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A B S T R A C T

Objective: The purpose of this study was to compare the effects of the oral administration of natural curcumin
and a chemically modified curcumin (CMC2.24) on osteoclast-mediated bone resorption, apoptosis, and in-
flammation in a murine model of experimental periodontal disease.
Design: Fifty male rats were distributed among the following treatment groups: (i) 2% carboxymethylcellulose,
(ii) CMC2.24 30mg/kg body weight, (iii) Curcumin 100mg/kg body weight and (iv) no treatment. Compounds
were administered daily by oral intubation over a 15-day period of time. Periodontal disease was induced by
injections of LPS (lipopolysaccharide) into the gingival tissues three times per week. Contralateral sides were
injected with the same volume of PBS (phosphate buffered saline) vehicle. After 15 days, hemimaxillae and
gingival tissues were harvested. Bone resorption was assessed by μCT (microcomputer tomography). Formalin-
fixed, paraffin embedded histological sections were stained with haematoxylin/eosin (H/E) for the assessment of
cellular infiltrate or subjected to immunohistochemistry for detecting TRAP (tartrate-resistant acid phospha-
tase)-positive cells and caspase-3. Apoptosis was assessed in the gingival tissues by DNA fragmentation.
Results: CMC2.24 and curcumin caused a significant reduction of the inflammatory cell infiltrate, however μCT
analysis showed that only CMC2.24 reduced bone resorption and the number of TRAP-positive multinucleated
cells (osteoclasts). Curcumin, but not CMC2.24, significantly reduced the number of apoptotic cells in the gin-
gival tissues and of osteocytes in the alveolar bone crest.
Conclusions: The results suggest that CMC2.24 and curcumin inhibit inflammation by different mechanisms, but
only CMC2.24 was capable of reducing alveolar bone resorption in the LPS-induced model of periodontitis.

1. Introduction

Natural curcumin (diferuloylmethane) is a hydrophobic polyphenol
composed of a mixture of three curcuminoids: curcumin, demethox-
ycurcumin and bisdemethoxycurcumin with various biological activ-
ities reported (Shehzad, Park, Lee, & Lee, 2013). Diverse studies report
on anti-inflammatory, anti-microbial and anti-neoplastic properties of
curcumin in diverse conditions such as diabetes, cancer, auto-immune
conditions and chronic inflammatory conditions including Crohn's
disease and rheumatoid arthritis. Despite the promising perspectives
(Di Martino et al., 2017; Kumar, Ahuja, Ali, & Baboota, 2010), clinical
use of curcumin is limited because of its poor absorption in the

gastrointestinal tract, short plasma half-life and low bioavailability
after oral administration (Anand, Kunnumakkara, Newman, &
Aggarwal, 2007; Shoba et al., 1998).

Based on the reports of potent biological activities and on studies
indicating its safety and virtual absence of unwanted side effects (Lao
et al., 2006; Vernillo, Ramamurthy, Golub, & Rifkin, 1994), there is
great interest in developing synthetic analogues, with a defined and
consistent chemical composition and improved pharmacological prop-
erties. The so-called chemically modified curcumins (CMC) combine
low toxicity and potent inhibitory activity of matrix metalloproteinases
(MMPs) (Zhang, Golub, Johnson, & Wishnia, 2012), properties that
justify an assessment in vivo models. CMCs are part of a class of
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polyenolic Zinc-binding inhibitors able to inhibit both MMPs and cy-
tokines. These compounds were originally developed as 1,3-bis ketone
synthetic analogues, based on the fundamental role of β-ketone as a
zinc-binding region (Golub, Suomalainen, & Sorsa, 1992). The natural
and some early chemically-modified curcumins are di-ketonic; however
the compound tested in this and our more recent studies (Elburki, Rossa
et al., 2017; Elburki, Moore et al., 2017; Elburki et al., 2014; Zhang
et al., 2012) are tri-ketonic with stronger Zn++ binding and MMP-in-
hibitory properties. This tri-ketonic CMC has a phenyl-aminocarbonyl
group at carbon 4 and demonstrates higher water solubility than the
natural compound (unmodified natural curcumin). The potency of
different formulations of newer CMCs as inhibitors of MMPs was
evaluated in vitro and CMC2.24, in particular, had the lowest IC50
values (Zhang et al., 2012). In an in vitro model of inflammation-
mediated cartilage destruction, CMC2.24 inhibited cartilage degrada-
tion by 96% in comparison with the vehicle control, whereas natural
(unmodified) curcumin had no effect (Elburki, Rossa et al., 2017).

