
standard recommends that electrical supply systems should
operate with a maximum voltage unbalance limit of 3%
(ANSI 2006). The IEC standard recommends that the max-
imum voltage unbalance of electrical supply systems should
be limited to 2% (IEC 2008, 1996). In “IEEERecommended
Practice for Electric PowerDistribution for Industrial Plants”
(IEEE 1993), andANSI/IEEEStd. 241-1990, “IEEERecom-
mended Practice for Electric Power Systems in Commercial
Buildings” (IEEE 1990), both the Red Book and the Gray
Book indicate that some electronic equipment (like comput-
ers) may experience problems if the voltage unbalance is
more than 2–2.5%. Therefore, based on (IEEE 1993, 1990;
NEMA 1993), the authors adopted 2% as a limit for the
attribute voltage unbalance.

To evaluate the unbalanced load, the authors propose the
current unbalance factor. This attribute is not defined in
standards. However, the National Equipment Manufacturers
Association (NEMA) (NEMA 1993) states that 1% of volt-
age unbalance can create 6–10% current unbalance. Thus,
by limiting the voltage unbalance to 2%, the authors propose
the limit of 20% as current unbalance factor.

The accuracy and speed of the training process are given
in Table 1, for each PRA. It becomes evident that DT, K-
NN, and SVM can correctly classify the possible cases using
the training data. However, it is important to test the models
for different data sets in order to evaluate the performance
for imbalance data. The problem with the imbalance class
has been recognized as a crucial problem in machine learn-
ing and pattern recognition areas. Significant differences in
class prior probabilities may produce an important deteriora-
tion of the classification systems’ performance. A two-class
data set is imbalanced when one of the classes (the minority
one) is heavily underrepresented in comparison with another
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Table 2 Confusion matrix (Sokolova and Lapalme 2009)

Data class Classified as positives Classified as negatives

Real positives TP FN

Real negatives FP TN

class (the majority one). This issue is particularly important
in real-world applications where it is costly to misclassify
examples from the minority class, such as diagnosis of rare
diseases, detection of fraudulent telephone calls, and filtering
tasks. In the experimental results section, this problem will
be discussed considering real-world data. Note that SVMand
MLP need a large training time increasing the computation
cost.

After the training process, each resulting decision-maker
was ready to be used as a tool for identifying the compensa-
tion solutions for power factor improvement.

4 Performance Indices for Classifiers
Evaluation

Designing a classifier is mathematically equivalent to finding
a mapping function between the input space and the attribute
space, followed by applying decision rules that then map the
attribute space into the decision space. In this way, the four
pattern recognition classifiers presented in Sect. 2 (DT, K-
NN, SVM, and MLP) were used in the classification task,
and their results compared in order to find the best classifier
in the PQ problem studied here.

Regarding the performance evaluation,manymetrics have
been employed to assess the classification effectiveness. All
of them are based on the confusion matrix as shown in
Table 2. The correctness of a classification can be eval-
uated by computing the number of correctly recognized
class examples (TP—true positives), the number of correctly
recognized examples that do not belong to the class (TN—
true negatives), and examples that either were incorrectly
assigned to the class (FP—false positives) or were not rec-
ognized as class examples (FN—false negatives) (Sokolova
and Lapalme 2009).

Accordingly, from Table 2, the overall effectiveness of a
classifier can be measured as:

accuracy = TP + TN

TP + FP + FN + TN
(1)

In order to evaluate how effectively a classifier identifies
negative labels, we consider:

specificity = TN

FP + TN
(2)

The corresponding effectiveness of a classifier to identify
positive labels is as follows:

Fig. 3 Modified IEEE 13-bus balanced industrial system test feeder

recall = TP

TP + FN
(3)

It is important to find the performance measurement that
has not been influenced by the imbalanced data. Thus, G-
mean is a measure of the classifier’s ability to balance
sensitivity and specificity and can be defined as follows:

G-mean = √
recall · specificity (4)

Area under the curve (AUC) is the area below the receiver
operating characteristic (ROC) (Sokolova and Lapalme
2009) curve that depicts the performance of a classifier. It
has been proved to be a reliable performance measure for
class imbalance problem. It can measure the classifier’s abil-
ity to avoid false classification and can be expressed by:

AUC = 1

2

(
TP

TP + FN
+ TN

TN + FP

)
(5)

5 Computational Results

At this point, the specialist’s knowledge is already considered
in the classifier and there is no need for any adaptation of
the classifier rules. After training the classifier models, in
order to verify the generalization capacity of the developed
classifiers, a new test database was developed using the IEEE
13-Bus Balanced Industrial System, shown in Fig. 3.

