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EXPLORING LONG-TERM VARIETY PERFORMANCE TRIALS TO IMPROVE 
GENOTYPE, MANAGEMENT, AND ENVIRONMENT RECOMMENDATIONS: A 

CASE-STUDY FOR WINTER WHEAT 
 
 

ABSTRACT - The complex and interactive effects of genotype (G), environment 
(E), and management (M) can be a barrier to the development of sound agronomic 
recommendations. We hypothesize that long-term variety performance trials (VPT) can 
be used to understand these effects and improve regional recommendations. Our 
objective was to explore long-term VPT data to improve management and variety-
selection recommendations using winter wheat (Triticum aestivum L.) in the U.S. 
central Great Plains as a case-study. Data of grain yield, variety, and trial management 
were collected from 748 wheat VPT conducted in the states of Colorado, Kansas, and 
Oklahoma over nineteen harvest years (2000-2018) and 92 locations, resulting in 
97,996 yield observations. Using 30-yr cumulative annual precipitation and growing 
degree-days, we partitioned the study region into 11 contiguous sub-regions, which we 
refer to as growing adaptation regions (GAR). We used variance component analysis, 
gradient boosted trees, and conditional inference trees to explore the management 
and variety trait effects within each GAR. For the variety trait analysis, the VPT dataset 
was reduced to account for varieties for which 17 agronomic traits and 11 
disease/insect reaction ratings were available (65,264 yield observations). GAR 
accounted for 46% of the total variation in grain yield, M for 32%, residuals (including 
interactions) for 13%, year for 7%, and G for 2%. Conditional inference trees identified 
interactions among management practices and their effects on yield within each GAR. 
For instance, water regime was the most important practice influencing wheat yield in 
the semi-arid western portion of the study region, followed by sowing date and 
fungicide. In dryland trials, there was typically an interaction between fungicide, sowing 
date, and tillage system, depending on GAR. Other management practices (e.g. dual-
purpose management, crop rotation, and tillage practice) also significantly affected 
yield, depending on GAR. The main variety trait associated with increased yields 
depended on region and management combination. For instance, drought tolerance 
was the most important trait in dryland trials while stripe rust tolerance was more 
relevant in irrigated trials in the semi-arid region. In this research, we demonstrated an 
approach that uses widely available long-term VPT data to improve management and 
variety selection recommendations and can be used in other regions and crops for 
which long-term VPT data are available. 

 
 

Keywords: conditional inference trees, exploratory analysis, Triticum aestivum L., 
long-term data, management practices  
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EXPLORANDO ENSAIOS DE LONGA DURAÇÃO DE PERFORMANCE DE 
VARIEDADES PARA MELHORAR AS RECOMENDAÇÕES DE GENÓTIPO, 

MANEJO E AMBIENTE: UM ESTUDO DE CASO PARA O TRIGO DE INVERNO 
 
 

RESUMO – Os complexos efeitos de genótipo, ambiente e manejo podem ser 
uma barreira para o desenvolvimento de recomendações agronômicas sólidas. Nossa 
hipótese é que dados de longa duração de ensaios de performance de variedades 
(VPT) podem ser utilizados para entender esses efeitos e melhorar as recomendações 
regionais. Nosso objetivo foi explorar dados de longa duração de VPT para melhorar 
as recomendações de manejo e seleção de variedades utilizando trigo de inverno 
(Triticum aestivum L.) na região central das grandes planícies dos Estados Unidos da 
América como um estudo de caso. Dados de rendimento de grãos, variedades e 
manejo dos ensaios foram coletados de 748 VPT de trigo conduzidos nos estados do 
Colorado, Kansas e Oklahoma durante dezenove anos (2000-2018) e 92 locais, 
resultando em 97.996 observações de rendimento. Utilizando dados de 30 anos de 
precipitação anual acumulada e graus-dia, nós dividimos a região de estudo em 11 
sub-regiões contíguas, as quais nos referimos como regiões de adaptação de cultivo 
(GAR). Nós utilizamos “variance componente analysis”, “gradiante boosted trees” e 
“conditional inference trees” para explorar os efeitos de manejo e características das 
variedades em cada GAR. Para a análise das características das variedades o 
conjunto de dados de VPT foi reduzido para considerar as variedades cuja informação 
referente a 17 características agronômicas e 11 reações a doença/inseto estava 
disponível (65.264 observações de rendimento). GAR representou por 46% da 
variação total no rendimento de grãos, manejo por 32%, resíduo (incluindo interações) 
por 13%, ano por 7% e genótipo por 2%. “Conditional inference trees” identificaram a 
presença de interação entre práticas de manejo e seus efeitos no rendimento de grãos 
em cada GAR. Por exemplo, regime hídrico foi a prática mais importante influenciando 
o rendimento de grãos de trigo na porção oeste e semiárida da região de estudo, 
seguido por data de semeadura e fungicida. Em ensaios de sequeiro, normalmente 
há uma interação entre aplicação de fungicida, data de semeadura e sistema de 
preparo do solo, dependendo da GAR. Outras práticas de manejo (e.g. manejo de 
duplo propósito, rotação de culturas e práticas de preparo do solo) também afetaram 
significativamente o rendimento de grãos, dependendo da GAR. A principal 
característica varietal associada a maiores rendimento de grãos foi dependente da 
combinação de região e manejo. Por exemplo, tolerância a seca foi a característica 
mais importante em ensaios de sequeiro, enquanto tolerância a ferrugem estriada foi 
mais relevante em ensaios irrigados na região semiárida. Nesta pesquisa 
demonstramos uma abordagem que utiliza dados de longa duração de VPT, 
amplamente disponíveis, para melhorar recomendações de manejo e de seleção de 
variedades e pode ser utilizado em outras regiões ou culturas para as quais dados de 
VPT são disponíveis. 

 
 

Palavras-chave: “conditional inference trees”, análise exploratória, Triticum aestivum 
L., dados de longa duração, práticas de manejo
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1. INTRODUCTION 

 

 

A significant increase in crop production is needed to meet the increasing 

demand of the world’s population for food and fiber in the coming decades (Bodirsky 

et al., 2015; Godfray et al., 2010). Expansion of existing cropland is not sustainable 

and has limited potential due to its negative environmental and social impacts (Conijn 

et al., 2018; Ramankutty et al., 2002); thus, crop yield needs to increase on existing 

cropland (Fischer et al., 2014; Foley et al., 2005; Tilman et al., 2002). This scenario is 

worsened by the decreasing rates of yield improvement of major crops in recent 

decades (Cassman, 1999; Cassman et al., 2003; Lin and Huybers, 2012), which, in 

combination with adoption of conservative management practices, causes yield 

stagnation in many important cereal growing regions of the world (Grassini et al., 

2013). Within this context, improvements in management practices can play a crucial 

role in increasing crop yields (van Ittersum et al., 2013). 

A common approach to identify best management practices and their interaction 

with the environment is to conduct controlled experiments in which different practices 

are imposed on a crop (Andrade et al., 2019; Grassini et al., 2015a). While well-

conducted randomized controlled experiments might meet the assumptions that 

enable causal inference between management practices and crop yield (Jaenisch et 

al., 2019; Lollato et al., 2019b, 2013), the high cost of establishing new experiments 

may be impracticable to evaluate the performance of multiple management practices 

in several environments (van Ittersum et al., 2013). Potential alternatives to this 

approach are to explore management and yield data collected from actual production 

fields, such as yield contests (Lollato et al., 2018; Long et al., 2017; Villamil et al., 

2012), progressive producers (van Rees et al., 2014), and representative producers 

(Grassini et al., 2015a; Rattalino Edreira et al., 2017); or to utilize existing datasets 

from long-term experiments (Hinds et al., 2016; Kaur et al., 2017; Lollato et al., 2019a; 

Prasad et al., 2017; Schwalbert et al., 2018) or variety performance trials (VPT) 

(Mourtzinis et al., 2019; Wójcik-Gront, 2018). 

Variety performance trials are frequently conducted by local research and 

extension institutions to improve recommendations for variety selection for most 
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cultivated species. The results of VPT are typically published in extension bulletins 

comparing varieties in specific environments (e.g., site-years) that are mostly of local 

relevance and usually lack depth (multi-year) and breadth (multi-environment) (e.g., 

Johnson et al., 2018; Lingenfelser et al., 2019, 2018b, 2018a; Marburger et al., 2018). 

While information from localized VPT is important to guide growers’ decisions, we 

propose that VPT data are currently underutilized. A few published examples 

extracting more value from VPT data include distilling genotype by environment 

interactions over a long time-period for wheat in the U.S. Great Plains (Graybosch, 

2017; Peterson, 1992); determining optimal soybean (Glycine max L.) sowing dates 

across the U.S. (Mourtzinis et al., 2019); exploring the yield penalty from the dual-

purpose (i.e., grazing plus grain) wheat system (Edwards et al., 2011); underpinning 

variables influencing yield of winter wheat in Poland (Wójcik-Gront, 2018); evaluating 

the effects of warming temperature on wheat and sorghum (Sorghum bicolor) in the 

U.S. (Tack et al., 2017a, 2017b, 2015); and predicting the influence of genetic gain, 

weather, and diseases on winter wheat yield across Kansas (Barkley et al., 2014; 

Holman et al., 2011). These examples demonstrate the potential of existing VPT 

datasets to help explore variety traits (e.g., maturity, disease tolerance, etc.), 

management practices (e.g., sowing date, water regime, etc.), and their interaction. 

Exploring VPT datasets to determine best management practices, however, 

might provide unique challenges due to their structure and nature. For instance, crop 

husbandry might be different in each trial; thus, the evaluation of differences in 

management practices could potentially be confounded with site-year due to their 

nested structure (e.g., as opposed to controlled replicated treatments). In this paper, 

we used winter wheat VPT data from the U.S. central Great Plains as a case study to 

demonstrate how modern statistical tools can help explore VPT data and improve 

current management recommendations. Our objectives were to explore long-term VPT 

data to: i) quantify the effects of region, year, genotype, and management practices on 

crop yield variability; ii) identify management practices associated with improved grain 

yield to enhance management recommendations; and iii) identify agronomic traits of 

different genotypes consistently associated with increased grain yield within the main 

management effect to improve variety selection recommendations.  
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2. REVIEW OF LITERATURE 

 

 

2.1. Wheat production overview 

 

 

Wheat is the second most widely grown crop in the world. In 2017, wheat was 

the crop with the largest harvested area in the world with a total of 219 million hectares 

(FAO, 2019). During 2017, average total wheat production in the world was 

approximately 772 million metric tons, ranking third among production crops behind 

sugarcane (1,842 million metric tons) and maize (1,135 million metric tons) (FAO, 

2019). China was the largest producer of wheat, with 134 million metric tons (i.e. 17% 

of global production), followed by India with 99 million metric tons (13%), Russia with 

86 million metric tons (11%), and United States with 47 million metric tons (6%) (FAO, 

2019). 

