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Abstract—This study discusses a centralized and coor-
dinated control of distributed multifunctional inverters con-
nected to an electric grid. The multifunctional operation
is based on the conservative power theory, which makes
it possible to identify undesired current components that
can be compensated. The inverters that make up the mi-
crogrid are managed through a transmission control pro-
tocol/internet protocol (TCP/IP) communication network, al-
lowing commands from a control center, while also allowing
monitoring and gauging of electrical quantities of interest
related to each of the inverters. Using the control center, it
is possible to adjust the current necessary for compensa-
tion, which can be shared among inverters in a coordinated
manner and according to their nominal capacities. Adjust-
ments are made by sending references to certain indexes
for desired power quality at the coupling point of each in-
verter. Experiment results explore some compensation al-
ternatives, employing communication flexibility among the
devices that comprise the microgrid.

Index Terms—Conservative power theory (CPT), coordi-
nated control, microgrids, multifunctional inverters, power
quality (PQ).

I. INTRODUCTION

OVER the last decade, the electrical industry has made
important inroads in the expansion of renewable energy

sources (RESs). These advances contributed to the growth of
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distributed generation [1]–[5] by applying information and com-
munication technology in electrical systems [6], [7]. Thus,
production, transport, distribution, and end use of electrical
power have become more efficient, environmentally sustain-
able, reliable, and safer. However, distributed energy systems
(DESs) changed the traditional one-directional flow of energy
to a bidirectional flow, which increased the complexity of power
dispatch. On the other hand, the nonlinear loads connected to
the distribution system can cause power quality (PQ) problems.
In particular, current and voltage harmonics are becoming im-
portant concerns [8].

Every aspect mentioned above can be addressed applying
suitable control strategies for multifunctional grid-tie inverters
(MFGTIs), which are able to, simultaneously, integrate RESs in
DESs and perform compensation of PQ problems [9]–[16]. The
combination of these abilities in single equipment contributes
to reduce the installation and operation costs of DESs. This
approach is especially consistent if the MFGTI becomes part
of distribution management systems. Therefore, RES consist-
ing of solar or wind power could be connected to the grid via
MFGTIs, which often do not operate at full capacity due to
the intermittent behavior of these power sources. The available
volt-ampere (VA), not used to transfer power produced by RES
to the grid, can be used for auxiliary services, considering a
minimal increase in system implementation costs.

Initial distributed compensation strategies were based on the
application of active power filters (APF) [17]–[21] and static
VAR compensator cooperating with APFs [22], [23]. Within
the present scenario, i.e., increased RES penetration, the use of
MFGTIs may also contribute to expand possibilities for imple-
menting strategies for coordinated control in DES. For example,
the MFGTIs can be used for injecting active power into the dis-
tribution system, sharing reactive power, voltage regulation at
points of common coupling (PCC), and harmonic compensation
[24]–[32].

Recently, studies have begun to discuss the cooperative oper-
ation of multiple converters integrating a microgrid. However,
due to implementation difficulties—among which converter
communication, management, and supervision infrastructure
are included—some of these studies have been restricted to
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Fig. 1. Supervision and centralized control structure for MFGTIs and reactive compensators spread throughout a microgrid. (a) Overview of the
communication structure. (b) Overall scheme of distributed MFGTIs.

simulation environments [27], [28]. One of the contributions
of our research is to show a simple and effective way to
implement control, management, and supervision infrastructure
for multiple MFGTIs spread throughout a microgrid.

From the point of view of disturbance compensation, the
proposed approach provides a different perspective of that dis-
cussed in [13] and [30], in which the MFGTI is controlled to
achieve specific PQ requirement at a single PCC. Unlike [13]
and [30], in our study, the control strategy is expanded to several
MFGTIs considering a synergistic operation to regulate the ac-
tive power, reactive energy/power, and harmonics synthesized
by each MFGTIs. Thus, PQ requirement at PCC is globally
achieve by coordinated operation of all MFGTIs. Moreover, the
control approach is expanded to synergy operation with other
compensators [i.e., capacitors banks or thyristor switched ca-
pacitors (TSC)].

The main objective of this study is to provide a platform
that enables the coordinated operation of distributed MFGTIs.
This platform is composed of a control center and MFGTIs
with communication capability. The control center acts as cen-
tralized control and supervisory mode being able to remotely
transmit and receive data to MFGTIs. Through this platform,
the microgrid’s operator can set and adjust parameters that de-
fine the functionality of each MFGTI. Using a communication
network infrastructure [as shown in short in Fig. 1(a)], the con-
trol center establishes a two-way communication channel with
each MFGTI, which in turn have the capacity to process and
answer the received commands.

