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Abstract—The electricity sector, especially in emerging countries,
has experienced several transformations, mainly resulting from the
increase of electricity demand. This encourages more investment in
the generation sector and causes increasing concerns with the devel-
opment and improvement of tools for static voltage stability analy-
sis of electrical power systems. This paper presents a new geometric
parameterization technique for continuation power flow (CPF) that
works based on the addition of a parabola that passes through three
points in the plane formed by the variables of total real power losses
and loading factor. This technique eliminates the Jacobian matrix
singularity at the maximum loading point, which allows obtaining
the solution trajectory (P–V curve) without any need to change the
parameter, which is a very common procedure in the currently avail-
able CPFs. Intending to define a simple and efficient step size con-
trol procedure, the total real power losses values are normalized by
its base case value. The results obtained by applying the proposed
technique to the IEEE-300 bus system and two real large systems of
638 and 787 buses show its effectiveness.

1. INTRODUCTION

Over the years, the electricity market, in general, has expe-
rienced a series of reforms and restructurings among which
the privatization of state-owned electricity industries, which
has made an enhancement in the competition among the
companies of the sector, can be highlight [1]. This process
of transformation has motivated the electric sector to invest
in the search for an improvement in the electrical generation,
transmission and distribution systems. As a direct conse-
quence, the tools of static voltage stability analysis are getting
more attention, especially the continuation power flow (CPF)
method [2]–[11]. Nowadays, the CPF is one of the commonly
used methods to compare the planning strategies and to ana-
lyze several operating conditions of electric power systems, as
it allows obtaining the maximum loading point (MLP) and the
complete tracing of P–V curves of both the transmission [3]
and distribution systems [12], [13]. These curves are widely
used for assessment of static voltage stability because they
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facilitate both detection and comprehension of the charac-
teristics of the load. The continuation method has commonly
defined in the literature via four basic elements: a parameteri-
zation procedure, a predictor step, a step size control strategy,
and a corrector step [2], [3], [7]. The parameterization not only
provides a way to identify each solution along the solution tra-
jectory to be obtained but also removes the matrix singularity
at the MLP. The local parameterization [2] and geometrical
parameterization [3]–[12] are the most used parameterization
techniques. The use of local parameterization technique in the
CPF was presented in [2]. Arc length parameterization that
uses the arc length along the P–V curve tracing was presented
in [3]. In the CPF presented [12], which is used for tracing
the P–V curve of general unbalanced distribution systems,
the arc length, pseudo-arc length, and local parameterization
schemes were implemented. The predictor step and step
size control strategy are used to find an estimate for the
next solution. The corrector step is necessary to correct the
approximate solution, in order to avoid error accumulation.
The CPF is a time-consuming process due to the extensive
number of operating conditions that must be analyzed. For
this reason, a large number of works have been proposed
in the literature, intending to improve and simplify the CPF
algorithm and speed up the P–V curve tracing process.

Many studies on the CPF method have been developed,
in which the use of interpolating polynomial is frequent
[14]–[18]. A very common application is based on the
approximately quadratic curvature presented by the power
flow (PF) solution trajectory (P–V curve) close to the MLP,
particularly the critical bus [14]–[16]. In these methods, a
quadratic approximation for the P–V curve is used to estimate
the power system load margin and voltage magnitudes. In
[14], a method derived from the generalized curve fitting
approach was applied to estimate the loading margin for each
branch outage contingency and ranking them according to
their severity. In [15], to improve the accuracy of load margin
estimation, a sensitivity-based scheme determines for each
contingency, an adaptive step size that is used to compute
the second PF solution. A method that uses only PF solution
is proposed in [16], it is also based in the approximately
quadratic curvature of P–V curve. In several other implemen-
tations of CPF, non-linear predictors are developed based on
the polynomial interpolation and are used to predict the next
P–V curve solution [17], [18]. A good predictor provides
points more close to the correct solutions and consequently a
fewer iterations will be needed to obtain the exact solutions.
The use of the second-order and third-order-based non-linear
predictors in these methods are justified by the increase
in efficiency resulting from the more accurate predicted
points. A very comprehensive work on the use of linear and
non-linear predictors can be found in [17], [18].

This paper proposes a new technique for the CPF, which is
also based on Lagrange’s interpolation method. The Lagrange
interpolating polynomial is chosen because it can be deter-
mined without any need of solving a system of simultaneous
equations [20]. Nonetheless, the proposed technique is not
used in the predictor step, but rather in the corrector step.
Lagrange’s polynomial interpolation formula is not used to
predict a next solution using a non-linear predictor or to esti-
mate the MLP using a curve-fitting technique, but to obtain
a parameterized equation of quadratic function that passes
through three points at the plane defined by total real power
losses and load factor, which will be added to the PF equa-
tions. The choice of a second-order polynomial for interpo-
lating is based on the quadratic characteristic of the total real
power losses’ curve as a function of loading factor. The new
set of equations is solved by a Newton method to obtain the
MLP and to trace the solutions trajectories of the PF equa-
tions, i.e., the P–V curves of electric power systems. Besides, a
normalization procedure is also proposed, which allows using
the same step size for the whole P–V and for all the electric
power systems analyzed.