The IEEE 13-bus system was used to create a validation
balanced data set (111,055 samples) used to compare the
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Table 4 Evaluation of different
classification methods on IEEE
13 bus data set

Classification methods Performance metrics (%)

Accuracy Specificity G-mean AUC

DT (depth = 4) 55.93 ± 2.39 51.07 71.47 75.54

DT (depth = 20) 99.93 ± 0.03 99.92 99.96 99.96

DT (depth = 100) 99.93 ± 0.03 99.92 99.96 99.96

K-NN (K = 1) 76.79 ± 1.78 74.24 86.13 87.08

K-NN (K = 3) 76.80 ± 1.83 74.25 86.13 87.08

K-NN (K = 10) 76.79 ± 1.63 74.25 86.13 87.08

Linear SVM 88.48 ± 0.59 87.21 93.39 93.61

MLP (10 neurons) 93.96 ± 0.41 93.30 96.59 96.65

MLP (20 neurons) 99.57 ± 0.08 99.53 99.76 99.76

MLP (40 neurons) 99.77 ± 0.04 99.75 99.87 99.87

MLP (50 neurons) 90.76 ± 0.47 89.74 94.73 94.87

Fig. 4 Single-line diagram of the power system

Fig. 5 Three-phase X-ray machine voltages and currents

performance of trained classifiers, by means of a supervised
test, and decide which one to take, thus allowing the classi-
fier’s performance evaluation bymeans of simulation results.
This system consists of 13 buses, 69kV power supply from
the utility, and seven transformers. A 6MVAr rated power
factor capacitor is connected at bus 3 in medium voltage
(13.8kV). Specific issues related to cables, transformers, and
load characteristics are described by the data in (Abu-Hashim
et al. 1999). In order to take into account the load variation
effects and the possible disturbances (harmonic current, har-
monic voltage, current unbalance, voltage unbalance, a low
power factor, and their combinations), a group of linear and
nonlinear loads has been inserted at 49:RECT bus. Besides,
in order to simulate the voltage distortions from the utility
perspective, a programmable voltage source was inserted at
50:GEN-1 bus. In this way, it is possible to reproduce dif-
ferent combinations of disturbances to be analyzed by the
developed classifier model. In addition, with the combina-

tion of the different types of loads, it is possible to generate
samples for all classes (S00 to S14), since the objective is
to analyze the capacity of the classifiers in separating the
samples from the respective classes.

By applying the proposed methodology, the voltages and
currents were measured at 49:RECT bus with a sampling
frequency of 12.6kHz. According to Fig. 1, the required volt-
age, current, and power attributes were calculated and stored
(attributes extraction).

Table 3 shows the classification results performed by each
technique chosen in this work. The compensation solutions
column represents the possible classes. The expected class
column represents the known responses defined by power
engineer (expert) during the creation of the testing database.
In this stage, the attributes described in Sect. 3.1 are pro-
vided to the classifiermodels developed in the training phase.
Thus, the classifier under analysis performs the separation
of the respective classes. The output of each classifier is
then compared to the known response. It can be seen from
Table 3 that the DT with depth (4) has difficulties in iden-
tifying the cases S01, S02, S05, S06, S07, S08, and S09.
In addition, this classifier model was unable to identify the
samples present in classes S03, S04, S10, S11, S12, S13,
and S14. As the depth of the decision tree is increased, it is
possible to observe the classifier ability to separate classes
correctly, according to results obtained through the use of
the DT with depth (100). In the case of the K-NN, it is dif-
ficult for the classifier to identify classes S10 and S11, even
with the increase in the value of K. In the case of the lin-
ear SVM technique, an improvement in the identification of
the classes S10 and S11 is verified when compared to the
K-NN technique. However, this classifier cannot correctly
identify the samples present in class S14, that is, there is a
difficulty in identifying the solution “Three-phase - four wire
shunt active power filter.” In the case of the MLP technique
with ten neurons, it is observed that the classifier identified
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Table 6 Evaluation of different
classification methods on X-ray
data set

Classification methods Performance metrics (%)

