
Review

On nonlinear horizontal dynamics and
vibrations control for high-speed elevators

DR Santo1, JM Balthazar1,2, AM Tusset3, V Piccirilo3,
RMLRF Brasil4 and M Silveira1

Abstract

In this work, the horizontal nonlinear response of a three-degree-of-freedom vertical transportation model excited by

guide rail deformations is investigated. The equation of motion contains nonlinearities in the form of Duffing stiffness for

the translational spring in tilting motion of the cabin. In order to improve the comfort for passengers a control strategy

based on the State-dependent Ricatti Equation (SDRE) is proposed. Numerical simulations are performed to study the

nonlinear behavior of the adopted mathematical model. In addition, we test the robustness of the SDRE control tech-

nique considering parametric errors and noise. The obtained results confirm that the proposed strategy can be effective

in controlling the response of the system.
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1. Introduction

The exponential growth of urban centers has forced
cities to develop themselves predominantly in the
vertical direction. This development is achieved by
means of advancement in the technology of construc-
tion of towers and very tall buildings. To supply the
demand for these constructions, the development of
high-speed elevators has become a necessity. As an
example, in Taipei, Taiwan, the Taipei 101 building is
508m tall and has two elevators working at speeds in
excess of 60 km/h (Munakata et al., 2003). However,
high speeds can result in decreased quality of ride
(Mitsui and Nara, 1971), this being one of the main
problems in high-speed elevators systems (Nai et al.,
1994). Thus, it is necessary at the same time to increase
the speed limit and improve the travel quality, without
losing the efficiency of elevators. Although there is no
speed limit that passengers can tolerate, there are limits
on other parameters, such as levels of horizontal and
vertical vibrations, lateral and longitudinal acceleration
and jerk, all of which are necessary to ensure good ride
quality for passengers (Fortune, 1997).

According to Roberts (1998), efficiency is related to
how fast people move within buildings, the level of
energy required to achieve these transitions and the
volume used by the transportation system inside the

building. In high-speed passenger elevators, the safety
and comfort of the passengers is essential. Therefore, to
provide a comfortable environment for passengers is a
priority for skyscraper elevators. Three factors define
passenger comfort: noise pollution/disturbance;
atmospheric pressure inside the cabin; and vertical
and horizontal vibrations levels, which, in addition to
efficiency, guarantee good ride quality.

In the current literature, it is possible to find different
models for elevator systems. Research on these systems
generally focuses on vertical and horizontal vibration
levels inside the cabin of the elevator, aiming at a better
understanding of elevator dynamics and, therefore,
improving the ride quality offered to passengers.
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Chi and Shu (1991) studied vertical vibrations of eleva-
tor systems under harmonic excitation. Zhu and Teppo
(2003) built a scale model to simulate lateral linear
vibrations in a traction cable, with varying length,
used in high-speed elevators. Taking into account the
length of hoisting cables and compensating ropes, the
nonstationary dynamic behavior of an elevator system
and cabin vibrations due to guide rail stochastic exci-
tations, unevenness and imperfections were investigated
(Kaczmarczyk and Iwankiewicz, 2006; Kaczmarczyk
et al., 2009). Other works on elevator system dynamics
and their components have been carried out by several
authors (Fu et al., 2005; Zhang et al., 2008).

Lateral vibrations of the cabin during elevator oper-
ation are one of the most important factors that can
affect the comfort of the passengers (Noguchi et al.,
2011). Currently, with increasing building height and
elevator speed, these vibrations reach large amplitudes
due to excitations caused by misalignments and
deformations of guide rails and air pressure disturbance
around the cabin. To improve the comfort of the pas-
sengers, elevators should have a good control system, in
order to increase the positioning accuracy and to guar-
antee that the speed of the elevator does not cause dis-
comfort to the passengers, by decreasing the vertical
and horizontal vibrations of the elevator cabin.

A number of works are found in the literature that
attempt to suppress undesirable vibrations in elevator
systems. Kaczmarczyk and Picton (2013) used a traction
drive elevator systemwith long ropes and cables in order
to analyze high-rise structures. A multi-modal active
stiffness controller is proposed, which substantially
reduced the response and the effects of passage through
primary resonances. Benosman (2014) studied numeric-
ally the problem of elevator rope with sway motion due
to external force disturbances through an active control,
by using nonlinear controllers based on the Lyapunov
theory, to stabilize the rope sway dynamics. In Sandilo
and van Horssen (2015), a model for the transversal
vibrations of an elevator cable system is studied. The
initial-boundary value problem for a linear axially
moving string equation with time varying length,
space–time-varying tension and a constant velocity is
studied. The upper end of the string is excited sinusoid-
ally, whereas the lower end of the string is assumed to be
fixed. An active suspension system with electromagnetic
actuators was used to suppress vibration in the elevator
car (Utsunomiya et al., 2004, 2006). A robust controller
was designed to reduce horizontal vibrations of high-
speed elevators using the Lyapunov method by Feng
et al. (2009). Funai et al. (2004) showed a comparison
between two active vibration dampers for super high-
speed elevators. The first strategy uses active roller
guides, and it is observed that this procedure is effective
for elevators that are affected, mainly, by guide