The United States produces six classes of wheat in different parts of the country: 

hard red winter, hard red spring, soft red winter, soft white, hard white, and durum 

(Triticum durum Desf.). In 2019, the United States produced 53 million metric tons from 

a harvested area of 15 million hectares and an average yield of 3.5 Mg ha-1 across all 

wheat classes (USDA-NASS, 2019). Hard red winter wheat had the largest production 

among all the wheat classes, adding to 22.7 million metric tons. This wheat class is 

primarily grown in Texas, Oklahoma, Kansas, Nebraska, Montana, and Colorado. Total 

soft red winter wheat production was 6.5 million metric tons, with the crop primarily 

grown in Ohio, Kentucky, and Michigan; total soft white winter wheat production was 

5.8 million metric tons, primarily produced in Washington and; total spring wheat 

production was 16.3 million metric tons, primarily cultivated in North and South Dakota, 

and Minnesota; and durum wheat, which is primarily grown in North Dakota and 

Montana, totaled 1.6 million metric tons (USDA-NASS, 2019). 

The central portion of the U.S. Great Plains (i.e., Colorado, Kansas, and 

Oklahoma) accounted for 25% of the total U.S. wheat production and represented 30% 

of the U.S. wheat harvested area in during the period of 2000 to 2018 (USDA-NASS, 

2019). The average grain yield for each of these states, comprising the same period, 
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ranged from 1.1 Mg ha-1 in Oklahoma on the year 2014 to 3.8 Mg ha-1 in Kansas on 

the year 2016. 

 

 

2.2. Effects driving wheat grain yield 

 

 

Grain yield result from both manageable and unmanageable factors. For 

example, environmental constraints such as temperature, light intensity (radiation 

efficiency), precipitation total and distribution, soil type, texture and water holding 

capacity establish a gap on nonirrigated yield potential (Jaenisch, 2017). Manageable 

factors, on the other hand, are crucial in ensuring current yields are economically close 

to their yield potential for a particular growing season at a given location. These include 

fertilizer management (placement, type, timing, and rate), variety selection, sowing 

date, seeding rate, control of diseases, weeds, insects, and irrigation management. 

(Jaenisch, 2017). 

 

 

2.2.1 Environmental 

 

 

Yield potential is defined as the yield achieved by an adapted cultivar when 

grown under non-limiting water and nutrient conditions with all biotic stresses properly 

managed (van Ittersum et al., 2013). Provided non-limiting water conditions, the 

theoretical yield potential of a crop can be estimated as the product of total intercepted 

solar radiation, radiation-use efficiency, and the ratio between grain yield and crop 

aboveground biomass at physiological maturity (i.e. harvest index) (Hay and Porter, 

2006). Following this approach, Sinclair (2013) estimated the theoretical yield potential 

of wheat as 12.9 Mg ha−1. However, in rainfed agricultural systems, yield potential is 

often decreased due to inadequate total water supply and/or seasonal water 

distribution (Lobell et al., 2009, Lollato et al., 2017). Therefore, the degree of water 

limitation needs to be taken into account when determining a crop’s yield potential in 
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rainfed environments, also referred to as water-limited potential yield (Connor et al., 

2011). 

Recent analysis of historical wheat yields in the U.S. Great Plain indicated that 

average farm yield have been nearly stagnant for the last 30-yr with state-level yields 

never surpassing 3 Mg ha−1 and county-level yields ranging from 0.2 to 3.6 Mg ha−1 

(Patrignani et al., 2014). These yield levels are well below maximum yields reported 

from well-managed field trials across the region along the years, which ranged from 

6.8 to 9.3 Mg ha−1 (Lingenfelser et al., 2016; Lollato and Edwards, 2015; Musick et al., 

1994). 

Lollato et al., (2017) studied the effects of weather variables to assess the 

meteorological drivers of wheat productivity in the U.S. southern Great Plains. The 

authors identified differences on latitudinal or longitudinal gradients in meteorological 

variables, depending on the phase of crop development and the meteorological 

variable evaluated. The results indicated that highest wheat yield was achieved in 

locations with plentiful precipitation and high average minimum temperature during the 

growing season, abundant cumulative radiation, abundant plant available water at 

sowing and low cumulative evapotranspiration during the sowing – anthesis interval. 

On the other hand, wheat grain yield was negatively correlated with average maximum 

temperature during the anthesis – physiological maturity interval (Lollato et. al., 2017). 

Water is generally the most limiting resource to crop productivity in modern 

rainfed agriculture (Connor et al., 2011). In the U.S. southern Great Plains, cumulative 

precipitation accounted for the largest proportion of the variation in simulated rainfed 

wheat water-limited yield (Lollato et al., 2017). Similarly, Barkley et al. (2014) evaluated 

the effects of weather on wheat yield across Kansas using historical data from variety 

performance tests and suggested that rainfall distribution is often the most limiting 

factor for wheat productivity. Holman et al. (2011) also highlighted the importance of 

growing season precipitation for wheat yields in western Kansas. In Oklahoma, 

Patrignani et al. (2014) demonstrated that wheat yields are limited by water supply 

when growing season precipitation is less than approximately 400 mm, a value beyond 

which wheat yields become limited factors other than precipitation total. Consequently, 

the effect of precipitation on the grain yield depend on the region and it is a more 
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important factor in the west and west-central portion of the U.S. southern Great Plains 

(Lollato et al., .2017) 

Increased temperatures during the reproductive stages of wheat, on the other 

hand, can hasten wheat senescence and decrease kernel weight and grain yield 

(Asseng et al., 2011; Fischer, 2007). The negative association of wheat yield to 

temperature during the reproductive stages have been documented for different 

regions in the U.S. Great Plains western Kansas (Holman et al., 2011; Lollato et al., 

2017). 

 

 

2.2.2. Management practices 

 

 

Improved agronomic management and crop genetics resulted in high rates of 

yearly yield gain for wheat between 1960 and 1980 (Bell et al., 1995; Brancourt-Hulmel 

et al., 2003). After approximately 1980, yield gains decreased and yield stagnation has 

been reported for several important regions such as the U.S. southern Great Plains 

(Patrignani et al., 2014), the North China Plain (Wu et al., 2006), France (Brisson et 

al., 2010), the Netherlands, the United Kingdom, and India (Grassini et al., 2013). In 

high-yielding wheat regions, yield stagnation might result from regional yield 

approaching 70 to 80% of the yield potential (Grassini et al., 2013), resulting in a small 

yield gap, which is the difference between average regional yield and the yield limited 

only by moisture regime in rainfed regions (i.e., water-limited yield; Lobell et al., 2009). 

Meanwhile, yield stagnation in lower wheat-yielding regions might result from low input 

and risk aversion (Connor et al., 2011). As a consequence, the opportunity to decrease 

yield gap through improved agronomic management exists (Hochman et al., 2017). 

Increasing wheat production in water-limited regions through agronomic management 

can help meet future food demand while minimizing expansion of the current 

agricultural land, especially as the genetic yield potential for wheat fails to enhance at 

historical rates (Cassman, 1999). 

However, with few exceptions (e.g., Jaenisch et al., 2019), most of the 

manageable agronomic practices in the U.S. southern Great Plains were explored in 
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low- and average-yielding systems, ranging between 2 and 4 Mg ha−1 (Edwards et al., 

2011; Schroder et al., 2011; Bushong et al., 2012; Lollato et al., 2013). Holman et al. 

(2011) suggested a 1.2 Mg ha-1 increase in wheat yield due to supplementary irrigation 

when evaluating 56 years of VPT data in western Kansas. These yield gains likely 

resulted from the high influence of precipitation on the long-term dryland wheat yields 

in this semi-arid region (i.e., water supply accounting for as much as 83% of variability 

in water-limited yield; Lollato et al., 2017). 

The identification of the optimum sowing date presents a potential to increase 

regional grain yield because of the expected quadratic response to sowing date due to 

different yield-reducing factors (Sacks et al., 2010). Early sowing might limit yield due 

to i) increased exposure to insect pests (Schmid et al., 2019) that might transmit viral 

diseases (Wibberley, 1989; Wiersma et al., 2006); ii) decreased germination due to 

high soil temperatures (Smith, 1995); and iii) excessive fall growth and non-productive 

water and N consumption (Herwaarden et al., 1998). Yield-limiting factors for late sown 

winter wheat include i) a decreased fall tillering potential (Dahlke et al., 1993) requiring 

increased seeding rates (Staggenborg et al., 2003); ii) insufficient root growth in the 

fall, increasing the chances of water deficit and winterkill (Hammon et al., 1999); and 

iii) insufficient time for full vernalization (Wiersma et al., 2006). 

Several previous studies reported positively association between fungicide 

application and grain yield (e.g., from controlled replicated experiments [Jaenisch et 

al., 2019], yield contests in Kansas [Lollato et al., 2018], and field experiments in 

Oklahoma [Edwards et al., 2012; Puppala et al., 1998]). Jaenisch et al., (2019) 

attributed the greater grain yield due to foliar fungicide because of the severe stripe 

rust infestations experienced. Under optimum conditions, greater than 60% of 

photosynthates translocated to developing wheat grains are produced by the upper 

canopy during grain fill; thus, fungicide application protected the green leaf area and 

allowed for photosynthate production and translocation (Rawson et al., 1983). Foliar 

fungicide applications typically decrease wheat yield losses in susceptible wheat 

varieties in the presence of disease pressure (Thompson et al., 2014, Lollato et al., 

2019b), with yield losses greater than 20% from the absence of fungicide (Edwards et 

al., 2012) or as much as 1 Mg ha-1 in yield-contest fields (Lollato et al., 2018), both in 

the U.S. Great Plains. 
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No till system presents a low frequency of adoption in the U.S. Great Plains 

(Lollato et al., 2018), it may be a consequence of the lack of yield increase (Patrignani 

et al., 2012) and the occasional yield decrease (Decker et al., 2009) measured in wheat 

grown under no till, especially in wetter seasons (Giller et al., 2015) or in the subhumid 

region of the Great Plains (Patrignani et al., 2012). However, wheat yields have been 

shown to benefit from (Amato et al., 2013; Pittelkow et al., 2015; Toliver et al., 2012) 

and have greater stability (Giller et al., 2015) due to no till in semiarid regions. The 

benefits of no till in may have resulted from improved soil physical characteristics (Six 

et al., 2002; Hobbs et al., 2008; Lollato et al., 2012), as the latter likely contributes to 

yield stagnation in the region (Patrignani et al., 2014). Crop rotation is another 

important component of no-tillage systems, benefitting the crop by breaking weed and 

disease cycles (Bushong et al., 2012). The southern portion of the studied subhumid 

region is highly characterized by continuous wheat production (i.e., lack of crop 

rotation), perhaps supporting the decreased adoption of no-tillage practices in this 

region (Patrignani et al., 2012). Although winter wheat–fallow rotation has historically 

been the predominant cropping system in the semiarid region of the Great Plains 

(Stone and Schlegel, 2010), rotations with two crops in 3 yr are more profitable (Kaan 

et al., 2002), and no till has been suggested as a strategy to conserve soil moisture 

(Farahani et al., 1998). Combined, these factors might help explain the greater 

adoption of no till and crop rotation in the semiarid region. 

Tillage practices and previous crop were significant factors in the analysis of 

producer-reported yields in the region (Lollato et al., 2018). Increased yields from no-

till might result from a greater yield stability (Giller et al., 2015) or greater soil moisture 

conservation (Farahani et al., 1998) of wheat grown under no-till in semi-arid regions. 

