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Abstract
The demand from the automotive industry for lighter and more resistant structures produced at lower costs has shifted the
development focus of production processes toward hybrid components. A problem that arises from hybrid components is the
necessity to join dissimilar materials, e.g., polymers and metals. A method to achieve this joining involves a process known as
heat staking, in which a metal insert is heated and pushed against a thermoplastic surface. At the end of this process, the metal
component may not be level with the thermoplastic surface; rather, it may be over flushed, and this discrepancy is known as the
Insertion Height. This paper aims to apply the design of experiments and the response surface methodology to develop a model
for the Insertion Height, considering the Heating Temperature and the Insertion Time as independent variables. The experiments
revealed that the Insertion Height is most affected by the Heating Temperature. There are several combinations of the factors that
can keep the Insertion Height within the specifications; therefore, it is possible to increase productivity by decreasing the Insertion
Time and to save energy by reducing the Heating Temperature while considering the process constraints and specifications.
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Introduction

A problem that arises from the production of hybrid compo-
nents is the necessity to join dissimilar materials, e.g., poly-
mers and metals [1, 2]. In certain cases, the solution involves
the use of threads. However, most thermo-plastics are too soft
to be properly held by threads [3, 4]. To address this issue,
brass or steel threaded inserts can be added by means of a heat
induction process. The metallic threaded insert is heated by
induction to a temperature higher than the melting temperature
of the thermoplastic, and it is subsequently pushed for a short
period by means of a mechanical device against a properly
prepared cavity in the thermoplastic material. Such a process,

known as heat staking, has beenwidely used in the automotive
industry.

At the end of the insertion process, the metal insert may not
be level with the thermoplastic surface; in other words, the
insert may be over flushed. The difference between the
top of the insert and the thermoplastic surface is known
as the Insertion (or Installation) Height. Figure 1 illus-
trates a heat staking process and the Insertion (Installation)
Height (h).

The Insertion Height is an important design parameter from
the perspective of the overall product quality. The over flushed
condition decreases the tensile strength, creating unacceptable
effects on the final product [5, 6].

According to [7, 8], the Insertion Height is related to the
Heating Temperature of the insert, the Insertion Time, and the
Insertion Load. These factors are directly linked to the mate-
rial of the insert, the amount of polymer pushed during the
insertion process, and the melting point of the polymer [9–11].
However, the equipment used in this research does not have
an adjustment valve; as a result, the operator cannot change
the value of the Insertion Load, which is kept constant at 5 bar
by a lever system driven by a pneumatic cylinder. The lever
pulls the insert as far as the end of the cavity. When the insert
reaches the bottom of the cavity, a mechanical device stops the
insertion process.
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Although a great deal is known regarding the inser-
tion processes, little is known concerning how much the
Heating Temperature and Insertion Time affect the
Insertion Height and if there is any interaction between
these factors.

This paper presents a model for predicting the Insertion
Height for a brass insert in a thermoplastic joined by a heat
staking process; the model is obtained using the design of
experiments (DOE) and the response surface methodology
(RSM).

The Insertion Height must remain within the speci-
fied tolerances to ensure the perfect assembly of the
parts and to reduce the issues of reworking of the parts,
setup changes in the production line, and client com-
plaints. Determining the lowest Heating Temperature
and Insertion Time for which the Insertion Height is
within the specified tolerance enables energy saving and in-
creases productivity because more parts can be assembled for
a given period of time.

The experiments were conducted on intake manifolds used
in combustion engines, as illustrated in Fig. 2.

Materials and Methods

Materials

The inserts used in this research were metallic bushes made of
CuZn36Pb3, which can be heated from 250 °C to 370 °C.
Figure 3 shows an insert employed in this research. The metal
insert is housed into a polyamide base PA6-GF30.

Methods

The goal of this study is to determine the effects of the Heating
Temperature and the Insertion Time on the Insertion Height
(h). Factorial design methods are the most efficient approach
to study the joint effect of two or more factors on a response.
The most important class of design is the 2k factorial design,
i.e., k factors, with each being at only two levels. This class of
design is particularly useful in the early stages of experimental
work [12].

In running a two-level factorial experiment, one assumes
that the response is approximately linear over the range of the
chosen factors levels. This assumption is a reasonable as-
sumption at the beginning of the study; however, it is neces-
sary to be alert to the possibility that a linear model for the
response is not adequate because it is possible that the re-
sponse variable does not behave linearly [12].