rail deformation. The second technique is an electro-
magnetic actuator installed between the car frame and
platform, and this is more appropriate for elevators that
are greatly affected by air pressure disturbance. Lopez
et al. (2010) proposed the development of an adaptive
control for active suspension of high-performance
elevators, based on the pole-placement method,
augmented with a self-tuning scheme for compensating
the variations in the mass of the system as the number of
passengers changes with time. The authors demon-
strated that adaptive pole-placement can reduce the
lateral vibrations in the base of the cabin and its effi-
ciency is better than other control strategies, such as
proportional–integral–derivative (PID), Sky Hook and
pole-placement. In Chang et al. (2011), a high-speed ele-
vator system was investigated in order to examine the
characteristics of the excitations and analyze the
dynamic responses due to the horizontal vibration gen-
erated from the elevator wheels running on rough and
winding guide rails. An active mass driver based on the
H1 direct output feedback control algorithm was uti-
lized to reduce the horizontal acceleration of the passen-
ger car in the elevator. In Yang et al. (2014), an active
control with time variant states using the Co-FXLMS
(Correlation Filtered-X Least Mean Square) algorithm
and MBPF (Moving Band Pass Filter) was proposed to
control the cabin noise of the high-speed elevator. Zhang
et al. (2014) obtained the exact value of fault probability
of components in the elevator system by combining
fuzzy theory with the Bayesian network approach.
In addition is proposed a reliability analysis method of
the multi-state system based on fuzzy Bayesian net-
works; the results provide a quantitative evaluation
for the reliability of multi-state horizontal vibration of
the elevator. Arrasate et al. (2014) conducted a study of
vertical vibrations caused by torque ripple generated
at the elevator drive system and its influence on passen-
ger comfort during elevator travel. Experimental
tests have been performed to study vertical vibrations
of the car and counterweight assembly due to excita-
tions generated at the drive system in an elevator
installation. Venkatesh et al. (2002) presented a meth-
odology for designing high performance of the LTI
(linear time-invariant) controller by elevator vertical
motion for high-rise buildings with high speed.
Simulations show that the controller improves the
vertical ride quality and is insensitive to parametric
changes that typically occur as a result of normal wear
and tear.

The State-dependent Ricatti Equation (SDRE) strat-
egy is an interesting algorithm for synthesizing non-
linear feedback controls. It allows for nonlinearities in
the system states while additionally offering great
design flexibility through state-dependent weighting
matrices (Çimen, 2010). It is an effective algorithm to
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suppress undesirable dynamic behaviors. It was first
proposed by Pearson (1962), and has been applied in
a wide variety of nonlinear control applications, such as
autopilot design (Mracek, 2007), satellite and space-
craft control (Stansbery and Cloutier, 2000), micro
electromechanical systems (MEMS) with chaotic
behavior (Tusset et al., 2012a, 2013), Atomic Force
Microscopy (AFM) systems with chaotic behavior
(Nozaki et al., 2013; Balthazar et al., 2014b;
Rodrigues et al., 2014), nonideal systems with chaotic
behavior (Tusset et al., 2012b, 2012c) and control in
nonlinear structural dynamical systems in the presence
of noise (Sajeeb et al., 2007).

Motivated by the necessity to improve passenger
comfort levels, our research aims to study and control
the dynamic horizontal behavior of a three-degree-of-
freedom model of a vertical transportation system
excited by guide rail deformations. The translational
equivalent stiffness of the spring referring the tilting
motion of the cabin is modeled as a Duffing-type
spring. With the use of the Duffing-type spring it is
possible to analyze the small horizontal displacement
of the elevator and the strain force of the vertical cable,
similar to a hardening spring. As a strategy to control
the horizontal vibrations, the SDRE method is used.
Next, we perform extensive numerical simulation stu-
dies of the nonlinear behavior of the adopted mathem-
atical model.

