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Resumo

Construímos um formalismo variacional para calcular funcionais de Wigner em
teoria quântica de campos através da generalização de um método desenvolvido
na mecânica estatística não-relativística. O funcional de Wigner que usamos é
uma generalização da função de Wigner usual em mecânica quântica, na qual
amplitudes de campo e seus momentos conjugados são as variáveis dinâmicas do
espaço de fase. O formalismo não perturbativo nos permite calcular sistematica-
mente correções à tradicional aproximação de campo médio para os funcionais
de Wigner. Para desenvolver o formalismo, empregamos uma teoria de campo
escalar com autointerações quárticas. Implementamos um exercício numérico
para explorar alguns aspectos do formalismo e calculamos a função de correlação
de dois pontos e a segunda entropia de Rényi.

Palavras Chaves: Teoria Quântica de Campos; Espaço de Fase; Função de Wigner.

Áreas do conhecimento: Física; Física de Partículas e Campos.
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Abstract

We constructed a variational formalism to compute Wigner functionals in quan-
tum field theory by generalizing a method developed in nonrelativistic statistical
mechanics. The Wigner functional we use is a generalization of the standard
Wigner function in quantum mechanics, in which field amplitudes and their con-
jugate momenta are the phase space dynamical variables. The nonpertubative
formalism allows us to compute corrections to the traditional mean-field approx-
imation for the Wigner functional. We used a scalar field theory with quartic
self-interactions to set up the formalism. We performed a numerical exercise to
explore some features of the formalism, and computed the two-point correlation
function and the second Rényi entropy.

Key Words: Quantum Field Theory; Phase Space; Wigner Function.

Knowledge areas: Physics; Physics of Particles and Fields.
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Chapter 1

Introduction

The phase space representation of classical physics dynamics is omnipresent
since the late 1800’s [1]. Wigner extended such a representation to quantum
systems [2]. Wigner’s main objective was to introduce quantum corrections to
statistical mechanics using phase space dynamical variables. Nowadays, the quan-
tum phase space quantization, also known as Moyal quantization or deformation
quantization, is is an alternative, autonomous and logically concise, formulation
of quantum mechanics [3, 4, 5]. One computes observables neither with operators
and wave functions in Hilbert space nor with classical trajectories in a Feynman
path integral; instead, one integrates c-numbers weighted by Wigner distribution
functions. The similarity with statistical mechanics is, however, not complete
since Wigner functions are not necessarily positive everywhere in phase space and
hence are called "quasi-distribution" functions. Negativity of a Wigner function
signals nonclassical features of the corresponding quantum state. Among the
most striking nonclassical features is quantum entanglement, the quintessential
quantum property. In recent years, negativity of the Wigner function has been
recognized as a resource for continuous-variable quantum information processing
and transmission [6].

The quantum phase space representation arises naturally from the Hamiltonian
formulation of quantum dynamics. Due to the intrinsic lack of explicit Lorentz
covariance of a Hamiltonian formulation, many authors, including Wigner [7],
deemed the representation inappropriate for relativistic many-particle quantum
systems. The skepticism was nevertheless unwarranted, as lack of explicit covari-
ance does not obstruct a phase space representation when the entire formalism
is grounded on a quantum field theory (QFT) framework [8, 9, 10, 11, 12, 13, 14,
15, 16, 17]. There are basically two conceptually distinct formulations of Wigner
functions in QFT. The most commonly used employs field operators to define a
covariant Wigner operator [18], whose expectation value with respect to a density
operator is the covariant Wigner function [19, 9]. For one-particle states, such a
Wigner functional reduces in the nonrelativistic limit to the standard quantum

1



Chapter 1. Introduction 2

mechanical Wigner function. This formulation is well suited to treat problems as-
sociated with the quark-gluon plasma in heavy-ion collisions; very recent studies
include those in Refs. [20, 21, 22, 23, 24]. A different construction involves a natural
generalization of the standard Wigner function, in that fields and their conjugate
momenta are the phase space dynamical variables, instead of particle coordinates
and momenta [11]; the Wigner functional is a functional of the fields and conjugate
momenta. A similar formalism was constructed in Ref. [12]. As its nonrelativistic
counterpart, the Wigner functional is not explicitly covariant since it is based on
the Hamiltonian formulation of QFT. But in both formulations only under very
special circumstances one can solve the ensuing equations, as for noninteracting
theories or within some kind of mean field approximation.

In this MSc thesis we focus on the Wigner functional formalism of Ref. [11].
In the original publication, the authors employed a scalar field theory with quartic
self-interactions. This formulation was extended to the electromagnetic field in
Ref. [13] and to the Dirac field in Ref. [25]. In the original publication [11], the
authors computed the finite temperature Wigner functional for the noninteracting
free theory and also in the mean field approximation. In this thesis we transcribe
to this QFT Wigner functional formalism a variational method developed in sta-
tistical mechanics to extend the traditional mean field approximation for the free
energy of nonrelativistic many-body theories. This method was proposed in 1957
by Bogoliubov, Zubarev and Tserkovnikov [26]. These authors made the crucial ob-
servation that the Gibbs variational method applied to the free energy of a reduced
BCS Hamiltonian1 yields the exact grand canonical potential of the model in the
thermodynamical limit. The method was further developed by Wentzel [28] to the
theory of superfluidity, who also coined the name "method of thermodynamically
equivalent Hamiltonian". Later on, the method was generalized by Girardeau [29]
to a broader spectrum of applications. Since the variational method builds on the
thermal density matrix, one can use the method together with the formalism of
Ref. [11] to obtain a Wigner functional that goes beyond the mean field approxi-
mation. To our knowledge, the use of such a variational method together with the
phase space quantization is a novel formalism to treat nonperturbative problems
in quantum field theory.

The key idea of the method is to identify a number of scattering processes
in the Hamiltonian of the model such that one obtains a tractable problem by

1BCS stands for Bardeen, Cooper and Shriefer, who developed the first microscopic theory for
the phenomenon of superconductivity in metals [27].
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using a combination of the variational method and perturbation theory. The full
Hamiltonian is split into two parts, one is quadratic in the fields and the other
is nonquadratic. The quadratic part contains only those selected processes and
can be diagonalized through a linear unitary transformation that depends on trial
gap functions determined by the Gibbs variational principle. The nonquadratic
part, that also depends on the trial functions, should be treated by perturbation
theory. The chosen scattering processes should capture most of the physics of
the problem. The method, however, does not provide a criterion for choosing
one or another process, the choice should be guided by the problem of interest.
The traditional mean field approximation, in particular, refers to the direct and
exchange scattering processes in the Hamiltonian. In this study we abstract from
any specific problem, and treat the method in its full generality.

We follow closely Ref. [11] for the Wigner functional formalism and Ref. [29]
for the variational method. As in Ref. [11], we use a scalar field theory with
quartic selfinteractions in 1 + 1 dimensions. The model is well suited for our
purposes since we can easily contrast the mean field formulation in Ref. [11] with
the variational approach. But the simplicity of the model comes with a price,
it is not rich enough for phenomenologically interesting applications. Besides the
inherent limitations of one-dimensional scattering, a real scalar field theory cannot
describe phenomena like superfluidity, condensate formation and phase transition
phenomena. As such, it also limits our capability to assess numerically the impact
of the variational method on observables. In any case, such limitations are not of
fundamental importance; the model reveals general features of the method that
will be present in a phenomenologically more realistic model.