Some tests were performed to clarify and to evaluate the
performance of the proposed method. Simulation results are
shown for the IEEE-300 bus system and for two realistic
systems of 638 and 787 buses, corresponding to parts of
South–Southeast Brazilian system. The results show that
the proposed CPF method can determine the MLP with the
desired precision without any numerical difficulties and with
no need of exchange of parameter during the whole tracing
process of P–V curve.

2. CONTINUATION POWER FLOW AND
PROPOSED METHOD

The basic principle of the method is to find the solutions of the
set of non-linear algebraic equations that represent the electric
power system in the PF problem. A standard procedure for
obtaining P–V curves is to modify the set of equations of con-
ventional PF by adding a parameter that is used for changing
the load and generation, in a pre-specified direction [2], [3].
The computation of many operation points enables determi-
nation of the MLP with higher precision, however, at a high
computational cost. The set of equations of the CPF, in its
most general form, is presented as follows:

G(θ, V, λ) = 0, (1)

which may be rewritten as

�P(θ, V, λ) = Psp (λ) − P(θ, V)

= λ
(
Psp

g − Psp
c

) − P(θ, V) = 0
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�Q(θ, V, λ) = Qsp (λ) − Q(θ, V)

= (
Qg − λQsp

c

) − Q(θ, V) = 0, (2)

where

λ loading factor;
V and θ respective vectors of the nodal voltage magnitudes

and phase angles, respectively;
Psp(λ) vector of the difference between the vectors of gen-

erated (Psp
g ) and consumed (Psp

c ) real power specified for
the load (PQ) and generation (PV) buses; and

Qsp
c (λ) vector of consumed reactive power specified for the

PQ buses.

Equation (1) assumes that the network loading is propor-
tional to the base case and considers the constant power fac-
tor. Psp(λ) and Qsp(λ) can also be defined as being equal to
λ(kPgPsp

g + kPcPsp
c ) and λkQcQesp

c , respectively. The vectors
kPg, kPc, and kQc are fixed parameters, used to characterize
a specific load scenario.

The P–V curve tracing can be performed by successive
solutions of Eq. (2) using a PF. In this case, V and θ are depen-
dent variables, while λ is independent variable, i.e., λ is con-
sidered as a parameter. Its value is gradually increased from
the base case (λ = 1), until a value for which no solution is
obtained. i.e., for which the PF iterative process diverge or
takes longer time to find a solution. In general, at this point,
there will be a step size control consisting of a simple reduc-
tion in the increment (step-length) of λ and the new solution
is obtained from the last converged solution. The MLP is con-
sidered the last point converged after successive repetitions of
this procedure. However, the divergence of the PF is a conse-
quence of the singularity of Jacobian matrix (J) of Eq. (2)
in MLP, and therefore its value cannot be determined pre-
cisely. In order to overcome the numerical difficulties result-
ing from the J singularity and allow the determination of the
MLP, different implementations of the continuation method
were proposed [2]–[6]. In the CPF, λ is considered as a depen-
dent variable, and then changed automatically. In this case,
Eq. (2), whose dimension is n = 2nPQ + nPV (where nPQ and
nPV are the number of PQ and PV buses, respectively), has n
+ 1 unknowns, and an additional parameterizing equation is
needed. The parameterization not only provides a way to iden-
tify each solution along the solution trajectory to be obtained
but also removes the matrix singularity at the MLP. In the
context of tracing P–V curve, adding parameterizing equa-
tions has become a standard procedure used by practically
almost all continuation methods to overcome the aforemen-
tioned numerical difficulties and to make possible an accu-
rate determination of MLP [2]–[6]. Therefore, the goal is to

remove the singularity of J through the addition, by means of
an equation, of the information lost with the reduction of the
rank of the matrix at MLP.

The CPF method presented in [2] uses the local parameteri-
zation technique to remove the singularity of J at MLP, which
consists of changing the parameter close to MLP, from the
loading factor to a new chosen variable p. A proper choice of
the continuation parameter depends on the variable that has
the greatest rate of change near a given solution. Thus the
chosen variable p can be treated as a new parameter and λ

is regarded as a dependent variable. In the corrector step, the
equation (p − psp = 0), where p and psp are respectively the
variable selected as the continuation parameter and its pre-
dicted value, is appended to Eq. (2). Note that the added equa-
tion corresponds to a line equation, which is perpendicular to
the axis of the variable used as a parameter [7]. When λ is used
as parameter the added equation corresponds to a line equa-
tion perpendicular to the λ-axis (abscissas axis). In general,
close to MLP the voltage magnitude of a bus k (Vk) is used as
parameter, which corresponds to a line equation perpendicular
to the Vk-axis (ordinate axis). Therefore, the exchange of vari-
ables corresponds to a rotation of 90o in the diagram Vk versus
λ [7]. In general, the equation to be added may be written as