This paper is organized as follows. The mathemat-
ical model of the vertical transportation system is
shown in Section 2. Results and discussion of the
uncontrolled model are shown in Section 3. The control
system design using the SDRE strategy with and with-
out the presence of parametric errors and noise meas-
urements is shown in Section 4. Finally, conclusions are
drawn in Section 5.

2. Mathematical modeling

Figure 1 shows a schematic diagram of the cabin ele-
vator. The roller guides support the platform with
springs to avoid the transmission of external excitation
caused by misalignment and deformation of guide rails.
These roller guides and springs are components of the
suspension system. Platform rubber elements are
attached between the cabin and the frame to isolate
vibrations.

Figure 2 shows an equivalent physical model to rep-
resent the horizontal motions of an elevator system.

In a previous work, Lopez et al. (2010) proposed the
physical parameters for a similar model to the one pre-
sented in this paper for the horizontal motion of the
elevator (Figure 2) obtained from the model repre-
sented in Figure 1. Funai et al. (2004) showed experi-
mental data obtained on the horizontal acceleration for

the model shown in Figure 1, allowing, thus, one to
examine the horizontal acceleration of the elevator,
obtained by numerical simulation considering the
parameters proposed by Lopez et al. (2010), and the
horizontal acceleration of the elevator obtained from
experimental data of Funai et al. (2004). In Figure 2,
Meq is the mass of the cabin (kg), meq is the mass of the
suspension system (kg), b is the damping coefficient of
the suspension (N s/m), c is the damping coefficient
of the cabin (N s/m), k1 is the stiffness coefficient of
the guide rollers (N/m), k2 is the stiffness coefficient
of the suspension (N/m), k3 is the stiffness coefficient
of the elevator ropes referring to the tilting motion of
the cabin (N/m), X is the displacement of the cabin (m),
XL is the displacement of the left-hand suspension
system (m) and XR is the displacement of the right-
hand suspension system (m). XLB and XRB are external
excitations caused by guide rail deformations, defined
in equation (1)

XLB ¼ XRB ¼ a0 sinð!etÞ ð1Þ

a0 is the amplitude of external excitation (m) and !e is
the external excitation frequency (rad/s). In order to
analyze the nonlinearity of the stiffness coefficient of

Cabin

Roller GuidesMain Ropes

Guide Rails

External
Excitation

Platform
Rubbers

Plataform

Figure 1. Schematic diagram of the cabin structure.

Figure 2. Equivalent model for the horizontal motion of the

elevator.
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the elevator ropes, the parameter (k3) will represent the
Duffing spring stiffness coefficient, being obtained by
the sum of the linear and nonlinear terms k3L(N/m)
and k3NL (N/m3), respectively, as follows (Kovacic
and Brennan, 2011; Carrella et al., 2012; Beltrán-
Carbajal and Silva-Navarro, 2014; Khan et al., 2014;
Tu et al., 2015)

k3 ¼ k3L þ k3NLX
2 ð2Þ

Lopez et al. (2010) used equation (2) without the k3NL

term, that is, parameter k3L ¼ 6662:4ðN=mÞ, whereas
k3NL ¼ 0 (N/m3). However, when in the upright pos-
ition, there is then no traction on the cable in the hori-
zontal direction, and the horizontal restoring force only
appears when there is a small lateral displacement of the
elevator and the tension force of the vertical cable has a
small horizontal component, similar to a hardening
spring. Hence, the restoring force of the cable does not
have a constant term, that is, k3L¼ 0 (N/m).

In this regard, the potential energy of the spring
(Epel) and the restitution force (Fel) associated
with the nonlinear Duffing spring are as shown in equa-
tions (3) and (4), respectively (Kovacic and Brennan,
2011; Carrella et al., 2012; Beltrán-Carbajal and
Silva-Navarro, 2014; Khan et al., 2014; Tu et al., 2015)

EPel ¼
1

2
k3LX

2 þ
1

4
k3NLX

4 ð3Þ

Fel ¼ k3LXþ k3NLX
3 ð4Þ

The Kinect (T) and Potential (V) energies of the
system, shown in Figure 2, are represented in equations
(5) and (6), respectively

T ¼
meq

2
_X2
L þ

Meq

2
_X2 þ

meq

2
_X2
R ð5Þ

V ¼
k1
2

XL � XLBð Þ
2
þ
k1
2

XRB � XRð Þ
2
þ
k2
2

X� XLð Þ
2

þ
k2
2

XR � Xð Þ
2
þ
1

2
k3LX

2 þ
1

4
k3NLX

4

ð6Þ

The sum of conservative and nonconservative gen-
eralized forces (Qk) of the system can be written as
follows

Qk ¼ b _XL þ b _XR þ c _X ð7Þ

Considering the Lagrangian (Meirovitch, 1970)

L ¼ T� V ð8Þ

The equations of motion that represent the vertical
transportation can be obtained from (Meirovitch, 1970)

d

dt

@L

@ _qi

� �
�
@L

qi
¼ Qki ð9Þ

where i ¼ 1, 2, 3, q1 ¼ XL, q2 ¼ X, q3 ¼ XR,
Qk1 ¼ b _XL,Qk2 ¼ b _XR and Qk3 ¼ c _X.