MFGTIs are able to receive remote commands from the cen-
tralized control center, such as reference for power factor at the
PCC, reference for reactive power injection, and adjustment of
the level of harmonic compensation. Therefore, MFGTIs are
able to cooperate among each other and also with passive or ac-

tive PQ compensators, such as TSC and capacitor banks. From a
practical point of view, this approach is satisfactory for small mi-
crogrids (homes or commercial/industrial installations), which
includes a range of local power sources.

A microgrid on laboratory scale [as shown in Fig. 1(b)]
was created to validate the distributed operation of MFGTIs,
as well as the coordinated communication and operation
infrastructure. Finally, experimental results showed the validity
and efficiency of the proposed approach to improve PQ by
means of cooperation among MFGTIs and compensation
elements in the microgrid.

II. MODELING AND CONTROL OF MFGTI

The local control for each MFGTI comprises two loops as dis-
cussed in [13]. The first one is a fast current loop to control the
MFGTI current and the other is a slower voltage loop, responsi-
ble for maintaining constant dc bus voltage. An additional loop
is used to control the current in the dc–dc converter, which is
responsible for making the connection between the local source
and the inverter’s dc bus. For the sake of simplicity, the dc–dc
converter and RES are treated as current sources (IDCm ).

The transfer function of the output current (iF ) of the MFGTI
is given by (1) as shown at the bottom of the next page and can
be obtained by following the block diagram shown in Fig. 2. The
dumping factor (KD ) is the capacitor current feedback gain that
contributes to the active damping of the LCL filter [33], [34].

The open-loop transfer function GOL(s) given by (2) is ob-
tained considering time delay due to the pulse width modulation
modulator and delay due to the digital implementation of the
current controller (3) [35]. The antialiasing filter modeled by
(4) is placed at the input of the analog-to-digital converter.
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Fig. 2. Current loop block diagram of each MFGTI.

TABLE I
PARAMETERS OF THE CURRENT CONTROL LOOP

Kinv 300 Kc 0.95
KIS 0.0667 KIP R 100
ωCL 6.28 [krad/s] ωc anti 62.8 [krad/s]
ωcP R 5 [rad/s] ωo 377 [rad/s]
Ts 38 [μs] KD 0.5

The inverter gain is given by Kinv , whereas KIS is the gain
of the current sensor. The cutoff frequency of the antialiasing
filter is ωc anti and the sampling time is given by Ts , which is
half the switching time

GOL (s) = KinvKISGFD (s) Gd (s) Ga (s) GC (s) (2)

Gd (s) =
1 − s 1

2 Ts

1 + s 1
2 Ts

(3)

Ga (s) =
ωc anti

s + ωc anti
. (4)

The current controller is of proportional plus resonant har-
monic type [36] and its transfer function is given by

GC (s) = KC +
∑

h=1,3,5, ...,15

2KIP R ωcP R s

s2 + 2ωcP R s + (hωo)
2 . (5)

The current controller was designed using the open-loop
transfer function (2). The bandwidth of the current loop was
set at 1.2 kHz aiming the compensation of current harmonics.
In addition, the loop gain at harmonics frequencies is increased
using the resonant controller (5) through the adjustment of the
resonant peaks by KIPR . In order to grant the system stability
and allowing a fast transient response, the phase margin was set
to 45°with a gain margin of 6 dB. The parameters of the current
control loop are summarized in Table I.

On the other hand, Fig. 3 shows the block diagram of the
bus voltage control loop. The transfer function GDC(s), given

Fig. 3. Block diagram of the dc voltage control loop.

in (6), is obtained by a small signal analysis. It establishes a
relationship between the dc bus voltage (vDC ) and the current
peak at the inverter output, i.e., the current control variable iG p .
VPCC rms stands for the rms value of grid voltage (127 V),
whereas VDC is the average value of the dc bus voltage (300 V)
and CDC is the dc bus capacitance (4.5 mF).

The low-pass filter, HLP(s), in the feedback path is designed
to attenuate the 120 Hz ripple present in the vDC voltage. In this
study, the cutoff frequency (ωcL P ) of the low-pass filter was set
at 30 Hz. The remaining parameters are as follows: the gain of
the voltage sensor is KV = 0.00333 and 1/KIS is the resulting
gain of the current control loop [37]. The transfer function of
the proportional integral controller used to regulate the dc bus
voltage is given by (7).

It is worth to note that the bandwidth of the dc bus voltage
control loop should be narrow enough to avoid oscillation of
iG p and mitigating the interaction of the dc voltage controller
with the faster current loop, which has a higher bandwidth [35].
Therefore, the open-loop transfer function of the dc bus voltage
control (8) is used to design PIDC(s) aiming the achievement
of a stable system with the bandwidth of 6 Hz and the phase
margin of 70°. The parameters of the resulting PI controller are
KPDC = 2.2 and KIDC = 49.