Evidence reported in the literature and studies by our research
group using natural curcumin and CMC2.24 demonstrate a significant
effect in the inhibition of inflammation and bone resorption (Correa
et al., 2017; Elburki, Rossa et al., 2017; Elburki, Moore et al., 2017;
Elburki et al., 2014; Guimaraes et al., 2011; Guimaraes et al., 2012;
Zhou et al., 2013), which are hallmark characteristics of experimental
models of periodontal disease and also of the clinical condition in hu-
mans (Dentino, Lee, Mailhot, & Hefti, 2013; Graves, Kang, Andriankaja,
Wada, & Rossa, 2012; Hajishengallis, Lamont, & Graves, 2015). In spite
of a significant inhibition of the inflammatory infiltrate and potent
reduction of various inflammatory mediators, oral administration of
curcumin had no effect on inflammatory bone resorption (Guimaraes
et al., 2012), a critical and usually irreversible feature of destructive
periodontal disease. Even studies that report significant curcumin-in-
duced inhibition of bone resorption in periodontal disease models, the
decrease in bone resorption severity was less than 10% in comparison
with the vehicle control group (Correa et al., 2017; Zhou et al., 2013).
On the other hand, an in vivo study showed that systemic administra-
tion of CMC2.24 reduced LPS-induced bone resorption in rats by more
than 20% (Elburki, Moore et al., 2017). However, these studies were
performed independently and there is no direct comparison between
natural curcumin and CMC2.24 in a simultaneously executed experi-
ment.

Based on data suggesting increased biological potency and superior
pharmacological properties of CMC2.24 in comparison with natural
curcumin, this study now describes and compares, for the first time in
parallel experiments carried out simultaneously, the effects of the oral
administration of natural curcumin and CMC2.24 in a murine model of
LPS-induced periodontal disease. The outcomes of interest were: bone
resorption, inflammation, osteoclastogenesis and apoptosis.

2. Materials and methods

2.1. Experimental design

The experimental protocol was approved by the Ethical Committee
for Animal Use (CEUA) of the School of Dentistry at Araraquara −
UNESP (license number 12/2011) and performed in accordance with
the guidelines from the Brazilian College for Animal Experimentation
(COBEA). Fifty male Holtzman rats (Rattus norvegicus albinus, Holtzman)
of 10 to 14 weeks of age and weighing between 150 and 200 g were
used in this study. Animals were kept in polypropylene cages in a room
with controlled temperature (21 ± 1C) and humidity (65–70%) and a
12 h light–dark cycle. The rats were fed standard rat chow (Labina/
Purina) and water ad libitum. All animals were submitted to injections
on the palatal aspect of the first molars bilaterally: LPS was injected on
left side and PBS on the right side (Elburki, Rossa et al., 2017; Elburki,
Moore et al., 2017; Elburki et al., 2014; Guimaraes et al., 2012). After
inhalation anaesthesia, 30 μg of lipopolysaccharide from Escherichia coli