Using the Lagrange formulation (equations (8) and
(9)) and considering equations (5)–(7) and k3L ¼ 0, the
second-order differential equations of the system can be
represented by equation (10)

meq
€XL þ b _XL þ ðk1 þ k2ÞXL � k2X ¼ k1XLB

Meq
€Xþ c _Xþ 2k2Xþ k3NLX

3 � k2XL � k2XR ¼ 0

meq
€XR þ b _XR þ ðk1 þ k2ÞXR � k2X ¼ k1XRB

ð10Þ

In order to obtain dimensionless equations of
motion, we introduce the following dimensionless vari-
ables: y1 ¼

XL

Xest
, y3 ¼

X
Xest

, y5 ¼
XR

Xest
and � ¼ !0t, where

Xest (m) is a constant used in dimensionless equations
(Nayfeh, 1973). Then, introducing equation (1) into
equation (10) and combining with the dimensionless
variables, the dimensionless equations of motion can
be written in state-space representation as follows

_x1 ¼ x2

_x2 ¼ ��x2 � �x1 þ �x3 þ � sinð��Þ

_x3 ¼ x4

_x4 ¼ ��x4 � 2�x3 � 	x
3
3 þ �x1 þ �x5

_x5 ¼ x6

_x6 ¼ ��x6 � �x5 þ �x3 þ � sinð��Þ

ð11Þ

where x1 ¼ y1, x2 ¼ _y1, x3 ¼ y3, x4 ¼ _y3, x5 ¼ y5,

x6 ¼ _y5, � ¼ b
meq!0

, � ¼ k1þk2
meq!2

0

, � ¼ k2
meq!2

0

, � ¼ k1a0
meq!2

0
Xest

,

� ¼ k2
Meq!2

0

, 	 ¼
k3NLX

2
est

Meq!2
0

, � ¼ c
Meq!0

, � ¼ !e

!0
and !0 ¼

ffiffiffiffiffiffi
k1
meq

q
.

3. Dynamic behavior of the
uncontrolled system

In this section, we present numerical simulations of the
dynamic behavior of the uncontrolled system repre-
sented in equation (11). In order to simulate the influ-
ence of the traction cable on the dynamics system of the
model, various features of the dynamical behavior of a
cabin elevator for different values of the parameter 	
are presented. For this purpose, we performed compu-
tational analyses based on the bifurcation diagram,
Lyapunov exponents and Kaplan–Yorke dimensions.
Table 1 shows the parameter values used in the numer-
ical simulations, considering the physical parameters
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meq ¼ 17:5 ðkgÞ, Meq ¼ 1120ðkgÞ, k1 ¼ 250, 000ðN=mÞ,
k2 ¼ 19, 027ðN=mÞ, b ¼ 668:21ðNs=mÞ, c ¼ 2058:2
ðNs=mÞ, a0 ¼ 0:005ðmÞ, !e ¼ 0:2628445 ðrad=sÞ and
Xest ¼ 1ðmÞ. The physical parameters used in the
numerical simulations are similar to those obtained
by Lopez et al. (2010).

Figure 3 shows the bifurcation diagram obtained by
varying the parameter 	 ¼

k3NLX
2
est

Meq!2
0

that is related to the
nonlinear term of the Duffing spring (k3NL). For this
case, we may observe a period-doubling route to chaos
and strange attractors as we increase parameter 	.

In Figure 3, it can be observed that the behavior of
the cabin varies the beta parameter, considering the
proportional change to the nonlinear term of the
Duffing spring (k3NL ¼ 1� 1014, 3:35�

�
1014� ðN=m3

Þ).
The values considered for (k3NL) generate potential
energy and strength similar to obtained by Lopez
et al. (2010), considering only the constant term
(k3L ¼ 6662:4ðN=mÞ). The variation (k3NL) can be
related to different diameters of the elevator ropes.