R(p, λ, α, β ) = α(λ − λ0) − β(p − p0) = 0, (3)

where α and β are angular coefficients that define the line to
be used. The repeated conventional PF approach corresponds
to a continuation method with a modified zero-order predictor
or trivial predictor [3]. This predictor uses the current solu-
tion and a fixed increment in the parameter (λ, Vk, or θ k) as
an estimate for the next solution. When a probable MLP is
approached, the process diverges or takes longer time to find a
solution, and the step size is reduced. In the local parameteri-
zation technique proposed in [2] the process starts by using λ

as parameter, then α = 1 and β = 0, and its value is gradually
increased from the base case (λ0 = 1) up to a value for which
a solution can no longer be found. In other words, the iterative
CPF process does not converge or diverge. Near the MLP, the
parameter is replaced and the variable with the largest varia-
tion is chosen as the new parameter, that is, Vk or θ k and β =
1 and α = 0, when λ is considered as a dependent variable.
After a few points of the curve, it returns back to λ. However,
as the curvature of solutions path is not known initially, an
approach to define the parameter changes during the compu-
tation process is needed. In [2], it is needed to identify which
voltage magnitude is most appropriate to be used as param-
eter to obtain the MLP. In the CPF presented in [8], the sin-
gularity of the J matrix is avoided by the addition of a line
equation, which passes through a chosen point (λ0; Vk

0) in the
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plane determined by the bus voltage magnitude (Vk) and load-
ing factor (λ) variables:

R(Vk, λ, α) = α(λ − λ0) − (
Vk − V 0

k

) = 0, (4)

where α is the angular coefficient of the line. As a new equa-
tion is added, λ can be treated as a dependent variable and α

is considered as the continuation parameter. A trivial predic-
tor with a fixed increment in the parameter α can be adopted.
The CPF presented in [6], that uses a line equation passing
through a chosen point (λ0; Pa0) in the plane determined by
the total real power losses (Pa) and loading factor (λ), is a
global parameterization technique. The technique that use the
arc length [3] and those presented in [4]–[6], [8], [11] are
other examples of the global parameterization techniques. In
the method presented in [6], unlike that proposed in [2], there
is no need to change the parameters throughout the P–V curve
tracing. Even though sometimes it is necessary to change the
set of lines (from one set of lines to another), the method pro-
posed in [6] has an advantage that, unlike the method pro-
posed in [2], the next parameter is known in advance.

To trace the P–V curve for obtaining the MLP, and con-
sequently the loading margin, in the proposed continuation
power flow (PCPF) a quadratic term is considered to be added
in Eq. (2). This quadratic term is a polynomial function of the
second degree that passes through three points in the plane
defined by the loading factor (λ) and total real power losses
(Pa):

�W (θ, V, λ, α) = Pa(θ, V) − (a(λ + α)2 + b(λ + α) + c)

= 0, (5)

where Pa(θ,V) is computed by

Pa(θ, V) =
∑

k,m ∈ �

gkm

(
V 2

k + V 2
m − 2VkVmcos θkm

)
,

where

� set of all network buses, θ km = θ k − θm;
Vk, Vm, θ k, and θm voltage magnitudes and angles at buses k

and m;
gkm series conductance of the branch between buses k and m;
a, b, and c coefficients of the quadratic function; and
α new variable that determines the new quadratic functions

in the plane Pa(θ,V) versus λ.

The quadratic function is obtained by Lagrange’s interpo-
lation method that uses the following formula:

Pn(x) =
n∑

i=0

Li(x) f (xi), (6)

FIGURE 1. Curves for analyzed systems: (a) λ–Pa without
normalization, (b) λ–Pa with normalization, (c) P–V curves
of some generated bus for the 787-bus system, and (d) the
respective generated reactive powers.

where

Li(x) =
n∏

j=0, j �=i

(x−x j )
(xi−x j )

, i = 0, 1, . . . , n, (7)

where

Pn(x) the Lagrange interpolation polynomial;
n order of polynomial;
xi given point (i = 0, 1, …, n);
f(xi) value of the function at xi;
Li(x) Lagrange’s interpolation coefficient, which is given by

Eq. (7).

In Figure 1, the λ−Pa curves for the three systems studied
have been presented. Note that almost all of these curves
present a sharp nose, that is, the loading factor and the total
real power losses present a simultaneous reversion in its
variation tendency, reaching their maximum values at the
same point. The upper and lower parts of the curve have prac-
tically the same slope, instead of an opposite signal, which
means that the curve noses are coincident and both Jacobian
matrices are singular at the MLP [10]. Therefore, none of
the two magnitudes could be used as a parameter to trace the
whole curve because the procedure would fail in the vicinity
of their respective maximum point. An extensive study on the
limitations of different parameterization methods, including
the arc length parameterization, used to trace curves with
similar characteristics was presented in [7], [9]–[11]. Despite
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the step size reduction, the CPF fails when these parameter-
ization techniques are used to compute the MLP. However,
as shown in Figure 1, all the trajectories of total real power
losses as a function of loading factor of the analyzed electric
power systems present an approximately quadratic curvature
[4]–[6], [9]. Besides, these trajectories present the similar
curvature for all operating conditions and are also unaffected
by the discontinuities present in the voltage magnitudes which
occur due to the discontinuities of the reactive power limits,
as shown in Figure 1(c) and (d) for the 787-bus systems.
Therefore, the second-degree polynomial (where Pn(x) =
ax2 + bx + c is the quadratic function, being x the loading
factor (λ)) seems to be a more suitable choice, which will be
confirmed later in the analysis of the systems.