(strain O55:B5; Sigma Chemical Co., St Louis, MO, USA) diluted in PBS
were injected into the palatal gingiva (3 uL volume per injection) using
a 10 μL Hamilton-type microsyringe (Agilent). Control sides were in-
jected with the same volume of PBS vehicle. Injections were performed
three times per week for 15 days between the upper first and second
molars using syringes and needles dedicated for either LPS or PBS. The
animals were randomly assigned to the following four experimental
groups (n=10 animals/group) according to the compound adminis-
tered systemically: (i) 2% carboxymethylcellulose (CMC2.24 vehicle
control), (ii) CMC2.24 30mg/kg body weight, (iii) Curcumin 100mg/
kg body weight and (iv) no treatment. CMC2.24 was synthesized at the
laboratories of the Chemistry Department, State University of New York
(SUNY) at Stony Brook (Stony Brook, NY, USA) and natural curcumin
was obtained commercially (Sigma-Aldrich Co. cat# C1386, Lot#
081M1611 V). The doses of 30mg/kg CMC2.24 and 100mg/kg cur-
cumin were based in our previous studies showing that both doses are
effective in reducing inflammatory mediators production and in-
flammatory infiltrate in gingival tissue of rats with experimentally-in-
duced periodontitis (Elburki, Rossa et al., 2017; Elburki, Moore et al.,
2017; Elburki et al., 2014; Guimaraes et al., 2012; Guimaraes et al.,
2011). A group treated only with corn oil (curcumin vehicle control)
was not included in this study because data from our previous studies
showed no effect of lipid vehicle on bone loss and inflammation
(Guimaraes et al., 2011; Correa et al., 2017). Compounds were ad-
ministered daily during 15 days by oral intubation beginning 24 h after
the start of local PBS and LPS injections in the protocol for induction of
experimental periodontal disease. Animals were euthanized by cervical
dislocation under inhalation anaesthesia and the hemi-maxillae were
carefully dissected. Gingival soft tissue (approximately 1.5 mm in the
frontal plane× 3mm in the sagittal plane) adjacent to the upper first
molars were carefully dissected from 5 samples from each experimental
condition, immediately flash-frozen in liquid nitrogen and subsequently
stored at −80C until the moment of total protein extraction. The other
5 samples from each experimental condition were subjected to 10%
buffered formalin fixation and subsequent histological processing for
paraffin embedding (as described below) and used in histological and
immunohistochemical analysis.

2.2. Microcomputer tomography (uCT)

All hemi-maxillae (with and without soft tissues) were scanned on a
microcomputer tomograph (Skyscan 1176, SkyScan Aartselaar,
Belgium) using 18 μm slices. Digital radiographic images of each
sample were reconstructed into a three dimensional model and a
standardized gray scale value was set to distinguish mineralized from
non-mineralized tissues. These three dimensional images were re-or-
iented on the sagittal, coronal and transversal planes in a standardized
manner using anatomical landmarks on molar teeth. A standardized
region of interest of 9.72mm3 was defined, including the first molar,
the anterior half of the second molar and extending medially (towards
the center of the palate) approximately 1mm from the most palatal
aspect of the crown of the first molar. All image reconstruction, re-
orientation and analysis of bone volume/total volume (BV/TV fraction)
in the region of interest was performed using the software package of
the scanning equipment (NRecon/Dataviewer/CTan/CTvo, Skyscan,
Aartselaar, Belgium) by a trained examiner who was not aware of the
experimental conditions of each sample.