Our state space is composed of six states (equation
(11)); therefore, the system has six Lyapunov expo-
nents, one of which is always zero, in the direction

tangent to the flow. Regarding the other five exponents,
the maximum Lyapunov exponent is less than zero for
a stable periodic orbit, whereas for a chaotic orbit the
maximum Lyapunov exponent is greater than zero.

Figure 4 shows the maximal Lyapunov exponent as
a function of 	 for the bifurcation diagram given by
Figure 3, computed using the Wolf algorithm (Wolf
et al., 1985). As can be seen, there is a correspondence
between the bifurcation plots and the maximal
Lyapunov exponent curve.

Figure 5 shows the result of the Kaplan–Yorke dimen-
sion of the two possible attractors of the cabin dynamics.

The Kaplan–Yorke dimension (Kaplan and Yorke,
1979) is calculated as follows

DKY ¼ mþ

Pm
n¼l

ll

lmþ1
ð12Þ
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Figure 5. Kaplan–Yorke dimension

(	 ¼ ½6:25� 107, 2:1� 108�).
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Table 1. Parameters used for

numerical simulations.

Parameter

� 0.3195

� 1.0761

� 0.0761

� 0.005

� 0.0012

� 0.0154

� 0.2628
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where m � n is the largest index such that
Pm
n¼l

ll � 0.

The dimensions of the chaotic attractor are always
between 2 and 3, that is, the space attractor is topologic-
ally complex:more than a limit cycle and less than a three-
dimensional object (Sharma et al., 2012). In order to com-
pare the geometrical complexity of the phase space attrac-
tors, the Kaplan–Yorke dimension was calculated.
Figure 6 shows the Poincaré map for the two different
chaotic attractors of the system, and it is possible to
note the complexity of these phase space attractors.

In Figure 6(a) it is possible to observe the first type of
attractor obtained for this system. All the attractors in
the interval 	 2 ½6:69� 107, 7:69� 107� have the top-
ology shown in Figure 6(a). On the other hand, the
second type of attractor shows the highest Kaplan–
Yorke dimension obtained for the system, Figure 6(b),
when 	 is in the interval ½9:3� 107, 1:88� 108�. The
results of Kaplan–Yorke highlight the geometrical com-
plexity/fractalness of the phase space attractor when
increase of the parameter 	 occurs.

4. Nonlinear control design using the
State-dependent Ricatti Equation
technique

The control objective is to reduce the magnitude of the
cabin’s acceleration and displacement in order to con-
tribute to the preservation of the elevator’s component
integrity and passenger comfort level. Consider now the
introduction of an active controller damping parallel to
the roller guide spring k2. In this way, the system given
by equation (6), with the introduction of active control,
can be represented as

_x1 ¼ x2

_x2 ¼ ��x2 � �x1 þ �x3 þ � sinð��Þ þ 
U

_x3 ¼ x4

_x4 ¼ ��x4 � 2�x3 � 	x
3
3 þ �x1 þ �x5 � �U

_x5 ¼ x6

_x6 ¼ ��x6 � �x5 þ �x3 þ � sinð��Þ ð13Þ

where 
 ¼ 1
meq!2

0

and � ¼ 1
Meq!2

0

.

It is possible to rewrite equation (13) in the following
form

_x ¼ Axþ BUþG ð14Þ

where x 2 <6 is a state vector, A 2 <6�6 is the matrix of
state variables, B 2 <6 is a matrix of controller gains,
U 2 < represents the control vector and G 2 <6 is the
vector that represents external perturbations, which do
not depend on the states (x). Thus

A ¼

0 1 0 0 0 0

�� �� � 0 0 0

0 0 0 1 0 0

� 0 �2�� 	x23 �� � 0

0 0 0 0 0 1

0 0 � 0 �� ��

2
666666664

3
777777775
ð15Þ

B ¼

0


0
��
0
0

2
6666664

3
7777775

ð16Þ

G ¼

0

� sinð��Þ

0

0

0

� sinð��Þ

2
666666664

3
777777775

ð17Þ
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Figure 6. Poincaré map for (a) 	 ¼ 7:578� 107 and (b) 	 ¼ 1:54� 108.
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Tusset et al. (2013) gave the following state feedback
control law

U ¼ R�1BTPx ð18Þ

where P is the solution to the SDRE, given by Tusset
et al. (2012a)

ATPþ PA� PBR�1BTPþQ ¼ 0 ð19Þ

The cost function for the regulator problem in equa-
tion (18) is given by Tusset et al. (2012c)

J ¼
1

2

Z1

t0

xTQxþUTRU
� �

d� ð20Þ

whereQ and R are symmetric positive definite matrices.
Ogata (2009) describes that the matrices Q and R

should be positive definite, and this is a necessary and
sufficient condition for P in (equation (19)) being sym-
metric positive definite.