It can be seen from Figure 1(a) that the two axes do not
have the same scale, as recommended in [7]. Despite being
in per-unit, the numerical values of total real power losses
are very different from those of loading factor and can also
presents a large variation for different electric power systems.
In order to facilitate and simplify the definition of an efficient
procedure of control of step size, the total real power losses
values are normalized by its base case value. As shown in
Figure 1(b), by using the normalization, the values of both
variables, λ and Pa, remain within the same range of numer-
ical values. Thus, the new system of equations is written as

�P(θ, V, λ) = Psp (λ) − P(θ, V) = 0

�Q(θ, V, λ) = Qsp (λ) − Q(θ, V) = 0

�W (θ, V, λ, α) = Pa(θ, V)

Pabc
− (a(λ + α)2 + b(λ + α) + c)

= 0, (8)

where the coefficients of the quadratic function, a, b, and
c are calculated by Eq. (7), and α is the new variable that
determines the new quadratic functions. The symbol Pabc cor-
responds to the total real power losses value, calculated from
the base case. As a new equation is added, λ can be treated as
dependent variable and α is considered as continuation param-
eter (value is prefixed). As the number of unknown variables
is equal to the number of equation, the necessary condition
for the resolution of Eq. (8) is obtained, while the new matrix
has maximum rank, i.e., it is not singular. The PCPF uses
the modified zero-order polynomial or trivial predictor [2].
For α = α0 + �α, the solution of (8) will provide the new
operating point (θ , V, Pa, λ) corresponding to the intersection
of trajectory solutions (λ – Pa) with the parabola whose new
value (α0 + �α) was specified.

2.1. General Procedure for Tracing the P–V Curve

As shown in Figure 2(a) and (b), the P–V curve of any bus
k in the system is obtained with the corresponding desired

FIGURE 2. (a) Parabolas in the plane λ–Pa and (b) voltage
magnitude of critical bus, determined by the PCPF.

values of voltage magnitude and loading factor, which is
stored while obtaining the λ–Pa curve. The λ–Pa curve is
traced as follows:

Step 1. The three first operating points, including the base
case operating point “P,” are obtained by using a con-
ventional PF, and by using Eq. (7), the corresponding
coefficients of the quadratic function, a, b, and c, that
passes through the three points in the plane defined
by the loading factor (λ) and total real power losses
(Pa), are computed, see Figure 2(a).

Step 2. The next points of curve λ–Pa are obtained by using
the PCPF and applying a gradual increment (i.e.,
with a fixed step) to the continuation parameter α ,
αi+1 = αi + �α, whose initial value is equal to zero;

Step 3. When λ changes its sign, the MLP has been passed.
So, if it is desired to determine the MLP more
accurately, the solution can be traversed backward
with a smaller step size.

In function of the similar curvature presented by the
λ–Pa curve of all the analyzed systems, the PCPF has the
advantages of not needing to change the parameter during the
complete tracing of the curve, and the use of a single fixed step
size for all systems, therefore avoiding the need of successive
step size reductions close to the MLP. The adopeted step size
was chosen based on the values of the continuation parameter
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(α) calculated with the λ and Pa stored values while obtaining
the P–V curve using the voltage magnitude of the critical bus.
A fixed step size of 0.01 p.u. was commonly adopted when the
voltage magnitude of the critical bus is used as a parameter.
For the step size of 0.01 p.u. in the voltage magnitude, a step
size of approximately 0.001 p.u. was found for α.

3. TEST RESULTS

This section discusses the results of applying the PCPF
method for the IEEE 300-bus and two systems corresponding
to parts of the south-southeast Brazilian system with 638-bus
and 787-bus. The IEEE 300-bus test case has been developed
by the IEEE Test Systems Task Force under the direction of
Mike Adibi in 1993 [19]. The Brazilian 638- and 787-bus
systems correspond to part of the Brazilian national inter-
connected system. The 638-bus system contains 98 generator
buses, 1,050 branches and 540 load buses, while the 787 bus
system contains 112 generator buses, 1,109 branches and 675
load buses. For all tests, the tolerance adopted for mismatches
is 10−5 p.u. The reactive power limits (Q) in PV buses are the
same as those used in the conventional PF. In each iteration,
the reactive generations at all PV buses are compared to their
respective limits. In case of violation, a PV bus is switched to
PQ. This bus can be switched back to PV in future iterations.
The loads are modeled as constant power and the parameter
λ is used to simulate the increments of real and reactive
loads, considering constant power factor. Each load increase
is followed by an increase of the equivalent generation, using
λ. The purpose of the tests is to show the efficiency and
robustness of the proposed methods to trace the P–V curve of
electrical power systems.