Accuracy Specificity G-mean AUC

DT (depth = 4) 99.31 ± 0.62 97.26 98.62 98.64

DT (depth = 20) 100 ± 0.01 100 100 100

DT (depth = 100) 100 ± 0.00 100 100 100

K-NN (K = 1) 98.94 ± 0.05 99.91 97.05 97.09

K-NN (K = 3) 98.90 ± 0.04 99.91 96.93 96.97

K-NN (K = 10) 98.88 ± 0.05 99.91 96.86 96.91

Linear SVM 99.95 ± 0.03 99.99 99.87 99.87

MLP (10 neurons) 99.78 ± 0.06 99.73 99.87 99.87

MLP (20 neurons) 99.73 ± 0.05 99.85 99.52 99.52

MLP (40 neurons) 99.80 ± 0.03 99.93 99.54 99.55

MLP (50 neurons) 99.42 ± 0.01 99.41 99.43 99.43

Fig. 6 Single-line diagram of the power system

Fig. 7 Inverter welding machine voltages and currents

12068 samples for class 0, that is, 4665 samples classified
incorrectly. In addition, a difficulty of this classifier in cor-
rectly identifying the samples of classes S12 and S13 is
observed. With the increase in the number of neurons for
the MLP, it is possible to observe the improvement in the
capacity of the classifier model to identify classes S0, S12,
and S13.

The objective of any classifier is the maximization of
accuracy, specificity, G-mean, and AUC. In this way, these
criteria will be applied for assessing the algorithms’ perfor-
mance. Table 4 shows the results of several classification
methods when the IEEE 13-bus data set is considered. We
can observe that DT with depth 4 has the worst accu-
racy (55.93%) and AUC criterion (75.54%). However, when
the tree depth is increased to 20, we observe that the DT
classifier obtains the best performance compared to other
methods.

6 Experimental Results

Looking for the evaluation of each classifier performance
in practical applications, three actual test sets composed by
three disturbing loads, which result in imbalanced data sets,
were analyzed by means of supervised classification. The
measurements have been performed in different installations
in Brazil, which claim lack of power quality in their respec-
tive facilities.

As shown in Fig. 1, the voltages and currents aremeasured
by means of a data acquisition system and used to calcu-
late the attributes described in Section 3.1. Following, these
attributes are classified according to the resulting classifier
models.

6.1 Three-Phase X-RayMachine

The first measurement is related to an X-ray machine. This
kind of load is considered as disturbing due to its operation
mode. During the time of radiography, the required electrical
power is high and can produce voltage sags or even damage
the operation of other sensitive equipment connected to the
circuit. Figure 4 shows the single-line diagram of the power
system under analysis. The measurements were performed
on the low-voltage side (220V).

Figure 5 shows the load instantaneous currents, measured
in X-ray equipment 220V, 60Hz, during the execution of
radiography (Moreira et al. 2015). Note from Fig. 5 that the
current has amplitude variant over time, which may result in
different compensation solutions over time.

Table 5 presents the known responses (expected class)
versus predictions made by the trained models. Note that the
pattern recognition decision-tree algorithm (depth = 4) fails
to identify S13 and S14 solutions.

From Table 6, we observe that all classifiers reach high
accuracy. Observe that the pattern recognition decision-tree
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Table 8 Evaluation of different
classification methods on
three-phase inverter welding
machine data set

Classification methods Performance metrics (%)

Accuracy Specificity G-mean AUC

DT (depth = 4) 0.32 ± 3.44 0.00 0.00 50.00

DT (depth = 20) 100 ± 0.00 100 100 100

DT (depth = 100) 100 ± 0.01 100 100 100

K-NN (K = 1) 93.37 ± 0.07 93.58 51.52 60.97

K-NN (K = 3) 93.38 ± 0.11 93.60 50.88 60.63

K-NN (K = 10) 93.27 ± 0.12 93.49 50.20 60.22

Linear SVM 99.76 ± 0.03 99.80 92.74 92.99

MLP (10 neurons) 99.68 ± 0.02 100 8.42 50.35

MLP (20 neurons) 99.72 ± 0.09 99.96 51.21 63.10

MLP (40 neurons) 99.70 ± 0.10 99.90 60.41 68.21

MLP (50 neurons) 97.37 ± 0.14 97.67 23.54 51.67

algorithm (depth = 20 and 100) has the best results for all
metrics resulting in compensation solution S02, due to PFe
and �Q+

1 violations. As we can see, increasing the number
of neurons does not result in a better accuracy or AUC.

6.2 InverterWeldingMachine

The second measurement is related to a welding machine.
This equipment can be connected at any point of the electrical
distribution system, resulting in high distortions levels on the
grid (Fig. 6).