The choice of Q and R is very crucial to the stabil-
ization and performance of the system. For example, as
the values of Q increase, the greater will be the control
input and smaller the time taken to reduce perturb-
ations of the systems, since matrix P used for the con-
trol signal equation (18) depends on the value of Q,
which can be seen in equation (19). Increasing the
values of R causes a decrease in the values of feedback
gain, because the gain control equation (18) depends on
the inverse of R, as can be observed in the control
equation (18) (Singh et al., 2008).

4.1. Application of SDRE control

The control signal U is determined using 
 ¼ 4� 10�6,
� ¼ 6:25� 10�8, matrices A and B, and defining the
symmetric positive definite matrices Q and R

Q xð Þ ¼ 107

1 0 0 0 0 0

0 1 0 0 0 0

0 0 10000 100 0 0

0 0 100 10000 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

ð21Þ

R ¼ 10�3 ð22Þ

For simplicity we will restrict ourselves to using only
constant values for matrices Q and R, similar to the
strategy used by Singh et al. (2008) and Tusset et al.
(2015). The matrix Q was selected to reduce perturb-
ations on states x3 and x4 (cabin), penalizing the states

x1, x2, x5 and x6 (guide rollers), and R was used to
reduce the time stabilization. The performance of the
controller obtained by the SDRE technique can be
modified through the tuning of the Q and R.

Another important factor to consider is that matrix
A cannot violate the controllability of the system. The
system shown in equation (14) is controllable if the
rank of matrix M is 6

M ¼ B6�1 A6�6B6�1 � � � A5
6�6B6�1

� �
ð23Þ

The SDRE technique to obtain a solution for the
dynamic control problem has the following procedure
(Tusset et al., 2015).

1. Define the state-space model with the state-depen-
dent coefficient as in equation (15).

2. Define xð0Þ ¼ x0, so that the rank of M is (rank ¼ 6)
and choose the coefficients of weight matrices Q

and R.
3. Solve the Riccati Equation (19) for state x.
4. Calculate the input signal from equation (18).
5. Integrate equation (14) and update the state of the

system x with this result.
6. Calculate the rank of equation (23); if rank ¼ 6 go to

Step 3. However, if rank5 6, matrix A is not con-
trollable; therefore, one should use the last matrix
controllable A that has been obtained, and thus go
to Step 3.

Figures 7 and 8 show the comparison of the behavior
of the system without control and with the SDRE con-
trol strategy, when 	 ¼ 7:578� 107 and 	 ¼ 1:54� 108,
respectively.

It is possible to observe that the proposed SDRE
control reduced the system’s oscillation amplitude
(Figures 7(a) and 8(a)). In addition, the SDRE control
has driven the system dynamics to a periodic orbit (see
Figures 7(b) and 8(b)). We can measure the perform-
ance of control using the root mean square (RMS) of
the controlled system. The RMS of the time history of
the acceleration shown in Figure 7(c) is�

€x3RMS
� 1:001� 10�5 ms�2

� � �
and the time history of

the jerk shown in Figure 7(d) is�
x
:::
3RMS
� 1:0403� 10�5 ms�3

� � �
for the system without

control and ( €x3RMS
� 3:8288� 10�6 ms�2

� � �
and�

x
:::
3RMS
� 1:9107� 10�6 ms�3

� � �
for the system with

control. The RMS of the response shown in Figures
8(c) and 8(d) are

�
€x3RMS

� 1:029� 10�5 ms�2
� �

and
x
:::
3RMS
� 1:1252� 10�5 ms�3

� � �
for the system without

control and
�

€x3RMS
� 4:629� 10�6 ms�2

� �
and

x
:::
3RMS
� 6:0432� 10�7 ms�3

� � �
for the system with con-

trol. The RMS of the acceleration and of the jerk are
reduced in about 62.09% and 95.21% for
(	 ¼ 7:578� 107), 55.01% and 94.63 % for
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(	 ¼ 1:54� 108) in Figures 7(c) and (d) and
Figures 8(c) and 8(d), respectively. The values of the
RMS of the acceleration obtained here are very close
to acceleration range observed by Funai et al. (2004)
for an experimental model considering the schematic
diagram of the cabin structure model (Figure 1).

The variations of the control signal used in the
SDRE technique, for both values of 	, are presented
in Figures 7(d) and 8(d), respectively. Because the con-
trol signal has low values, it can be considered as a
magnetorheological, pneumatic, hydraulic or even an
electromagnetic actuator. The application of a magne-
torheological damper can control the damping force by
the applied electric current, as applied by Tusset et al.