We divide the thesis into five chapters and four appendices. In Chapter 2
we make a concise revision of quantum field theory topics which will be useful
throughout the text, namely the path integral formalism and generating func-
tionals. In Chapter 3, we review Wigner’s phase space quantization formalism.
We start with the formalism in quantum mechanics, which will be very brief and
far from exhaustive. Then we review the QFT phase space formalism of Ref. [11].
Chapter 4 contains our original contribution to the Wigner functional theory in
quantum field theory (QFT). We discuss the formalism of the variational method
of Ref. [29], and in some parts we use material from the thesis work in Ref. [30].
We show how the traditional mean field approximation for the Wigner functional
arises within the variational method. We also present results from a numerical
exercise to explore features of the formalism. We solved numerically the gap
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equation and obtained the eigenvalues and eigenfunctions of the quadratic Hamil-
tonian. We use those results to compute a two-point correlation function and the
2nd-Rényi entropy. Chapter 5 presents a conclusion and discusses perspectives for
future work. The four appendices supplement with mathematical proofs many of
the results used in the body of the work.



Chapter 2

Path Integral Formalism

The quantum field theory (QFT) Wigner functional formalism we consider in
this dissertation uses path integrals. Explicit computations require techniques
similar to those used in the traditional QFT path integral quantization. In this
chapter we present a brief review of the path integral quantization formalism with
the sole aim of presenting the main computation techniques that we use in the
following chapters. We start reviewing the formalism for quantum mechanics and
then generalize it to QFT.

The basis of the path quantization procedure is wave mechanics, similar in
form to the Huygens-Fresnel principle. The mathematical framework of path
integral was known by mathematicians from the work of Wiener in the study
of stochastic processes. A few references to the work of mathematicians on this
subject can be found in the review paper by Gelfand and Yaglom [31].

The original idea on path integrals in physics, as pointed in the introduction
of Feynman’s paper [32], is due to "Dirac’s remarks concerning the relation of
classical action to quantum mechanics" [33, 34, 35]. We can read in those Dirac’s
works his search for a close relation between the classical and quantum mechan-
ics, even more in the section "The Action Principle" in his quantum mechanics
book [34]. In 1949, Dyson [36] proposed "a unified development of the subject
of quantum electrodynamics", grounding the path integral formalism as a fully
equivalent method of quantization to those developed at the time in quantum
electrodynamics. We follow in this chapter the presentation in the textbook of
Schwartz [37]. The interested reader can also find useful texts in the classical book
Peskin and Schröder [38], or Zee [39] for beginners. We will also make use of
Pokorski’s book [40] for some topics. As mentioned in the introduction, shall use
h̄ = c = 1 throughout this chapter.

5
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2.1 Path Integral in Quantum Mechanics

In non-relativistic quantum mechanics the most general Hamiltonian in one-
dimension is of the form:

Ĥ(t) =
p̂2

2m
+ V̂(x̂, t) , (2.1)

where V(x̂, t) is the potential; t is the time (not an operator). When V̂ is t-
independent, the probability amplitude for a transition from a state | i 〉 = | xi, ti 〉
to a state | f 〉 = | x f , t f 〉 in the Heisenberg representation is given by:

〈 f |i〉 = 〈x f , t f |xi, ti〉 = 〈x f |e−i(t f−ti)Ĥ|xi〉 . (2.2)

When V̂ is time-dependent, one can use such a formula only if the time interval
t f − ti is sufficiently small; when the time interval is not small, and V̂ is a smooth
function of t, we can evolve the amplitude by splitting the time interval into small
δt steps and take δt → 0 at the end of the calculation. This proceeds as follows:
we define tj = ti + j δt, with tn = t f , and write

〈 f |i〉 =
∫

dxn...dx1〈x f |e−iH(tn)δt|xn〉〈xn| · · · |x2〉〈x2|e−iH(t1)δt|x1〉〈x1|e−iH(ti)δt|xi〉,
(2.3)

where we inserted n complete sets of position eigenstates through the complete-
ness relationship

∫
dxj |xj〉〈xj| = 1, and defined Ĥ(tj) = p̂2/2m + V̂(x̂, tj). To

evaluate each matrix element, we insert a complete set of momentum eigenstates
through 1 =

∫
dp |p〉〈p| and use the (unnormalized) plane wave 〈x|p〉 = eipx, so

that:

〈xj+1|e−iHδt|xj〉 =
∫

dp〈xj+1| p 〉〈 p |e−i[ p̂2
2m+V(x̂j,tj)] δt| xj 〉

= e−iV(x̂j,tj)δt
∫

dp e−i p̂2
2m δtei p (xj+1−xj) . (2.4)

Now, we can use Eq. (A.10) from Appendix A to compute the momentum integral:

〈xj+1|e−iHδt|xj〉 = N e−iV(x̂j,tj)δte
i m

2
(xj+1−xj)

2

(δt)2
δt
= N e

i
(

m
2
(xj+1−xj)

2

(δt)2
−V(xj,tj)

)
δt

, (2.5)
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where N is a constant (independent of x and t) which, as we argue shortly ahead,
plays no role in the final result. We are then able to write the matrix element as

〈xj+1|e−iHδt|xj〉 = N e
i
(

m
2
(xj+1−xj)

2

(δt)2
−V(xj,tj)

)
δt
= N eiL(x,ẋ) δt, (2.6)

where we anticipated that

(xj+1 − xj)
2

(δt)2 −−−→
δt→0

ẋ2 , (2.7)

with
L(x, ẋ) =

1
2

mẋ2 −V(x, t) , (2.8)

being the Lagrangian. We see that this procedure implemented a Legendre trans-
form from the Hamiltonian H(x, p) to the Lagrangian L(x, ẋ). The whole proba-
bility amplitude can now be written as

〈 f |i〉 = Nn
∫ x(t f )=x f

x(ti)=xi

dxn eiL(xn,ẋn)dt · · · dx1 eiL(x1,ẋ1)dt

= ∏
n

N
∫ x(t f )=x f

x(ti)=xi

dxn eiL(xn,ẋn)dt −−−→
δt→0

∫
Dxn eiS[x] , (2.9)

where
S[x] =

∫
dt L(x, ẋ) , (2.10)

is the action, and ∫
Dxn =

∞

∏
n=1

N
∫ x(t f )=x f

x(ti)=xi

dxn , (2.11)

is the functional measure. N is a formally infinite constant that drops out when one
computes any physical quantity because physical quantities involve ratios of path
integrals with this measure. In the next section we will see this more explicitly. The
moral of the story is that the transition probability amplitude between an initial
and a final position state is given by an infinite sum over classical trajectories,
including the ones that do not satisfy the classical equations of motion (i.e. not
derived from the minimal action principle).

We note that this procedure, albeit giving equivalent results to the ordinary
Hilbert space operator formalism, has its advantages and disadvantages. It would
be cumbersome to solve the hydrogen atom, for example, with this method,
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but it proves extremely useful in many-particle systems and relativistic QFT.
Reference [41] presents a collection of solved nonrelativistic quantum mechanics
problems using the path integral approach. We also refer the interested reader to
the classical quantum mechanics textbook of Sakurai and Napolitano [42].