2.3. Stereometric and morphometric analysis

The hemi-maxillae with preserved soft tissues were immersed in
10% buffered formalin fixative solution for 24 h, washed in running
water decalcified in tetrasodium-EDTA aqueous solution (0.5 M, pH
8.0) for 2–3 months, under agitation at room temperature. Each spe-
cimen consisted of a section containing the three upper molars and the
surrounding alveolar process and soft tissues. After inclusion in
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paraffin, 5 μm thick semi-serial sections (spacing of 100 μm between
sections) were obtained in the bucco-lingual (frontal plane) direction
and stained with (H/E) or kept unstained for immunohistochemical
analysis. The percentage of collagen fibers and the number of in-
flammatory cells (neutrophils and mononuclear cells) present in gin-
gival tissue was conducted by a single examiner who was blind to the
experimental groups and previously trained. The area of interest was
standardized to obtain digital images used in the analysis. Initially,
images at 200× magnification were obtained from the gingival con-
nective tissue located 400 μm towards the medial (i.e., center of palate)
from the most apical portion of the junctional epithelium of the upper
first molar. These images were obtained in a conventional optical mi-
croscope using standardized settings for image acquisition (Leica
Application Suite 3.8, Wetzlar, Germany). To quantify the collagen fi-
bers on gingival tissue, a grid composed of 10 squares with 10 μm sides
(area of 100 μm2) was positioned onto the digital images obtained at
200×. A total of 108 points (intersections) were counted and the per-
centage of collagen fibers in relation to the total number of points was
calculated. To analyze the cellular infiltrate on the gingival tissues,
600× images of 4 random fields in the 200× magnification images
were evaluated. Cells were distinguished as neutrophils or mononuclear
cells by the nuclear morphology. In these analyses, a total of 4 sections
per specimen (20 sections for each experimental condition, from 5
different animals) spaced 100 μm from each other (antero-posterior
plane) were evaluated.

2.4. Osteoclast count

Osteoclasts were identified by their morphology, location and po-
sitivity for the expression of tartrate-resistant acid phosphatase (TRAP),
assessed by immunohistochemistry. Sections mounted on silanized
slides were deparaffinized and rehydrated in a decreasing concentra-
tions of ethanol. Endogenous peroxidase was blocked with 3% hy-
drogen peroxide for 30min. To inhibit non-specific interactions of the
primary antibody, the sections were incubated with a commercial
blocking solution (X0909, Dako – Agilent Technologies) according to
the manufacturer's instructions. Slides were washed in distilled water
and incubated overnight at 4C with goat polyclonal antibody for TRAP
(cat# sc-30833, Santa Cruz Biotechnology) diluted 1:100 in PBS con-
taining 2% BSA. Controls included omission of the primary antibody
and also incubation with the same concentration of irrelevant IgG
raised in goat. After washings in distilled water, the sections were in-
cubated with biotinylated anti-goat antibodies for 30min, washed, in-
cubated with streptavidin conjugated to HRP and finally with the DAB
substrate, according to the protocol of the supplier of the visualization
system (LSAB2, Dako − Agilent Technologies). Subsequently, the sec-
tions were counterstained with Mayeŕs Hematoxylin and coverslips
mounted. Osteoclasts were identified as large, multinucleated (3 or
more visible nuclei) and TRAP-positive cells, located in the vicinity of
the alveolar bone, from the apical region of the palatal root of the first
molar to a 400 μm distance from the palatal alveolar bone crest towards
the midline (center of the palate). This analysis was performed in 4
semi-serial sections (spaced 100 μm in the antero-posterior plane) from
each specimen (20 sections for each experimental condition) by a
trained examiner who was unaware of the experimental condition of
the sections.

2.5. Apoptosis

Detection of active (cleaved) caspase-3 in the cells of the gingival
tissues was performed by immunohistochemistry. The same general
protocol described for detection of TRAP was used, with the inclusion of
an antigen retrieval step, performed in citrate buffer (pH 6.0) at 95 °C
for 20min. After blocking of endogenous peroxidase and non-specific
interactions of the primary antibody, the sections were washed in dis-
tilled water and incubated overnight at 4C with 1:50 dilution (in PBS

containing 2% BSA) of rabbit polyclonal antibodies against rat active
caspase-3 (cat# ab2302, Abcam). After washings in distilled water, the
sections were incubated with biotinylated anti-rabbit secondary anti-
bodies for 20min and the target protein detection was performed using
the streptavidin-DAB system, following the instructions of the supplier
of the reagents (LSAB2, Dako − Agilent Technologies). Sections were
counterstained with Mayeŕs Hematoxylin and coverslips mounted.
Negative controls were sections in which primary antibodies were
omitted and sections incubated with serum from normal (non-im-
munized) rabbits. A total of 15 semi-serial sections (3 from each spe-
cimen from 5 different animals in each experimental condition) were
assessed and the number of positively-stained cells counted in the area
of interest (described in stereometric analysis) by a trained examiner
who was unaware of the experimental condition of the sections.

