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A B S T R A C T

Mesenchymal stem cells (MSCs) are found in all adult mesenchymal tissues. They play a role in the maintenance
of tissue homeostasis and repair by allowing renewal of the cellular stock. MSCs can be isolated from both
human and animal sources. These cells are important in regenerative medicine and cell therapy, thus adipose
tissue is a rich and promising source of these cells. Adipose-derived stem cells (ASCs) are often effective and safe,
and have been used in preclinical and clinical studies for both autologous and allogeneic transplantation. The
potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs provides
an important alternative therapeutic solution for the treatment of many diseases. However, it is necessary to
have control of the cell manipulation process prior to their use. Exposure of humans to the endocrine disruptor
bisphenol A (BPA) has been associated with increased weight and obesity, but the mechanisms by which BPA
increases adipose tissue in humans remains to be determined. BPA has been classified as a potent endocrine-
-disrupting chemical that interferes with adipogenesis. Currently, few studies have reported the effect of BPA on
the integrity and capacity for differentiation of MSCs. Thus, this review aims to present, for the first time, a
current survey and a discussion of the effects of BPA action on MSCs.

1. Introduction

1.1. Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are a heterogeneous cell population
that comprises different progenitor cells possessing the ability to repair
tissues, support hematopoiesis, and regulate immune and inflammatory
responses [1]. These precursors can give rise to a variety of cell types,
including adipocytes, osteoblasts, chondrocytes, myocytes, β-pancreatic
islets cells, and, potentially, neuronal cells [2–4]. They can be found in
virtually all tissues [5]. This population was first identified and isolated
from bone marrow>40 years ago [6]. In 2006, the International So-
ciety of Cellular Therapy established three minimum biological para-
meters to better identify these kind of cells, namely: (i) plastic ad-
herence under standard in vitro culture conditions; (ii) expression of
cluster of differentiation (CD) surface markers CD105, CD73, and CD90
with no expression of CD45, CD34, CD14 or CD11b, CD79a, or CD19
and HLA-DR (human leukocyte antigen–antigen D related); (iii) in vitro
differentiation to osteoblasts, adipocytes, and chondrocytes [7–9].
MSCs can be expanded in vitro through consecutive passaging without
significant changes to their major properties [10]. MSCs can also

release chemokines and cytokines exerting paracrine effects [1]. For
these reasons, this population has been extensively studied and ana-
lyzed, with the ultimate goal being to use them as cellular tools for the
treatment of many types of diseases.

1.2. Adipose derived stem cells

As previously stated, MSCs can be found in practically all tissues
[11]. However, up until 2000, adult stem cell lines appeared to derive
exclusively from hematopoietic tissues [12], mesenchymal tissues [11],
neural stem cells [13,14], and muscle satellite cells [15–17]. In 2001, a
group from the University of California in Los Angeles (UCLA) dis-
covered a stem cell population derived from the adipose tissue. Due to
their isolation from human lipoaspirates, they were first termed “pro-
cessed lipoaspirate cells”, but they are now referred to as “adipose-
derived stem cells” (ASCs) [18]. The current term is more descriptive,
as ASCs are a multi-lineage stem cell population that can be isolated
from the stromo-vascular fraction of adipose tissue. In addition, in order
to prove the ability of ASCs to be a multi-lineage cell population, Zuk
and co-authors [18] utilized additional approaches such as the ex-
pression of multiple lineage-specific genes and functional biochemical
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assays to confirm that both differentiation capacity and clonogenicity
are important requirements for identifying ASCs. When considering this
issue, one of the main challenges in the identification of adult stem cells
is the heterogeneity of their tissue of origin. The observed multi-lineage
differentiation by ASCs may simply be due to the presence of multiple
precursor populations, each completing their own developmental pro-
gram [19]. Zuk's group found a way to circumvent this problem by
isolating a single stem cell and obtaining proof of the cell's multi-po-
tency. Employing this approach, they demonstrated its differentiation
capacity and clonogenicity, and as a result proposed a new adult stem
cell population [18]. Since 2002, many groups have confirmed the
existence of these ASCs in both humans and animals [19]. Additionally,
these cells also have the ability to differentiate into neuronal-like cells,
and this has been confirmed by numerous studies since their first dis-
covery [13,14,20,21].