2.1.1 Generating Functional

As a further step toward introducing the path integral formalism in QFT, we
consider the matrix element of the product of position operators x̂(t) "sanduiched"
between two position eigenstates. These position operators will be replaced by
field operators Φ̂(x) in the QFT formalism in Section 2.2.

Let us consider first such a matrix element for two position operators, namely
〈x′, t′|x̂(t1)x̂(t2)|x, t〉, with t1 and t2 within the t′ − t time interval. We proceed
as above: we divide the time interval t′ − t into small time steps and insert
complete sets of position and momentum eigenstates through the corresponding
completeness relationships. To avoid clutter due to proliferation of indices, we
change t1 → τ1 and t2 → τ2 and reinstate t1 and t2 at the end. Specifically, we
choose the intermediate times tn > · · · > t1 such that for τ1 > τ2 with τ1 being the
i1-th time step and τ2 the i2-th step,

τ1 = ti1 , τ2 = ti2 , (2.12)

so that we can write

〈x′, t′|x̂(τ1)x̂(τ2)|x, t〉 =
∫

dxn . . . dxi1dxi1−1 . . . dxi2dxi2−1 . . . dx1 〈x′, t′|xn, tn〉

× · · · 〈xi1 , ti1 |x̂(τ1)|xi1−1, ti1−1〉 · · · 〈xi2 , ti2 |x̂(τ2)|xi2−1, ti2−1〉 · · · 〈x1, t1|x, t〉

=
∫

dxn . . . dxi1dxi1−1 . . . dxi2dxi2−1 . . . dx1 xi1 xi2 〈x′, t′|xn, tn〉

× · · · 〈xi1 , ti1 |xi1−1, ti1−1〉 · · · 〈xi2 , ti2 |xi2−1, ti2−1〉 · · · 〈x1, t1|x, t〉 . (2.13)

Each of the scalar products in this expression is given by the result in Eq. (2.6), so



Chapter 2. Path Integral Formalism 9

that:

〈x′, t′|x̂(τ1)x̂(τ2)|x, t〉 = Nn
∫

dxn . . . dxi1dxi1−1 . . . dxi2dxi2−1 . . . dx1

× xi1 xi2 eiL(xn,ẋn) δt · · · eiL(xi1
,ẋi1

) δt · · · eiL(xi2 ,ẋi2 ) δt · · · eiL(x1,ẋ1) δt

−−−→
δt→0

∫
Dxn x(τ1) x(τ2) eiS[x] . (2.14)

The above manipulations are valid only for τ1 > τ2, because of the choice
indicated in Eq. (2.12); if τ1 < τ2 the result in Eq. (2.14) would correspond to the
matrix element 〈x′, t′|x̂(τ2)x̂(τ1)|x, t〉, as one can check by repeating the calculation
for this case. So path integrals like Eq. (2.14) define the matrix elements of time-
ordered products of position operators:

∫
Dx x(t1)x(t2) eiS[x] =


〈x′, t′|x̂(t1)x̂(t2)|x, t〉 for t1 > t2 ,

〈x′, t′|x̂(t2)x̂(t1)|x, t〉 for t1 < t2,
(2.15)

= 〈x′, t′|Tx̂(t1)x̂(t2)|x, t〉 . (2.16)

This result generalizes to matrix elements of time-order products of several posi-
tion operators [40]:

〈x′, t′|x̂(t1) · · · x̂(tn)|x, t〉 =
∫

Dx x(t1) · · · x(tn) eiS[x] . (2.17)

One can obtain the transition amplitude in the presence of a classical external
source J(τ) as

〈x′, t′|x, t〉J =
∫

Dx ei
∫ t′

t dτ
[

L(x,ẋ)+J(τ)x(τ)
]

, (2.18)

by modifying the Hamiltonian by a source term: H −→ H− Jx. This path integral
can be used as generating functional of the matrix elements of position operators,
which can be evaluated through

〈x′, t′|Tx̂(t1) · · · x̂(tn)|x, t〉 =
(

1
i

)n δn

δJ(t1)...δJ(tn)
〈x′, t′|x, t〉J

∣∣∣∣∣
J=0

. (2.19)
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Here, the functional derivative with respect to J of a given functional F[J]

F[J] =
∫

dx1...
∫

dxn f (x1...xn)J(x1)...J(xn) , (2.20)

is given by

δF[J]
δJ(x)

=
∫

dx1...
∫

dxn−1 n f (x1...xn−1, x)J(x1)...J(xn−1) , (2.21)

which corresponds to the usual rule of differentiating monomials.

2.1.2 Vacuum to Vacuum Transition

In QFT we are often interested in matrix elements of products of field operators
in the vacuum state, i.e. in the ground state of the Hamiltonian. Those matrix
elements relate to Green’s functions which contain spectral information on single
and many-particle states. Such a matrix element can also be obtained through a
generating functional, as we show next by following Ref. [40].

We consider a time-independent Hamiltonian. We denote by |n〉 its energy
eigenstates, with |0〉 being the ground state (the vaccum state); the corresponding
coordinate-space representation are ψn(x) = 〈x|n〉 and ψ0(x) = 〈x|0〉. The matrix
element 〈0|T [x̂(t1) · · · x̂(tn)] |0〉 can be written as

〈0|T [x̂(t1) · · · x̂(tn)] |0〉 =
∫

dx′dx 〈0|x′, t′〉 〈x′, t′|Tx̂(t1) · · · x̂(tn)|x, t〉 〈x, t|0〉

=
∫

dx′dx ψ∗0(x′, t′) 〈x′, t′|Tx̂(t1) · · · x̂(tn)|x, t〉ψ0(x, t). (2.22)

The aim is to obtain a generating functional Z[J] from which one can obtain this
vacuum-to-vacuum matrix element as(

1
i

)n δn

δJ(t1)...δJ(tn)
Z[J]

∣∣∣∣∣
J=0

. (2.23)

That such a generating functional exists is clear from Eq. (2.19) as one can use it in
Eq. (2.22) for 〈x′, t′|T [x̂(t1) · · · x̂(tn)] |x, t〉. But this does not give a very convenient
expression because it needs ψ0(x, t). Let us show how to obtain a more practical
expression for the generating functional.