Before proceeding, it is necessary to check for curvature in
the response variable by adding n runs at the center point of
the 2k factorial design. Next, if the linear model is adequate,
then it will be necessary to use more replicates at the factorial
points to improve the estimation of the regression coefficients;
otherwise a new design, with more points over the factor
range, is required to fit a second-order model [12].

Factors range and response variable

The range of the Heating Temperature was chosen according
to the polyamide characteristics, such as the melting tempera-
ture (260 °C) and the plastic decomposition temperature
(340 °C). The range of the Insertion Time was chosen accord-
ing to the equipment specifications, ranging from 1.00 s to
3.70 s. The center point (300 °C, 2.35 s) is equidistant from

Fig. 2 Engine intake manifold collector with several brass threaded
inserts Fig. 3 Metal insert (units in mm)

Fig. 1 Insertion (Installation) Height [5]
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these extreme points. The current setup before this research
was 320 °C and 3.70 s. Table 1 summarizes the level of the
factors adopted for this experiment.

The response variable, the Insertion Height, is the distance
between the plane of the bushing and the top surface of the
cavity, as illustrated in Fig. 1; this variable was measured by
means of a digital dial gauge with a resolution of 0.001 mm.
The specification for the Insertion Height ranges from 0.000 to
0.300 mm.

Procedures and assumptions

Before every new run, twenty bushes were disposed to ensure
that the Heating Temperature was stabilized at the new level.

Hypothesis testing is a classical statistical procedure used
to determine the probability that a given hypothesis is true.
This approach was used several times in this study.
Hypothesis testing consists of two hypothesis: the null hy-
pothesis (H0), the alternative hypothesis (H1), and a test sta-
tistics, which is used to assess the truth of the null hypothesis.

The hypothesis testing is associated with two types of sta-
tistical errors: type I error and type II error. The type I error is
the probability of rejecting the null hypothesis, given it is true,
it is formally referred to as the test significance level (α).
Whenever the calculated probability of type I error occurrence
(P-value) is greater than α, there is no statistical evidence to
reject the null hypothesis. Otherwise, if the P-value is lower
than α, then there is statistical evidence to reject the null hy-
pothesis because the risk of rejecting a valid hypothesis is
lower than the one considered acceptable [12–14].

The type II error, also known as β risk, is the probability of
accepting the null hypothesis, given it is not true. Theβ risk is
inversely related to the sample size [12–14].

In all hypotheses tests performed in this research, the
adopted significance level (α) was 1%; a β risk less than
10% is acceptable for the main effects of the factors, and a β
risk approximately 20% is acceptable for the interaction be-
tween factors, as suggested by [12–14].

Results and Discussion

The experimental procedure was conducted in two stages. The
first stage was a 22 factorial design with five replicates at the

center point. The number of replicates at the center points
should range from three to five [12]. Five replicates were
chosen to be conservative. At the end of this phase, evidence
of a curvature in the response function was detected over the
region of exploration; thus, a new design with more points
within the domain of the factors was required to fit a
second-order regression model.

22 Factorial Design with Five Replicates at the Center
Point

Because the main goal of this stage of the experimental pro-
cedure was to evaluate a quadratic curvature in the response
function, a 22 factorial design with a single replicate of each
factorial point augmented with five replicates at the center
point was employed. According to Montgomery [12], the
number of replicates at the center point ranges from 3 to 5;
thus, to be conservative, 5 replicates were adopted. The cur-
vature in the response function is evaluated by comparing the
average of the runs at the factorial points,yF , to the average of
the runs at the center point,yC . If the averages are different,
then there is statistical evidence of a quadratic curvature in the
response function over the domain of the factors. Such a check
is performed by means of the hypothesis test (1) [12].

H0 : yF−yC ¼ 0

H1 : yF−yC≠0

(
ð1Þ

If the averages are different, then the null hypothesis must
be rejected. According to [12, 13], the appropriate test statis-
tics for hypothesis test (1) is the Student’s t-score (t0), which is
given by equation (2).

t0 ¼ yF−yCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1

nF
þ 1

nC

� �s ð2Þ

Where nF and nC are the number of factorial points and the
replicates at the center point, respectively; andS2is the estimate
of variance obtained using the center points.

The hypothesis H0is to be rejected if t0j j > tα=2;nC−1, where
tα/2; nC − 1 is the critical value of the Student’s t-distribution
with nC − 1degrees of freedom for a significance levelα.
According to [13], for a significance level of 0.01, as stated
in BProcedures and assumptions^ section, and nC = 5the criti-
cal value of the Student’s t-distribution is t0:01=2;4 ¼ 4:604.