For this reason, the use of adipose tissue-derived precursors as a
therapeutic tool has grown considerably over the past years, and has
triggered the growth of a new research field worldwide [22]. Re-
generative medicine has evolved tremendously with these recent ad-
vances in stem cell research. The last decade has shown flashes of the
astonishing potential of these cells in tissue regeneration [23]. Despite
these advances, the availability of stem cells remains a challenge for
both scientists and clinicians interested in regenerative medicine [24].
The main advantage of ASCs over mesenchymal stem cells derived from
other sources, e.g. from bone marrow, is that they can be repeatedly
harvested using minimally invasive techniques that have a low risk of
morbidity [25]. Nonetheless, the ideal stem cell population should be
easily accessible through a non-invasive procedure, provide an abun-
dance of cells, be able to differentiate into a variety of cell lineages, able
to be easily transplanted into an autologous or allogeneic host, and able
to be manufactured in accordance with the currently accepted good
manufacturing practice guidelines set by the FDA [26].

It is very well-known that our environment is contaminated with
numerous chemical substances that can intrinsically alter the home-
ostasis and physiology of biological systems, resulting in a negative
impact on human and animal health [27,28]. Concerning adipose-de-
rived stem cells, some of these contaminating organic compounds are
obesogenic but also possess the capacity to bind to hormone receptors
and accumulate in fat tissue in different organisms [29]. Such mole-
cules could well impact stem cell biology, impairing their differentia-
tion efficiency and compromising their therapeutic use, as it has re-
cently been reviewed for MSCs [30]. In this review, we will focus our
attention on the effects of bisphenol A (BPA) on MSCs.

1.3. Obesogens

Obesogens are chemical compounds that can boost weight-gain by
altering the number of adipocytes, increasing their ability to store fat,
or by modifying several homeostatic processes [29] such as decreasing
the amount of calories burned at rest, shifting the energy balance to
favor the storage of calories, and modulating the mechanisms through
which the body manages appetite and satiety [31]. The obesogen hy-
pothesis has gained visibility in recent years due to the identification of
obesogenic chemicals that promote adipogenesis and obesity in animals
and humans [31–34]. Some of these compounds are referred to as en-
docrine disruptors since they interfere ‘with the synthesis, secretion,
transport, binding, or elimination of natural hormones’ like estrogens,
testosterone, and thyroid hormone, among others [35].

1.4. Endocrine disrupting chemicals

Endocrine disrupting chemicals (EDCs) are compounds present in
our environment, food, and consumer products that interfere with the
biosynthesis, metabolism, and action of hormones, resulting in altera-
tions in the normal homeostatic or reproductive processes [36]. EDCs
are produced as pesticides, plasticizers, or solvents. It was initially

found that when they are absorbed into the body, they can either mimic
or block hormones and disrupt the normal functions of the organism
[37]. As a result, they were initially thought to exert their actions solely
through nuclear hormone receptors, including estrogen receptors (ERs),
androgen receptors (ARs), progesterone receptors, thyroid receptors
(TRs), and retinoid receptors [36].

These substances are typically hydrophobic and lipophilic, which
means that they work best in an environment that has a low con-
centration of water and an abundance of fatty acids. In aquatic systems
and soil, EDCs are easily decanted in solids, whereas in organisms, they
are partitioned into lipids. As a result, the EDCs are able to avoid being
metabolized in the aqueous phase, allowing them to accumulate first in
cells and fatty tissues, and then in the food chain [38].