As a first step, we consider the transition amplitude 〈x2, T2|x1, T1〉, where T1
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and T2 are arbitrary time instants. We rewrite this amplitude as

〈x2, T2|x1, T1〉 =
∫

dxdx′ 〈x2, T2|x′, t′〉 〈x′, t′|x, t〉 〈x, t|x1, T1〉. (2.24)

Next, we assume a source J(t) vanishing at all times except for those in the interval
(t, t′), with T2 > t′ > t > T1; therefore, one can write

〈x2, T2|x1, T1〉J =
∫

dx′dx 〈x2, T2|x′, t′〉 〈x′, t′|x, t〉J 〈x, t|x1, T1〉 . (2.25)

The time dependence of the source-free amplitudes 〈x2, T2|x′, t′〉 and 〈x, t|x1, T1〉
is made explicit by using the eigenstates of the source-free Hamiltonian as follows:

〈x, t|x1, T1〉 = 〈x|e−iĤ(t−T1)|x1〉 = ∑
n

ψn(x)ψ∗n(x1) e−iEn(t−T1) , (2.26)

〈x2, T2|x′, t′〉 = 〈x2|e−iĤ(T2−t′)|x′〉 = ∑
n

ψn(x2)ψ∗n(x′) e−iEn(T2−t′) . (2.27)

To pick up the ground state we are interested in, we multiply the matrix element in
Eq. (2.26) by e−iE0T1 and continue T1 → +i∞. In this limit, the largest contribution
comes from the lowest energy eigenvalue E0 and so:

lim
T1→+i∞

[
e−iE0T1〈x, t|x1, T1〉

]
= ψ0(x) e−iE0t ψ∗0(x1) = ψ0(x, t)ψ∗0(x1) . (2.28)

The same is true for the matrix element in Eq. (2.27) with T2 → −i∞:

lim
T2→−i∞

[
eiE0T2〈x2, T2|x′, t′〉

]
= ψ∗0(x′, t′)ψ0(x2) . (2.29)

We can now use these results in Eq. (2.25) to obtain:

lim
T1→+i∞
T2→−i∞

〈x2, T2|x1, T1〉J
e−iE0(T2−T1)ψ∗0(x2)ψ0(x1)

=
∫

dxdx′ ψ∗0(x′, t′) 〈x′, t′|x, t〉J ψ0(x, t) . (2.30)

Therefore, up to J-independent factors, Z[J] is given by the left hand side of this
expression. We note that the J-independent factors drop out when normaliz-
ing 〈0|T [x̂(t1) · · · x̂(tn)] |0〉 by the vacuum-to-vacuum transition amplitude 〈0|0〉.
Specifically, first we note that the right hand side of Eq. (2.30) for J = 0 is nothing
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else than 〈0|0〉, which, by Eq. (2.18) with J = 0, is given by

〈0|0〉 = lim
T1→+i∞
T2→−i∞

∫
Dx ei

∫ T2
T1

dt L(x,ẋ)

e−iE0(T2−T1)ψ∗0(x2)ψ0(x1)
. (2.31)

Then, we use Eqs. (2.18) and (2.19) with Eq. (2.30) to obtain

〈0|Tx̂(t1) · · · x̂(tn)|0〉 =
〈0|T [x̂(t1) · · · x̂(tn)] |0〉

〈0|0〉 lim
T1→+i∞
T2→−i∞

∫
Dx ei

∫ T2
T1

dt L(x,ẋ)

e−iE0(T2−T1)ψ∗0(x2)ψ0(x1)

=

(
1
i

)n δn

δJ(t1)...δJ(tn)
lim

T1→+i∞
T2→−i∞

∫
Dx ei

∫ T2
T1

dt
[

L(x,ẋ)+J(t)x(t)
]

e−iE0(T2−T1)ψ∗0(x2)ψ0(x1)

∣∣∣∣∣
J=0

.(2.32)

Cancelling the common factor e−iE0(T2−T1)ψ∗0(x2)ψ0(x1), we can then write

〈0|T [x̂(t1) · · · x̂(tn)] |0〉
〈0|0〉 =

1
Z[0]

(
1
i

)n δn

δJ(t1)...δJ(tn)
Z[J]

∣∣∣∣∣
J=0

, (2.33)

with Z[J] given by:

Z[J] = lim
T1→+i∞
T2→−i∞

∫ x(T2)

x(T1)
Dx e i

∫ T2
T1

dt
[

L(x,ẋ)+J(t)x(t)
]

, (2.34)

where we made explicit in the path integral the arbitrary end-point trajectories
x(T1) and x(T2).

2.2 Path Integral in Quantum Field Theory

In this section we transcribe the previous formalism to QFT. We exemplify
the formalism for a real scalar field theory with self interaction λ

4! Φ
4, which is

the theory that we use to discuss the Wigner formulation. In QFT, it is usual to
define the theory through a Lagrangian density and then obtain the corresponding
Hamiltonian to define the path integral. The Lagrangian density is given by

L =
1
2

∂µΦ∂µΦ− 1
2

m2Φ2 − λ

4!
Φ4 =

1
2

(
Φ̇2 − (∇Φ)2

)
−V(Φ) , (2.35)
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with
V(Φ) =

1
2

m2Φ2 +
λ

4!
Φ4 . (2.36)

The spacetime dependence of the field is Φ(x) = Φ(x, t) and, as usual, Φ̇ = ∂Φ/∂t.
The classical conjugate momentum Π(x) is then

Π(x) =
∂L

∂Φ̇(x)
. (2.37)

By Legendre transforming this Lagrangian, one obtains the classical Hamiltonian
density:

H =
1
2

(
Π2 + (∇Φ)2

)
+ V(Φ) , (2.38)

One can follow the same steps of the previous section to quantize the theory
by identifying the position x̂(t) and momentum p̂(t) Heisenberg representation
operators with the field operators Φ̂(x, t) and Π̂(x, t), respectively. That is, there
is one dynamical variable at each spacetime position (x, t). The corresponding
equal-time commutation relations are (recall we are using h̄ = 1):

[ Φ̂(x, t), Φ̂(y, t) ] = [ Π̂(x, t), Π̂(y, t) ] = 0 , (2.39)

[ Φ̂(x, t), Π̂(y, t) ] = iδd(x− y) , (2.40)

where d is the spatial dimensionality; the spacetime diemensionality is d + 1. The
field theory “coordinate” representation is formally characterized by

Φ̂(x)|Φ〉 = Φ(x)|Φ〉 , (2.41)

in that one thinks of a “lattice” representation of the state vectors |Φ(x)〉 [43]:

|Φ〉 = ∏
x
|Φ(x)〉 , (2.42)

〈Φ|Φ′〉 = ∏
x

δ
(
Φ(x)−Φ′(x)

)
, (2.43)

∏
x

∫ ∞

−∞
dΦ(x) |Φ(x)〉〈Φ(x)| = 1 , (2.44)

and similar expressions for the eigenstates |Π〉 of the Π̂(x) operator.
It will be useful for the developments throughout this dissertation to go over

momentum space. We define the momentum space Φ̂(p, t) and Π̂(p, t) field
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operators through the Fourier transforms:

Φ̂(p, t) =
∫

ddx e−ip · x Φ̂(x, t) , (2.45)

Π̂(p, t) =
∫

ddx e−ip · x Π̂(x, t) . (2.46)

The commutation relations of Eq. (2.39) and Eq. (2.40) are then given by

[ Φ̂(p, t), Π̂†(q, t) ] =
∫

ddx ddy e−ip · x+iq · y [ Φ̂(x, t), Π̂(y, t) ]

=
∫

ddx ddy e−ip · x+iq · y i δ(x− y)

= i
∫

ddx e−i(p−q ) · x = i (2π)dδd(p− q) . (2.47)

On the same steps, one finds

[ Φ̂(p, t), Φ̂(q, t) ] = [ Π̂(p, t), Π̂(q, t) ] = 0 . (2.48)

For a real scalar field, we have that

Φ†(p, t) =
(∫

ddx e−ip · x Φ̂(x, t)
)†

=
∫

ddx e+ip · x Φ̂(x, t) = Φ(−p, t) . (2.49)

Therefore, the commutator of Φ̂(p, t) and Φ̂†(q, t) also vanishes:

[ Φ̂(p, t), Φ̂†(q, t) ] =
∫

ddx ddy e−ip · x+iq · y [ Φ̂(x, t), Φ̂(y, t) ] = 0 . (2.50)

As in coordinate space, the field theory “coordinate” representation in momentum
space is formally characterized by

Φ̂(p)|Φ〉 = Φ(p)|Φ〉 , (2.51)
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and again it is understood that

|Φ〉 = ∏
p
|Φ(p)〉 , (2.52)

〈Φ|Φ′〉 = ∏
p

δ(Φ(p)−Φ′(p)) , (2.53)

∏
p

∫ ∞

−∞
dΦ(p) |Φ(p)〉〈Φ(p)| = 1 . (2.54)

Finally, the coordinate representation of |Π〉 is given (up to a normalization
constant) by

〈Φ|Π〉 = e i
∫

ddx Π(x)Φ(x) . (2.55)

In an explicit lattice discretization, this is given by

〈Φ|Π〉 = e iad ∑x Π(x)Φ(x) = ∏
x

e iad Π(x)Φ(x) = ∏
x
〈Φ(x)|Π(x)〉 , (2.56)

where a is the lattice spacing. One can express these relations in momentum space
by Forier transforming the fields.

Next, we consider the QFT transition probability amplitude that generalizes
〈x f , t f |xi, ti〉:

〈 f |i〉 = 〈Φ f |e−i(t f−ti)Ĥ|Φi〉 , (2.57)

where Φi and Φ f are the eigenstates of Φ̂ at the times ti and t f respectively. We
proceed as in the quantum mechanical case by dividing t f − ti into small δt
pieces. But now we need the spatially discretized Hamiltonian as well, because
we will use the discretized completeness relations of Eqs. (2.44) and (2.54). At this
point, it suffices to replace the spatial integral over the Hamiltonian density by a
discrete sum without entering into particular discretizations of spatial derivatives;
specifically, it is sufficient to write the discretized Hamiltonian as:

Ĥ =
∫

ddxH → ad ∑
x
Ĥ(x) , (2.58)

with
Ĥ(x) =

1
2

Π2(x) +
1
2
(∇Φ(x))2 + V(Φ(x)) . (2.59)

We can proceed in a manner similar to that we proceeded in the previous section,
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namely:

〈 f |i〉 = 〈Φ f (x)|e−i(t f−ti)ad ∑x Ĥ(x)|Φi(x)〉

= 〈Φ f (x)|e−iδt ad ∑x Ĥ(x) . . . e−iδt ad ∑x Ĥ(x)|Φi(x)〉

= ∏
jn

∫ ∞

−∞
dΦjn(x) . . . ∏

j2

∫ ∞

−∞
dΦj2(x) ∏

j1

∫ ∞

−∞
dΦj1(x)

× 〈Φ f (x)|e−iδt adĤjn (x)|Φjn(x)〉 · · · 〈Φj2(x)|e−iδt adĤj1
(x)|Φj1(x)〉

×〈Φj1(x)|e−iδt adĤi(x)|Φi(x)〉 . (2.60)

Each matrix element is evaluated by inserting the momentum completeness rela-
tion given by Eq. (2.54); for a generic (j + 1, j) matrix element, we obtain:

〈Φj+1(x)|e−iδt adĤj(x)|Φj(x)〉 = e−iδt ad
[

1
2(∇Φj(x))

2
+V(Φj(x))

]

× ∏
k

∫ ∞

−∞
dΠk(x) e−iδt ad 1

2 Π2
k(x)〈Φj+1(x)|Πk(x)〉 〈Πk(x)|Φj(x)〉

= e−iδt ad
[

1
2(∇Φj(x))

2
+V(Φj(x))

]

×
∫ ∞

−∞
dΠj(x) e−iδt ad 1

2 Π2
j (x)e

iδt ad
(

Φj+1(x)−Φj(x)
δt

)
Πj(x)

= N e
−iδt ad

[
− 1

2

(
Φj+1(x)−Φj(x)

δt

)2
+ 1

2(∇Φj(x))
2
+V(Φj(x))

]

= N eiδt ad
[

1
2 Φ̇2

j (x)− 1
2(∇Φj(x))

2−V(Φj(x))
]
= N eiδt ad L(Φ,Φ̇), (2.61)

where we used Eq. (2.56) for the lattice plane wave, and Eq. (2.35) to identify the
Lagrangian density. Then, we can write the probability amplitude as the path
integral:

〈 f |i〉 = 〈Φ f |e−i(t f−ti)Ĥ|Φi〉 =
∫

DΦ(x, t) eiS[Φ] , (2.62)

where the action is given by

S[Φ] =
∫ t f

ti

dt
∫

ddxL(Φ, Φ̇) , (2.63)

and the path integral is over all field functions Φ(x, t) with the boundary condi-
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tions Φ(x, ti) = Φi(x) and Φ(x, t f ) = Φ f (x).
The generating functional in QFT can be derived in close analogy with what

was done for quantum mechanics in the previous section. As said there, this
provides a convenient way to calculate correlation functions using classical sources
in a formalism similar to partition functions in statistical mechanics [44]. The
generating functional in configuration space for a source J(x) in field theory can
be written as

Z[J] =
∫

DΦ exp
[

iS[Φ] + i
∫

ddx J(x)Φ(x)
]

. (2.64)

To evaluate a one-point correlation function, i.e. the vacuum expectation value of
the field Φ̂, one needs to take a single functional derivative of Z[J]:

1
Z[0]

(
1
i

)
∂Z

∂J(x1)

∣∣∣
J=0

=
∫

DΦ Φ(x1) exp
[

iS[Φ] + i
∫

ddxJ(x)Φ(x)
]

J=0

= 〈0|Φ̂(x1)|0〉 , (2.65)

in which the vacuum state is supposed to be normalized so that one can omit the
〈0|0〉 normalization. For n-point correlation functions this generalizes to

〈0|TΦ̂(x1)...Φ̂(xn)|0〉 =
1

Z[0]

(
1
i

)n δnZ[J]
δJ(x1)...δJ(xn)

∣∣∣∣∣
J=0

. (2.66)

To conclude, let us reiterate that we will not use the path integral quantization
formalism as outlined in this chapter. As said previously, we discussed it mainly
because we need the calculation techniques reviewed above, familiar from most
modern QFT textbooks, to discuss the Wigner functional quantization formalism,
that is our focus in this dissertation.



Chapter 3

Wigner Functional Formalism

3.1 Quantum Mechanics in Phase Space

We can formulate quantum mechanics in phase space in analogy with classical
mechanics. This procedure, also termed "Moyal quantization" or deformation
quantization is grounded in the seminal work of Wigner quasi-distribution func-
tion [2] and on the Weyl’s mapping of c-numbers into Hilbert space operators [45];
Dirac in 1930 [46] was the first to propose a formulation of quantum mechanics
in phase space though, describing a function in this space obtained by a Fourier
transform on the density matrix, but without success. Many attempts were made
to further generalize this quantum mechanics, like the works of Moyal [47] and
Groenewold [48] on the so called "star product" (or Moyal-Groenewold product)
and the Sympletic Quantum Mechanics due to Viana et al [49].