GDC (s) =
ṽDC (s)
ĩG p (s)

=
VPCC rms

s
√

2CDCVDC
. (6)

GFD (s) =
IF (s)
Vinv (s)

=
sC0R0 + 1

s3L1L2C0 + s2C0

(
KD L2 + L1R2 + L2R1+

+L1R0 + L2R0

)
+ s

(
KD R2C0 + L1 + L2 + R1R2C0+

+R1R0C0 + R2R0C0

)
+ R1 + R2

.

(1)
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Fig. 4. Overview of the conceptual drawing of the synergistic flexible control with independent reactive power injection.

PIDC (s) = KPDC +
KIDC

s
(7)

HDC O L = PIDC (s) GDC (s) HLP (s) KV /KIS . (8)

III. SYNERGISTIC CONTROL AND COOPERATIVE

OPERATION STRATEGY

In this section, the functionalities of the MFGTIs are dis-
cussed, among which the active and reactive power injection,
harmonic mitigation, and compensation of reactive power due
local loads are mentioned. Fig. 4 depicts the control diagram of
each MFGTI.

These functionalities are integrated into the MFGTI by the
generation of orthogonal (decoupled) current references, which
are defined according to the conservative power theory (CPT)
[29]. CPT current components have a forward relationship with
the functionality intended to be implemented, i.e., harmonic
content and reactive power, which makes the selection of the
kind of disturbance to be compensated easier. Thus, beyond
flexibility, selectivity, and voltage distortion immunity, the pro-
posed method differs from others existing solutions for the fact
that it does not need any kind of reference-frame transformation
and synchronization algorithms.

Aiming at a better comprehension of this study, the main
CPT definitions are presented below. Notice that the single-
phase system is being considered. The lowercase letters stand

for instantaneous signals, whereas the capital letters stand for
rms values.

1) Active load current (ia ): responsible for transferring ac-
tive power (P = V Ia ) from the source to the load.

2) Reactive load current (ir ): responsible for the reactive
energy flow W = V̂ Ir , where V̂ is the rms value of the
unbiased integral of the load voltage [29]. This compo-
nent may also be associated with reactive power through
the ratio (Q = V Ir ).

3) Void (residual) load current (iv ): reflects nonlinearity
between voltage and current, due mainly to the presence
of switched devices. It does not transfer active power or
reactive energy to the load. This portion of current is
associated to void (residual) power, calculated through
(D = V Iv ).

The apparent power (A) is obtained through the product of
respective rms voltage and rms current (A = V I). Thus, the
load power factor results in

λ =
P

A
=

P√
P 2 + Q2 + D2

=
Ia√

Ia
2 + Ir

2 + Iv
2
. (9)

Furthermore, according to [13] and [31], the load power factor
can also be decomposed into two decoupled factors, called load
conformity factors. Each factor represents a specific load PQ
disturbance.
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4) Reactivity factor: responsible for lagging between volt-
age and current

λQ =
Ia√

Ia
2 + Ir

2
. (10)

5) Distortion factor: responsible for nonlinearity between
voltage and current

λD =
Iv√

Ia
2 + Ir

2 + Iv
2
. (11)

Based on these factors, Bonaldo et al. [13] discuss a technique
for the flexible control of single-phase MFGTIs. This technique
permits partial or total compensation of ir and iv . The compen-
sation reference signal is generated in the hope of improving the
grid current waveform, to obtain specific results for conformity
factors. Over the following sections, the technique proposed in
[13] is expanded to make the coordinated control of MFGTIs
distributed throughout a viable microgrid.

A. Generation of the Reference Signal for the Synergistic
and Coordinated Compensation of Unwanted Currents

If the goal of the compensation is to guarantee that the grid
shall only absorb or inject the active current, given by

ia =
〈vPCC , i〉

V 2
PCC

vPCC =
P

V 2
PCC

vPCC (12)

where vPCC and i represent the instantaneous voltage and cur-
rent gauged in the PCC, then the compensation circuit must
absorb all the other current components, given by

icomp = ia − i = − (ir + iv ) . (13)

The current reference for compensation (icomp ) must be
distributed to each of the microgrid components, including
MFGTIs and other PQ compensation devices.

1) Reactive Power Injection: It is well-known that capac-
itors connected to the PCC can compensate reactive energy.
However, MFGTIs may also contribute to the aim of imple-
menting a fine adjustment of the reactive energy. To do so, the
respective reference must include the reactive energy that should
be injected by the converter.

The reactive injection reference (Qc ref−m ) is sent remotely
from the control center to each MFGTI. The reference for reac-
tive injection (14) is calculated using the reactive power/energy
concept [29]. The v̂fP C C −m signal corresponds to the unbiased
time integral of the fundamental component of PCC voltage [29]
and V̂fP C C −m represents the rms value of this voltage.