The runs of this experiment are summarized in Table 2.
Substituting the numerical values into equation (2), results

t0 ≅ 140.77, which is greater thant0:01=2;4 ¼ 4:604; thus, the

null hypothesis H0can be rejected, suggesting the existence
of a quadratic curvature. Therefore, a new design with more
points within the domain of the factors will be required.

Table 1 Level of the factors

Level Heating Temperature (°C)
(Factor A)

Time Insertion (s)
(Factor B)

-1 260 1.00

0 300 2.35

+1 340 3.70
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Several designs exist that are quite good for fitting second-
order response models. In particular, the Central Composite
Design (CCD) and the Faced-centered Cube Design (FCD)
are worthy alternatives [14]. The 32 Factorial Design is also
a possible choice; although it is not the most efficient method
to model the quadratic relationship [12], it was employed be-
cause it is a natural extension of the 2k factorial design, and
this issue of the choice of design is not relevant when there are
only two factors [14].

32 Factorial Design with Five Replicates

This is a factorial arrangement with 2 factors, each at three
levels. The low, intermediate, and high levels are coded as −1,
0, and +1, respectively. A very important decision to make at
this point was the choice of the number of replicates at each
treatment combination. The number of replicates depends on
the size of effects that are intended to be detected, i.e., the
smaller the effect to be detected, the greater the number of
replicates [12]. In general, the number of replicates ranges
from 2 to 5; thus, to be conservative, 5 replicates were chosen.

The results from running all combinations of the chosen
factors, with each being at three levels with five replicates, are
shown in Table 3.

Sample size adequacy checking

Before proceeding, it is worth verifying whether the number
of replicates chosen is adequate to keep the β risk within the
acceptable range, as previously specified in BProcedures and
assumptions^ section.

The β risk and the sample size are related by the operating
characteristic curves [12–14]. In other words, the operating
characteristic curves are employed to verify whether the

selected number of replicates is adequate to make the design
sensitive to a given difference between treatments.

The link between the β risk and the operating characteristic
curves is determined by means of a dimensionless parameter
φ given by equation (3) in the case of the main effect of the
factors, and by equation (4) for the interaction between factors
[12].

ϕ2 ¼ nbD2

2aS2
ð3Þ

ϕ2 ¼ nD2

2S2 a−1ð Þ b−1ð Þ þ 1½ � ð4Þ

where n is the number of replicates, b and a are the numbers of
levels of each factor, D is the minimum difference between
two treatment means, and S2is the estimate variance of the
response variable.

From Table 3, it is possible to observe that the difference
between two treatment means range from 0.054 to 0.131 mm;
therefore, it is reasonable to check whether the design is sen-
sitive to a difference ofD= 0.050 mm between any two treat-
ment means. The estimate variance of the Insertion Height is
the average variance of the treatments, which is approximately
0.000288 mm2. Both factors are studied in three levels.

The results for equations (3) and (4) are summarized in
Table 4, considering that the number of replicates (n) is equal
to five.

Referring to the operating characteristic curves [12, 13] for
the values of φ presented in Table 4, it can be seen that five
replicates are sufficient to obtain a β risk less than 1%, i.e.,
99% chance of rejecting the null hypothesis if the difference in
mean Insertion Height at two Heating Temperatures or two
Insertion Times is as high as 0.050 mm. In the same manner,
five replicates provide a β risk of approximately 20% for the
same difference between any two interactions effects, as seen
in Table 4.

Graphical interpretation of the results

To assist in interpreting the results in Table 3, it is helpful to
construct a graph of the average Insertion Height at each treat-
ment combination, as shown in Fig. 4.

The Insertion Height decreases from low to intermediate
temperature (260 to 300 °C), because, at low temperatures, the
polyamide is not adequately melted to enable a perfect inser-
tion [15]. The minimum value for the Insertion Height occurs
at approximately 300 °C. From the intermediate to high tem-
perature (300 to 340 °C), the Insertion Height increases, be-
cause as the temperature increases, the amount of gas pro-
duced in the polyamide also increases, pushing out the insert
[5].

Thus, the insertion height follows the order of
1.00 s > 2.35 s > 3.70 s for all temperature. A shorter

Table 2 22 factorial design with five replicates at the center point

Heating
Temp. (°C)

Insertion Time
(seconds)

Insertion
Height (mm)

Factorial Points nF = 4 260 1.00 0.862

260 3.70 0.638

340 1.00 0.574

340 3.70 0.493

y̅F = 0.64175

Replicates at the
Center Point nC = 5

300 2.35 0.192

300 2.35 0.206

300 2.35 0.216

300 2.35 0.219

300 2.35 0.188

y̅C = 0.2042

S2 = 0.000193
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Insertion Height is attained at a longer Insertion Time, regard-
less of the Heating Temperatures.