Figure 7 shows voltages and currents measured at load
terminals for a 380V, 60Hz inverter welding machine. The
voltages and currents are distorted, while the currents are also
unbalanced.

For this data set, the known responses versus the predicted
classification are shown in Table 7. In this case, the compen-
sation solution suggested is S14 due to higher incidence of
PFe, KI

−
1 , THDI , THDV , and�Q+

1 violations. Note that DT
(depth = 4) has misclassified 36356 samples as S09.

Table 8 summarizes the metrics for all classifiers when
applied to the welding machine data set. Again, one can
observe that DT (depth = 4) has the worst accuracy and
AUC. This means that the solution provided by this PRA,
in this case, will be S07 with 50,223 samples misclassified,
Table 7. In this instance, we can perceive the importance
of all different metrics. The MLP (ten neurons) has a high
accuracy (99.68%), however with a low AUC (50.35). This
occurs because this PRA only classified two samples as S07
instead of 282 samples. The K-NN model has misclassified
some samples as S09, resulting in a low AUC. In contrast,
the decision tree (depth 20 and 100) has a 100% result for all
metrics, in other words, all attributes were correctly classi-
fied.

Fig. 8 Single-line diagram of the power system

Fig. 9 Soft-starter voltages and currents

6.3 Soft Starter

Soft starters are generally employed in large capacity induc-
tion motors to limit the initial current and to achieve smooth
starting. However, they cause severe pollution on the supply
such as harmonic distortion.

Figure 8 shows the single-line diagram of the power sys-
tem under analysis for the induction motor 60HP, 440V,
60Hz with soft starter. The measurements were performed
in the low-voltage side (440V), as can be seen in Fig. 8.

Figure 9 shows the voltages and currents’ waveforms for
the induction motor 60HP, 440V, 60Hz with soft starter.
Note that voltages and currents are distorted and variant over
time.

For this data set, the known responses are S05 (140122
samples), S07 (64500 samples), and S01 (466 samples) with
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Table 10 Evaluation of
different classification methods
on soft-starter data set

Classification methods Performance metrics (%)

Accuracy Specificity G-mean AUC

DT (depth = 4) 99.92± 0.02 99.92 99.96 99.96

DT (depth = 20) 100± 0.00 100 100 100

DT (depth = 100) 100± 0.01 100 100 100

K -NN (K = 1) 99.76± 0.02 99.97 24.51 52.99

K -NN (K = 3) 99.76± 0.03 99.97 24.51 52.99

K -NN (K = 10) 99.79± 0.02 100 25.79 53.33

Linear SVM 99.99± 0.01 100 96.95 97.00

MLP (10 neurons) 99.86± 0.05 99.86 99.93 99.93

MLP (20 neurons) 99.93± 0.04 99.93 99.97 99.97

MLP (40 neurons) 81.69± 0.05 81.65 90.36 90.83

MLP (50 neurons) 99.81± 0.06 100 39.03 57.62

PFe, THDI , and THDV violations, Table 9. Note that MLP
(ten neurons) has misclassified 136 samples as S08.

Table 10 shows the classifiers metrics for this data set. It
is interesting to observe that the K-NN accuracy is improved
for this kind of load, as well as the linear SVM classifier.
However, the AUC for K-NN is around 53% and the G-
mean metric about 24%, meaning that K-NN (K = 1, 3, and
10), MLP (10, 20, and 50 neurons) will result in S07 as first
compensation solution (higher incidence) instead of S05. On
the other hand, the decision-tree algorithm with depth 4 has
reached 99.92% of accuracy and 99.96% of AUC. However,
by increasing the tree depth, we can observe a performance
improvement, so that the AUC reaches 100% for depths 20
and 100.

7 Conclusion

In this paper, we compared several pattern recognition algo-
rithms in order to automate the usual human decision-making
process on power factor improvement in distribution sys-
tems. We have employed international standards as IEEE,
IEC, ANSI, and NEMA to assess the different power quality
indicators in order to analyze the power system’s behavior.
The decision-making process about the reactive, unbal-
anced, and harmonic compensation was performed using
different algorithms, and our results indicate that an auto-
matic self-structured decision-tree algorithm, with depth
20, is highly effective and reliable to classify the cho-
sen attributes. The developed tool may also decrease the
need for power system or power quality experts to per-
form the compensation analysis insofar as our proposed
framework indicates (quasi-autonomously) the most suit-
able compensation solution, directly obtained from the input
data.
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