Phase space dynamics is very useful in classical mechanics and it comes nat-
urally from the Hamiltonian formulation. The attempts to extend this concept
to embrace quantum mechanics were the drivers of many works, in the pursue
of a general framework where classical mechanics can be smoothly recovered
from phase space quantum mechanics as the Planck constant h̄ goes to 0, i.e. this
constant parametrizes the link between mechanics. An advantage of it is that
under this formalism we can perform canonical transformations just like classical
Hamiltonian mechanics [50]

Wigner’s main objective was to introduce quantum corrections for statistical
mechanics in the framework of phase space, but along the time his work evolve to
a brand new version of quantum mechanics [3, 4] reproducing the nonrelativistic
Schrodinger equation [49] along with many old results like the hydrogen atom
solution [51, 52], and the Klein-Gordon [14] and Dirac [16] relativistic equations.
In this chapter we shall follow mainly Viana et al [4] and Ballentine textbook [53].
We restore h̄ because it will be important now on.

18
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3.1.1 Definition and Properties

In this formalism, every operator Â in Hilbert spaceH is associated to some
complex function Aw(x, p) in the phase space Γ. This procedure consist of a
mapping so that the associative algebra of operators in H corresponds to an
associative (but non-commutative) algebra in Γ. The interpretation of phase space
quantum mechanics lies in the so called "Wigner function" fw(x, p) [2], defined
as the Fourier transform of the density matrix, where both the position x and
momentum p are c-numbers (in contrast to canonical quantum mechanics where
they are operators in some Hilbert spaceH). We define this function as

fw(x, p) = (2πh̄)−1
∫ ∞

−∞
dy 〈x− y

2
| ρ̂ |x +

y
2
〉 e

ipy
h̄ . (3.1)

Similarly, we can define

fw(x, p) = (2πh̄)−1
∫ ∞

−∞
dk 〈p− k

2
| ρ̂ |p +

k
2
〉 e

ikx
h̄ . (3.2)

The generalization to three dimensions and N particles is straightforward

fw(r, p) = (2πh̄)−3N
∫ ∞

−∞
d3NR 〈r− R

2
| ρ̂ |r + R

2
〉 e

ip ·R
h̄ , (3.3)

where r and R are three dimensional entities. We can show that Wigner function
yields the probability density in configuration space through∫

dp fw = |ψ(x)|2 = 〈x| ρ̂ |x〉 , (3.4)

which allows us to find the probability density of find some particle between x
and x + dx. We can prove this using the definition in Eq. (3.1) in one dimension,
without loss of generality:∫

dp fw(x, p) = (2πh̄)−1
∫

dydp 〈x− y
2
| ρ̂ |x +

y
2
〉 e

ipy
h̄

=
∫

dy 〈x− y
2
| ρ |x +

y
2
〉
[
(2πh̄)−1

∫
dp e

ipy
h̄

]
. (3.5)

The integral between square brackets is a Dirac delta δ(y), so we write∫
dp fw(x, p) = 〈x| ρ̂ |x〉 . (3.6)
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We can prove the same to the momentum space wave function, i.e.∫
dp fw(x, p) = |ψ̃(p)|2 = 〈p| ρ̂ |p〉 . (3.7)

Using the definition of Eq. (3.2) for the Wigner function from momentum space
representation, we prove it by

∫
dx fw(x, p) = (2πh̄)−1

∫ ∞

−∞
dx dk 〈p− k

2
| ρ̂ |p +

k
2
〉 e

ikx
h̄

=
∫ ∞

−∞
dk 〈p− k

2
| ρ̂ |p +

k
2
〉
[
(2πh̄)−1

∫
dx e

ikx
h̄

]
=

∫ ∞

−∞
dk 〈p− k

2
| ρ̂ |p +

k
2
〉 δ(k) = 〈p| ρ̂ |p〉 . (3.8)

We also require the normalization of Wigner function, through the relation∫
fw(x, p) dp dx = Tr ρ̂ = 1 . (3.9)

To see that this is indeed the case, we start from Eq. (3.1)∫
dpdx fw(x, p) = (2πh̄)−1

∫
dy dp dx 〈x− y

2
| ρ̂ |x +

y
2
〉 e

ipy
h̄ , (3.10)

and then calculate the integral in p:∫
dpdx fw(x, p) =

∫
dy dx 〈x− y

2
| ρ̂ |x +

y
2
〉 δ(y)

=
∫

dx 〈x| ρ̂ |x〉 = Tr ρ̂ . (3.11)

Finally, we can also prove that Wigner function is not necessarily positive
definite following the argument that, if we have fα(x, p) and fβ(x, p) associated
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with density matrices ρ̂α = |α〉 〈α| and ρ̂β = |β〉 〈β|, we have that

(2πh̄)−1
∫

dxdp fα fβ = (2πh̄)−2
∫

dx dp
∫

dy 〈x− y
2
| α〉〈α |x +

y
2
〉 e

ipy
h̄

×
∫

dz 〈x− z
2
| β〉〈β |x +

z
2
〉 e

ipz
h̄

= (2πh̄)−1
∫

dx
∫

dy 〈x− y
2
| α〉〈α |x +

y
2
〉

×
∫

dz 〈x− z
2
| β〉〈β |x +

z
2
〉 δ(y + z)

= (2πh̄)−1
∫

dx dy 〈x− y
2
| α〉〈α |x +

y
2
〉

× 〈x +
y
2
| β〉〈β |x− y

2
〉 . (3.12)

Cancelling the (2πh̄)−1 factors in both sides and making the change of variables

x̄ = x− y
2

, ȳ = x +
y
2

, (3.13)

which has Jacobian equal to unity, we obtain:∫
dxdp fα fβ =

∫
dx̄dȳ 〈x̄| α〉〈α |ȳ〉 〈ȳ| β〉〈β |x̄〉 = 〈α|β〉〈β|α〉 = |〈α|β〉|2 . (3.14)

The right side is positive or zero (orthogonal states). In either case, there is no
need for the integrands on the left hand side to be positive in the entire integration
range. Therefore, Wigner functions can, in principle have negative values for
some values of their arguments; we will provide an example of such a case. The
meaning of this is that a Wigner function cannot be called "distribution density",
instead, we shall call it "quasi-distribution density" by the properties of Eq. (3.4),
(3.7) and (3.9). We can summarize all these properties as follows:

1.
∫

fw(x, p) dp = |ψ(x)|2 = 〈x| ρ̂ |x〉 .

2.
∫

fw(x, p)dx = |ψ̃(p)|2 = 〈p| ρ̂ |p〉 .

3.
∫

fw(x, p) dp dx = Tr ρ̂ = 1.