To confirm the conclusions from the graphical analysis
above, it is necessary to compare all the treatments means;
the analysis of variance is the appropriate procedure for testing
the equality of several means.

Analysis of variance

The analysis of variance (ANOVA) for data in Table 4 is
summarized in Table 5.

It can be seen in Table 5 that the P-value for the main
effects of Heating Temperature and for Insertion Time, as well
as for the interaction between these two factors are less than
0.01; thus, they are statistically significant.

The analysis of variance is the decomposition of the vari-
ability in the observations through a purely algebraic relation-
ship. However, such a procedure requires that experimental
data can be represented by an empirical model, known as the
Fixed Effect Model, which expresses the relationship between
the observations (response variable) and the factors [12].
Therefore, before adopting the conclusions from the analysis

of variance, it is necessary to check the adequacy of such a
model by means of the analysis of the residuals.

Model adequacy checking

The primary diagnostic tool for the model adequacy checking
is the residual analysis. The residuals (or errors) are defined as
the difference between the actual and predicted values for the
response variable.

Table 6 presents the standardized residuals for the Insertion
Height data in Table 3.

The residual analysis is performed by means of a graphical
analysis of the residuals to check whether they are normally
and independently distributed with a mean zero and constant
variance [12].

A check of the normality assumption can be made by con-
structing a normal probability plot of the standardized resid-
uals, as shown in Fig. 5. If the underlying error distribution is
normal, then this plot will resemble a straight line.

The normal probability plot shows a reasonably linear pat-
tern in the center of the data. However, the tails show devia-
tion from the fitted line. In other words, the middle of the

Table 3 Insertion Height (mm)
for the 32 design Heating Insertion Time (s)

Temperature (°C) 1.00 2.35 3.70

(−1) 0 (+1)

0.851 Average 0.734 Average 0.646 Average

0.862 0.869 0.739 0.738 0.668 0.650

260 (−1) 0.866 0.754 0.673

0.876 Variance 0.745 Variance 0.621 Variance

0.891 0.000229 0.716 0.000201 0.641 0.000448

0.281 Average 0.217 Average 0.134 Average

0.307 0.301 0.209 0.204 0.139 0.139

300 (0) 0.328 0.193 0.161

0.304 Variance 0.181 Variance 0.147 Variance

0.285 0.000358 0.218 0.000260 0.116 0.000275

0.591 Average 0.554 Average 0.504 Average

0.586 0.586 0.551 0.531 0.479 0.477

340 (+1) 0.588 0.516 0.465

0.584 Variance 0.525 Variance 0.484 Variance

0.582 0.000012. 0.509 0.000419 0.455 0.000352

Table 4 Choice of sample size
(S2 = 0.000288 mm2) φ2 n φ Numerator Denominator β risk

degrees of degrees of
freedom freedom

Main effects 5n 5 4.658 2 36 < 0.01

Interaction effects 1n 5 2.083 4 36 ≈ 0.20
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residuals shows a mild S-like pattern. The first few points
show increasing deviation from the fitted line below the line,
and the last few points show increasing deviation from the
fitted line above the line; thus, this pattern suggests the possi-
bility of a distribution with long tails relative to the normal
distribution. However, according to [12], moderate deviation
from normality is of little concern in the fixed effects analysis
of variance because the analysis of variance is robust to the
normality assumption. Thus, there were no considerable vio-
lations of normality.

To be more objective, three classical goodness-of-fit tests
were used to check whether the residuals come from a nor-
mally distributed population, the Kolmogorov-Smirnov test
[16], the Anderson-Darling test [16], and the Ryan-Joiner test
[17]. All of these tests are hypothesis testing, as stated in (5).

H0 : the data are normally distributed
H1 : the data are not normally distributed

�
ð5Þ

In this paper, the statistics for the Kolmogorov-Smirnov
test, the Anderson-Darling test, and the Ryan-Joiner test are
denominated KS, AD, and RJ, respectively. Although these
statistics can be compared to the respective critical values,

most of the data analysis software give the P-values associated
with them. Therefore, if the P-value is greater than the signif-
icance level (α) adopted for this test (which is 0.01 in this
paper), there is no statistical evidence to reject the null hypoth-
esis, and the residuals should be considered normally distrib-
uted [12, 14].