The equivalent susceptance (Bcr e f −m ) and the fundamental
reactive energy (Wf−m ) that corresponds to the reactive power
(Qc ref−m ) are calculated according to (15) and (16), where the
angular frequency of the grid is ω and VfP C C −m = ωV̂fP C C −m

is the fundamental rms voltage at PCC

icr e f −m
=

Wf−m

V̂ 2
fP C C −m

· v̂fP C C −m
= Bcr e f −m · ωv̂fP C C −m

(14)

Bcr e f −m =
Qc ref−m

V 2
fP C C −m

(15)

Wf−m =
Qc ref−m

ω
. (16)

2) Flexible Compensation of Unwanted Currents:
MFGTIs connected to the local PCCs are responsible for com-
pensation of PQ disturbances caused by local loads. Thus, the
following compensation current reference is generated for each
MFGTI [13]:

icomp ref−m = irm (1 − krm ) + ivm (1 − kvm ) (17)

where “m” is the number of MFGTIs composing the microgrid.
When the MFGTI is switched OFF, load conformity factors

are equal to those of the local point of coupling. However,
when the MFGTI injects the RES-generated power (PDGm )
simultaneously to the compensation for PQ disturbances, the
load conformity factors (λQm and λDm ) must be adapted to
the condition in which the active power through the grid (Pgm )
depends not only on the load (Pm ), but also on the local power
source (Pgm = Pm − PDGm ) [32]. Note that Pgm is indirectly
calculated, i.e., the grid current is not measured in the real
system.

This defines the conformity factors effectively measured in
the coupling points (λgQm and λgDm ), which are calculated
considering active power injection, without any compensation.
Thus, the weighting factors for reactive current krm and residual
current kvm are calculated as (18) and (19), respectively. These
equations list the factors indirectly gauged at PCC (λgQm and
λgDm ) with the desired conformity factors for the grid side
(λgQ ref−m and λgD ref−m ) [13]. Reference factors are sent from
the control center to each MFGTI using an Ethernet network

krm =
λgQm

λgQ ref−m

√
1 − λ2

gQ ref−m

1 − λ2
gQm

(18)

kvm =
λgD ref−m

λgDm

√
1 − λ2

gDm

1 − λ2
gD ref−m

. (19)

It is worth to mention that the range of λgD ref−m val-
ues may vary between 0 and λgDm . When λgD ref m = 0,
the corresponding compensation coefficient is kvm = 0, result-
ing in full compensation of void current ivm . On the other
hand, when λgD ref−m = λgDm , the void current is not com-
pensated. Similarly, the reactive current is fully compensated
when λgQ ref−m = 1 (krm = 0) and is not compensated when
λgQ ref−m = λgQm (krm = 1). Partial compensation of reac-
tive and void current is obtained for λgQm < λgQ ref−m < 1
and 0 < λgD ref−m < λgDm , respectively.

Thus, by combining (14) and (17), the references for coordi-
nated compensation and additional reactive power injection can
be generated.
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Fig. 5. General view of architecture used to control and supervise
MFGTIs.

B. Generation of the Reference Signal for Active Power
Injection

The injection of active power (PDGm ) generated by RES is
achieved by synthesizing the following current reference:

iDG ref−m =
〈vDCm , iDCm 〉

V 2
PCC−m

vPCC−m =
PDGm

V 2
PCC−m

vPCC−m

(20)
where
iDG ref−m reference signal related to the power generated by

the local RES;
vDCm MFGTI dc bus voltage;
iDCm DC from RES;
vPCCm MFGTI point of coupling voltage;
VPCC−m rms value of vPCC−m .

C. Implementation of Synergistic Control and
Coordinated Operation

Figs. 1 and 4 show an overview of the control strategy and the
diagram of a microgrid. The reference signal for each MFGTI
is given by

iF ref−m = i∗gP m − iDG ref−m − icomp ref−m + iC ref−m

(21)
where i∗gP m is the reference necessary to maintain constant
dc bus voltage. This reference is generated by multiplying the
normalized PCC voltage by the signal IGPm produced by the
dc bus voltage regulator. If the dc bus voltage tends to deviate
from the set point (v∗

DCm ), the igP m is adjusted by the voltage
controller, maintaining the vDCm voltage regulated.

IV. MICROGRID REMOTE MANAGEMENT CENTER

The general scheme used for communication among the pro-
posed control center and the remote MFGTIs is shown in Fig. 5.
It is also possible to connect other devices to the center, such as
TSC or any elements with communication capability.

The center allows commands and operation references to be
sent to MFGTIs and to collect information about inverter opera-
tions, such as voltage level, active power, portions of processed
power (such as reactive and residual power), rms current, etc.
The references sent from the center to MFGTIs are, for example,
the value of the desired voltage for the bus, compensation strat-
egy and level of compensation, value for the quality indexes at
the point of coupling, etc. It is possible to operate the MFGTIs

with online adjustments, allowing for the use of complex coor-
dination and cooperation strategies among MFGTIs.