1.5. Bisphenol A

Bisphenol A (BPA) is a synthetic chemical that, because of its
structure, is multifaceted. The BPA (4, 4′-dihydroxy-2, 2-diphenylpro-
pane) molecule consists of two phenol rings connected by a methyl
bridge, with two methyl groups bound to the bridge [39]. BPA is
classified as an endocrine disruptor, resulting in the relatively weak
activation of estrogen receptor a (ERa) and b (ERb) [40–44]. BPA can
also act as an antagonist of ERb [45]. This compound is used in the
fabrication of polycarbonate plastic and epoxy resins, which can be
used in impact-resistant safety equipment and baby bottles, as a pro-
tective coating inside metal food containers, or as a composite and
sealant in dentistry [46]. This is one of the highest-volume chemicals
produced globally, with 5.2millionmetric tons estimated to have been
produced in 2008 [47]. Because of its mass production and widespread
adoption, the probability of environmental contamination with BPA has
increased. Environmental contamination is possible via industrial was-
tewater treatment systems or sewage treatment plants that receive this
compound. Other possible sources of BPA are also found in the en-
vironment, such as waste plastics in landfills and sewage sludge from
wastewater treatment facilities. There is a considerable amount of
monitoring of BPA levels in Europe, the United States, and Japan, and
BPA has been detected in many different biological samples [48,49], for
example, in human blood (< 0.5–22.3 ng/mL) [50,51], the serum of
pregnant women (< 0.1–154 ng/mL) [52,53], urine (< 0.1–822 ng/
mL) [46,54], saliva (0.1 ng/mL), amniotic fluid (2.80–5.62 ng/mL),
umbilical cord (< 0.05–52 ng/mL), follicular fluid (1–2 ng/mL) [55],
breast milk (< 0.04–11 ng/mL) [56], and adipose tissue (1.80 to
12.01 ng/g) [57] with BPA being principally stored in milk and adipose
tissue. It has also been shown that> 90% of people tested for BPA in
urine and blood tested positive [58], and that infants and children are
the most affected [46].

Data from multiple sources have shown that the amount of BPA that
humans are exposed to may cause adverse health effects, such as dia-
betes, obesity, abnormal neuronal behavior, developmental effects, and
thyroid and reproductive disorders [58–61]. This has raised concerns
among regulatory agencies all over the world [57]. Based on this, the
United States Environmental Protection Agency (EPA) has determined a
reference dose for BPA of 50 μg/kg body weight/day whereas the Eur-
opean Food Safety Authority (EFSA) have determined a reference dose
of 4 μg/kg body weight/day [62]. In vitro, BPA has been found to cause
mutagenicity in human RSa cells (a human embryonic clonal cell line
established by double infection with Rous sarcoma virus and Simian
virus 40) and HeLa cells [63] within the range of 100 nM to 10 μM [64].
Even though a direct genotoxic effect of BPA at low doses has not been
reported, exposure to BPA at environmentally relevant doses, primarily
during the developmental stages, represents a risk for carcinogenesis
[62]. This compound has therefore become an environmental con-
taminant of considerable interest [49].

Perhaps due to BPA's shared structural homology with estrogen, it
appears to be able to upregulate the expression of downstream targets,
including peroxisome proliferator-activated receptor gamma (PPAR γ)
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and lipoprotein lipase (LPL), at least based on the results from in vitro
experiments on rodents [65]. Recent studies have also demonstrated
that the G protein-coupled receptor-30 (GPR-30), a transmembrane
receptor structurally unrelated to the nuclear ERs, mediates the rapid
actions of estrogens, as well as xenoestrogens such as BPA, modulating
the activity of the ERK and AKT pathways, which are responsible for
survival and cell death processes [66].

1.6. Effects of BPA on MSCs

1.6.1. Adipogenic differentiation
To date, there have been few studies examining the effects of BPA

on MSCs. However, as noted above, it is widely believed that the main
effects of BPA on cells occur in terms of hormone receptor signaling,
since BPA usually acts as an estrogen mimic. Thus, it has been well
documented that BPA can alter the expression of genes responsible for
adipogenesis, including the adipogenic markers PPARγ, FABP4, adi-
ponectin, and LPL. Most of the data produced to date refer to the per-
oxisome proliferator-activated receptor (PPAR) family, which is a group
of nuclear receptor proteins that work as transcription factors to reg-
ulate gene expression. PPARs play a key role in cell differentiation,
development, and metabolism, as well as carcinogenesis in higher or-
ganisms [67]. PPARγ, a subtype of this family, regulates fatty acids and
glucose metabolism by stimulating lipid uptake and adipogenesis [68].

Fatty acid-binding proteins (FABPs) are a family of small cyto-
plasmic lipid- binding proteins that are involved in lipid signaling
cascades [69]. It is known that the role of FABPs include fatty acid
uptake, transport, and metabolism. FABP4 also referred to as adipocyte
FABP, is an intracellular lipid chaperone involved in the coordination of
lipid transport [70] and atherogenesis [71]. The gene expression of
adiponectin, a secreted protein produced exclusively by adipocytes
[72], can be regulated by several processes in adipose tissue. For ex-
ample, adiponectin gene expression is increased 50–100-fold during the
differentiation of 3T3-L1 adipocytes (a murine-derived cell line)
[72,73], indicating that adiponectin is a marker of mature adipocytes.
In accordance with these data obtained with clonal preadipocytes, Lihn
and collaborators [74] found that the expression of adiponectin mRNA
was induced nearly 100-fold during differentiation of human pre-
adipocytes in primary culture.