3.1. Results of the PCPF for the IEEE 300-bus System

Figure 3 shows the results of the proposed method for the
IEEE 300-bus system, i.e., considering the equation of a
quadratic function located in the plane of λ-Pa and α as the
continuation parameter. Figure 3(a) shows the curve of total
real power losses versus the loading factor. The curve tracing
process starts from the base case (λ = 1) with getting the first
three points by a CPF or a conventional PF. The other points
on the λ–Pa curve can be determined through successive
solutions of Eq. (8) and adopting a fixed step size for the
value of parameter α. The step-length (�α) adopted to obtain
the other points on the curve was 0.002 for all electric power
systems. This value was adopted in order to calculate a few
points along the curve.

From Figure 3(a), it can be seen that the lower and upper
parts of the λ–Pa curve have practically the same slope,

FIGURE 3. Performance of the PCPF for the IEEE 300-bus
system: (a) λ–Pa curve, (b) P–V curve of the critical bus 526,
and (c) number of iterations.

instead of an opposite signal. In such cases, the loading factor
and total real power losses showed a simultaneous reversal in
its variation tendency, that is, the noses are coincident. This
means that both Jacobian matrices of the CPF, the one using
loading factor or the total real power losses, are singular at
the MLP. Thus, these variables cannot be used as parameters
to obtain the MLP because the method will present numerical
difficulties in their neighborhood. Moreover, as it can be seen
from Figure 3, the PCPF allows the determination of the MLP
without the numerical problems related to Jacobian matrix
singularity.

Figure 3(b) shows the P–V curve obtained by storing, dur-
ing the tracing of the curve λ–Pa, the corresponding desired
values of the voltage magnitude (V526) and λ. The values of
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FIGURE 4. Performance of the PCPF for the IEEE 300-bus
system: (a) λ–Pa curve, (b) P–V curve of the critical bus 526,
and (c) number of iterations with quadruplicate step, �α =
0.008.

the λ and V526 in the MLP are 1.0547 p.u. and 0.7453 p.u.,
respectively.

Figure 3(c) shows the number of iterations used to obtain
the curve. It can be concluded that the proposed method
succeeds in finding each points of the curve, including the
MLP, with a small number of iterations and without changing
the parameter. Also note that an automatic step size control
occurs around the MLP, even using a fixed step size (�α).
This gives the additional advantage of providing a larger
number of points in the MLP region automatically.

It is important to point out that the method is not so sensi-
tive to the adopted step size of 0.002. The possibility of using
large step sizes is another important point, once a reduction in
the number of points of the P–V curve is provided. In general,
the continuation methods demand a good step size control
in order to avoid ill-conditioning and numerical problems,
otherwise it can lead to divergence. Intending to demonstrate
the robustness of the PCPF, Figure 4 presents the results for
the same case of Figure 3, but considering a quadruplicate

FIGURE 5. Performance of the PCPF for the 638-bus and
787-bus systems: (a) λ–Pa curve, (b) P–V curve of the critical
bus 150, (c) number of iterations for the 638-bus system,
(d) performance of the PCPF for the 787-bus system, λ–Pa
curve, (e) P–V curve of the critical bus 576, and (f) number
of iterations for the 787-bus system.

step size (�α = 0.008). Note that even quadruplicating the
step size, the method allows the complete tracing of the curve
and still keeps a low number of iterations for the solution of
each point, as shown in Figure 4(c).

3.2. Results of the PCPF for Real Larger Systems

Figure 5 shows the results of the PCPF for the 638 and 787
bus systems; these systems are corresponding to parts of the
South–Southeast Brazilian system, which are heavily loaded,
particularly the 638-bus that is a system under a very stressed
loading condition with the MLP equal to 1.0087 p.u., i.e., an
operating point very close the base case.

Figure 5(a) and (d) shows the λ–Pa curves, while
Figure 5(b) and (e) presents the respective P–V curves of crit-
ical bus (V150 and V576) of each system obtained by storing,
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FIGURE 6. Performance of the PCPF for the 638-bus
system: (a) λ–Pa curve, (b) P–V curve of the critical bus 150,
and (c) number of iterations with quadruplicate step size, �α

= 0.008.

during the tracing of the λ–Pa curve, the corresponding values
of the voltage magnitude and loading factor. Figure 5(c) and
(f) presents the number of iterations used to obtain each point
of the curves. Note that the PCPF also succeeds to find the
MLP and providing the correct solutions for the lower and
upper parts of the curve with a reduced number of iterations.