The communication structure is based on the Ethernet
10/100 Mb/s standard. Despite the high throughput, the amount
of data exchanged between the center and MFGTIs is exception-
ally small. This is due to the fact that references for the MFGTI,
as well as measurements monitored by the center, are obtained
from the steady-state operation, with measures usually taken
in one or more grid cycles (rms and average values as well as
power calculation). Thus, the communication network latency
does not affect data exchange.

In addition to the control center, this section also discusses the
hardware/firmware system that, locally and digitally, controls
each of the MFGTIs.

A. MFGTI Local Control and Supervision Architecture

Communication between the control center and MFGTIs is
performed as shown in Fig. 5. Data exchange occurs following a
client request (control center). Then, the MFGTI (server) sends
the required information.

The system on chip (SoC) is composed of two asymmetric
processing cores. The first core is a digital signal processor
(DSP) with floating point arithmetic. The second core is a gen-
eral purpose microcontroller from the ARM Cortex M4 series.
The two cores exchange data through a shared RAM mem-
ory. The DSP core processes the control algorithms, conducts
current decomposition, and calculates load conformity factors.
The ARM core runs the DSP management program and com-
municates with a remote center via transmission control pro-
tocol/internet protocol (TCP/IP). User commands sent through
the control center can remotely activate or deactivate MFGTIs,
change operational mode, and adjust the references.

The main reason for choosing the TCP/IP over Ether-
net protocol is, besides easy implementation, that the SoC
TMS320F28M335 from Texas Instruments, used to perform the
local control of MFGTIs, provides this protocol for communi-
cation. Thus, the communication interface already available in
the development kit allowed us to speed up the development of
a conceptual proof and the obtainment of experimental results.

Data exchange between the center and MFGTIs is imple-
mented through type length value (TLV) data packages. TLV
protocol simplicity facilitates the implementation of embed-
ded systems. Furthermore, the total overhead information is
extremely low. However, due to communication using TCP/IP
protocol over Ethernet, the TLV package is encapsulated within
a TCP/IP package that, in turn, is encapsulated in an Ethernet-
type package [38]–[40].

TCP/IP and Ethernet protocols are processed transparently
in the application through software stacks that run both on the
transmitting and receiving computers. Therefore, from the point
of view of communication between the control center and the
MFGTIs, only the TLV protocol is processed directly.

B. Centralized Control and Monitoring Center

Fig. 6 shows the home screen of the online control and moni-
toring center, developed using JavaScript [41]–[43]. The choice
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Fig. 6. Centralized control center screen for sending references and
commands to the MFGTI.

Fig. 7. Centralized control center screen for reading data from MFGTIs.

of this platform is basically due to the running of the software
in the Java virtual machine, which can run on many operating
systems. Furthermore, through the object orientation concept, it
is only necessary to program a class to manage a single MFGTI
as the same code can quickly be extended to manage other
MFGTIs. Note that each MFGTI is identified by a unique IP
address.

Fig. 7 shows the screen for reading information received from
all operational MFGTIs. MFGTI information can be updated
whenever the update button is activated or automatically updated
(auto update button). The interval between the updates depends
on the number of MFGTIs being monitored due to the polling
scheme, in which the center requires and receives information
from each of the MFGTIs sequentially. When the last MFGTI
sends its information, the data forms are updated and the routine
restarts.

Fig. 8. Experimental microgrid with MFGTIs connected to the power
grid.

TABLE II
SYSTEM PARAMETERS SHOWN IN FIG. 8

MFGTI 1 and MFGTI 2 LCL filter L1 = L2 = 0.5 mH
R1 = R2 = 100 mΩ
C01 = C02 = 3 μF

R01 = R02 = 10 mΩ
DC bus VD C 1 = VD C 2 = 300 V

CD C 1 = CD C 2 = 1 mF
RES ID C 1 = ID C 2 = 3.25 A

Grid Zg Rg = 10 mΩ; Lg = 0.1 mH
Zg 1 Rg 1 = 0.1 Ω; Lg 1 = 0.56 mH
Zg 2 Rg 2 = 0.1 Ω; Lg 2 = 1 mH

Voltage/frequency V g = 127 V; f = 60 Hz
Voltage distortion Total harmonic distortion

(THD)V = 1.8%
Loads Load-1 LA = 2 mH

RA = 95 Ω; CA = 1000 μF
LB = 70 mH; RB = 3 Ω

Load-2 LA = 1 mH
RA = 100 Ω; CA = 1 mF

Reactive compensator Capacitor CPCC = 40 μF

Thus, the higher the number of MFGTIs, the longer the update
interval. The polling time for a single MFGTI is approximately
2 s. For a hypothetical microgrid with 10 MFGTIs, the time
necessary to collect the information from all MFGTIs would
be 20 s.