Meanwhile, studies in Oklahoma suggested a yield penalty to continuous no-till wheat 

fields (i.e., fields that lack crop rotation; Decker et al., 2009). Continuous wheat 

cropping might partially justify the negative association of no-till and wheat yields, as 

well as the low rate of adoption of no-till in the southern portion of the study region 

(Patrignani et al., 2012). The benefits of no-tillage practices to semi-arid regions in 

which crop rotations are adopted is otherwise well reported (Amato et al., 2013; 

Pittelkow et al., 2015; Toliver et al., 2012).  
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2.2.3. Genotypic traits 

 

 

The U.S. Great Plains experienced a series of stripe rust epidemics during the 

last 19 years (Chen et al., 2010, 2002; DeWolf, 2018; Jaenisch et al., 2019; Lollato et 

al., 2018), with production losses due to the disease ranging from 3 to 10.6% 

depending on state in a given year (Chen, 2007) and as great as 15.4% in Kansas in 

2015 (Hollandbeck et al., 2016). Selecting varieties with inherent disease resistance is 

the most effective and economical way to control stripe rust (Chen, 2014, 2005), 

although evolution of the stripe rust pathogen (Wan et al., 2016) can render certain 

varieties susceptible and decrease their commercial life (Perronne et al., 2017). 

Likewise, Holman et al. (2011) suggested the need to improve wheat variety 

drought tolerance to increase wheat yields in western Kansas. The physiological 

mechanisms conferring drought tolerance to different wheat varieties are genotype-

specific and might be different depending on wheat growing region. Field and 

greenhouse studies in the U.S. Great Plains suggested that the increased grain yield 

of more drought-adapted cultivars resulted from greater water use and greater biomass 

production under drought stress when compared to less drought-tolerant cultivars 

(Reddy et al., 2014; Xue et al., 2014). Additionally, genotypic differences exist for root 

traits in winter wheat genotypes grown in the study region (Awad et al., 2018) and other 

areas (Aziz et al., 2017), which might help confer drought tolerance to winter wheat 

(Sciarresi et al., 2019). 

Acidic soils are a growing concern for wheat production in the central region of 

the U.S. Great Plains (Johnson et al., 1997; Lollato et al., 2013). Previous studies 

suggested that varieties more tolerant to low soil pH usually outperform susceptible 

ones in acidic soil conditions (Johnson et al., 1997; Kariuki et al., 2007; Lollato et al., 

2019b). Thus, considerable efforts have been made for breeding acidic soil tolerant 

cultivars in the region (Bona et al., 1994; Carver et al., 1988; Tang et al., 2002; Zhou 

et al., 2007).  
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2.3. Data mining 

 

 

The development of information technology has generated large amount of 

databases and huge data in various areas, consequently the term “Big Data” is 

appearing in many contexts. It ranges from meteorology, genomics, complex physics 

simulations, biological and environmental research, finance and business to healthcare 

(Sowmya and Suneetha, 2017). Creating a need to develop technologies and tools to 

find, transform, analyze and visualize data in order to make it consumable for effective 

decision making and to use it intelligently (Liao et al., 2012; Sowmya and Suneetha, 

2017). Consequently, data mining techniques has become an increasingly important 

research area (Fayyad et al., 1996; Liao et a., 2012; Sowmya and Suneetha, 2017). 

Data mining allows a search, for valuable information, in large volumes of data (Weiss 

and Indurkhya, 1998; Liao et al., 2012; Sowmya and Suneetha, 2017). Data mining is 

a five-step process: i) identifying the source information; ii) picking the data points that 

need to be analyzed; iii) extracting the relevant information from the data; iv) identifying 

and reporting the results; and v) interpreting and reporting the results (Brown, 2014). 

Data mining methods can be generally divided into two categories, the first 

category is the use of statistical models. Its greatest contribution to data mining is in 

evaluating hypotheses, evaluating the results, and applying the results. Some popular 

statistical techniques employed include probability distributions, correlation, 

regression, cluster analysis, and discriminant analysis (Chen et al., 2000). The second 

category of methods applied in data mining is a branch of leading-edge artificial 

intelligence called machine learning. It suggests using a training set of data from which 

the data mining system learns and finds the parameters for its models. Such an 

approach is also called inductive reasoning, which involves deriving rules by studying 

a large number of samples in the database (Chen et al., 2000). 
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3. MATERIAL AND METHODS 

 

 

3.1. Study-region 

 

 

The U.S. central Great Plains is part of the largest contiguous area of low-

precipitation winter wheat production in the world (Fischer et al., 2014). Together, the 

states included in this study (i.e., Colorado, Kansas, and Oklahoma) accounted for 

25% of the total U.S. wheat production and represented 30% of the U.S. wheat 

harvested area during the study period (i.e., 2000-2018) (USDA-NASS, 2019). This 

region shows a diverse gradient in climatic conditions. Elevation ranges from more 

than 1,500 m in the west to less than 300 m in the east. Average cumulative 

precipitation from winter wheat sowing to maturity ranges from ~200 mm in the west to 

~800 mm in the east, while potential evapotranspiration (Allen et al., 1998) during the 

same period follows the opposite gradient and ranges from ~800 mm in the west to 

~600 mm in the east (Lollato et al., 2017). There are also latitudinal and longitudinal 

gradients in mean temperature and cumulative incident solar radiation during the 

winter wheat growing season (Lollato et al., 2017). 

 

 

3.2. Regional subdivision into growing adaptation regions (GAR) 

 

 

The aforementioned gradients in meteorological variables naturally result in 

gradients in management practices and differences in varieties tested in each location 

in the study-region. For instance, sowing date increases from ca. day of year (DOY) 

265 to 290 (Sep. 22nd to Oct. 17th) from north to south, and from ca. 260 to 296 (Sep. 

17th to Oct. 23rd) from west to east (Fig. 1). Likewise, varieties bred in drought-prone 

environments (e.g., Colorado, western Kansas, and Texas panhandle) tend to 

populate the VPT conducted in the western portion of the study region while eastern 

Kansas- and Oklahoma-bred varieties tend to populate the VPT conducted in the 
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central portion of the region (data not shown). To account for differences in climate, 

management variables, and varieties that resulted from each trial’s geographical 

location, we developed a climate zonation scheme within which the remaining analyses 

were performed. 

 

 

 

Fig. 1.  Sowing dates in the U.S. southern Great Plains according to the (A) latitude 
and (B) longitude range. The colors of the circles correspond to the color of 
the respective growing adaptation region (GAR) color. 

 

 

The climate zonation scheme was based on annual accumulation of wheat-

specific growing degree-days (GDD, considering 0 ºC as the base temperature; 
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Gallagher, 1979) and cumulative annual precipitation using data derived from 53 

weather stations located throughout the region (inset in Fig. 2) that accounted for 30 

consecutive years of daily weather data (1986-2015). The GDD range was divided into 

five classes averaging 460 ºC and precipitation was divided into four classes of 200 

mm, resulting in 11 distinct zones for which grain yield data were available (Fig. 2). 

Both surfaces (i.e., continuous maps of GDD and precipitation) were created using the 

Empirical Bayesian Kriging tool in ArcGIS (Krivoruchko, 2012). Hereafter, we will refer 

to these zones as growing adaptation regions (GAR). 

 

 

 

Fig. 2.  Map of Colorado (CO), Kansas (KS), and Oklahoma (OK) showing the 
eleven growing adaptation regions (GAR) (number in the white box), dryland 
VPT (solid circles), irrigated VPT (“X”) and their respective number of yield 
observations (dimension of circles for dryland and squares for irrigated) 
used in this study. The colors represent the four cumulative yearly 
precipitation (PREC) levels and the shade intensities represent the five 
annual growing degree-days (GDD) intervals. Bottom inset: raster 
represents the wheat cultivated area in 2017 (USDA-NASS, 2017), location 
of the three states within the continental USA (red highlight), and location of 
the weather stations (black solid circles). 
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3.3. Database description 

 

 

3.3.1. Crop management 

 

 

Grain yield data were collected from hard winter wheat VPT conducted in the 

three aforementioned states over nineteen harvest years (2000-2018). The initial 

dataset included 92 locations and 738 genotypes, comprising both commercial 

varieties and elite experimental lines, and resulted in a dataset of 97,996 observations 

(Fig. 2 and Table 1). We retrieved all available information about the management of 

each individual trial, including: i) sowing date in DOY; ii) water regime, comprising 

dryland or irrigated trials; iii) presence or absence of foliar fungicide applied at the 

heading stages of crop development; iv) presence or absence of “intensive 

management”, which comprised of two foliar fungicide applications (e.g., at jointing and 

at heading) plus an additional 45 kg N ha-1 to the base fertility used in the standard 

trials; v) trial purpose described as grain-only or dual-purpose (i.e., grazing during fall 

and winter followed by grain harvest); vi) tillage system (conventional or no-till); and 

vii) previous crop, comprised of alfalfa (Medicago sativa), canola (Brassica napus), 

maize (Zea mays), fallow, sunflower (Helianthus annuus), wheat, or others. Other 

management variables such as fertilization practices were not uniformly reported and 

thus these data were not evaluated. The dataset did not include experiments that failed 

due to winterkill, hail damage, wheat streak mosaic virus, or other disasters. 

Additionally, grain yield observations from trials yielding less than 0.3 Mg ha-1 were 

removed from the final analysis. Experiments included in this study were conducted in 

both farmer’s fields and research stations. 
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Table 1.  Summary of winter wheat grain yield data derived from variety performance 
trials for each evaluated growing adaptation region (GAR). The number of 
years with trials (Y), number of test locations (L), number of year-location 
combinations (Y-L), number of genotypes tested (G), total number of grain 
yield (GY) measurements and management practices evaluated (“X”) are 
shown. 

GAR 

Y L Y-L G GY Management practices evaluated 

(n) (n) (n) (n) (n) 
Sowing 

date 
Water 
regime 

Fungicide 
Intensive 

management 
Trial 

purpose 
Tillage 
system 

Previous 
crop 

All 19 92 748 738 97996 X X X X X X X 

1 19 15 166 516 24905 X X X - - - - 

2 19 8 76 521 11963 X X X - - - - 

3 19 6 52 446 7028 X X - - X - - 

4 17 5 38 270 5669 X X X - - - X 

5 12 8 22 211 3879 X X X X - - X 

6 18 5 68 168 6030 X - X - X X - 

7 17 3 25 154 2426 X - - - X X - 

8 16 9 58 225 6750 X - X X - - X 

9 19 24 165 255 20047 X - X X X X - 

10 17 4 34 163 5564 X - X X X X - 

11 19 5 44 188 3735 X - X - - - X 

 

 

3.3.2. Genotypic traits 

 

 

For each released variety entered in the VPT, we collected agronomic traits and 

disease/insect reaction characteristics reported yearly in extension reports (Ehmke, 

2018, 2017, 2016, 2015; Watson, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 

2006, 2005, 2004, 2003, 2002, 2000). We compiled information on 17 agronomic traits 

per variety and divided each trait into three categorical levels (Table 2A). If an individual 

variety was scored for agronomic traits in several consecutive years, only the most 

recent scores were used. Likewise, we collected information on each variety’s reaction 

to eleven diseases or insect pests and divided in five scores ranging from 1 

(susceptible) to 5 (resistant) (Table 2B). For Fusarium graminearum (head blight), 

resistance ratings ranged from extremely susceptible (1) to intermediate (5) due to a 

lack of truly resistant varieties. For disease/insect resistance ratings, scores were 

retrieved after each individual growing season as the reaction of an individual variety 

might change from one year to another (Kolmer, 1996; Wan et al., 2016). Elite 
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experimental lines were also evaluated in the VPT, and agronomic or disease ratings 

were not available for this subset. After excluding yield observations from experimental 

lines that were not released, the resulting dataset comprised of 65,264 yield 

observations from 194 commercial wheat varieties. These included 60,340 yield 

observations for hard red winter wheat varieties, and 4,924 yield observations for hard 

white winter wheat varieties. We checked for potential differences in grain yield 

between both classes by first selecting only trials that had at least one white variety (n 

= 36,825 for red vs. 4,924 for white), and second comparing their yields, which were 

similar (3.6 vs. 3.5 Mg ha-1 for red vs. white). 