We also assessed cell death in the gingival tissues by DNA frag-
mentation, a hallmark of end-stage apoptosis, using the terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method.
We used a commercial kit, strictly according to the manufacturer's in-
structions (Apop-Tag Plus kit, Oncor, Gaithersburg, MD). For identifi-
cation of cell nuclei, coverslips were mounted on the sections using an
acqueous mounting medium containing 2-(4-Amidinophenyl)-6-in-
dolecarbamidine dihydrochloride, 4′,6-Diamidino-2-phenylindole di-
hydrochloride (cat# F6057, Fluoroshield with DAPI, Sigma-Aldrich).
Visualization and counting of stained (TUNEL-positive) cells was per-
formed in 20 semi-serial sections (spaced 100 μm in the antero-pos-
terior plane) for each experimental condition (4 sections/animal) on an
inverted fluorescence microscope (EVOS fl, AMGMicro Group Inc.) by a
trained examiner unaware of the experimental condition of the sec-
tions.

2.6. Statistical analysis

Data obtained from each experiment were analyzed using GraphPad
Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA). The objective
of the analysis was to compare the results of each outcome according to
the different tested compounds. The Shapiro-Wilk test was used to
verify that the data had a normal distribution. Pairwise comparisons
were performed by unpaired Student t-tests with Welch's correction for
unequal variances and by one-way analysis of variance (ANOVA) fol-
lowed by Tukey test for post-hoc pairwise comparisons. Significance
level was set at 95% (p < 0.05) in all analysis.

3. Results

3.1. Both CMC2.24 and Curcumin reduce the inflammatory infiltrate and
preserve collagen content in the gingival tissues

Administration of both CMC2.24 and Curcumin caused a significant
reduction of the inflammatory cell infiltrate, including both poly-
morphonuclear cells and mononuclear cells (Figs. 1 a–i and 2 a–d).
However, the decrease in the number of mononuclear cells in the cur-
cumin-treated animals was not statistically significant. In contrast, ad-
ministration of CMC2.24 potently reduced the inflammatory infiltrate
by reducing both polymorphonuclear and mononuclear cells. Stereo-
metric analysis indicated that administration of CMC2.24, but not
Curcumin, significantly increased the proportion of collagen fibers in
the gingival tissues in comparison with that of the positive control
animals. This observation, may be related to an increased proliferation
and/or activity of extracellular matrix synthesis by fibroblasts in the
region or, alternatively, by reduced degradation of pre-existing col-
lagen, which may be associated with attenuation of the inflammatory
response, including greater potency of CMC2.24, compared to cur-
cumin, as an MMP (including collagenases) inhibitor (see Discussion).
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3.2. Oral administration of CMC2.24, but not Curcumin, significantly
reduces alveolar bone loss and osteoclastogenesis associated with LPS-
induced periodontal disease

Microcomputer tomograph analysis indicates that only CMC2.24
attenuated inflammatory bone resorption (Fig. 3). Carbox-
ymethylcellulose vehicle had no effect, and specimens from the corn
oil-treated animals were not scanned because our research group has a
previous study showing that this vehicle does not affect the extent of
inflammatory bone resorption in this model (Guimaraes et al., 2012).
The main purpose of this study was to compare the effects of CMC2.24
and natural curcumin on alveolar bone resorption associated with the
LPS-induced model of periodontal disease in an experiment performed
concomitantly, using experimental rats of the same strain. Of primary
importance, the number of TRAP-positive multinucleated cells, identi-
fied by immunohistochemistry, was significantly decreased only in the
CMC2.24-treated group, which supports the interpretation that the
bone-sparing effects of this compound observed in the μCT analysis are
due, at least in part, to the inhibition of osteoclastogenesis in vivo.
Curcumin had no effect on the number of osteoclasts present in the
region of interest (Fig. 4A–C).