Figures 6 and 7 present the results of the PCPF for the
638-bus and 787-bus systems, respectively, solving the same
problems of Figure 5 with quadruplicate step size. The
respective numbers of iterations for each point is still small,
as shown in Figures 6(c) and 7(c). In Figure 7(e), one can be
seen the number of iteration needed to compute each point
with an increased step size of 0.012. Also for these systems
the method worked very well with no difficulties for tracing
the whole P–V curve, even when considerably large step sizes
were used. It can also be seen from Figure 6(a) that for each
parabola the intersection of the trajectory solutions (λ–Pa)
with the parabola yields two solutions (e.g., 1 and 1′, and 2
and 2′). It can be seen from Figure 6(a) that by changing the

FIGURE 7. Performance of the PCPF for the 787-bus
system: (a) λ–Pa curve, (b) P–V curve of the critical bus
576 with quadruplicate step size, �α = 0.008, (c) number of
iterations with �α = 0.008, (d) P–V curve of the critical bus
576 with sextuplicate step size, �α = 0.012, and (e) number
of iterations with �α = 0.012.

parameter α, it was possible to compute the point 1 from the
previous solution of base case (P), and from point 1 the next
one, point 2. In Figure 6(b), it can be seen the corresponding
voltage magnitude values that were stored while obtaining the
λ–Pa curve. The local convergence characteristic of Newton’s
method guarantees that the system converges to the closest
solution points 1 and 2 instead of 1′ and 2′. When passing
through the MLP, there is a sign change of �λ, which allows
not only its determination but also distinguishing a stable
solution from an unstable. Point 1 is after the MLP, and so if
a more precise MLP value is required, it is only necessary to
go back to previous point and then reduce the step size (�α).

3.3. Performance Comparison of the PCPF with
Diferent Parameterizations

The objective of the above test is to compare the performance
(number of iterations) between the PCPF and the ones pre-
sented in [4], [5], parameterized by the total real power losses
(Pa), and parameterized by loading factor (λ) or by the volt-
age magnitude of the respective critical buses (V), during the
changes from one state to another. Thus, the corresponding
parameters (Pa, λ, V) of each state were obtained using the
PCPF. A fixed step size of 0.002 was used. Once all the states
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FIGURE 8. Comparison of the methods for the 638-bus
system: (a) parameterization based on quadratic curves in the
Pa curve, (b) performance of the methods parameterized by
Pa and λ, (c) results in the P–V curve, (d) normalized determi-
nants around the MLP region (point S1), and (e) normalized
determinants around the maximum total real power losses
region (point S2), (f) λ as function of the new parameter α,
(g) Pa as function of the new parameter α.

were obtained, the respective stored parameters are used as
estimated by respective methods, and by using the trivial
predictor. The parameter values obtained in this way ensure
that the system is taken from the same initial state to the same
final state. Figures 8 and 9 provide a fair comparison between
the performance of the methods, for the 638-bus and 787-bus

FIGURE 9. Comparison between the performances of the
methods: (a) number of iterations for the 638-bus system and
(b) number of iterations for the 787-bus system.

systems. It is worth mentioning that, in the Figures 8(b) and
(c), after the corrector step, as expected, the corresponding
operating points are the same for all the methods.

All points on λ–Pa curve were computed by using the
PCPF and by applying a fixed step size of 0.002 to the
continuation parameter α. These points are obtained with
no ill-conditioning problems and without changing the
parameter during the computation process. This is not true
for the conventional PF and the CPF parameterized by λ.
Figure 8(d) and (e) shows the normalized determinants of
Jacobian matrices. Point S1 corresponds to the MLP, i.e.,
where λ reaches its maximum value. Then, if λ is used as a
parameter, the CPF Jacobian matrix will present a singularity
at point S1, as shown in Figure 8(d). Note that at this point
S1, the conventional PF Jacobian matrix is also singular. So,
when the neighborhood of point S1 is reached, these methods
will present numerical difficulties, the conventional PF fails
to obtain a solution and for the CPF parameterized by λ, a
parameter switching will be necessary. In case Pa is used
as a parameter, the respective modified Jacobian matrix will
present a singularity at the point S2, in this case shortly after
the MLP. Note from Figure 1(b) that for this parameter is
common to find noses that are coincident and therefore both
Jacobian matrices are singular at the MLP. However, the
MLP and all P–V curves can be easily computed with the
proposed parameterized method (PCPF) because the singu-
larity is removed when α is used as a parameter, as shown
in Figure 8(f) and (g), which exhibit for the 638-bus system
the behavior of the variable λ and Pa as a function of the new
parameter. The good convergence performance in the MLP
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Voltage Stability Margin (%) Critical Voltage (p.u.)