Finally, LPL gene, that encodes lipoprotein lipase, is expressed in the
heart, muscle, and adipose tissues. LPL works as a homodimer, and
functions both as a triglyceride hydrolase and a ligand/bridging factor
for receptor-mediated lipoprotein uptake. Mutations in the LPL gene
results in type I hyperlipoproteinemia deficiency, while the less extreme
mutations in LPL related to many disorders of lipoprotein metabolism
[75]. Lipid metabolism has a strong influence on LPL, where this gene
hydrolyzes triglyceride-rich lipoproteins, such as chylomicrons or very
low-density lipoprotein (VLDL), to free fatty acids that can then be
incorporated into the adipose tissue for storage [76]. Thus, all these
genes described above play key roles in the adipogenic differentiation,
where BPA has been shown to interfere, and possibly affect such genes.

BPA has been shown to accelerate the rate of adipogenesis, as seen
in the study by Masuno and co-authors [77], where BPA (80 μM) in-
duced both adipocyte differentiation and adipogenic marker genes in
3T3-L1 preadipocytes over six days. BPA also increased the amount of
triglyceride accumulation during 14 days of differentiation in 3T3-L1
preadipocytes. However, when tested under the same conditions
(80 μM for 14 days; a very high dose, that does not mimic real en-
vironmental exposure levels), there was no effect on human primary
preadipocytes [78]. Based on these discrepant results, we will present
here a summary of the major findings of MSCs exposed to BPA during in
vitro differentiation.

MSCs, especially adipose stem cells, are a useful model for studying
changes in the programming of adipogenesis because they give rise to
adipocyte progenitors in vivo [79]. Few studies have examined the
differentiation potential of different MSCs when exposed to BPA. The

concern about the possible contamination of these cells by endocrine
disruptors began with the adoption of Good Manufacturing Practices
(GMPs) in the processes used for the production of MSCs for therapeutic
purposes. Biemann and colleagues [80] were one of the first to study
the effects of endocrine-disrupting chemicals on the adipogenic differ-
entiation of MSCs. They showed that BPA, and other EDCs such as
DEHP (bis (2-ethylhexyl) phthalate) and TBT (tributyltin), affect the
adipogenic differentiation of murine mesenchymal stem cells (MSC,
C3H/19 T1/2) in a concentration, stage of differentiation, and com-
pound-specific manner. After 6 or 14 days of exposure, BPA (10 μM)
decreased the subsequent adipogenic differentiation of MSCs when cells
were exposed during their undifferentiated growth phase. Chamorro-
García and colleagues [44] also used bone marrow primary cultures of
MSCs and 3T3-L1 cells to study the effects of BADGE (bisphenol A di-
glycidyl ether) and BPA on adipogenesis, osteogenesis, gene expression,
and nuclear receptor activation. They found that exposure to BPA
(1 nM, 10 nM, 100 nM, and 1 μM) over 14 days failed to promote adi-
pogenesis in MSCs, but did induce adipogenesis in 3T3-L1 cells, which
was the same outcome that was found in Linehan's study [78]. In 2014,
Biemann and colleagues [81] conducted another study with multi-
potent murine mesenchymal stem cells (C3H10T1/2) that were exposed
to EDC mixtures at high concentrations, i.e. MIX-high (10 μM BPA,
100 μM DEHP-diethylhexylphthlate, and 100 nM TBT-Tributyltin), and
in environmentally relevant concentrations, i.e. MIX-low (10 nM BPA,
100 nM DEHP, and 1 nM TBT). The experiment involved EDC exposure
either during the entire culture time (0–12 days) or at distinct stages of
the adipogenic differentiation program. The data showed that MIX-high
increased the development of adipocytes and the expression of adipo-
genic marker genes independently of the exposure window. The total
amount of glyceride content was not increased. The MIX-low had no
obvious impact on adipogenesis. They found that in EDC mixtures, the
adipogenic effect of TBT and DEHP predominate the effect of BPA on its
own. The effect of the EDC mixture could not be deduced from single
compound experiments.