V. EXPERIMENTAL RESULTS

The structure of the implemented microgrid is shown in Fig. 8.
A local load with nonlinear characteristics is connected with
each MFGTI. The topology is similar to a home, or a small
commercial/industrial installation, including a range of local
power sources. The arrows indicate the currents used to ana-
lyze the results. The main parameters for MFGTIs, electrical
grid, and loads are listed in Table II. The possibility of coordi-
nation among MFGTIs is demonstrated by means of measure-
ments taken at different points of the microgrid. Rated power
(active and reactive) for Load-1 is 385 W and 600 var, and
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Fig. 9. Coordinated operation of MFGTIs and capacitor bank to im-
prove the power factor at the point of coupling.

330 W and 50 var for Load-2. The reactive power of the ca-
pacitor bank is approximately 250 var. When the capacitor is
connected to the PCC, it compensates part of the load’s reactive
power.

A. Coordinated Operation for Unwanted Currents
Compensation

In a first scenario, the main objective is to improve the PQ at
the PCC by coordination among the MFGTIs considering the
capacitor (CPCC) is connected to the PCC. Commands are sent
to MFGTIs to operate only as APFs. Each MFGTI will per-
form the local compensation of the harmonics generated by its
own nonlinear load, through the adjustment of λgD ref−m .Then,
the compensation of the reactive power is shared among the
MFGTIs, through the adjustment of reference λgQ ref−m . As
result of these actions, it is expected to achieve a near unitary
power factor at the PCC.

The microgrid’s operator sets the compensation references
of each MFGTI using the remote control center through the
following sequence of commands:

1) T0: MFGTI-1 and MFGTI-2 disconnected (no compen-
sation);

2) T1: MFGTI-2 compensates only for the harmonics of
Load-2;

3) T2: MFGTI-2 performs full compensation of harmonics
and reactive power of Load-2;

4) T3: MFGTI-2 performs full compensation of Load-2 and
MFGTI-1 compensates only for the harmonics of Load-1;

5) T4: MFGTI-1 and MFGTI-2 perform full compensation
of their respective local loads; and

6) T5: MFGTI-2 performs full compensation of Load-2 and
MFGTI-1 compensates for all the harmonics and partially
for reactive power for Load-1;

Fig. 9 shows the apparent power evolution and the power
factor gauged at the PCC for each MFGTIs (Ag1 , Ag2 , λg1 , and

λg2), as well as in the PCC of the microgrid (Ag and λg ). Fig. 10
shows voltage and currents waveforms at the PCCs during each
interval.

Interval T0: As both MFGTIs are disconnected, the network
supplies all the load power, including the distortions (DL and
QL ). Initially, the currents in the PCCs are highly distorted
and, consequentially, the power factors are low (see Fig. 10 and
Table III).

Interval T1: As MFGTI-2 provides all the residual power
required by Load-2 (λgD r e f −2 = 0), the residual current (har-
monics) originated by this load no longer circulates through the
grid, and [as shown in Fig. 10(b)] current ig2 practically has a
sine format. Looking at Table III, the power factor at PCC-2
was improved substantially. Load-2 (as shown in Fig. 8) is a
single-phase rectifier with capacitive filter, which demands low
reactive power. Thus, by compensating the residual power, re-
sponsible for almost all the distortion originating from this load,
the power factor is close to the unit.

Interval T2 [see Fig. 10(c)]: As MFGTI-2 maintains the com-
pensation of residual power and the control center sends the
order to compensate the reactive power (λgQ ref−2 = 1), the
power factor at PCC-2 becomes practically unitary (λg2 ≈ 1).
As the reactive power of Load-2 is small, total compensation
reaches practically the same result as the previous compensation
(interval of T1).

Interval T3: MFGTI-2 fully compensates Load-2 distur-
bances. MFGTI-1 is connected to PCC-1, and the order from
the control center is to compensate the residual current from
Load-1 (λgD ref−1 = 0). From Fig. 9 and Table III, a slight im-
provement in the power factor at PCC-1 (λg1) is seen, as the
apparent power that circulates through PCC-1 is reduced due to
residual power compensation. Fig. 10(d) shows that harmonics
compensation makes the current through PCC-1 (ig1) similar
to the voltage. The phase shift between voltage and current at
PCC-1 is due to the reactive power of Load-1, which is not being
compensated.

Interval T4: In this interval, MFGTI-2 is maintained in the
same configuration. The control center sends a command to
MFGTI-1 to add reactive power compensation (λgQ ref−1 = 1),
thereby assuming full compensation of Load-1 disturbances.
As shown in Fig. 10(e), the amplitude of the PCC-1 current
reduces. The current ig1 presents a waveform identical to that of
the voltage. However, due to the CPCC capacitor, the current that
circulates through the distribution network (ig ) leads the voltage
at PCC. Despite the microgrid being completely compensated
(λg1 = λg2 = 1), the power factor seen at the point of coupling
between the microgrid and distribution grid is not unitary (λg =
0.959).