System CPF CPFV CPFPa PCPF CPF CPFV CPFPa PCPF

300 5.45 5.52 5.52 5.53 0.7477 0.7383 0.7383 0.7325
638 0.86 0.87 0.87 0.87 0.7916 0.7780 0.7780 0.7780
787 12.70 12.72 12.72 12.73 0.7616 0.7539 0.7539 0.7458

TABLE 1 . Voltage stability margin and critical voltage of the analyzed systems.
CPF: continuation power flow parameterized by λ, CPFV: continuation power flow parameterized by voltage magnitude of critical bus, CPFPa: contin-
uation power flow parameterized by Pa, PCPF: proposed continuation power flow parameterized by λ with step size 0.001.

vicinity provided by the PCPF is due to the low degree of non-
linearity of the modified equation system obtained by using
the new parameter α. Note that when α is used as parameter,
the added equation corresponds to a line equation perpendicu-
lar to the α-axis (abscissas axis). In Figure 8(c), the respective
P–V curve obtained for the critical bus 150 can be seen.

Figure 9 provides a comparison of the number of iteration,
needed to compute each point, between the PCPF and the
different aforementioned parameterization. Table 1 shows
for the three analyzed systems the voltage stability margin
and the corresponding magnitude voltage of the critical bus,
computed by the three proposed parameterization techniques.
It can be verified that by using the voltage magnitude of
the critical bus as a continuation parameter, the MLP can
be obtained whitout the numerical problem related to the
singularity of Jacobian matrix. In general, λ or a voltage
magnitude is used as the continuation parameter. In the local
parameterization technique, the P–V curve tracing is started
by using λ as parameter and close to the MLP it changes to the
voltage magnitude that presents the largest variations, in order
to overcome the singularity of Jacobian matrix [2]. However,
as the curvature of solutions path is not known initially, an
approach to define the parameter changes during the compu-
tation process is needed. In [2], it is needed to identify which
voltage magnitude is most appropriate to be used as param-
eter to obtain the MLP. On the other hand, with the proposed
parameterization, a change in the continuation parameter is
not necessary during the whole P–V curve tracing process.
Moreover, the overall numbers of iterations when voltage
magnitude of critical bus (V150) is used as the parameter are
higher than that of PCPF. They take 13.5 and 11.4% more than
the PCPF for the 638-bus and 787-bus systems, respectively.

3.4. The Influence of using a Constant Jacobian

The voltage static stability studies are widely used in the plan-
ning and real-time operation to assess the voltage stability
margins and to define preventive control actions for several
operating conditions, considering often for each, hundreds
of contingency cases. In these studies, the main desirable
features for the CPF are robustness, computational efficiency,

and effectiveness for obtaining the MLP. It has been proven
that the Newton–Raphson algorithm is the most robust
approach. The adjustments of solutions as a result of reactive
limit violations at generation bus also affect the convergence
of the PF methods. Thus, to improve the computational
efficiency of the PF methods, a commonly used procedure is
to not update J at every iteration, but only when the system
undergoes a significant change (e.g., when bus type switching,
from PV to PQ, is due to reactive limit violations). This pro-
cedure, known as the “dishonest Newton method” [11], [21],
[22], often enables a considerable reduction in the computing
time. Therefore, in this section, the proposed parameteriza-
tion technique is evaluated comparing their performance by
considering two procedures: in the first (P1), the updating of
the whole Jacobian matrix is performed at every iteration,
and in the second one (P2), only when the system undergoes a
significant change (e.g., when a voltage controlled bus (PV) is
converted to a load bus (PQ) as a consequence of a violation of
one of their reactive limits), or when the number of iterations
exceeds a predefined threshold value (eight iterations).

Table 2 presents the results of the updating procedures
considering a step size (�α) of 0.002 and a quadruplicate
step size of 0.008. For the 787-bus system, Table 2 is used
to compare the performance of the method considering a

P1 P2

System IC

CPU Time

(p.u.) IC ACo

CPU Time

(p.u.)

CPU Ratio

(%)

300 41 1.000 51 11 0.385 61.5
638 78 1.000 182 10 0.403 59.7
787 58 1.000 92 17 0.449 55.1
300

a
10 1.000 13 5 0.555 44.5

638
a

30 1.000 43 15 0.633 36.7
787

a
22 1.000 26 14 0.534 46.6

787
b

15 1.000 16 9 0.485 51.5

TABLE 2 . Performance of the parameterization technique based on
quadratic curve for procedures P1 and P2.
aQuadruplicate step-size.
bSextuplicate step-size.
ACo – actualization count.
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FIGURE 10. Performance of the PCPF for IEEE 300-bus
system with �α = 0.002: (a) number of iterations for
procedures P1, P2 and with actualization count (ACo), (b)
CPU time for both procedures, (c) CPU time normalized for
both procedures, (d) �α = 0.008, number of iterations for
procedures P1, P2 and with actualization count (ACo), and (e)
CPU time normalized for both procedures with �α = 0.008.

sextuplicate step size (�α = 0.012). For both procedures, the
total number of iterations (IC) to trace the complete P–V curve
is shown, and for P2, the total number of iterations (ACo) is
also shown, for which an updating of the matrix occurs. The
CPU time requirement for the PCPF, considering the proce-
dure P2, is shown in the sixth column of Table 2. Their values
were normalized by the respective CPU times of the procedure
P1, which is in the third column of the table. As can be seen
in the forth column, despite the total number of iterations is
larger for the procedure P2, it is possible to obtain a reduction
of the computational time, i.e., an efficiency improvement in
the proposed technique, without losing robustness, as can be
confirmed in the sixth and seventh columns of the table.