With respect to ASCs, Ohlstein and collaborators [60] determined
the effects of BPA on adipogenesis in cultured human ASCs, which are
the precursors of mature adipocytes. Cells were exposed to increasing
concentrations of BPA (100 pM–10 μM). BPA significantly enhanced
adipogenesis at a concentration of 1 μM after 21 days of culture. The
authors also found BPA effects increasing estrogen receptor (ER or
ESR1) transcription, and the use of an ER antagonist inhibited BPA
effects, indicating its possible action via an ER-mediated pathway. In
2016, Leem and colleagues [82] conducted a study where they analyzed
the effects of high BPA concentrations (250 μM, 500 μM for 18 h) on
human bone marrow MSCs and found that BPA had a disturbing effect
on β-catenin signaling via superoxide anion overload. In the same year,
Wang and colleagues [66] developed a 3D model to study the action of
BPA on human embryonic MSCs and compared these data with ASCs.
They found that BPA did not induce adipogenesis in ASCs and fur-
thermore did not have a significant effect on embryonic MSCs. Table 1
presents a summary of all of these data.

1.6.2. Osteogenic differentiation
When considering other studies related to differentiation of MSCs,

there is limited information about the toxic effect of BPA towards bone
health [83]. It is known that BPA may affect adult bone metabolism and
its disorders, including osteoporosis through the SXR signaling in both
adult and fetal bones [84]. Several in vitro studies involving cultured
scales of goldfish, bone-marrow derived macrophages, RAW 264.7 cells,
and MC3 T3-E1 cells, as well as an in vivo study with ovariectomized
rats have shown this relation [85–90]. Thus, these recent outcomes
suggest that BPA may have several effects on bone cells, including os-
teoblasts and osteoclasts, through multifactorial pathways [85]. Re-
garding the findings on osteogenic differentiation, in the year 2013, a
group of researchers observed that BPA also stimulated differentiation
and induced apoptosis in human osteoblasts and osteoclasts [87].
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However, the exact action of BPA on bone metabolism in adult humans
is still under discussion.

BPA, a selective estrogen receptor modulator (SERM), shows dif-
ferent modes of actions in different types of cells and tissues, which is
unlike the classical estrogenic substances [91,92]. Based in this as-
sumption, BPA exerts its functions by binding to the estrogen receptors
α & β [91,94] and recent studies have shown that BPA also binds to the
non-classical estrogen receptors to activate the estrogen-sensitive genes
via non-genomic pathways [92,93]. Surprisingly, Baldwin and co-au-
thors (1998) has found that BPA reduced cell viability significantly
(80%) with a 12.5 μM dose in BG-1 ovarian adenocarcinoma cells [88].

Upon the stimulation of apoptotic signals, BPA was shown to acti-
vate the apoptotic initiators, caspase-8 and 9, and triggered down-
stream effectors, such as caspase-3, according to some studies [95,96].
In 2012, Biemann and colleagues [79] demonstrated that BPA does not
induce proliferation in human ASCs. BPA induced cell death through
the oxidative stress pathway in both in vitro and in vivo as demonstrated
by Leem and collaborators, who observed significantly increased levels
of apoptosis in human bone marrow stem cells (hBMSCs), when treated
with 500 μM BPA for 6 h or more [82]. This corroborated the previous
data showing that increased oxidative stress damages several tissues
including the bone tissue [97]. More recently, a study showed that a
12.5 μM dose of BPA reduces differentiation and increases the apoptosis
in osteoblasts and osteoclasts [83]. BPA exerts estrogen antagonistic
effect on bone cells by binding to the non-classical ER γ receptor, which
reduces the activity of bone specific markers such as BMP-2 and ALP.
Recent studies demonstrated that BPA disturbs the bone metabolism via
the RANKL (Receptor activator of nuclear factor kappa-Β ligand)

pathway, apoptotic pathway, and the Wnt/β-catenin signaling
pathway. However, the exact underlying mechanism has not yet been
unraveled [83].

Only one study has reported migration in MSCs that were exposed to
BPA [66]. The authors tested the response of MSCs derived from uterine
myoma tissue (hUM-MSCs) to BPA, in which they found that this
compound was able to enhance cell proliferation and colony forming
efficiency, induce COX-2 gene expression, and promote migration and
invasion of hUM-MSCs.