3.3. Curcumin, but not CMC2.24, reduces apoptosis

Curcumin has a pro-apoptotic effect, which is relevant for its anti-
cancer properties (Pfeffer & Singh, 2018). However, increased apoptosis
in inflammation may generate a loop of sustained activation of the
immune response, as dying cells release damage-associated molecular
patterns (DAMPs). Inflammation induced by LPS injections increased
apoptosis in the periodontal microenvironment, as indicated by sig-
nificant increases of TUNEL-positive and active caspase-3-stained cells
in the gingival tissues. This increase in apoptosis was slight and non-
statistically significant in the alveolar bone crest (osteocytes). Admin-
istration of curcumin, but not of CMC2.24, potently and significantly
reduced the number of apoptotic cells in the gingival tissues and also of
osteocytes in the alveolar bone crest, both in the presence and absence

of LPS-induced inflammation. The number of active caspase 3-stained
cells was slightly reduced by both CMC2.24 and curcumin, but this
change did not reach statistical significance, suggesting that curcumin
attenuates late-stage apoptosis. (Fig. 5a–d).

4. Discussion

Oral administration of both CMC2.24 and curcumin significantly
inhibited the local inflammatory response in the LPS-induced period-
ontal disease model. But only CMC2.24 reduced inflammation-asso-
ciated bone resorption significantly, which is supported by the sig-
nificant decrease in the number of osteoclasts in the periodontal tissues
of CMC2.24-treated animals. Interestingly, curcumin, but not CMC2.24,
reduced late-stage apoptosis in the periodontal microenvironment,
suggesting differential biological effects for these compounds in the
doses used in this study.

Curcumin has documented potent anti-inflammatory effects in sev-
eral disorders (Bundy, Walker, Middleton, & Booth, 2004; Deodhar,
Sethi, & Srimal, 1980; Garcea et al., 2004; Holt, Katz, & Kirshoff, 2005;
Hanai et al., 2006; Heng, Song, Harker, & Heng, 2000; Sharma et al.,
2004; Sharma et al., 2001), including periodontal diseases (Correa
et al., 2017; Guimaraes et al., 2011; Guimaraes et al., 2012; Zhou et al.,
2013). However, its effects on inflammatory bone resorption are still
controversial, since the variability in the activity of this compound is
due, mostly, to its poor pharmacological properties, and poor absorp-
tion in the gastrointestinal tract (Sharma, Gescher, & Steward, 2005).
Other possibilities could include weaker direct effects on osteoclast
activity and MMPs.

In fact, chemically modified curcumin (CMC2.24) is more soluble
than curcumin in water-based vehicles and this compound has three
zinc-binding moieties that are able to inhibit matrix metalloproteinases,
which are essential in the degradation of connective tissue, including
bone tissue. The increased bioavailability of CMC2.24 may be at least
partly responsible for the attenuation of bone resorption; however the
decrease on the osteoclast numbers observed in CMC2.24-treated ani-
mals suggest an effect on osteoclast differentiation.