Interval T5 [see Fig. 10(f)]: To obtain the unity power factor
at the PCC, the reactive power of Load-1 must be partially
compensated by MFGTI-1. Thus, the control center adjusts the
reactivity factor for PCC-1 to λgQ ref−1 = 0.86. The action leads
to a lower power factor at PCC-1, since around 245 var is no
longer compensated by the MFGTI, as this value is already
being injected by the CPCC capacitor. However, the coordinated
compensation of MFGTIs maximizes the PCC power factor
(λg ≈ 0.998).
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Fig. 10. Voltage and current waveforms during MFGTI coordinated unwanted currents compensation.

TABLE III
PCCS MEASUREMENTS DURING MFGTI COORDINATED
COMPENSATION—MFGTIS OPERATING ONLY AS APF

Quantity T0 T1 T2 T3 T4 T5

Ag 943 885 863 851 830 780
Ag 1 756 758 759 739 449 495
Ag 2 383 343 341 342 343 343
Pg 724 737 740 763 797 778
Pg 1 388 388 387 411 448 429
Pg 2 325 339 341 342 343 343
Qg 417 420 367 373 –229 0
Qg 1 606 607 608 613 16 245
Qg 2 53 54 0 0 0 0
λg 0.767 0.833 0.858 0.897 0.959 0.998
λg 1 0.512 0.512 0.512 0.613 0.998 0.866
λg 2 0.847 0.986 0.999 0.999 0.999 0.999
THDI g 38 30 30 5.0 5.2 5.8
THDI g 1 31 31.7 31.6 4.8 5.0 5.0
THDI g 1 57 5.4 5.5 5.8 5.4 4.4

Discussion: The reference value (λgQ ref 1 = 0.86) that leads
to a null reactive power at the PCC is calculated through (22),
which defines the reactivity factor

λgQ1 = Pg1/
√

P 2
g1 + Q2

g1 . (22)

In this case, as the whole residual power is being compensated
by MFGTI-1, only the reactive power affects the power factor
at PCC-1, then λg1 = λgQ1 . The reactivity factor is calculated
using the value of the active power at the point of coupling of
MFGTI (Pg1). Initially, the value of the reactive power is taken
throughout the PCC after the full compensation of the micro-
grid (interval T4). Certain iterations are necessary to attain the
desired value for reactive power. As the MFGTI no longer com-
pensates part of the load’s reactive power, the voltage drop at

PCC-1 impedance reduces the rms voltage, which decreases the
load active power. At the end of the process, a power factor of
(λg1 = λgQ1 = 0.86) is obtained, resulting in Pg1 = 429 W and
Qg1 = 245 var. It is worth to mention that the microgrid’s op-
erator performs the iterations manually by setting the reference
λgQ ref 1 in the control center until the reactive power measured
at the PCC becomes zero.

This case shows that the coordinated compensation strategy
can be used to improve PQ indicators at any point of the micro-
grid. Adjustment flexibility for load conformity factors (reactiv-
ity and distortion) facilitates the implementation of coordinated
compensation with other types of compensators, allowing the
desired values to be obtained for the range of PQ indexes.

Thus, the scenario shown above is coherent from a practi-
cal point of view, as harmonics are compensated by MFGTIs,
whereas the reactive power is compensated by the capaci-
tive bank. Furthermore, MFGTIs may complement the reactive
power compensation to obtain a microgrid with resistive behav-
ior, providing a high power factor and low harmonic distortion.

B. Coordinated Operation for Unwanted Currents
Compensation and Active Power Injection With
Equalization of the Apparent Power of MFGTIs

This section discusses the coordination of MFGTIs operating
as multifunctional devices. Each MFGTI, besides injecting the
active power generated by the RES, also fulfills the role of
compensating reactive power and harmonic distortion due to
local loads.

The goal is to improve the PQ in the PCC and distribute the
compensation efforts among MFGTIs to balance the apparent
power processed by each converter. The CPCC capacitor, when
connected to the PCC of the microgrid, cooperates partially
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Fig. 11. Waveforms at common points of coupling: (a) total compensation without the capacitor, (b) total compensation with the capacitor, and
(c) coordinated compensation.

TABLE IV
PCCS MEASUREMENTS DURING MFGTIS COORDINATED OPERATION FOR
UNWANTED CURRENTS COMPENSATION AND ACTIVE POWER INJECTION