Using the software Minitab, the Komolgorov-Smirnov test
produced the statistics KS = 0.065 with a P-value >0.150, the
Anderson-Darling test produced the statistics AD = 0.361
with a P-value = 0.430, and the Ryan-Joiner produced RJ =
0.998 with a P-value >0.100. Thus, according to the previous
paragraph, the normality assumption of the residuals has not
been violated.

The independence assumption can be evaluated by means
of a plot of residuals in the time order of the data collection, as
shown in Fig. 6.

The plot of the residuals versus the observation order is
helpful in detecting a correlation between the residuals. Positive
serial correlation exists when residuals tend to be followed by
residuals of the same sign and approximately the same magni-
tude. Negative serial correlation exists when residuals of one
signal tends to be followed by residuals of the opposite sign. If
such a correlation exists, then the independence assumption on

Fig. 4 Average Insertion Height
at each treatment combination

Table 5 Analysis of variance for the insertion height data

Source of variation Degrees of
freedom

Sum of Squares Mean
square

F0 ¼ Mean Square
Mean Square Error P-

value

Heating Temperature 2 2.19020 1.09510 3861.27 0.000

Insertion Time 2 0.20164 0.10082 355.49 0.000

Heating Temp. x Time Insert. 4 0.01610 0.00403 14.19 0.000

Error 36 0.01021 0.00028

Total 44 2.41815
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the errors has been violated [12]. Figure 6 shows that the resid-
uals bounce randomly around the zero line, suggesting that there
is no correlation.

The homoscedasticity assumption can be verified bymeans
of the plot of the residuals versus the fitted value [12], as
shown in Fig. 7.

A constant variance implies the variation of observation is
approximately constant as the magnitude of the observation
increases. Figure 7 reveals that the residuals are structureless,
i.e., they are unrelated to the predicted response. As a result,
the assumption of homogeneity of variances has not been
violated.

Because none of the assumptions was violated, the conclu-
sions based on ANOVA (Table 5) remain valid, including the
fact that the interaction between the factors is significant. In
such cases, comparisons between the means of one factor may
be obscured by the interaction. Therefore, it is recommended
to apply a multiple comparisons procedure, such as Tukey’s
test, to evaluate the effect of each factor [12].

Tukey’s test

Tukey’s test is used in conjunction with Analysis of Variance
to find the means that are significantly different from each
other. The test compares all possible pairs of means by fixing
one factor at a specific level and testing the means of the other
factors at that level. This test is based on a studentized range
distribution (q).

Therefore, first, it is necessary to determine the differences
among the means of all factors combinations, which are
shown in Table 7, and afterwards, it is necessary to test these
means.

For the data in Table 4, Tukey’s test declares that two
means are significantly different if the absolute value of their
sample mean differences exceeds T0.01 ≈ 0.033 mm, which
can be calculated according to Montgomery [12] for
q0.01(3;36) ≈ 4.39 (by interpolation) and considering that the
error variance is estimated as the ErrorMean Square in Table 5
(MSE = 0.000280).

Table 6 Standardized residuals for the Insertion Height (the numbers in parentheses indicate the order of data collection)

Heating Insertion Time (s)

Temp. (°C) 1.00 2.35 3.70

−1.208(1) 0.451(29) −0.239(44) 0.491(15) −0.252(8) −1.912(13)
260 −0.478(22) 1.447(23) 0.093(19) −1.434(40) 1.208(32) −0.584(28)

−0.212(24) 1.089(37) 1.540(43)

−1.328(6) 0.199(17) 0.889(4) −1.500(5) −0.358(12) 0.504(45)

300 0.398(25) −1.062(34) 0.358(9) 0.956(21) −0.027(27) −1.553(38)
1.792(39) −0.704(26) 1.434(42)

0.319(11) 0.119(14) 1.527(2) −0.996(7) 1.766(3) −0.823(10)
340 −0.013(30) −0.146(36) 1.328(16) −0.398(20) 0.106(18) 0.438(31)

−0.279(41) −1.460(35) −1.487(33)

Fig. 5 Normal probability plot of
the residuals from the fixed
effects model

Exp Tech (2018) 42:319–331 325



Therefore, Tukey’s test indicates that the Insertion Height
is different for all treatment combinations in Table 4; thus, the
previous conclusions are confirmed.

Recall that the tolerance for the Insertion Height for the
process under analysis ranges from 0.000 to 0.300 mm; as a
result, a trade-off exists between the Heating Temperature and
the Insertion Time to increase productivity and save energy
while ensuring that the Insertion Height remains within the
specifications (see Fig. 4).