Fig. 1. Histological characteristics of H/E-stained gingival tissues subjected to LPS-induced periodontal disease according to the experimental groups. (a)
Palatal region where the injections of LPS were performed, corresponding to the rectangular box. (d) The contralateral side (control) was injected with the same
volume of vehicle (PBS) in the same region (d, at higher magnification). (e) Intense inflammatory in gingival tissues produced by LPS injections. (f) CMC2.24 treated
animals in comparison to (g) CMC2.24-vehicle control, (h) Curcumin treated animals. Images were obtained at 200× magnification. High power magnification
(600×) images detail the morphological characteristics of mononuclear (b) and PMNs cell (c) as they were considered for differential counting. The area of interest is
located at 400 μm of the tooth (distance represented by the yellow line in image a), corresponding to the site of injections and the bulk of inflammatory infiltrate. AB,
alveolar bone. R, root. PMN, polymorphonuclear neutrophil. MC, mononuclear cell. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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The reduction in the number of end-stage (TUNEL-positive) apop-
totic cells in the gingival tissue and alveolar bone (osteocytes) only in
animals treated with curcumin shows that the compounds seem to act
through different mechanisms, These differences may be a reflection of
significant structural differences between curcumin and CMC2.24 (e.g.,
diketonic curcumin vs. tri-ketonic CMC2.24). Apoptotic cells release
damage-associated moleculas patterns (DAMPs) that may further cti-
vate innate immune receptors and stimulate efferocytosis by phagocy-
tosing immune cells. Moreover, apoptosis of inflammatory cells is an
important mechanism in the resolution of the inflammation, and its
modulation by chemotherapeutic agents is a strategy in promoting the
resolution of chronic inflammatory processes. Several studies have
evaluated the therapeutic potential of curcumin in modulating apop-
tosis of neutrophils (Jancinova et al., 2011; Jancinova et al., 2009;
Prasad, Raghavendra, Lokesh, & Naidu, 2004). Interestingly, the pro-
apoptotic effect of curcumin on various neoplastic cells in vitro is
widely documented in support to its anti-cancer effects and involves
various mechanisms, including microRNA (Lu et al., 2017), inhibition
of NF-kB (Schwertheim et al., 2017), regulation of pro- (p21, Bad, Bax,
Bid, Bim p53, caspase-3, caspase-9) and anti-apoptotic (Bcl-2, Bcl-w)
genes (Montazeri et al., 2016; Zhou et al., 2017), increase of Ca2+ in-
flux (Seo, Kim, Dhanasekaran, Tsang, & Song, 2016), inhibition of Akt/
FOXO1 signaling (Liou, Chen, & Yang, 2017). In contrast, in vivo, oral

administration of curcumin reduced neuronal cell apoptosis in a pre-
clinical model of kindling (Saha, Chakrabarti, Kumari, Bhatia, &
Banerjee, 2016) and also in a model of reperfusion injury by inhibiting
NF-kB, caspase-3 and caspase-9 (Li, Suwanwela, & Patumraj, 2017).
Curcumin administered by intraperitoneal injections suppressed oxi-
dative-stress-associated apoptosis of photoreceptor cells in the eye of
rats (Emoto et al., 2013). These discrepancies may be associated with
variations in the type of study (in vitro vs in vivo), experimental model,
dose of curcumin, administration routes, vehicle used and preparation
of curcumin; but may also be associated with a time-dependent re-
sponse to curcumin. In cardiomyoblasts, concomitant treatment of
curcumin with exposure to a stress-inducer potentiated the ROS-asso-
ciated apoptosis, whereas pre-treatment of curcumin attenuated the
apoptotic effect of the stress inducer (Jain & Rani, 2017). Curcumin pre-
treatment also inhibited particulate matter-induced apoptosis of en-
dothelial cells (Shi, Deng, & Zhang, 2017) and diabetes-associated
apoptosis of splenocytes (Rashid, Chowdhury, Ghosh, & Sil, 2017) by
inhibiting production of ROS and caspase 3 activity. Interestingly,
CMC2.24 did not have a consistent effect on apoptosis indicated by
TUNEL assay or expression of active caspase 3.

It is important to consider the limitations of our analysis, as we
cannot discriminate if the apoptotic cells in the gingival tissues are
resident, stromal cells or inflammatory cells. It is tempting to speculate

Fig. 2. Stereometric and morphometric analysis of the gingival tissues according to treatment. (*) indicates significant difference (p < 0.05) in comparison to
health control group (negative control). (!) indicates significant difference (p < 0.05) in comparison to positive control group. (+) indicates significant difference
(p < 0.05) between the groups. Bars indicate means and vertical lines standard error of mean.
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that increased apoptosis of inflammatory cells may represent a resol-
ving process, with reduced levels of pro-inflammatory mediators. On
the other hand, tissue damage associated with progression of period-
ontal disease can also be accelerated and healing impaired by increased
apoptosis of stromal cells, such as fibroblasts and endothelial cells. The
increase in collagen content suggests that the former possibility is more
likely.