 

 

Table 2. (A) Agronomic traits and their respective levels, and (B) disease/insect 
reaction information collected from each individual variety. 

(A) 

Abbreviation Trait Levels 

AST Acid soil tolerance susceptible (s) intermediate (i) tolerant (t) 

CL Coleoptile length short (s) intermediate (i) long (l) 

DT Drought tolerance poor (p) intermediate (i) good (g) 

ESG Early spring greenup early (e) intermediate (i) late (l) 

FGCP Fall ground cover potential poor (p) intermediate (i) good (g) 

FGH Fall growth habit prostrate (p) intermediate (i) up (u) 

FGP Fall grazing potential poor (p) intermediate (i) good (g) 

FHS First hollow stem early (e) intermediate (i) late (l) 

PH Plant height short (s) intermediate (i) tall (t) 

HD Heading date early (e) intermediate (i) late (l) 

SS Seed size tendency small (s) intermediate (i) large (l) 

SHR Shattering reputation poor (p) intermediate (i) good (g) 

ST Spouting tolerance poor (p) intermediate (i) good (g) 

STS Straw strength poor (p) intermediate (i) good (g) 

TW Test weight low (l) intermediate (i) good (g) 

TT Tillering tendency poor (p) intermediate (i) good (g) 

WH Winterhardiness poor (p) intermediate (i) good (g) 

(B) 

Abbreviation Disease/insect Abbreviation Disease/insect 

BYDV Barley yellow dwarf virus YR Stripe rust (Puccinia striiformis) 

SBWMV Soil-borne mosaic virus PM Powdery mildew (Blumeria graminis) 

WSMV Wheat streak mosaic virus SLB Septoria leaf blotch (Mycosphaerella graminicola) 

HF Hessian fly (Mayetiola destructor) TS Tan spot (Pyrenophora tritici‐repentis) 

LR Leaf rust (Puccinia triticina) SCB Head blight (Fusarium graminearum) 

SR Stem rust (Puccinia graminis)   
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To evaluate the G effect from multiple trials, we transformed the response 

variable (yield) by centering (subtracting the mean) and scaling (dividing by the 

standard deviation) each trial (Cheadle et al., 2003; Ishii et al., 2000; Lê Cao et al., 

2014): 

𝑧𝑖𝑗 =  
𝑥𝑖𝑗−𝑥.𝑗

𝜎𝑗
  [1] 

where, 𝑧𝑖𝑗  is the Z-score of the 𝑖th observation (𝑖 = 1, … , 𝑛) from the 𝑗th trial (𝑗 =

1, … , 𝑛), 𝑥𝑖𝑗 is the individual grain yield measurement, 𝑥𝑗 is the trial mean grain yield, 

and 𝜎𝑗 is the trial standard deviation. The Z-score fitted a standard normal distribution 

with a mean of zero and standard deviation of one (Clark-Carter, 2014) (Fig. 3). 

 

 

 

Fig. 3.  Violin plot of Z-score for each growing adaptation region (GAR). (A) Within 
the violin plot, the red dot represents the mean and the filled area with the 
respective GAR color represents the data distribution. (B) Histogram of all 
data, the dashed line represents the global mean. 

 

 

3.4. Statistical analysis 

 

 

3.4.1. Data dispersion and variance component analyses 

 

 

We used exploratory data analysis tools (i.e., violin plot and histograms) to 

demonstrate the range of variation associated with sowing date, grain yield, and Z-
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score. We also calculated the frequencies of adoption of management practices to 

illustrate the range of variation across the entire dataset and by GAR. To quantify how 

much of the total variability in grain yield was accounted for by GAR, year, genotype, 

and management practice, we performed a variance component analyses (e.g. 

random effects associated with yield) with linear mixed-effects models through the 

“lme4” package in R software (Bates et al., 2015). This analysis was performed both 

across the entire dataset using genotype as a random effect, and across the smaller 

dataset (n = 65,264) using traits of each genotype (e.g., disease and insect resistances 

and agronomic traits) as random effects. In these analyses, only effects that had less 

than 25% of missing data were considered. 

 

 

3.4.2. Effects of management practices and genotypic traits on grain yield 

 

 

First, we calculated the relative variable influence of each management practice 

on yield within each GAR using the machine learning algorithm gradient boosted trees 

(De’ath, 2007) implemented using “gbm” package in R software (Greenwell et al., 

2019). Second, we evaluated potential interactions of management practices on wheat 

yield within each GAR using conditional inference trees through the “partykit” package 

in R software (Hothorn and Zeileis, 2015). To explore genotype × management 

interactions in the variety trait analysis, we forced the conditional inference tree to first 

split the data based on the main management practice impacting wheat yields within 

each GAR. We then investigated the association of variety traits with wheat yield within 

the GAR × management combination using conditional inference trees. For instance, 

if water regime was the main management practice affecting wheat yield in a particular 

GAR, the next step was to evaluate variety traits associated with wheat yield for trials 

conducted under irrigated versus dryland conditions separately within the 

corresponding GAR. Both gradient boosted trees and conditional inference trees were 

subjected to appropriate sensitivity analyses and the model with the highest R2 was 

selected and used for inference. 
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Gradient boosted trees: In a single regression tree, the relative influence of a 

variable is quantified by the sum of squared improvements at all splits determined by 

the variable (Breiman et al., 1984). Gradient boosted trees are grown sequentially and 

each tree is grown using information from previously grown trees; and in these models, 

the relative influence of each variable is averaged over the collection of trees (De’ath, 

2007). To optimize the predictive accuracy of the model, we tested a combination of 

81 hyperparameters and applied it to 5,000 trees. The hyperparameters tested were 

learning rate (0.01, 0.1, and 0.3), depth of trees (1, 3, and 5), minimum number of 

observations allowed in the trees’ terminal nodes (5, 10, and 15%), subsampling (0.65, 

0.8, and 1), all in a training rate of 80% of the observations. The best combination of 

hyperparameters, as well as the optimum number of trees, were selected based on the 

minimum root mean square error (RMSE). 

Conditional inference trees: these trees can handle categorical and continuous 

explanatory variables, model complex interactions, deal with missing data, and are 

robust to outliers, multicollinearity, and heteroscedasticity (De’ath, 2007; Tittonell et al., 

2008). Conditional inference trees estimate a relationship among several variables by 

binary recursive partitioning in a conditional inference framework without bias or 

overfitting issues (Hothorn et al., 2006). We used the stop criterion based on alpha = 

0.05. As a sensitivity test, we started all analyses requiring a minimum of 20% of the 

total observations to create an intermediate node and 10% of the total observations to 

create a terminal node, with no restrictions to tree depth. We then allowed intermediate 

nodes to range from 10 to 40% of total observations and terminal nodes to range from 

5 to 10% of the total observations, ensuring that each terminal node was comprised of 

at least two trials. A more complex model was only selected when it improved R2 at 

least 5% from the original model. 

 

 

3.4.2. Determination of optimum sowing date 

 

 

Boundary function provides a framework to quantify the highest attainable unit 

of a given measured output as function of the availability of a particular resource. 
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French and Schultz (1984) first demonstrated this framework to quantify the maximum 

attainable wheat yield per unit of seasonal water supply in Australia. Afterwards, 

different authors validated this approach for wheat (Lollato et al., 2017; Passioura and 

Angus, 2010; Patrignani et al., 2014; Sadras and Angus, 2006) and other crops 

(Grassini et al., 2015b, 2011, 2009). Boundary functions were also used to quantify 

how different crop husbandry practices affect crop yield potential (Hajjarpoor et al., 

2018; Huang et al., 2008; Lollato et al., 2018; Tasistro, 2012). 

Within this context, we fitted a smooth and convex shape-restriction to relate 

wheat yield potential (i.e., 99th percentile) with sowing date within each GAR. We used 

the constrained generalized additive model of through the “cgam” package in R 

software (Liao and Meyer, 2019). 

 

 

4. RESULTS 

 

 

4.1. Management practices adopted in the different VPT 

 

 

Sowing date ranged from DOY 244 to 327 (Sep. 1st to Nov. 23rd, Fig. 4) across 

the entire study region and was earlier (DOY 266 to 281; Sep. 23rd to Oct. 8th) in the 

northwest (GAR 1, 2, 3, 4, 5, and 6) and later (DOY 283 to 293; Oct. 10th to Oct. 20th) 

in the southeast region (GAR 7, 8, 9, 10, and 11). Most of the VPT were conducted 

under dryland conditions, except for trials in the semi-arid, western regions (GAR 1 to 

5); where 7-31% of the trials were irrigated (Table 3). Fungicide was applied around 

heading in 10% of the studied trials and, within GAR, frequency of fungicide adoption 

ranged from 0% (GAR 3 and 7) to 34% (GAR 10) (Table 3). Only 2% of the trials were 

intensively managed and these were located in four GAR (i.e., 5, 8, 9, and 10). Within 

these GAR, the frequency of intensive management trials ranged from 2-17%. Dual-

purpose trials represented 6% of the total observations, and occurred in the GAR 3, 6, 

7, 9, and 10. The number of trials conducted under dual-purpose ranged from 2-20% 

within these GAR (Table 3). Tillage practices were not reported in several trials and 
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only met the criteria for variable inclusion (i.e., less than 25% missing data) in four GAR 

(i.e., 6, 7, 9, and 10). Previous crop was only reported in 54% of the trials and within 

GAR, its reporting varied between 19-100% in GAR 4, 5, 8, and 11. A 14-month fallow 

period was the most common previous crop in GAR 4 (69%) and GAR 8 (40%), and 

the second most common rotation (37%) and similar to sorghum (39%) in GAR 5. 

 

 

 

Fig. 4.  Violin plot of sowing date in day of year (DOY) for each growing adaptation 
region (GAR). (A) Within each violin plot, the red dot represents the mean 
and the filled area with the respective GAR color represents the data 
distribution. (B) Histogram of all sowing date data, with each bar 
corresponding to one DOY. 
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Table 3.  Management practices frequencies of adoption and missing values for each 
growing adaptation region (GAR). 