(2012b, 2012c). An electromagnetic actuator can be
used as in the strategy of the Oh et al. (2006), which
used active control based on the repulsive forces of
electromagnets to reduce lateral disturbances, or the
strategy of the Utsunomiya et al. (2004, 2006), which
used adequate lateral forces through electromagnetic
actuators to reduce lateral disturbances of the elevator.

4.2. Controlled system in the presence of
parametric errors and noise measurements

Control designs based on the parameters of a cer-
tain mathematical model will often not represent the
real dynamics (Tusset et al., 2015). Consequently,
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Figure 7. Comparison between uncontrolled (black) and controlled system using the State-dependent Ricatti Equation (SDRE)

technique (red) cabin response for 	 ¼ 7:578� 107: (a) history of the displacement; (b) phase plane; (c) history of acceleration; (d)

history of jerk; (e) signal used in SDRE control (damping ½Ns=m�).

832 Journal of Vibration and Control 24(5)



the control design will not operate as intended when
applied in a real process, because the parameters used
in the control may contain parametric uncertainties.
The parametric uncertainties are associated with discre-
pancies between system actual physical values and the
numerical parameters used in the analysis. To solve this

problem, researches have focused on incorporating the
uncertainties associated with real systems into numer-
ical simulations for reliable predictions (Triguero et al.,
2013). To consider uncertain parameter effects on the
control performance, parameters �, �, �, �, 	, �, �, 

and � used in the matrix of state variables A, the matrix
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Figure 8. Comparison between uncontrolled (black) and controlled system using the State-dependent Ricatti Equation (SDRE)

technique (red) cabin response for 	 ¼ 1:54� 108: (a) history of the displacement; (b) phase plane; (c) history of acceleration; (d)

history of jerk; (e) signal used in SDRE control (damping ½Ns=m�).
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Figure 9. Parameter uncertainties in A for 	 ¼ 7:578� 107: (a) State-dependent Ricatti equation (SDRE) control displacement with

and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error for uncertainty in

parameters.
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Figure 10. Parameter uncertainties in A and Gfor 	 ¼ 7:578� 107: (a) State-dependent Ricatti Equation (SDRE) control dis-

placement with and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error

for uncertainty in parameters.
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Figure 12. Parameter uncertainties in A for 	 ¼ 1:54� 108: (a) State-dependent Ricatti Equation (SDRE) control displacement with

and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error for uncertainty in

parameters.
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Figure 11. Parameter uncertainties in A, G and B for 	 ¼ 7:578� 107: (a) State-dependent Ricatti Equation (SDRE) control

displacement with and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error

for uncertainty in parameters.
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of controller gains B and in the vector that represents
the external perturbation G will be considered to have a
random error of 	20 %. This is a strategy similar to
that of Nozaki et al. (2013), Tusset et al. (2013, 2015)
and Balthazar et al. (2013, 2014a, 2014b).

In Figures 9–11 we observe the robustness of the
control to maintain the system in periodic orbit with
displacements near to those obtained using SDRE con-
trol for uncertainties, when 	 ¼ 7:578� 107, in A, A

and G and A, G and B, respectively. e ¼ x� x̂
� �

repre-
sents the trajectory deviation obtained with control
without uncertainties (x) and the trajectory obtained
with control with parametric uncertainties (x̂), con-
sidering the variation of the parameters as follows:
�̂ ¼ � 0:8þ 0:4rð�Þð Þ, �̂ ¼ � 0:8þ 0:2rð�Þð Þ, �̂ ¼ � 0:8þð
0:2rð�ÞÞ, �̂ ¼ � 0:8þ 0:2rð�Þð Þ, 	̂ ¼ 	 0:8þ 0:2rð�Þð Þ,
�̂ ¼ � 0:8þ 0:2rð�Þð Þ, �̂ ¼ � 0:8þ 0:2rð�Þð Þ, 
̂ ¼ 
 0:8þð
0:2rð�ÞÞ and �̂ ¼ � 0:8þ 0:2rð�Þð Þ, where rð�Þ are nor-
mally distributed random functions.

The robustness for the second attractor,
	 ¼ 1:54� 108, is shown in Figures 12–14 for uncer-
tainties in A, A and G, and A, G and B, respectively.