To perform a better analysis of this trade-off between
Insertion Time and Heating Temperature, a regression model
for the Insertion Height as a function of these factors is
constructed.

Response Surface Model

A response surface or regression model is useful for
prediction, process optimization, or control processes.

Equation (6) is the second-order regression model for
two variables [14].

y ¼ β0 þ β1x1 þ β2x2 þ β12x1x2 þ β11x
2
1 þ β22x

2
2 þ ε ð6Þ

where y represents the response function, and x1 and x2
are the factors of the experiment, with the independent
variables often called the predictor variables or the re-
gressors. The parameters βi, (i = 0, 1,⋯) are called the
regression coefficients, and ε is the model error.

Equation (6) is called the multiple linear regression model;
the most popular method to estimate the regression coeffi-
cients β’s is the least squares method.

The fitted regression model can be written as equation (7)
[14]:

ŷ̂¼ B0 þ B1x1 þ B2x2 þ B12x1x2 þ B11x21 þ B22x22 ð7Þ
where ŷ estimates y, Bi (i = 0, 1,⋯) estimatesβi (i = 0, 1,⋯),
x1 is the Heating Temperature, and x2 is the Insertion Time.

Fig. 6 Residuals versus
observation order

Fig. 7 Residuals versus fitted
value
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Table 8 presents a summary of the information concerning
the regression model for the data in Table 3, listed in coded
variables. The regression coefficients are presented followed
by the respective P-value. In this case, the P-value is
associated with a hypothesis test for which the null
hypothesis state that the regression coefficient is zero
[14]. Therefore, if P-value > α, then the null hypothesis
cannot be rejected, i.e., the corresponding population
regression coefficient is zero.

The adjusted R2 statistics, R2(adj), the maximum value of
which is 1, is used to assess the model performance. R2(adj) is
a measure of the amount of reduction in the variability of the
estimated variable obtained by using the regressor variables in
the model. In opposition to the classical statistics R2, its value
does not always increases as variables are added to the model.
In fact, if unnecessary terms are added, its value decreases [12,
14]. Thus, the model exhibits a good performance because
R2(adj) is very close to 1 and the residual error is notably
low, approximately 0.0168. The performance analysis of the
model can be complemented by the ANOVA presented in
Table 9.

The ANOVA indicates that the model fits the data well; in
other words, the model is adequate to describe the Insertion

Height. Before relying on ANOVA conclusions, it is neces-
sary to investigate the model adequacy.

Model adequacy checking

As performed previously, this verification can be accom-
plished by performing a residual analysis based upon the stan-
dardized residuals presented in Table 10.

The full graphical analysis is presented in Fig. 8. In
Fig. 8(a), the normal probability plot shows a moderate
deviation from the fitted line. However, according to the
normality tests of Kolmogorov-Smirnov (KS = 0.106;
P-value >0.1500), Anderson-Darling (AD =0.457; P-val-
ue =0.254), and Ryan-Joiner (RJ = 0.986; P-value
>0.100), the residuals above can be considered normally
distributed, i.e., the normality assumption of the resid-
uals has not been violated. Figure 8(b), (c) and (d)
indicate that the variance of the observed Insertion
Height is stable with respect to the predicted Insertion
Height, Heating Temperature and Insertion Time, re-
spectively. Thus, the homoscedasticity of the residuals
has not been violated.

Once the model presented in Table 8 is confirmed,
the next step is to study the behavior of the response
function.

Study of the response surface

The regression model presented in Table 8 can be rewritten as
follows:

ŷ̂¼ 0:2059−0:1103x1−0:08163x2 þ 0:02765x1x2

þ 0:42720x21 þ 0:01310x22 ð8Þ

and, for the uncoded variable, as

ŷ̂¼ 25:6062−0:1642x1−0:2479x2 þ 0:0005120x1x2

þ 0:0002670x21 þ 0:007188 x22 ð9Þ

as illustrated in Fig. 9.
The response surface is a parabolic cylinder, which

has one critical point solely, and it is at 301.17 °C and
6.51 s. Although this point is a minimum point, it is
outside the domain of the Insertion Time (1.00–3.70 s);
therefore, it is necessary to identify the extreme value
ofŷ at the response function boundary. The minimum
point is the vertex of the parabola resulting from the
intersection of the surface with a plane parallel to the
Insertion-Height - Heating-Temperature x1Oŷð Þ plane at
the Insertion Time equal to 3.70 s. Thus, substituting