Agronomic practice 
GAR 

All 1 2 3 4 5 6 7 8 9 10 11 

(%) 

Sowing date naa 11 22 9 7 4 6 5 13 11 13 4 9 

Water regime Irrigated 12 22 30 31 7 8 - - - - - - 

Dryland 88 78 70 69 93 92 100 100 100 100 100 100 

na - - - - - - - - - - - - 

Fungicide Fungicide 10 7 8 - 2 19 2 - 17 20 34 2 

No fungicide 90 93 92 100 98 81 98 100 83 80 66 98 

na - - - - - - - - - - - - 

Intensive management Intensive 2 - - - - 12 - - 6 2 17 - 

Standard 98 100 100 100 100 88 100 100 94 98 83 100 

na - - - - - - - - - - - - 

Trial purpose Dual 6 - - 2 - - 15 2 - 20 15 - 

Grain only 94 100 100 98 100 100 85 98 100 80 85 100 

na - - - - - - - - - - - - 

Tillage system Conventional 30 - - 37 - 0 77 88 - 77 61 36 

No till 9 - - 35 - 4 23 12 3 9 39 8 

na 61 100 100 29 100 96 - - 97 14 - 56 

Previous crop Alfalfa - - - - - - - - - 1 3 - 

Canola 2 1 - - - - - 4 7 4 12 4 

Maize 4 - 12 1 5 8 - - - 1 - 51 

Fallow 22 15 38 36 69 37 17 17 40 5 - 2 

Sorghum 3 - - 4 15 39 - - 5 2 - 4 

Soybean 3 - 2 2 - - - - 27 1 5 16 

Wheat 16 2 1 4 10 14 36 38 6 45 14 9 

Others 2 - 1 - - - - - 2 - 38 - 

na 46 81 46 53 - 3 47 40 13 41 29 14 

a missing values 

 

 

4.2. Yield variation and dispersion among and within GAR 

 

 

Average winter wheat yield was ca. 3.4 Mg ha-1 and ranged from ca. 2.5 Mg ha-

1 in GAR 6 and 7 to ca. 4.0 Mg ha-1 in GAR 4 and 5 (Fig. 5). Within GAR, grain yield 

ranged from ca. 0.3 – 11.0 Mg ha-1 in GAR 1, to ca. 0.3 – 5.0 Mg ha-1 GAR 7. Across 

the entire dataset, GAR was the most important factor accounting for overall wheat 

yield variability and accounted for 46% of the total variance (Table 4A). Management 

practices accounted for 32% of the yield variability, residuals (including unmodelled 
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interactions) accounted for 13%, year accounted for 7%, and genotype accounted for 

2% (Table 4A). Although GAR was the main effect driving wheat yield, substantial 

variation in yield remained after the trials were separated by GAR (Fig. 5). Within GAR, 

management practices were the most important effect explaining wheat yield variation 

(44 – 77%), followed by year (13 – 37%), residual (3 – 21%), and genotype (1 – 8%) 

(Table 4A). The exception was GAR 1, where the residuals accounted for 19% and 

year accounted for 13%. The variance component analysis for the second dataset 

using genotype traits as random effect (instead of genotype) resulted in similar 

proportion of yield variability accounted for by each evaluated random effect (Table 

4B). 

 

 

 

Fig. 5.  Violin plot of grain yield (Mg ha-1) for each growing adaptation region (GAR). 
(A) Within the violin plot, the red dot represents the mean and the filled area 
with the respective GAR color represents the data distribution. (B) 
Histogram of all yield data, with the dashed line representing the global 
mean. 
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Table 4.  Variance component analysis of the individual effects of growing adaptation 
region (GAR), management practices, year, genotype, agronomic traits, 
disease reaction, and residual on the grain yield variance across and within 
GAR for both datasets with (A) 97,996 and (B) 65,264 yield observations for 
which variety traits were available. 

Source of variation GAR 

 
All 1 2 3 4 5 6 7 8 9 10 11 

(A) Variance (%) 

GAR 46 - - - - - - - - - - - 

Management practicesa 32 66 57 62 63 53 66 58 77 44 61 70 

Year 7 13 23 28 30 37 30 31 17 27 22 21 

Genotype 2 2 3 1 2 2 1 3 1 8 3 4 

Residualsd 13 19 17 9 5 8 3 8 5 21 14 5 

(B) Variance (%) 

GAR 46 - - - - - - - - - - - 

Management practicesa 32 66 63 69 79 52 64 62 69 38 44 78 

Year 7 16 24 22 7 37 33 30 26 29 7 14 

Agronomic traitsb 4 1 2 1 2 3 1 2 1 13 26 1 

Diseases/insects reactionc 1 1 2 2 4 2 1 2 2 3 17 1 

Residuals 11 16 10 6 8 6 1 5 3 16 7 5 

a sum of the individual management practice effects; b sum of the individual agronomic trait effects; c sum of the individual disease 
reaction effects; d including unmodelled interactions 

 

 

4.3. Effects of management practices on winter wheat grain yield 

 

 

Boosted trees identified the relative importance of each important management 

practices influencing wheat grain yield within each GAR (Fig. 6). For example, water 

regime was the most important variable in the GAR 1, with a relative importance of 

56.9%; sowing date was the second (39.1%), and lastly foliar fungicide (4.0%). Water 

regime also was the most important variable in the GAR 2 and 3. Sowing date was the 

most important variable in all other GAR, with relative importance ranging from 50.0 to 

99.8%. The exception was GAR 9 where tillage system was the most important 

variable influencing yield. The relative importance of other variables varied among 

GAR. Foliar fungicide, for example, was applied in nine of the eleven GAR and its 

importance ranged from 0 to 18.1%. Previous crop and tillage system, in the GAR for 

which data was available, had relative importance of as much as 32.1 and 46.4% (Fig. 

6). 
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Fig. 6.  Analysis of the relative importance of each evaluated management practice 
on grain yield within each growing adaptation region (GAR). FA, fungicide 
application; SD, sowing date; WR, water regime; FP, final purpose of the 
trial; PC, previous crop; MI, management intensity; TL, tillage system. 

 

 

The conditional inference trees fit to data from each GAR are shown in Fig. 7 to 

17. Similar to Mourtzinis et al. (2018), these analyses illustrated interactions among 

management practices within and between GAR. For example, in the western, semi-

arid portion of the study region (GAR 1, 2, and 3), the water regime was the most 

important variable influencing wheat yield (Figs. 6, 7, and 8). Using GAR 1 as an 
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example, irrigated trials sown between DOY 267 and 296 (Sep. 24th to Oct. 23rd) 

yielded 6.0 Mg ha-1, which is 7% greater than the average yield in irrigated trials sown 

between DOY 253 and 266 (Sep. 10th to 23rd) (Fig. 7). In dryland trials in the GAR 1, 

foliar fungicide resulted in the highest yields (ca. 5.0 Mg ha-1) and, in the absence of 

foliar fungicide application, sowing after Sep. 17th (DOY 260) was associated with 

higher yield (3.5 Mg ha-1) compared to earlier sowing dates (2.8 – 3.1 Mg ha-1). The 

three variables of the explanatory model (water regime, foliar fungicide, and sowing 

date) captured 36% of total yield variability within GAR 1 (R2 = 0.36) (Fig. 7). 

 

 

 

Fig. 7.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 1 (shown in Fig. 2) as affected by water regime (WR), fungicide 
application (FA), and sowing date (SD). The number in the small boxes 
indicate the sequence of the split with respective split significance (p) in the 
circle. Boxplots show data distribution in each terminal node. The average 
grain yield (shown on top of each boxplot), number of observations (n), and 
model fit statistics (R2 and root mean square error, RMSE) are shown. DR, 
dryland; IR, irrigated; FG, fungicide; NF, no fungicide. 
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Fig. 8.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 2 (shown in Fig. 2) as affected by water regime (WR), and sowing 
date (SD). The number in the small boxes indicate the sequence of the split 
with respective split significance (p) in the circle. Boxplots show data 
distribution in each terminal node. The average grain yield (shown on top of 
each boxplot), number of observations (n), and model fit statistics (R2 and 
root mean square error, RMSE) are shown. DR, dryland; IR, irrigated. 
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Fig. 9.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 3 (shown in Fig. 2) as affected by water regime (WR), and sowing 
date (SD). The number in the small boxes indicate the sequence of the split 
with respective split significance (p) in the circle. Boxplots show data 
distribution in each terminal node. The average grain yield (shown on top of 
each boxplot), number of observations (n), and model fit statistics (R2 and 
root mean square error, RMSE) are shown. DR, dryland; IR, irrigated. 
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Fig. 10.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 4 (shown in Fig. 2) as affected by previous crop (PC), and sowing 
date (SD). The number in the small boxes indicate the sequence of the split 
with respective split significance (p) in the circle. Boxplots show data 
distribution in each terminal node. The average grain yield (shown on top of 
each boxplot), number of observations (n), and model fit statistics (R2 and 
root mean square error, RMSE) are shown. FAL, fallow; SOR, sorghum; 
MAI, maize; WHE, wheat. 
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Fig. 11.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 5 (shown in Fig. 2) as affected by fungicide application (FA), previous 
crop (PC), and sowing date (SD). The number in the small boxes indicate 
the sequence of the split with respective split significance (p) in the circle. 
Boxplots show data distribution in each terminal node. The average grain 
yield (shown on top of each boxplot), number of observations (n), and model 
fit statistics (R2 and root mean square error, RMSE) are shown. FG, 
fungicide; NF, no fungicide; FAL, fallow; WHE, wheat; MAI, maize; SOR, 
sorghum. 
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Fig. 12.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 6 (shown in Fig. 2) as affected by final purpose of the trial (FP), 
sowing date (SD), and tillage system (TL). The number in the small boxes 
indicate the sequence of the split with respective split significance (p) in the 
circle. Boxplots show data distribution in each terminal node. The average 
grain yield (shown on top of each boxplot), number of observations (n), and 
model fit statistics (R2 and root mean square error, RMSE) are shown. DP, 
dual-purpose; GO, grain-purpose; CT, conventional till; NT, no-till. 
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Fig. 13.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 7 (shown in Fig. 2) as affected by tillage system (TL). The number in 
the small boxes indicate the sequence of the split with respective split 
significance (p) in the circle. Boxplots show data distribution in each terminal 
node. The average grain yield (shown on top of each boxplot), number of 
observations (n), and model fit statistics (R2 and root mean square error, 
RMSE) are shown. CT, conventional till; NT, no-till. 
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Fig. 14.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 8 (shown in Fig. 2) as affected by fungicide application (FA), previous 
crop (PC), and sowing date (SD). The number in the small boxes indicate 
the sequence of the split with respective split significance (p) in the circle. 
Boxplots show data distribution in each terminal node. The average grain 
yield (shown on top of each boxplot), number of observations (n), and model 
fit statistics (R2 and root mean square error, RMSE) are shown. FG, 
fungicide; NF, no fungicide; CAN, canola; FAL, fallow; SOY, soybean; OTH, 
others; SOR, sorghum; WHE. 
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The GAR 9 has a dry subhumid climate and provides a contrasting environment 

for evaluation of the effects of management practices on wheat yield as those 

described in GAR 1. In GAR 9, the use of fungicide was the most important variable 

affecting wheat yield (Fig. 15). Trials in which foliar fungicide was applied yielded ca. 