MSCs that are exposed to BPA exert pro-inflammatory effects, and
their action is evident through the paracrine effects, as well as by al-
tering differentiation [30], with an increased expression of certain os-
teogenic genes such as ALP, resulting in increased mineralization
[98,99]. Li and colleagues (2015) also showed that conditioned
medium from TNF-α-activated MSCs could boost osteogenesis through
paracrine mechanisms [98]. In contrast, it has been demonstrated that
in response to cytokine stimulation cell viability decreases and forma-
tion of bone nodules by primary osteoblasts is reduced [100]. These
contrasting results could be explained by the differences in the long-
term and short-term exposures to pro-inflammatory conditions. For
example, in a long-term exposure study, stem cells from the apical
papilla demonstrated inhibition of osteogenesis when exposed to pro-
inflammatory cytokines (TNF-α and interleukin 1 beta), while the cy-
tokines induced mineralization in the short-term culture [101]. In view
of all the data presented here, we can infer that BPA acts on MSCs
exhibiting inconsistent behavior and it is also clear that short and long-
term exposure studies differ significantly.

Table 1
Major studies on BPA effects on mesenchimal stem cells.

Reference Cell type Aim of the study Results

[80] C3H/10T1/2 (mouse
embryosarcoma stem cells);
and
CGR8 (mouse embryonic stem cells).

Analyse the BPA, DEHP and TBT effects on the adipogenic
differentiation of C3H/10T1/2 and CGR8 cells in a
concentration, stage and compound specific manner.

✓ BPA (10 uM) decreased adipogenic differentiation in
C3H/10 T1/2 cells exposed during undifferentiated
growth;

✓ DEHP (100 uM) enhanced adipogenesis during the
hormonal induction period, and TBT (100 nM) in all
investigated stages;

✓ Any effect was seen on CGR8.
[44] Mouse bone marrow stem cells,

Human bone marrow mononuclear
cells
and
3T3-L1 mouse pre-adipocyte cells.

Study the adipogenic capacity of BADGE and BPA and their
effects on adipogenesis, osteogenesis, gene expression, and
nuclear receptor activation.

✓ BADGE promoved adipogenesis in all cell types;
✓ BPA induced adipogenesis only in 3T3-L1 cells;
✓ Neither BADGE nor BPA activated or antagonized

retinoid “X” receptor or PPARγ.

[78] Human adult stem cells and T3T-L1. Investigate BPA effects on adipogenesis of hASCs. ✓ BPA (0.08uM, 8uM, 80uM) during 14 days of
differentiation reduced triglyceride accumulation and
suppressed LPL gene transcription;

✓ BPA reduced triglyceride accumulation during
adipogenesis by attenuating the expression of LPL gene
transcription.

[60] Human adipose derived stem cells. Determine the effects of BPA on adipogenesis of hASCs. ✓ BPA(1mM) significantly adipogenesis after 21 days;
✓ BPA increased transcription of the ER.
✓ Treatment with the ER antagonist ICI 182 780, blocked

the effects of BPA.
[81] C3H/10T1/2. Investigate the effects of a simultaneous exposure of BPA

(10 μmol/L), DEHP (100 μmol/L), and TBT (100 nmol/L) on
C3H/10T1/2 differentiation into adipocytes.

✓ BPA, DEHP and TBT in higher concentrations
increased the development of adipocytes and the
expression of adipogenic marker genes;

✓ BPA, DEHP and TBT in lower concentrations had no
obvious impact on adipogenesis.

[82] Human bone marrow stem cells. Verify if BPA (250 μM, 500 μM during 18 h) has cytotoxic action
on hBMSCs

✓ BPA promoved citotoxicity in a dose and time
dependent manner;

✓ BPA causes a disturbance in b-catenin signaling via a
superoxide anion overload.

[66] Human adipose derived stem cells
and Human embryonic derived stem
cells.

Develop a 3D human tissue system able to model the effects of
obesogens (BPA-10 μM, 20 μM, 40 μM) (TBT - 1 nM,5 nM,
10 nM), (BPS - 10 μM, 20 μM, 40 μM) in vitro to better
understand the impact of obesogens on early development.

✓ hASCs were not induced to adipogenesis and hESCs
didn't show any significant effect when exposed to
these compounds.