Figure 10 shows the number of iterations and the CPU
time needed by the procedures P1 and P2, for each point
of the P–V curve of the IEEE 300-bus system, presented in
Figure 3. Note that, as shown in Figure 10(a), the number of

FIGURE 11. (a) Performance of the PCPF for 638-bus
system with �α = 0.002, number of iterations for procedures
P1, P2 and with actualization count (ACo), (b) CPU time
normalized for both procedures, (c) performance of the PCPF
for 787-bus system with �α = 0.002, number of iterations for
procedures P1, P2 and with actualization count (ACo), and (d)
CPU time normalized for both procedures with �α = 0.002.

iterations of the procedure P2 is 25% larger than P1. However,
the number of iterations (ACo) for which there is a matrix
updating is 73% lower than for P1, resulting in a reduction
of 61.5% of the overall CPU time, as shown in Table 2 and
Figure 10(b), where the CPU times to compute each point is
shown. The results for each point presented in Figure 4, can
also be seen in Figure 10. Note from Table 2 that despite of
a large step-size of 0.008, an overall CPU time reduction of
44.5% is obtained for P2, compared to the P1.

Figure 11 shows the numbers of iterations and respective
CPU times needed by the procedures P1 and P2, for obtaining
the solution of each point corresponding to the P–V curves of
the 638-bus and 787-bus systems presented in Figure 5. Once
again the numbers of iterations of the procedure P2 are 133
and 58.6% larger than the P1, respectively for the 638-bus and
787-bus systems. Moreover, as expected, the respective CPU
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FIGURE 12. Performance of the PCPF for 638-bus system
with �α = 0.008: (a) number of iterations for procedures
P1, P2 and with actualization count (ACo), (b) CPU time
normalized for both procedures, (c) performance of the PCPF
for 787-bus system, number of iterations for procedures P1,
P2 and with actualization count (ACo) with �α = 0.008, (d)
CPU time normalized for both procedures with �α = 0.008,
(e) number of iterations for procedures P1, P2 and with
actualization count (ACo) with �α = 0.012, and (f) CPU time
normalized for both procedures with �α = 0.012.

time reductions are 59.7 and 55.1% lower, as can be confirmed
in Table 2 and Figure 11(b) and (d). This efficiency improve-
ment is achieved with a reduction of 87.2 and 70.6% on the
actualization count (ACo), when compared with the times of
updating the Jacobian matrix of the first procedure P1.

Figure 12 presents the performance of the PCPF for
the 638-bus and 787-bus systems, solving the same
problems of Figure 11 with quadruplicate step size, i.e., 0.008.

Figure 12(e) and (f) shows the number of iterations and corre-
sponding CPU times considering the step size of 0.012 for the
continuation parameter α, for the 787-bus system. From the
results, it can be concluded that even larger step sizes can be
used without affecting the performance of the method during
the tracing of the P–V curve. Furthermore, the robustness and
computational efficiency improvement are still maintained.

4. CONCLUSION

This paper presents a new geometric parameterization tech-
nique for the continuation method, which allows not only
to obtain the MLP and, subsequently, assessment of voltage
stability margin of power systems, but also to obtain the
solution points in its vicinity with a low number of iterations.
The proposed parameterization technique was developed
from the geometrical analysis of the solutions trajectories of
the PF equations and it is based on the quadratic characteristic
of the curve of total real power losses as a function of loading
factor, which presents a similar behavior (curvature) for all
operating conditions and electric power systems analyzed.

The parameterization technique eliminates the Jacobian
matrix singularity of load flow and therefore all the conse-
quent problems of ill-conditioning as well. This is done by the
addition of a second degree equation, i.e., a quadratic function
that passes through three points in the plane determined by
the loading factor and total real power losses. By using the
total real power losses values, normalized by its base case
value, the values of both variables loading factor and total
real power losses remain within the same range of numerical
values. This greatly facilitates the definition of a simple
procedure that is able to trace the P–V curve without the need
of changing the parameter close to the MLP.

A comparison between the proposed parameterization
technique and the ones parameterized by the total real power
losses, by the loading factor, and by the bus voltage mag-
nitude, in terms of numbers of iterations is provided. For
large-scale real power system, it was shown that the proposed
technique presents the best performance. Also, it shows a
very attractive option and easy implemented, since it would
require few changes in the CPF model.

The results show that it is also possible to achieve a reduc-
tion of computational time (average of 50.8%) and efficiency
improvement in the proposed technique by considering a
simple procedure of updating the Jacobian matrix, which is
only done when the system undergoes a significant change
(changes in the system’s topology), without losing robustness.
As a future scope the application of the method as an alter-
native tools for determination of the post-contingency load
margins and even to obtain the list of critical contingencies.
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