4.1 Mg ha-1, which is 28% greater than the average yield attained under the best suite 

of management practices without fungicide application (c.a., 3.2 Mg ha-1, attained in 

grain-only trials sown between DOY 279 and 286 or Oct. 6th to 13th). Dual-purpose 

(grazing plus grain) management decreased grain yield to an average of ca. 2.4 Mg 

ha-1 compared to grain-only trials (2.6 – 3.2 Mg ha-1). In GAR 9, management practices 

explained 20% of total yield variability within the GAR (Fig. 15). Besides the previous 

detailed GAR 1 and 9, foliar fungicide was an important effect influencing wheat yield 

in the GAR 5 (Fig. 11), 8 (Fig. 14), and 10 (Fig. 16). Sowing date significantly influenced 

yield in nine out of the eleven GAR established. Due to its importance across the 

majority of the GAR, we expanded the sowing date analysis using boundary function. 
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Fig. 15.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 9 (shown in Fig. 2) as affected by fungicide application (FA), final 
purpose of the trial (FP), and sowing date (SD). The number in the small 
boxes indicate the sequence of the split with respective split significance (p) 
in the circle. Boxplots show data distribution in each terminal node. The 
average grain yield (shown on top of each boxplot), number of observations 
(n), and model fit statistics (R2 and root mean square error, RMSE) are 
shown. FG, fungicide; NF, no fungicide; DP, dual-purpose; GO, grain-
purpose. 
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Fig. 16.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 10 (shown in Fig. 2) as affected by management intensity (MI), final 
purpose of the trial (FP), fungicide application (FA), and tillage system (TL). 
The number in the small boxes indicate the sequence of the split with 
respective split significance (p) in the circle. Boxplots show data distribution 
in each terminal node. The average grain yield (shown on top of each 
boxplot), number of observations (n), and model fit statistics (R2 and root 
mean square error, RMSE) are shown. IT, intensive management; ST, 
standard; DP, dual-purpose; GO, grain-purpose; FG, fungicide; NF, no 
fungicide; CT, conventional till; NT, no-till. 
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Fig. 17.  Conditional inference tree for grain yield in the growing adaptation region 
(GAR) 11 (shown in Fig. 2) as affected by previous crop (PC), and sowing 
date (SD). The number in the small boxes indicate the sequence of the split 
with respective split significance (p) in the circle. Boxplots show data 
distribution in each terminal node. The average grain yield (shown on top of 
each boxplot), number of observations (n), and model fit statistics (R2 and 
root mean square error, RMSE) are shown. CAN, canola; FAL, fallow; MAI, 
maize; SOY, soybean; SOR, sorghum; WHE, wheat. 

 

 

We identified the optimum sowing date and the average daily loss of early and 

late sowing dates on grain yield (Table 5). The optimum sowing date ranged from day 

of the year 263 to 296 (i.e., Sep. 20th to Oct. 23th). Overall the average daily loss in 

yield were greater in early sown trials compared to late sown trials and ranged from 1-

314 kg ha-1 d-1 for earlier sowing dates and from 8-93 kg ha-1 d-1 to late sowing dates. 

(Table 5). Other management practices influencing yield were previous crop, trial 

purpose, tillage system, and intensive management. The significance of the different 

management practices and their interactions depended on GAR. 
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Table 5.  Summary of the boundary functions for grain yield for the growing 
adaptation regions (GAR) as affected by the sowing dates. 

GAR 

Optimum Early sown Late sown 

Sowing Grain Sowing Average Sowing Average 

date yield date daily loss date daily loss 

(DOY) (kg ha-1) (DOY) (kg ha-1 d-1) (DOY) (kg ha-1 d-1) 

Dryland 

1 266 6495 245 199 286 93 

2 263 4911 251 139 325 40 

3 269 4713 261 217 301 32 

4 271 6904 265 314 295 44 

5 272 6450 265 301 297 12 

6 277 4648 255 81 319 34 

7 276 3642 260 1 326 8 

8 283 5845 276 198 322 83 

9 284 4793 244 84 323 42 

10 296 4803 252 44 327 46 

11 283 4680 273 13 325 31 

Irrigated 

1 278 8323 253 45 296 16 

2 272 7050 260 175 302 11 

3 290 6116 246 28 290 0 

 

 

4.4. Association of genotype traits with winter wheat grain yield 

 

 

Identifying variety traits associated with higher wheat yields within the 

combination of GAR by the first management practice split required 22 conditional 

inference trees (Appendix A). The variety traits per se captured between 1 to 20% of 

total Z-score variability (i.e., R2) within the GAR’s most important management 

practice. Reaction to stripe rust was the variety characteristic with higher frequency of 

significant effect on Z-score, as it was significant in 16 of the 22 trees (Fig. 18). Other 

variety traits often associated with Z-score were coleoptile length, winterhardiness, 

plant height, straw strength, acid soil tolerance, drought tolerance, and heading date 

(significant in five to eight out of the 22 trees) (Fig. 18). While these traits were often 

related to wheat yield, the specific traits of importance were specific to each GAR and 
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depended on the first split in the trees for management practices, reflecting genotype 

× management interactions. 

 

 

 

Fig. 18.  Frequency of significance of each variety characteristic in the conditional 
inference trees across all 22 models built resulting from the combination of 
11 growing adaptation regions (GAR) and the first management practice 
split. YR, Stripe rust (Puccinia striiformis); CL, Coleoptile length; WH, 
Winterhardiness; PH, Plant height; STS, Straw strength; AST, Acid soil 
tolerance; DT, Drought tolerance; HD, Heading date; ESG, Early spring 
greenup; LR, Leaf rust (Puccinia triticina); SLB, Septoria leaf blotch 
(Mycosphaerella graminicola); WSMV, Wheat streak mosaic virus; FHS, 
First hollow stem; SS, Seed size tendency; TW, Test weight; TT, Tillering 
tendency; BYDV, Barley yellow dwarf virus; SR, Stem rust (Puccinia 
graminis); PM, Powdery mildew (Blumeria graminis); SCB, Head blight 
(Fusarium graminearum); TS, Tan spot (Pyrenophora tritici‐repentis); 
FGCP, Fall ground cover potential; FGP, Fall grazing potential; ST, 
Spouting tolerance; HF, Hessian fly (Mayetiola destructor); SBWMV, Soil-
borne mosaic virus; SHR, Shattering reputation; FGH, Fall growth habit. 

 

 

Similarly to the management practices analysis, we will describe GAR 1 as an 

example for the semi-arid wheat growing region and GAR 9 as an example for the 

subhumid wheat growing region (Table 6), while results for the remaining regions are 

shown in Appendix A. In GAR 1, the genotype trait analyses were performed separately 

for dryland and irrigated trials. In dryland trials, drought tolerance was the most 

important variable and, on average, varieties with good drought tolerance, long or short 

coleoptile, and intermediate time for first hollow stem presented the highest Z-score (Z 
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= 0.11) (Table 6). Meanwhile, varieties with intermediate or poor drought tolerance and 

intermediate to susceptible reaction to stripe rust resulted in the lowest Z-score (Z = -

0.19). 

 

 

Table 6.  Summary of conditional inference trees for Z-score for the growing 
adaptation regions (GAR) 1 and 9 and its corresponding main management 
practice effect, as affected by the genotype traits. The Z-score and number 
of observations (n) of each terminal node, as well as fit statistics (R2 and 
root mean square error, RMSE) are shown. 

GAR (main effect) Node 1 Node 2 Node 3 Node 4 Z-score n R2 RMSE (score) 

1 (DR)a DT (g) CL (i)   -0.05 1937 0.01 0.98 
  CL (l, s) FHS (e, l)  0.08 1744   

   FHS (i)  0.11 1722   
 DT (i, p) YR ≤ 3   -0.19 1360   
  YR > 3   0.04 2204   

1 (IR) YR ≤ 3 ESG (e, i) SS (i, s)  -0.14 581 0.04 0.97 
 

 
 SS (l)  -0.03 380   

  ESG (l)   -0.16 516   
 YR > 3 CL (i, l) STS (g) YR ≤ 4 0.21 466   
  

  YR > 4 0.45 303   
   STS (i, p)  -0.03 394   
  CL (s)   -0.08 371   

9 (FG) DT (g) AST (i, s) 
 

 0.29 486 0.05 0.97   
AST (t) PH (i)  0.09 479 

  
   

PH (s, t)  0.14 280 
  

 
DT (i, p) WH (g, i) YR ≤ 4  -0.10 465 

  
   

YR > 4  0.19 295 
  

  
WH (p) 

 
 -0.30 572 

  

9 (NF) YR ≤ 2 FGP (g, i) 
 

 -0.26 1802 0.04 0.97  
 FGP (p) 

 
 -0.18 1565 

  
 

YR > 2 BYDV ≤ 2 WH (g)  0.14 1919 
  

  
 WH (i, p) WSMV ≤ 2 -0.14 2080 

  
  

 
 

WSMV > 2 0.04 1789 
  

  
BYDV > 2 WH (g, i) 

 
0.32 1966 

  
   

WH (p)  0.10 2136 
  

a AST, acid soil tolerance (s, susceptible; i, intermediate; t, tolerant); BYDV, barley yellow dwarf virus; CL, coleoptile length (s, 
short; i, intermediate; l, long); DR, dryland; DT, drought tolerance (p, poor; i, intermediate; g, good); ESG, early spring greenup 
(e, early; i, intermediate; l, late); FG, fungicide; FGP, fall grazing potential (p, poor; i, intermediate; g, good); FHS, first hollow stem 
(e, early; i, intermediate; l, late); IR, irrigated; NF, no-fungicide; PH, plant height (s, short; i, intermediate; t, tall); SS, seed size 
tendency (s, small; i, intermediate; l, large); STS, straw strength (p, poor; i, intermediate; g, good); WH, winterhardiness (p, poor; 
i, intermediate; g, good); WSMV, wheat streak mosaic virus; YR, stripe rust (Puccinia striiformis). 

 

 

On the other hand, genetic resistance to stripe rust was the most important 

variable in irrigated trials in GAR 1. Varieties resistant to stripe rust, with intermediate 

or long coleoptile and good straw strength resulted in the highest Z-score (Z = 0.45); 

while varieties with an intermediate reaction or susceptibility to stripe rust with late 

early-season growth resulted in the lowest Z-score (Z = -0.16). In GAR 9 (subhumid 

wheat growing region), drought tolerance was the most important factor influencing 

yield in trials in which foliar fungicide was applied, as varieties with good drought 

tolerance and intermediate or susceptible reaction to acid soils showed higher Z-score 
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(Z = 0.29) (Table 6). Meanwhile, in trials without foliar fungicide, the highest Z-score 

was obtained by varieties with intermediate to resistant reaction to stripe rust and 

barley yellow dwarf virus, and with intermediate or good winterhardiness (Z = 0.32). 

 

 

5. DISCUSSION 

 

 

5.1. Division of large agricultural regions into smaller homogenous domains 

 

 

Subdivision of large geographies into smaller and uniform domains is usually 

performed in agricultural research spanning large regions (Graybosch, 2017; Peterson, 

1992; Rattalino Edreira et al., 2018; van Wart et al., 2013). An appropriate extrapolation 

domain should be small enough to minimize variation in climate and management 

practices within the domain, and large enough to minimize data collection requirements 

(van Wart et al., 2013). The GAR scheme we created accomplished these 

characteristics, as it minimized the variation in climate and management practices 

within each domain. While the GAR scheme captured broad-scale spatial 

autocorrelation well (Hefley et al., 2017), we acknowledge that sowing dates still vary 

slightly within GAR due to within-GAR weather variability. While local-scale 

autocorrelation could still, to some extent, influence our results, there were no 

significant longitudinal or latitudinal trends in sowing date in nine and seven of the 

eleven GAR, respectively (data not shown). In addition, the R2 for longitudinal and 

latitudinal trends in sowing date within GAR were low (i.e., 0.00-0.12 and 0.01-0.22, 

respectively), reinforcing that the local-scale autocorrelation effect should be minimal. 