Table 7 Differences among the means of all factor combinations

Insertion Time (s) Heating Temperature (°C)

260 300 340

1.00→ 2.35 0.131 0.097 0.055

1.00→ 3.70 0.219 0.162 0.109

2.35→ 3.70 0.088 0.065 0.054

Heating Temperature (°C) Insertion Time (s)

1.00 2.35 3.70

260→ 300 0.568 0.534 0.511

260→ 340 0.283 0.207 0.173

300→ 340 0.285 0.327 0.338

Table 8 Regression
model in coded variables
for data in Table 4

Regressor Bi P-value

Intercept 0.20593 < 0.001

x1 −0.11033 < 0.001

x2 −0.08163 < 0.001

x1 · x2 0.02765 < 0.001

x1
2 0.42720 < 0.001

x2
2 0.01310 = 0.018

R2(adj) = 0.9949

Res. Error = 0.0168

Reg. P-value= < 0.001
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x2by 3.70 s in equation (9), it will become a single variate func-
tion, with a local minimum at x1 = 303.87°C which is
ŷmin ¼ 0:133mm.

The Insertion Height contour, Fig. 10, is useful to deter-
mine the region over which the Insertion Height is within the
specified tolerance (0 to 0.300 mm).

Several combinations of the Heating Temperature and the
Insertion Time correspond to an Insertion Height less than or
equal to 0.300 mm. The combination that maximizes produc-
tivity and minimizes energy consumption is the Heating
Temperature of approximately 300 °C and the Insertion
Time equal to 1.00 s.

Although the optimum point has been achieved, it is nec-
essary to check the capability of the process.

Process Capability

Among the several statistics that can be used to measure the
capability of a process, the Process Capability Index, Cpk, will
be used in this work. According to Montgomery [18], the
index Cpk can be estimated as follows:

Cpk ¼ min
USL−ŷ̂
3S

;
ŷ̂−LSL
3S

� �
ð10Þ

Table 9 ANOVA for the
regression model presented in
Table 8

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square

F0 ¼ Mean Square
Mean Square Error P-

value

Regression 5 2.40713 0.48143 761.15 0.000

Error 39 0.01103 0.00028

Lack-of-Fit 3 0.00081 0.00027 0.95 0.423

Pure Error 36 0.01021 0.00028

Total 44 2.41816

Table 10 Residuals for the
second-order model in Table 8 Order yi ŷi Residual Stand. Order yi ŷi Residual Stand.

Res. Res.

1 0.851 0.866 −0.015 −0.964 24 0.866 0.866 0.000 0.010

2 0.554 0.523 0.031 1.968 25 0.307 0.301 0.006 0.399

3 0.504 0.482 0.022 1.434 26 0.193 0.206 −0.013 −0.816
4 0.217 0.206 0.011 0.698 27 0.139 0.137 0.002 0.101

5 0.181 0.206 −0.025 −1.573 28 0.641 0.647 −0.006 −0.408
6 0.281 0.301 −0.020 −1.241 29 0.876 0.866 0.010 0.659

7 0.516 0.523 −0.007 −0.429 30 0.586 0.590 −0.004 −0.252
8 0.646 0.647 −0.001 −0.083 31 0.484 0.482 0.002 0.135

9 0.209 0.206 0.003 0.193 32 0.668 0.647 0.021 1.345

10 0.465 0.482 −0.017 −1.098 33 0.455 0.482 −0.027 −1.748
11 0.591 0.590 0.001 0.073 34 0.285 0.301 −0.016 −0.988
12 0.134 0.137 −0.003 −0.214 35 0.509 0.523 −0.014 −0.870
13 0.621 0.647 −0.026 −1.707 36 0.584 0.590 −0.006 −0.382
14 0.588 0.590 −0.002 −0.122 37 0.754 0.743 0.011 0.664

15 0.745 0.743 0.002 0.097 38 0.116 0.137 −0.021 −1.350
16 0.551 0.523 0.028 1.779 39 0.328 0.301 0.027 1.724

17 0.304 0.301 0.003 0.210 40 0.716 0.743 −0.027 −1.733
18 0.479 0.482 −0.003 −0.189 41 0.582 0.590 −0.008 −0.512
19 0.739 0.743 −0.004 −0.282 42 0.161 0.137 0.024 1.489

20 0.525 0.523 0.002 0.139 43 0.673 0.647 0.026 1.670

21 0.218 0.206 0.012 0.761 44 0.734 0.743 −0.009 −0.597
22 0.862 0.866 −0.004 −0.250 45 0.147 0.137 0.010 0.606