4. fw is not necessarily positive-definite.
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3.1.2 Gaussian Wave Packet Wigner Function

As an example, it is useful to work out the Wigner function for pure states. For
such a state, Eq. (3.1) takes the form

fw = (2πh̄)−1
∫ ∞

−∞
dy ψ

(
x− y

2

)
ψ∗
(

x +
y
2

)
e

ipy
h̄ , (3.15)

where it is understood that ψ(x) = 〈x|ψ〉. If ψ is a Gaussian wave packet of form

ψ(X) =
( 1

2πa2

) 1
4
e−

X2

4a2 , (3.16)

we can make X = x± y/2 in the exponential; the Wigner function of this wave
packet takes the form

fw(x, p) =
1

2πh̄
√

2πa2

∫ ∞

−∞
dy e−

x2

4a2 e+
xy

2a2 e−
y2

16a2 e−
x2

4a2 e−
xy

2a2 e−
y2

16a2 e
ipy
h̄

=
e−

x2

2a2

2πh̄
√

2πa2

∫ ∞

−∞
dy e

ipy
h̄ −

y2

8a2

=
1

πh̄
e
− x2

2(∆x)2 e
− p2

2(∆p)2 . (3.17)

The values of root mean square half-widths of the position and momentum distri-
bution ∆x = a and ∆p = h̄

2a were used to explicit the symmetry between x and p.
The most general Gaussian wave function is obtained by displacing the center of
the state to an arbitrary point in phase space, ∆x = x0 and ∆p = p0

ψ(x) = (2πa2)−
1
4 e−

(x−x0)
2

4a2 e
ip0x

h̄ , (3.18)

so

fw(x, p) =
1

πh̄
e
− (x−x0)

2

2(∆x)2 e
− (p−p0)

2

2(∆p)2 . (3.19)

Note that this is the product of position and momentum distribution, and it is
positive everywhere. It has been proven in Ref. [54] that Gaussian wave functions
are the only pure states with non-negative Wigner functions. We can see the shape
of such function in Figure 3.1.
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Figure 3.1: Wigner function for Gaussian wave packet

3.1.3 Two Separated Gaussian Wave Packets Wigner Functions

In the case of two separated Gaussian wave packets, considering their super-
position and the packets centered in x = ±c (c is an arbitrary real number):

ψ(x) =
N√

2(2πa2)
1
4

[
e−

(x−c)2

4a2 + e−
(x+c)2

4a2
]

. (3.20)

The normalization factor N = (1 + e
−c2

2a2 )−
1
2 is required because the Gaussians are

not orthogonal. When we evaluate Wigner function from Eq. (3.15) there will be
two separate Gaussian packets and one interference term. The result is

fw(x, p) =
N2

2πh̄
e
−p2

2(∆p)2
[
e
− (x−c)2

2(∆x)2 + e
− (x+c)2

2(∆x)2
]
+

N2

2πh̄
e
−p2

2(∆p)2 e
− x2

2(∆x)2 cos
2cp

h̄
. (3.21)

In this expression we used ∆x = a and ∆p = h̄
2a . We can see the previous

peak at x = ±c and another one at x = 0. It is worth noting that we have
the previous Gaussian Wigner function multiplied by an oscillatory factor that
represents interference between the two Gaussian wave packets we are now
dealing with. Clearly this Wigner function takes both positive and negative values,
and cannot be interpreted as a probability distribution, and we also have the fact
that it retains this character even in the macroscopic limit in which the separation c
between the packets becomes infinitely large because, as c→ ∞, the amplitude of
the interference term does not diminish. This Wigner function does not approach
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Figure 3.2: Wigner function for the wave packet in Eq. (3.20) for c = 0.

Figure 3.3: Same as in Fig. 3.2, for c = 2.
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Figure 3.4: Same as in Fig. 3.2, for c = 4.

a classical phase space probability distribution even in the macroscopic limit (see
Figures 3.2, 3.3, 3.4 and 3.5), but it does not prevent it from yielding the expected
two-peak position distribution, since the interference term averages to zero upon
integration over momentum.

3.1.4 Time Evolution of Wigner Function

Since Wigner function is the Fourier transform of density matrix, time evolution
of the former can be reduced to that of the later. Considering the Hamiltonian
of form H = P2

2m + V (with capital P to avoid confusion), its time evolution in
Heisenberg picture is given by:

dρ(t)
dt

=
i
h̄

[
ρ(t), H(t)

]
. (3.22)

It is convenient to separate the time evolution of density matrix as

dρ

dt
=

∂ρK

∂t
+

∂ρV

∂t
, (3.23)

where ρK is the kinetic part and ρV is the potential one. The kinetic term then
becomes

∂ρK

∂t
=

i
2mh̄

(ρP2 − P2ρ) , (3.24)
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Figure 3.5: Wigner function horizontal cut from Figure 3.4, with negative values
in deep blue.
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and the potential one
∂ρV

∂t
=

i
h̄
(ρV −Vρ) . (3.25)

We use the momentum representation to evaluate the kinetic part:

∂ρK

∂t
〈p| ρ |p′〉 =

i
2mh̄

〈p| ρ |p′〉 (p′2 − p2)

=
i

2mh̄
〈p| ρ |p′〉 (p′ − p)(p′ + p) , (3.26)

and the Wigner function definition of Eq. (3.2) to find

∂ fw(k)(x, p; t)
∂t

=
i

h̄m

∫ ∞

−∞
dk p k 〈p− k

2
| ρ |p +

k
2
〉 e

ixk
h̄ . (3.27)

Now we replace the k inside the integral for (−h̄/i) ∂
∂x and take it off the integral

∂ fw(k)(x, p; t)
∂t

= − p
m

∂

∂x
fw(x, p, t) . (3.28)

In the non-kinetic term case, the time evolution in position representation given
by Eq. (3.1) is

∂

∂x
〈x| ρV |x′〉 =

i
h̄
〈x| ρ |x′〉

[
V(x)−V(x′)

]
. (3.29)

Using the Wigner transformation definition in we obtain

∂

∂t
fw(V)(x, p; t) =

i
h̄(2πh̄)

∫ ∞

−∞
dy 〈x− y

2
| ρ |x +

y
2
〉
[
V
(

x +
y
2

)
−V

(
x− y

2

)]
e

ipy
h̄ .

(3.30)
If V(x) is analytic it can be expressed as a Taylor series:

V
(

x +
y
2

)
−V

(
x− y

2

)
= ∑

n=odd

2
n!

(y
2

)n dnV(x)
dxn . (3.31)

When we use this series expansion in the integral, we can replace the term (1
2 y)n

for
(
− h̄

2i
∂

∂x

)n
which yields

∂ fw(V)(x, p, t)
∂t

= ∑
n=odd

1
n!

(
− ih̄

2

)n−1 dnV(x)
dxn

∂n

∂pn fw(x, p, t) . (3.32)

The sum of these two equations amounts to the time evolution of Wigner function.
There are some aspects to emphasize: first, the complex number i appears with
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even power, so all terms are real; second, this sum is evidently a sum of powers
of h̄, which suggests this equation has a neat classical limit. Combining the two
kinetic and potential parts we obtain

∂ fw(x, p; t)
∂t

= − p
m

∂

∂x
fw(x, p; t) +

dV(x)
dx

∂

∂p
fw(x, p; t) +O(h̄2) . (3.33)

If the corrections of O(h̄2) can be neglected, this is the classical Liouville equation:

∂ρ(x, p; t)
∂t

= − p
m

∂

∂q
ρ(x, p; t)− F(q)

∂

∂p
ρ(x, p; t) . (3.34)

The corrections terms, formally of order h̄n involve a nth order derivative of
fw(x, p; t) with respect to p, so this can generate factors of 1/h̄ and cancel the h̄
factors. Equation (3.21) is an example of Wigner function that behaves this way
(see Figure 3.5). In such cases the corrections terms in Eq. (3.33) do not vanish in
the h̄→ 0 limit.

