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A B S T R A C T

In the literature, expressions can be found for the mode shape functions of uniform Euler-Bernoulli beams. However, these expressions permit the evaluation of only
the first 12 modes or so due to numerical issues associated with the evaluation of near field waves that increase exponentially with frequency. To overcome this
problem, approximate expressions have been developed that avoid the evaluation of these waves. This article presents in tabular form alternative, exact expressions
of beam mode shape functions that are numerically stable. These formulations have not been reported in the literature before and they are of special interest for
researchers working in the area of structural acoustics and vibration. Beams with combinations of the classical boundary conditions of clamped, free, pinned, and
sliding are considered.

1. Introduction

Mode shape functions often need to be evaluated numerically when
calculating the forced response of a structure. In many cases, only a few
modes of vibration needs to be considered and common forms of mode-
shape functions found in textbooks, for example [1–6] are suitable.
However, in some cases many modes need to be considered. Common
forms of expressions for the mode shape functions found in the litera-
ture may not be suitable, as they permit the evaluation of only the first
12 modes or so due to numerical issues that arise from the evaluation of
nearfield waves. This has been acknowledged by researchers, and some
methods have been proposed to overcome the problem. In the study of
the vibrations of a truss structure, Shankar and Keane [7] reformulated
the expression for the mode shape of a free–free beam so that it could be
numerically evaluated up to the first two hundredth mode or so. Using
beam mode shape functions, Warburton [8], gave mode shape expres-
sions for transverse plate vibration for some boundary conditions that
are numerically stable up to a certain value of kl in which k is the
wavenumber and l is the length of the beam. For stepped-beams [9], the
authors introduce a local coordinate system to overcome possible
round-off errors in computing modes in the global coordinate system.
However, the principle of the method will start to breakdown once
round-off errors in any of the local coordinate systems appear. Tang
[10] has also given expressions for beam mode shape functions with
some other boundary conditions, but again these are only numerically
stable up to a certain value of kl. To overcome this problem Gonçalves

et al. [11] made some approximations for kl≫ 1 and presented nu-
merically stable alternative approximate expressions for generally
available mode shape functions. This introduced small errors which are
larger for small values of kl, but converge for kl≫ 1. The purpose of this
technical brief is to present, in tabular form, alternative exact expres-
sions for uniform beam mode shape functions that do not suffer from
numerical ill-conditioning for any value of kl, and are not currently
available in the literature. This is in contrast to the work in Ref. [11]
which reported approximate rather than exact expressions. It should be
noted that the exact expressions are only valid up to frequencies, where
the Euler-Bernoulli beam theory is valid, that is when the thickness of
the beam is less than about one tenth of a wavelength.

2. Problem statement

To illustrate the problem of numerical ill-conditioning, the expres-
sion for a clamped-clamped beam mode shape function for a uniform
beam of density ρ, Young’s modulus E, cross-sectional area S, second
moment of area I, and length l given by [1,3]

= − − −ϕ k x k x σ k x k xcosh( ) cos( ) (sinh( ) sin( ))n n n n n n (1)

is considered. In Eq. (1), = ( )k ωρS
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1/4 1/2 is the bending wavenumber,
which is a function of angular frequency ω and
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where the subscript n denotes the n-th mode of vibration. The mode
shape for =n 12 is shown in Fig. 1. It can be seen that the near field
wave close to the end where =x l/ 1 is not correctly calculated. To
overcome this problem Eqs. (1) and (2) need to be reformulated. In
general, the numerical evaluation of some functions such as

− −−e x x1, Acosh( ) Bsinh( )x , can lead to round-off errors using floating
point arithmetic [12]. Some of these functions can be rewritten, for
example − = −x x ecosh( ) sinh( ) x , which is a better form for numerical
evaluation by a computer. For cases similar to −−e 1x , some computer
languages have algorithms to reduce the round-off errors [13]. In Ma-
tlab® for instance, exp(x) − 1 can be computed using the function
expm1(x).

3. Numerically stable mode shape expressions

It is possible to rewrite any of the beam mode shape functions in a
format such that the round-off errors are negligibly small. This is illu-
strated here for a clamped-clamped beam, but the method can be ap-
plied to any mode shape function. To obtain an expression for the mode
shape that is numerically stable, Eq. (2) can be modified by multiplying
both its numerator and denominator by −e k ln , so that
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Note that σn tends to 1 as kn increases, so Eq. (3) will not have nu-
merical issues for high frequencies. Similarly, Eq. (1), can also be
modified writing the hyperbolic functions in terms of exponentials to
give,
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The only term in Eq. (4) that needs to be reformulated is
−e σ(1 )/2k x

nn . This is done by substituting for σn from Eq. (3) and ex-
panding to give
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Finally, Eqs. (4) and (5) are combined to give a mode shape ex-
pression that is numerically stable and is exact for all values of k ln ,
which is
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This is given in Table 1 for ease of reference. Numerically stable and
exact expressions for the mode shape functions are also given in Table 1
for the most common boundary conditions.

To obtain the wavenumber kn and hence the n-th natural frequency,

Fig. 1. Comparison of the actual mode shape and the mode shape calculated
using the traditional expressions found in textbooks.

Table 1
Bending mode shapes expressions for different boundary conditions.
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a numerically stable expression should be used. For example, the wa-
venumbers for a clamped–clamped beam may be obtained by multi-
plying the fundamental characteristic frequency equation found in
many textbooks, for example [1–3], by −e2 kl, i.e.

= − ⇒ + −− −F k kl kl kl e e( ) cos( )cosh( ) 1 cos( )(1 ) 2kl kl2 (7)

where F k( ) is the frequency equation, in which k is dependent on the
boundary conditions. This change avoids cancellation errors that can
occur in the numerical solver such as MATLAB’s fsolve.

4. Conclusions

This article has discussed the problem of evaluating beam mode
shape functions of a beam when a wavelength is much smaller than the
length of the beam. Alternative expressions that do not suffer from
numerical ill-conditioning have been presented and have been tabu-
lated for ease of reference.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.apacoust.2018.05.014.
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