23 0.891 0.866 0.025 1.633
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Considering the upper limit specification (USL) is equal to
0.300 mm, the lower specification limit is equal to 0.000, and
the standard deviation estimate (S), as the residual error of the
model from Table 8, is 0.0168 mm, (10) can be rewritten as
follows:

Cpk ¼ min
0:300−ŷ̂
0:0504

;
ŷ̂

0:0504

� �
ð11Þ

Unfortunately, the process is not capable of achieving the
optimal setup (300 °C, 1.00 s), once the Cpk is very low, i.e.,

the probability that the Insertion Height for an insert bush is
out of specification is very high. A standard acceptance crite-
rion for a process in the automotive industry [19] is Cpk is
equal to 1.33, which corresponds to an Insertion Height of
0.233 mm. By replacing ŷ with 0.233 in equation (9), one
obtains equation (12), which represents the ellipse illustrated
in Fig. 11.

0:0002670 x21 þ 0:007188 x22−0:1642 x1−0:2479 x2

þ 0:0005120 x1x2 þ 25:3732 ¼ 0

ð12Þ

The contour line in Fig. 11 shows several combinations of
the Heating Temperature and the Insertion Time, for which the
Insertion Height is 0.233 mm, and therefore, it is within the
specifications. Thus, it is possible to choose the combination
that maximizes the productivity or minimize the energy con-
sumption by moving the operating point along such a curve.

Productivity Improvement and Energy Saving

The current operating point is (320 °C, 3.70 s), and it can
move along the curve in Fig. 11, depending on the production
requirements. According to the plant manager, a decrease of
1 s in the Insertion Time saves approximately 366 h/yr. Thus,
if the main concern is to improve the process productivity, the
Insertion Time must be minimized in equation (12), leading to

Fig. 8 (a) Normal probability plot. (b) Residual versus fitted value. (c) Residual versus Heating Temperature. (d) Residual versus Insertion Time

Fig. 9 Insertion height surface
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the minimum point (305.9 °C, 1.62 s), as illustrated in Fig. 12,
resulting in a time saving of approximately 760 h/yr.

However, if the main concern is energy saving, a decrease
of approximately 0.020 kWh/yr. in the electric energy con-
sumption accompanies a reduction of 1 °C in the Heating
Temperature. Thus, the operating point can be moved along
the curve towards to the minimum value of the Heating
Temperature, 283.5 °C, which corresponds to 3.70 s, resulting
in a saving of 0.730 kWh/yr as illustrated in Fig. 13.

Conclusions

This paper presented a model for predicting the Insertion
Height for the joining of a brass insert to a thermoplastic form
using a heat staking process. First, factorial designs were ap-
plied to investigate the behavior of the Insertion Height with
respect to the Heating Temperature and Insertion Time, which

were the two controllable factors of the process. Afterwards,
the RSM was used to obtain the desired model.

A 22 factorial design with a central point with five repli-
cates demonstrated the existence of curvature in the response
surface. As a result, it was necessary to run a new design to
provide extra points to model the response function. The 32

factorial design was chosen. Although the Insertion Height
was affected by both factors and their interaction, the experi-
ments revealed that the Insertion Height was affected primar-
ily by the heating.

From the Insertion Height contour plot, it was possible to
define a region where the Insertion Height is within the speci-
fications, i.e., less than or equal to 0.300 mm. The combination
of 300 °C and 1 s was found to correspond to an Insertion
Height of 0.300 mm. Although this set point allows for the
highest productivity, the process cannot be implemented be-
cause it showed a very low Cpk.

Cpk equal to 1.33 is a standard acceptance criterion for
processes in the automotive industry. A Cpk equal to 1.33

Fig. 10 Insertion height contour
plot (mm)

Fig. 11 Contour plot for insertion height 0.233 mm Fig. 12 Point of maximum productivity
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corresponds to an Insertion Height equal to 0.233 mm; as a
result, a contour line for the Insertion Height equal to
0.233 mm (Cpk equal to 1.33) was determined. Thus, the op-
erating point can be set on this line, and it can be chosen based
on the optimization criterion, maximizing energy saving or
productivity.

Changing the current setpoint from 320 °C and 3.70 s to
283.55 °C and 3.70 s results in an energy saving of 0.730
kWh/yr. However, the new operating point of 305.9 °C and
1.62 s results in a time saving of 760 h/yr. Therefore, the
benefits of the optimized settings can be even greater, depend-
ing on the produced items, production level, and number of
machines operating simultaneously.
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