It is possible to observe that the proposed SDRE
control is effective in controlling the chaotic orbit of
the nonlinear system, even in the presence of parametric
errors and noise, as can be observed in Figures 9(a)–
14(a). The errors in displacement (e3 ¼ x3 � x̂3) and
velocity (e4 ¼ x4 � x̂4) of the system due to uncertain-
ties have small values, as shown in Figures 9(b)–14(b).

5. Conclusions

This paper presented the horizontal dynamic behavior
of a vertical transportation system harmonically excited
by guide rails, as well as a proposal for a control strat-
egy using the SDRE technique. The nonlinear dynamic
system, with a pure cubic Duffing spring representing
the influence of the traction cable on the system, was
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Figure 13. Parameter uncertainties in A and Gfor 	 ¼ 1:54� 108: (a) State-dependent Ricatti Equation (SDRE) control displace-

ment with and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error for

uncertainty in parameters.
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Figure 14. Parameter uncertainties in A, G and B for 	 ¼ 1:54� 108: (a) State-dependent Ricatti Equation (SDRE) control dis-

placement with and without uncertainties; (b) deviation in displacement (e3 ¼ x3 � x̂3) and deviation in velocity (e4 ¼ x4 � x̂4) error

for uncertainty in parameters.
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analyzed. We observed that the response of the system
was highly influenced by the nonlinear term of the
Duffing spring. This system presents different qualita-
tive responses, such as periodic or chaotic behavior,
depending on the nonlinear Duffing spring parameter
used. Using the SDRE control technique described in
this work, the chaotic attractor shown in Figures 7 and
8 could be controlled to a periodic orbit even in the
presence of parametric errors and noise. It could be
established, as a consequence of the obtained results,
that there was a decrease of the amplitude of the cabin’s
motions. In addition, the SDRE control can be used to
contribute to the preservation of the elevator compo-
nent integrity. It is possible to observe that the ampli-
tude of the acceleration was reduced and, therefore, an
increase in the passenger comfort level during the
motion of the elevator may be detected.
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Appendix

Notation

A Matrix of state variables (6� 6)
a0 Amplitude of external excitation (m)
B Matrix of controller gains (6� 1)
b Damping coefficient of the suspension (N.s/m)
c Damping coefficient of the cabin (N.s/m)

DKY Kaplan–Yorke dimension (dimensionless);
Epel Potential energy associated to the nonlinear

Duffing spring (Nm)
Fel Restitution force associated to the nonlinear

Duffing spring (N)
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G Vector that represents external perturbations
that do not depend on the states (6� 1)

J Cost function
Jerk First derivative of acceleration ms�3

� �
;

k1 Stiffness coefficient of the guide rollers (N/m)
k2 Stiffness coefficient of the suspension (N/m)
k3 Stiffness coefficient of the elevator ropes refer-

ring to tilting motion of the cabin
k3L Linear stiffness coefficient of the elevator ropes

referring to tilting motion of the cabin (N/m)
k3NL Nonlinear stiffness coefficient of the elevator

ropes referring to tilting motion of the cabin
(N/m3)

L Lagrangian
M Controllability matrix (6� 6)

Meq Mass of the cabin (kg)
meq Mass of the suspension system (kg)
P Solution of the Riccati equation (6� 6)
Q Symmetric positive definite matrix (6� 6)
Qk Sum of conservative and nonconservative gen-

eralized forces (N)
R Positive definite matrix (1� 1)
t time (s)
T Kinect energy (N.m)
U Control vector (1� 1)
V Potential energy (N.m)
!e External excitation frequency (rad/s)
!0 Natural frequency (rad/s)
X Displacement of the cabin (m)
x State vector for dimensionless model (6� 1)

Xest Constant used in dimensionless equations (m)
XL Displacement of the left suspension system (m)

XR Displacement of the right suspension system

(m)
XLB External excitations caused by guide rails

deformations (left) (m)
XRB External excitations caused by guide rails

deformations (right) (m)
x1 Displacement of the left-hand suspension

system for the dimensionless model
x2 First derivative of (x1)
x3 Displacement of the cabin for dimensionless

model
x4 First derivative of (x3)
x5 Displacement of the left-hand suspension

system for the dimensionless model
x6 First derivative of (x5)

� Stiffness coefficient of the suspension
	 Nonlinear stiffness coefficient of the elevator

ropes referring to tilting motion of the cabin
� Amplitude of external excitation
� Sum of the stiffness coefficient of the guide

rollers and stiffness coefficient of the

suspension
� Damping coefficient of the suspension
� Stiffness coefficient of the suspension

 Component b2,1 of the matrix of controller

gains (B)
� Time
� Component b4,1 of the matrix of controller

gains (B)
� External excitation frequency
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