Interestingly, curcumin and CMC2.24 present similar anti-in-
flammatory effects, which may be derived from their MMP-inhibiting
properties. However, these compounds may have distinct bone-sparing
properties, as the decrease in the apoptosis of osteocytes observed only
with administration of curcumin may also be bone-protective since
apoptotic osteocytes are associated with increased bone resorption and
secretion of RANKL (Cabahug-Zuckerman et al., 2016). In hormonal-
related osteoporosis or corticosteroid-associated bone resorption,
apoptosis of osteocytes is particularly critical. Corticosteroids induce

apoptosis of mature osteocytes impairing the secretion of soluble
mediators required for physiological bone remodeling and triggering
the production of osteoclast-inducing and activating RANKL by apop-
totic osteocytes (Cabahug-Zuckerman et al., 2016; Jilka & O'Brien,
2016; Komori, 2016). Intriguingly, the reduction in apoptotic osteo-
cytes did not attenuate inflammatory bone resorption or osteoclasto-
genesis in our study. However, we cannot rule out the possibility that
higher doses of curcumin may effectively decrease bone resorption in
this model.

A previous study by our research group (Guimaraes et al., 2012) had
already demonstrated that oral administration of curcumin (100mg/
Kg/day) did not reduce bone resorption in the ligature-induced peri-
odontal disease model. However, similarly to the findings in this study,
curcumin significantly reduced the inflammatory infiltrate and potently
inhibited gene expression of inflammatory mediators IL-6, TNF-α and
prostaglandin E2synthase (murine homologous of COX-2). Using the

Fig. 3. Effects of CMC2.24 and Curcumin on alveolar bone loss. Palatal view of representative images of three dimensional reconstructions of the hemi-maxillae
in each experimental condition. The bar graph presents the change in bone volume fraction (BVF) in comparison to control (100%) in the standardized region of
interest, according to the experimental condition. Data from hemi-maxillae of each experimental condition analyzed by ANOVA followed by Tukey post-hoc test. (*)
indicates significant difference (p < 0.05) in comparison to positive control group. (!) indicates significant difference (p < 0.05) in comparison to CMC2.24 group.
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same ligature-induced periodontal disease model and same dose of
orally administered curcumin (100mg/Kg/day) for a longer trial period
(30 days), Zhou et al., 2013 detected a significant reduction in IL-6 and
TNF-α levels, and in contrast to our findings, there was a reduction of
inflammatory bone resorption. The differences between this report
(Zhou et al., 2013) and our previous study can be attributed to varia-
tions in the experimental protocol, including the evaluation period (15
vs 30 days), form of assessment (μCT vs morphometric evaluation), the
vehicle used for compound dilution (corn oil vs. ethanol 9%), and the
lineage of experimental animals used (Holtzman vs Wistar rats).

In the present study, the lack of significant effect of curcumin on the
inflammatory bone resorption was confirmed in LPS-induced period-
ontal disease model, and for the first time compared in the same ex-
periment to CMC2.24, a synthetic curcumin analogue, which sig-
nificantly inhibited both bone resorption and osteoclastogenesis.
Indeed, much of the variability in the literature regarding the use of
curcumin may be influenced by the fact that ‘natural’ curcumin is not
chemically pure, but rather a mixture of several related chemical spe-
cies (the three most prevalent are: curcumin, demethoxicurcumin and
bis-demethoxicurcumin). Variation in the proportion of these chemical
species in distinct commercial preparations of ‘curcumin' may account
for varying biological effects; as opposed to a chemically defined syn-
thetic compound such as CMC2.24, which may yield a more consistent
biological response.

In summary, oral administration of CMC2.24, but not curcumin,

significantly reduced inflammatory bone resorption and the number of
osteoclasts in the proximity of the alveolar bone. On the other hand,
curcumin, but not CMC2.24, significantly inhibited apoptosis in the
gingival tissue and also of osteocytes, both in the presence or absence of
inflammation.
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