BPA: bisphenol A; DEHP: bis(2-ethylhexyl) phthalate; TBT: tributyltin; BADGE: bisphenol A diglycidyl ether; PPARγ: peroxisome proliferator-activated receptor
gamma; LPL: lipoprotein lipase; hASCs: human adipose-derived stem cells; ER: estrogen Receptor; MSCs: mesenchymal stem cell; hBMSCs: human bone mesenchymal
stem cells; hASCs: human adipose derived stem cells; hESCs: human embryonic derived stem cells.
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2. Concluding remarks

MSCs have gained attention in the field of regenerative medicine
because they can potentially modulate numerous incurable diseases
[102]. Currently, there are 333 published studies describing the use of
MSCs in clinical trials, addressing the prospective therapies for diseases
such as cardiovascular disease [103], diabetic nephropathy [101], di-
verse brain injuries (including stroke, neural trauma, and heatstroke)
[104] and lung injury [105]. These cells are widely used because of
their multiple biological functions, including multi-lineage differentia-
tion, their ability to promote tissue-repair, as well as their anti-in-
flammatory and immunosuppressive effects. Since 2000, the MSC field
has progressed rapidly after demonstrating that ex vivo-grown cells had
immunosuppressive properties as exhibited by inflammatory cytokines
such as IFN-γ, IL-1, or TNF-α [88], having the ability to reduce in-
flammation, suppress immune responses, and release trophic factors
[4,7,8].

Regarding their clinical properties, these cells offer several ad-
vantages, such as availability and ease of harvesting, as well as offer
adequate safety, with a very low possibility of malignant transforma-
tion after infusion of allogeneic cells, which is often the case with
embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).
There is also a lack of ethical issues that usually arise with the appli-
cation of human ESCs [7].

However, it is well-known that this new and exciting branch of stem
cell biology has hurdles that we have yet to overcome. For example, in
terms of the mechanisms underlying the biological function of MSCs, it
was originally thought that cells originating from damaged tissue dif-
ferentiate and replace damaged cells [3]. Nonetheless, subsequent re-
search has shown that MSC engraftment and differentiation at the sites
of injury are very low and transient [3]. Therefore, for successful cell-
based therapies, a significant number of cells are needed, requiring
extensive ex vivo cell expansion. Owing to the prolonged ex vivo ex-
pansion needed to obtain a sufficient number of cells for clinical
therapy, long-term culture will likely evoke continuous changes in
MSCs, including cellular senescence [106,107]. Besides this, other
concerns impose limitations for the clinical use of MSCs such as the
safety, efficacy, and reproducibility of MSC production, donor elig-
ibility and screening, facilities, environmental controls, and storage
[108].

Taking into consideration the environmental control, one such im-
portant sub-issue is the toxicological quality of cells. It is well-known
that exposure to EDCs have a strong effect on organisms, which can
change the functioning of their organs and regulatory systems. This
subsequently leads to the development of short or long-term diseases.
Therefore, producing cells for its use in humans in accordance to the
Good Manufacturing Practices (GMPs) is a global challenge [108].

Although very few studies have been conducted to date using MSCs
from different sources and species that have been exposed to BPA, all
those studies have indicated an effect on the adipose differentiation
process. Different authors have suggested that a source of variability
might be due to the use of different cells from different animals. In
addition, differences in the concentrations of BPA or the time of ex-
posure could also be a source of variation. Most of the reported studies
have exposed cells to extremely high concentrations of BPA that do not
mimic the real environment.

Currently, there are various studies which have shown that BPA has
an effect on the development of obesity in vivo, suggesting its putative
obesogenic effects. BPA may exert obesogenic effects through various
pathways, either by its activity as an estrogen and glucocorticoid re-
ceptor agonist, by its interference with the thyroid hormone pathways,
by activation of the peroxisome proliferator-activated receptor-c
(PPARc) [109–114], or by its role in the differentiation of human adi-
pocytes in vitro [14,44,60,115,116]. Therefore, we would need to
evaluate the results of more studies that use the same cell types, con-
centrations, and exposure times, in order to reach more solid

conclusions regarding the biochemical and molecular effects of BPA on
MSCs.

An assessment of the strengths and weaknesses of MSCs from ex vivo
cultures could provide novel approaches to overcome limitations to
their therapeutic efficacy and maximize their clinical value. Thus, it is
suffice to conclude that diverse populations within the heterogeneous
group of MSCs [96] could exhibit divergent behaviors when exposed to
BPA or other EDCs. More systematic studies will therefore be required
for further analysis.
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