The GAR scheme is similar to the climate zone (CZ) scheme (van Wart et al., 

2013). However, the CZ scheme considers three categorical variables (i.e., growing 

degree-days, temperature seasonality, and annual aridity index) and uses data for the 

entire continental U.S. rather than weather data from stations strictly located within the 

study region. Other authors expanded on the CZ to also consider the root zone plant-

available water holding capacity [i.e., the Technology Extrapolation Domains (TED), 
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Rattalino Edreira et al., 2018]. While the TED scheme could improve the analysis of 

agronomic data by considering soil characteristics (Rattalino Edreira et al., 2018), the 

extremely variable nature of the soils in the southern and central Great Plains would 

result in a large number of domains and, consequently, reduce the number of 

observations within each domain and the power of the analysis (data not shown). An 

alternative method to a meteorological determination of agricultural domains is the use 

of yield ranking from wheat breeding lines across locations (Graybosch, 2017; 

Peterson, 1992). Typically, this regional characterization results in larger domains as 

those produced by GAR, CZ, or TED, which would not effectively account for the 

differences in management practices in our study (e.g., sowing date, Appendix A). 

 

 

5.2. Genotype effect on grain yield variability 

 

 

The genotype effect accounted for a relatively low proportion of the total grain 

yield variability, which is similar to other published results evaluating released wheat 

cultivars. For instance, Friesen et al. (2016) evaluated spring wheat cultivars across 

Manitoba (Canada) over 10 years and reported that the genotype and all its 

interactions accounted for less than 10% of the yield variance. The authors suggested 

the low genotype effect may be explained by the cultivar development/registration trials 

and the strict scrutiny to commercialization (i.e., only well adapted cultivars with good 

performance record are released). Additionally, cultivars entered in the VPT are 

typically well adapted to the region, artificially minimizing the overall genotypic effect 

on yield variability. Several other studies using performance data from wheat 

registration process in different countries suggested a relatively low explanatory power 

from the genotype effect [i.e., 6 to 35% in Brazil (Munaro et al., 2014; Woyann et al., 

2019); 0 to 8% in Australia (Cullis et al., 2000); 0 to 33% in Canada (Finlay et al., 2007); 

and 1.3% in Iran (Mohammadi et al., 2010)]. These results do not undermine the 

relevance of breeding programs; instead, they suggest that the contribution of the 

genotype effect to the total variance on wheat grain yield is dependent on the variability 

remaining of the genotypes tested in the variety performance trials after the selection 
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and release process. Our results also highlight the need for local breeding efforts due 

to the diversity of weather conditions and disease/insect problems, as the explanatory 

power of genotype traits increased within the GAR × management practice 

combination. 

 

 

5.3. Effects of management practices on wheat grain yield 

 

 

Management practices accounted for the highest yield variability within GAR, 

suggesting that improved agronomy has the potential to increase regional wheat yield 

and contribute to food security. Water regime, sowing date, and foliar fungicides were 

among the management practices more consistently associated with wheat yields, 

depending on the domain evaluated. Irrigation increased wheat grain yield in 52-76% 

in the western, semi-arid portion of the studied region. Likewise, Holman et al. (2011) 

suggested a 1.2 Mg ha-1 increase in wheat yield due to supplementary irrigation when 

evaluating 56 years of VPT data in western Kansas. These yield gains likely resulted 

from the high influence of precipitation on the long-term dryland wheat yields in this 

semi-arid region (i.e., water supply accounting for as much as 83% of variability in 

water-limited yield; Lollato et al., 2017). Sowing date also consistently influenced grain 

yield and the quadratic yield response to sowing date is due to different yield-reducing 

factors (Sacks et al., 2010). Early sowing might limit yield due to i) increased exposure 

to insect pests (Schmid et al., 2019) that might transmit viral diseases (Wibberley, 

1989; Wiersma et al., 2006); ii) decreased germination due to high soil temperatures 

(Smith, 1995); and iii) excessive fall growth and non-productive water and N 

consumption (Herwaarden et al., 1998). Yield-limiting factors for late sown winter 

wheat include i) a decreased fall tillering potential (Dahlke et al., 1993) requiring 

increased seeding rates (Staggenborg et al., 2003); ii) insufficient root growth in the 

fall, increasing the chances of water deficit and winterkill (Hammon et al., 1999); and 

iii) insufficient time for full vernalization (Wiersma et al., 2006). Foliar fungicide applied 

around heading was an important practice positively associated with yield, similar to 

previous reports from controlled replicated experiments (Jaenisch et al., 2019), yield 
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contests in Kansas (Lollato et al., 2018), and field experiments in Oklahoma (Edwards 

et al., 2012; Puppala et al., 1998). 

Tillage practices and previous crop also had high relative importance influencing 

wheat yields when the data were available. Tillage practices and previous crop were 

also significant factors in the analysis of producer-reported yields in the region (Lollato 

et al., 2018). No-till was associated with increased yields in the west-central region 

(GAR 6) and reduced wheat yields in the southern portion of the studied region (GAR 

7 and 10). Increased yields in GAR 6 from no-till might result from a greater yield 

stability (Giller et al., 2015) or greater soil moisture conservation (Farahani et al., 1998) 

of wheat grown under no-till in semi-arid regions. Meanwhile, studies in Oklahoma 

suggested a yield penalty to continuous no-till wheat fields (i.e., fields that lack crop 

rotation; Decker et al., 2009), typically adopted in the trials in GAR 7 and 10. 

Continuous wheat cropping might partially justify the negative association of no-till and 

wheat yields, as well as the low rate of adoption of no-till in the southern portion of the 

study region (Patrignani et al., 2012). The benefits of no-tillage practices to semi-arid 

regions in which crop rotations are adopted is otherwise well reported (Amato et al., 

2013; Pittelkow et al., 2015; Toliver et al., 2012). Other results, although more 

restricted geographically, were also in agreement with the literature. For example, 

dual-purpose management typically reduced wheat yield in as much as 27% in our 

study. Similar yield penalties from grazing the winter wheat crop were reported in the 

region (Edwards et al., 2011). 

 

 

5.4. Genotype traits to improve wheat variety selection 

 

 

Genetic resistance to stripe rust was the characteristic most often positively 

related to wheat yields. The U.S. central Great Plains experienced a series of stripe 

rust epidemics during the studied years (Chen et al., 2010, 2002; DeWolf, 2018; 

Jaenisch et al., 2019; Lollato et al., 2018), with production losses due to the disease 

ranging from 3 to 10.6% depending on state in a given year (Chen, 2007) and as great 

as 15.4% in Kansas in 2015 (Hollandbeck et al., 2016). Selecting varieties with inherent 
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disease resistance is the most effective and economical way to control stripe rust 

(Chen, 2014, 2005), although evolution of the stripe rust pathogen (Wan et al., 2016) 

can render certain varieties susceptible and decrease their commercial life (Perronne 

et al., 2017). In the case of the appearance of new virulent races, foliar fungicides are 

effective to control stripe rust when applied in the right stage of development (Chen, 

2014; Cruppe et al., 2017; Edwards et al., 2012). Evidence suggests, though, that 

wheat yield response to foliar fungicides is not restricted to susceptible cultivars 

(Edwards et al., 2012). 

Varieties with good drought tolerance also showed a positive association with 

higher Z-scores and its significance depended on the region and management 

practices. This finding is in agreement with previous simulation studies suggesting that 

water supply was the variable accounting for the greatest proportion of the wheat yield 

potential under dryland conditions in the western portion of the U.S. central Great 

Plains (Lollato et al., 2017). Likewise, Holman et al. (2011) suggested the need to 

improve wheat variety drought tolerance to increase wheat yields in western Kansas. 

The physiological mechanisms conferring drought tolerance to different wheat varieties 

are genotype-specific and might be different depending on wheat growing region. Field 

and greenhouse studies in the U.S. Great Plains suggested that the increased grain 

yield of more drought-adapted cultivars resulted from greater water use and greater 

biomass production under drought stress when compared to less drought-tolerant 

cultivars (Reddy et al., 2014; Xue et al., 2014). Additionally, genotypic differences exist 

for root traits in winter wheat genotypes grown in the study region (Awad et al., 2018) 

and other areas (Aziz et al., 2017), which might help confer drought tolerance to winter 

wheat (Sciarresi et al., 2019).  

Acidic soils are a growing concern for wheat production in the central region of 

the U.S. Great Plains (Johnson et al., 1997; Lollato et al., 2013). Previous studies 

suggested that varieties more tolerant to low soil pH usually outperform susceptible 

ones in acidic soil conditions (Johnson et al., 1997; Kariuki et al., 2007; Lollato et al., 

2019b). Thus, considerable efforts have been made for breeding acidic soil tolerant 

cultivars in the region (Bona et al., 1994; Carver et al., 1988; Tang et al., 2002; Zhou 

et al., 2007). However, our results suggested that tolerant varieties presented lower Z-

scores than intermediate and susceptible varieties. To better understand these results, 
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we evaluated the soil pH values from GAR by management combinations where 

tolerance to acidic soils was significant. Soil pH values were only available for a subset 

of trials and varied from 6.0 to 7.3 (GAR 7), from 4.7 to 7.1 (GAR 9), and from 5.6 to 

8.0 (GAR 10). Lollato et al. (2019b) identified wheat yield reduction when soil pH was 

lower than 4.8 for tolerant varieties and 5.8 for sensitive varieties (with similar 

thresholds identified by Kariuki et al., 2007). This suggests that, with few exceptions, 

the soil pH levels in the test locations were not low enough to cause injury in more 

susceptible varieties. While our data suggest that acidic-tolerant varieties have lower 

yield when soil pH is non-limiting, it does not allow inference as to whether this is a 

consequence of lower genetic yield gain when breeding for aluminum tolerance (which 

was not evidenced by Johnson et al., 1997) or whether the subset of varieties tolerant 

to acidic soils evaluated simply had poorer performance than the susceptible ones. 

 

 

6. CONCLUSIONS 

 

 

The approach we followed is generic enough that could benefit other crops and 

growing regions for which VPT are conducted. These results can help guide growers 

in better managing their crop and selecting varieties with appropriate characteristics 

for a given environment × management scenario, as well as help drive plant breeding 

programs on important genotypic traits for selection. While our analysis highlighted the 

importance of regional breeding programs releasing adapted varieties, most strikingly 

was the importance of management practices affecting wheat yield. These results 

support investment prioritization in both regional breeding programs (to continue 

releasing adapted cultivars with important traits of interest) and agronomic research 

and outreach (which proved to be a crucial portion of increasing yields in this study). 