Quantity Without With With capacitor
capacitor capacitor coordinated

λg D ref−1 0.0 0.0 0.0
λg Q ref−1 1.0 1.0 0.84
Qc ref−1 [var] 0.0 0.0 0.0
λg D ref−2 0.0 0.0 0.0
λg Q ref−2 1.0 1.0 1.0
Qc ref−2 [var] 0.0 0.0 50.0
Ag 1 [VA] 427 427 532
Ag 2 [VA] 560 560 564
Ag [VA] 978 976 999
Pg 1 [W] –426 –427 –446
Pg 2 [W] –560 –559 –561
Pg [W] –978 –976 –995
Qg 1 [var] –4 –4 288
Qg 2 [var] –4 –3 –54
Qg [var] 1 –255 –10
λg 1 –0.999 –0.999 –0.838
λg 2 –0.999 –0.999 –0.994
λg –0.999 –0.965 –0.999
THDig 1 5.4 5.7 6.1
THDig 2 5.7 6.1 6.1
THDig 5.0 8.3 8.5
THDv PCC1 4.0 3.8 3.8
THDv PCC2 4.1 4.0 3.9
THDv PCC 4.0 3.7 3.7
AM FGTI 1 [VA] 1035 1035 895
AM FGTI 2 [VA] 905 902 910

with reactive power compensation. In this analysis, MFGTI-1
provides around 850 W to PCC-1, whereas MFGTI-2 provides
around 900 W to PCC-2. Fig. 11 shows waveforms for voltage
and current at different points of the microgrid (PCC-1, PCC-2,
and PCC) for three different conditions.

Initially, CPCC is not connected and both MFGTIs provide
complete compensation for disturbances caused by the respec-
tive local loads. As expected, in Fig. 11(a), the currents at the
PCCs of the microgrid have the waveform of their respective
voltages. The counter phase indicates the injection of power
into the grid. As shown in Table IV, the apparent power pro-
cessed by MFGTI-1 is 1035 VA, whereas MFGTI-2 processes
approximately 905 VA.

Hypothetically, if the nominal power of the MFGTIs was
900 VA, MFGTI-1 violates its power rating. The insertion of
CPCC aims to reduce the amount of reactive power processed
by MFGTIs, as this level of power cannot be maintained for a
long time.

Table IV shows that the insertion of the capacitor (CPCC ) has
practically no effect on the PQ indicators at PCC-1 and PCC-2,
nor does it affect the apparent power processed by MFGTIs, as
the compensation references for the converters were not altered.

However, since the reactance of CPCC at harmonic frequen-
cies is lower than at the fundamental, the harmonics in the PCC
voltage, even with low amplitude, cause high harmonic currents
through the grid and the capacitor. Fig. 11(b) shows a slight dis-
tortion in the current through the grid (ig ). Note further that the
power factor at PCC is not unitary, λg = −0.965. The negative
power factor signal indicates that the reactive power provided by
the capacitor is being injected into the grid. To achieve unitary
power factor, it is necessary to absorb the reactive power from
the capacitor. This action is presented in Fig. 11(c), showing the
coordinated operation of MFGTIs.

The microgrid absorbs the reactive power, around 250 var,
coming from the CPCC . Therefore, MFGTI-1, which compen-
sated around 600 var required by Load-1, drops to compensating
at just 300 var. MFGTI-2 fully compensates the reactive power
demanded by Load-2 and injects around an additional 50 var
into PCC-2. The pair of MFGTIs supply approximately 350 var
of the total 600 var required by Load-1. The supplementary re-
active power required by Load-1 is achieved by means of the
CPCC capacitor, which injects 250 var. The additional reactive
power injected by MFGTI-2 is achieved by sending reactive
power reference from the center to the MFGTI-2.

At the end, the phase shift between voltage and current at
the PCC is practically zero. The power factor measured at the
PCC again becomes almost unitary, λg ≈ 1. Fig. 12 indicates
the reactive power flow circulating through the microgrid and
Table IV sums up the main PQ parameters for each of the three
situations described above.

The capacitor connection aligned with the coordinated op-
eration of MFGTIs led to the reduction and balance of
their efforts (processed apparent power). Following coordi-
nated compensation, MFGTIs begin working close to the
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Fig. 12. Flow of reactive power through coordinated operation between
MFGTIs and CPCC .

rated power (AMFGTI−1 = 895 VA and AMFGTI−2 = 910 VA).
With the reduction of the apparent power and current through
MFGTIs, it is possible to use the converter capacities to inject
more energy, since the local source has capacity for greater
production.

VI. CONCLUSION

Based on experimental results, our study showed that co-
ordinated operation among MFGTIs and other compensation
devices can contribute to reductions in the power and cur-
rent processed by MFGTIs, maintaining coherent values for PQ
indicators.

Furthermore, flexibility in adjusting the current references
for disturbances compensation is fundamental to the cooperation
among compensating devices. Through the control center, it was
possible to coordinate operation to test the maximum MFGTI
functionalities without surpassing the capacity of the converters.
Depending on the profile of the local load connected to the
MFGTI point of coupling, as well as the generation profile for
each local power source, the installation of PQ compensation
devices can thus be postponed. In other words, devices with
lower per kVA costs can be installed, such as capacitor banks and
thyristor controlled reactors (TCRs), which can cooperate with
the MFGTIs already installed to obtain adequate PQ indicator
values at the PCC.
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