Due to the nature of these datasets and analyses, results obtained here show 

associations between management practices or genotype traits with grain yield and do 

not allow derivation of cause-effect relationships. However, these results can help 

guide future and more specific controlled experiments testing cause-effect 

relationships among the different practices.  
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Appendix A. Summary of the conditional inference trees 

 

 

Table A1. Summary of conditional inference trees for Z-score by growing adaptation 
region (GAR) and its corresponding main management effect, as affected 
by the genotype traits. The Z-score, number of observations (n) and R2 are 
shown. 

GAR (main effect) Node 1 Node 2 Node 3 Node 4 Node 5 Z-score n R2 

1 (DR)a DT (g) CL (i)    -0.05 1937 0.01 
  CL (l, s) FHS (e, l)   0.08 1744  

   FHS (i)   0.11 1722  
 DT (i, p) YR ≤ 3    -0.19 1360  
  YR > 3    0.04 2204  

1 (IR) YR ≤ 3 ESG (e, i) SS (i, s)   -0.14 581 0.04 
 

 
 SS (l)   -0.03 380  

  ESG (l)    -0.16 516  
 YR > 3 CL (i, l) STS (g) YR ≤ 4  0.21 466  
  

  YR > 4  0.45 303  
   STS (i, p)   -0.03 394  
  CL (s)    -0.08 371  

2 (DR) FHS (e) AST (i, t)    -0.21 594 0.02   
AST (s) 

 
  0.04 782 

 
 

FHS (i, l) YR ≤ 3 TS ≤ 2 
  

0.06 1002 
 

  
 TS > 2 

  
-0.11 635 

 
 

 YR > 3 SLB ≤ 2 
  

0.16 686 
 

  
 SLB > 2 

  
0.16 914 

 

2 (IR) WH (g, i) CL (i, s) TW (g) YR ≤ 3  0.00 400 0.05   
 

 
YR > 3  0.24 335 

 
 

  TW (i, l) 
  

-0.14 362 
 

  
CL (l) YR ≤ 3 

  
0.11 275 

 
  

 YR > 3 
  

0.43 242 
 

 WH (p) TS ≤ 2    0.10 265  
  

TS > 2 
 

  -0.27 425 
 

3 (DR) CL (i, s) TW (g) STS (g, i) HF ≤ 1  0.03 410 0.03  
 

  
HF > 1  -0.11 336 

 

  
 

STS (p) 
  

0.20 316  
 

 TW (i, l) SHR (g) 
  

-0.11 427 
 

  
 SHR (i, p) 

  
-0.22 371 

 
 

CL (l) PM ≤ 3  
  

0.09 579 
 

  PM > 3 
   

0.24 473  

3 (IR) YR ≤ 2 SLB ≤ 2 
   

-0.03 215 0.04  
 SLB > 2  

  
-0.32 272 

 
 

YR > 2 TT (g, p) ST (g) 
  

-0.06 338 
 

  
 

ST (i, p) 
  

0.12 343  
 

 TT (i) BYDV ≤ 2 
  

0.16 231 
 

  
 

BYDV > 2 
  

0.37 219  

4 (FAL, SOR) YR ≤ 2 TT (g)    -0.17 763 0.05  
 TT (i, p) 

 
  -0.38 426 

 
 

YR > 2 YR ≤ 4 TT (g, p)   0.11 859 
 

  
 TT (i)   -0.05 715 

 
  

YR > 4 PH (i) 
  

0.48 376 
 

  
 

PH (s, t) 
  

0.10 632  

4 (MAI, WHE) WH (g, i) PM ≤ 3 YR ≤ 2 
  

-0.36 63 0.07   
 YR > 2 WH (g)  0.20 130 

 
   

 WH (i)  -0.33 81 
 

  
PM > 3 HD (e)   0.04 95 

 

   HD (i, l) 
  

0.17 62  
 

WH (p)   
  

0.33 114 
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Continue 
GAR (main effect) Node 1 Node 2 Node 3 Node 4 Node 5 Z-score n R2 

5 (FG) YR ≤ 1 
 

   -0.63 86 0.13  
YR > 1 STS (g) CL (i, s) SR ≤ 4  0.04 115 

 
    

SR > 4  0.43 143 
 

   
CL (l)   -0.03 110 

 
  

STS (i, p) BYDV ≤ 2   -0.46 76 
 

   
BYDV > 2   0.08 79 

 

5 (NF) YR ≤ 1 
  

  -0.29 307 0.05  
YR > 1 HD (e) WH (g)   -0.21 275 

 
  

 WH (i, p)   -0.01 365 
 

  
HD (i, l) YR ≤ 4 FGP (g)  -0.19 255 

 
   

 FGP (i, p)  0.13 526 
 

   
YR > 4   0.31 488 

 

6 (DP) CL (i, l) DT (g, i) SCB ≤ 2   0.30 194 0.06    
SCB > 2   0.13 241 

 
  

DT (p) 
 

  -0.12 141 
 

 CL (s)     -0.35 156  

6 (GO) PH (i, s) DT (g) LR ≤ 2   -0.09 718 0.04 
   LR > 2   0.19 477  

  DT (i, p) STS (g)   -0.28 806  
   STS (i, p)   -0.09 727  
 PH (t) YR ≤ 4    0.13 867  
  YR > 4    0.36 457  

7 (CT) YR ≤ 2a AST (i, t) 
 

  -0.51 220 0.09  
 AST (s) 

 
  -0.05 239 

 
 

YR > 2 WSMV ≤ 2 ESG (e, i) WH (g, i)  -0.04 190 
 

  
  WH (p)  -0.15 312 

 
   

ESG (l)   0.20 272 
 

  
WSMV > 2 YR ≤ 4   0.02 230 

 
   

YR > 4   0.54 222 
 

7 (NT) ESG (e, l) CL (i, s) SBWMV ≤ 4  -0.05 39 0.14    
SBWMV > 4  0.43 74 

 
  

CL (l) 
 

  -0.36 51 
 

 
ESG (i) FGCP (g) 

 
  -0.13 44 

 
  

FGCP (i, p)   -0.65 28 
 

8 (FG) HD (e) TT (g) ESG (e)   -0.30 140 0.06    
ESG (i, l)   -0.20 121 

 
  

TT (i) 
 

  0.05 147 
 

 
HD (i, l) ST (g, p) SR ≤ 4   0.24 134 

 
   

SR > 4   -0.17 99 
 

  
ST (i) YR ≤ 4   0.37 152 

 
   

YR > 4   0.06 95 
 

8 (NF) LR ≤ 1 
  

  -0.26 650 0.04  
LR > 1 YR ≤ 1 

 
  -0.27 437 

 
  

YR > 1 SLB ≤ 2 HD (e)  -0.01 514 
 

   
 HD (i, l)  -0.05 515 

 
   

SLB > 2 PH (i, t) DT (g, i) 0.27 925 
 

    
 DT (p) 0.11 469 

 
    

PH (s)  -0.03 637 
 

9 (FG) DT (g) AST (i, s) 
 

  0.29 486 0.05   
AST (t) PH (i)   0.09 479 

 
   

PH (s, t)   0.14 280 
 

 
DT (i, p) WH (g, i) YR ≤ 4   -0.10 465 

 
   

YR > 4   0.19 295 
 

  
WH (p) 

 
  -0.30 572 

 

9 (NF) YR ≤ 2 FGP (g, i) 
 

  -0.26 1802 0.04  
 FGP (p) 

 
  -0.18 1565 

 
 

YR > 2 BYDV ≤ 2 WH (g)   0.14 1919 
 

  
 WH (i, p) WSMV ≤ 2 -0.14 2080 

 
  

 
 

WSMV > 2 0.04 1789 
 

  
BYDV > 2 WH (g, i) 

 
 0.32 1966 

 
   

WH (p)  
 0.10 2136 

 

10 (IT) HD (e, i) STS (g) WH (g)   0.41 156 0.10 

 
  

WH (i, p) HD (e)  0.29 114 
 

    
HD (i)  -0.07 68 

 
  

STS (i, p) SS (i, s)   -0.28 114 
 

   
SS (l)   0.16 89 

 
 

HD (l) AST (i, s)     -0.03 82 
 

  
AST (t) 

 
  -0.59 71 
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Continue 
GAR (main effect) Node 1 Node 2 Node 3 Node 4 Node 5 Z-score n R2 

10 (ST) YR ≤ 2  
 

  -0.22 942 0.03  
YR > 2 FGCP (g, p) PH (i, s) FHS (e, l)  -0.07 900 

 
 

  
 

FHS (i)  0.01 456 
 

   
PH (t)   0.23 543 

 
  

FGCP (i) 
 

  0.24 686 
 

11 (CAN, FAL, MAI, SOY) WSMV ≤ 2 WH (g, i) SS (i, s)   0.03 459 0.03 

   SS (l)   0.28 377 
 

 
 

WH (p) 
 

  -0.07 576 
 

 WSMV > 2 LR ≤ 2 
 

  -0.27 409 
 

  
LR > 2 

 
  0.02 295 

 

11 (SOR, WHE) TW (g) SCB ≤ 2 CL (i, l)   -0.19 78 0.20 

 
 

 CL (s)   -0.75 61 
 

  
SCB > 2 

 
  -0.15 85 

 
 

TW (i, l) PH (i) 
 

  0.00 81 
 

  
PH (s, t) STS (g, p)   0.79 47 

 

   STS (i)   0.32 48  

a AST, acid soil tolerance (s, susceptible; i, intermediate; t, tolerant); BYDV, barley yellow dwarf virus; CAN, canola; CL, coleoptile 
length (s, short; i, intermediate; l, long); CT, conventional till; DP, dual-purpose; DR, dryland; DT, drought tolerance (p, poor; i, 
intermediate; g, good); ESG, early spring greenup (e, early; i, intermediate; l, late); FAL, fallow; FAL, fallow; FG, fungicide; FGCP, 
fall ground cover potential (p, poor; i, intermediate; g, good); FGH, fall growth habit (p, prostrate; i, intermediate; u, up); FGP, fall 
grazing potential (p, poor; i, intermediate; g, good); FHS, first hollow stem (e, early; i, intermediate; l, late); GO, grain-only; HD, 
heading date (e, early; i, intermediate; l, late); HF, hessian fly (Mayetiola destructor); IR, irrigated; IT, intensive management; LR, 
leaf rust (Puccinia triticina); MAI, maize; MAI, maize; NF, no-fungicide; NT, no-till; PH, plant height (s, short; i, intermediate; t, tall); 
PM, powdery mildew (Blumeria graminis); SBWMV, soil-borne mosaic virus; SCB, head scab blight (Fusarium graminearum); 
SHR, shattering reputation (p, poor; i, intermediate; g, good); SLB, septoria leaf blotch (Mycosphaerella graminicola); SOR, 
sorghum; SOR, sorghum; SOY, soybean; SR, stem rust (Puccinia graminis); SS, seed size tendency (s, small; i, intermediate; l, 
large); ST, spouting tolerance (p, poor; i, intermediate; g, good); ST, standard management; STS, straw strength (p, poor; i, 
intermediate; g, good); TS, tan spot (Pyrenophora tritici‐repentis); TT, tillering tendency (p, poor; i, intermediate; g, good); TW, 
test weight (l, low; i, intermediate; g, good); WH, winterhardiness (p, poor; i, intermediate; g, good); WHE, wheat; WHE, wheat; 
WSMV, wheat streak mosaic virus; YR, stripe rust (Puccinia striiformis). 