The harmonic oscillator is an interesting case; since the third and higher deriva-
tives of V(x) vanish (due to the quadratic potential), the terms in the Eq. (3.32) for
n > 1 (which contain h̄) are all 0. Hence its Wigner function satisfies the classical
Liouville equation exactly, even if the state is not nearly classical.

3.1.5 Quantum Entropy in Wigner Representation

The Wigner function provides a bridge between quantum and classical phase-
space physics. In particular, the fact that the Wigner function be negative motivates
its use to quantify quantum entanglement, the quintessential quantum property.
Quantum entanglement plays a fundamental role in quantum information science.
A key concept in quantifying entanglement is entanglement entropy. We cannot
dwell much into this subject, but these feature motivate us to compute a quantum
entropy in quantum field theory using the Wigner functional approach developed
in this work. In the following we present a brief outline of the main results we
need to compute a quantum entropy.

One of the most studied quantum entropies is the von Neumann entropy SvN,
also known as the entanglement entropy. It is defined in terms of the density
matrix ρ̂ by [55]:

SvN = −Tr ρ̂ ln ρ̂ . (3.35)

The von Newman extropy provides a quantitative measure of the information
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available on a system’s state described by ρ̂. The larger SvN, the less the available
information. If ρ̂ is a pure state, i.e. the state of the system is described by state
vector, we have complete knowledge on the state and, therefore SvN = 0. On the
other hand, if ρ̂ describes a mixed state, SvN ≥ 0.

One obtains the classical limit (CL) of the Von Neumann entropy by replacing
the density matrix with the phase-space probability distribution f (x, p):

SvN
CL−→

∫
dxdp f (x, p) ln f (x, p) . (3.36)

Although appealing, one cannot replace f (x, p) by fw(x, p) to obtain a well de-
fined quantum entropy functional because fw(x, p) can take negative values.
However, one can still define a quantum entropy in terms of the Wigner func-
tion fw(x, p) as [56]:

Sw = 1− 2πh̄
∫

dxdp f 2
w . (3.37)

Sw was denoted S2 in Ref. [56]. This entropy is equal to the linear entropy, which
is given in terms of ρ̂ by:

SL = 1− Tr ρ2 . (3.38)

To prove this, we first use the definition of fw(x, p) and write:

(2πh̄)
∫

f 2
w(x, p)dxdp = (2πh̄)−1

∫
dx dp

( ∫ ∞

−∞
dy 〈x− y

2
| ρ |x +

y
2
〉 e

ipy
h̄

)
×
( ∫ ∞

−∞
dy′ 〈x− y′

2
| ρ |x +

y′

2
〉 e

ipy′
h̄

)
=

∫
dx
( ∫ ∞

−∞
dy 〈x− y

2
| ρ |x +

y
2
〉
)

×
( ∫ ∞

−∞
dy′ 〈x− y′

2
| ρ |x +

y′

2
〉
)

δ(y + y′)

=
∫

dx dy 〈x− y
2
| ρ |x +

y
2
〉 〈x +

y
2
| ρ |x− y

2
〉 . (3.39)

Then we change variables as

u = x− y
2

and v = x +
y
2

. (3.40)
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Since the Jacobian of the transformation is unity, we obtain∫
du dv 〈u| ρ |v〉 〈v| ρ |u〉 =

∫
du 〈u| ρρ |u〉 = Tr ρ2 , (3.41)

and Sw = SL is verified.
In the quantum field theory literature associated with quantum information

concepts it is common to work with the nth Rényi entropies [55]:

Sn =
1

1− n
ln Tr ρ̂n. (3.42)

The von Neuman entropy is then obtained from the Sn through the replica trick
formula:

SvN = lim
n→1

Sn . (3.43)

The reason for the use of Sn is that it is almost impossible to compute SvN in
practice directly from ρ̂, because one would need to diagonalize ρ̂ to be able to
compute its logarithm.

Now, it is important to notice that S2 is the only Rényi entropy that has the
ρ̂↔ fw correspondence. For example, Tr ρ̂4 does not correspond to

∫
dxdp f 4

w(x, p).
For this reason, in this dissertation we will compute the 2nd Rényi entropy:

S2 = − ln Tr ρ̂2 . (3.44)

To conclude this section, we illustrate the computation of Sw for the one-
dimensional Wigner function in Eq. (3.1) of a Gaussian wave packet (with mini-
mum uncertainty):

fw(x, p) =
1

πh̄
e
−x2

2(∆x)2 e
−p2

2(∆p)2 , (3.45)

where ∆x and ∆p are the half widths of the Gaussian distributions and obey
∆x∆p = h̄/2, and are independent of x and p. The Sw entropy for this case is
computed as follows:

Sw = 1− πh̄
∫ 1

π2h̄2 e
−x2

(∆x)2 e
−p2

(∆p)2 dxdp

= 1− 2πh̄
π2h̄2

(∫
e
−x2

(∆x)2 dx

) (∫
e
−p2

(∆p)2 dp

)

= 1− 2
πh̄
(√

π∆x
) (√

π∆p
)
= 1− 2∆x∆p

h̄
= 0 . (3.46)
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Here, we have used that ∆x∆p = h̄/2. The null result is due to the pure-state
nature of the fw used; we recall that pure-state density matrix ρ̂ has the prop-
erty ρ̂2 = ρ̂. Note Sw = 0 is a necessary condition for the state represented by fw

being pure; it is not a sufficient condition because one can find counterexamples
for which Sw = 0 for a non pure state [56].

3.2 Wigner Functional Approach to Quantum Field

Theory

In this section we review the previous formalism to field theory following the
work of Mrówczyński and Müller in Ref. [11] for a scalar quantum field theory.
The generalization to the electromagnetic field is presented in Ref. [13] and to the
fermion fields in Ref. [25].

We begin by defining a "Wigner Functional" in phase space as

W[Φ(x), Π(x); t] =
∫

Dϕ(x) e−i
∫

dx Π(x)ϕ(x)

×
〈

Φ(x) +
ϕ(x)

2

∣∣∣ ρ̂(t)
∣∣∣Φ(x)− ϕ(x)

2

〉
. (3.47)

In momentum space, we know from the previous chapter that Φ(p) and Π(p) are
now complex numbers and their real and imaginary parts are not independent
of each other anymore due to the constrain Φ∗(p) = Φ(−p). To avoid double
counting of degrees of freedom, the real and imaginary parts of these fields are
treated as independent variables in the path integral, but with the momentum
restricted to positive values (p ≥ 0). The Wigner functional in terms of momentum
space fields can then be defined by

W̃[Φ(p), Π(p); t] =
∫

Dϕ(p)e−i
∫ ∞

0
dp
2π [Π∗(p)ϕ(p)+Π(p)ϕ∗(p)]

×
〈

Φ(p) +
ϕ(p)

2

∣∣∣ρ̂(t)∣∣∣Φ(p)− ϕ(p)
2

〉
, (3.48)

where Dϕ(p) means integration over the real and imaginary parts of ϕ(p), and
the transformation from coordinate to momentum space is done by a Fourier
transform with unit Jacobian:

det
[

δΦ(x)
δΦ(p)

]
= 1 . (3.49)
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3.2.1 Expectation Values

We can define the expectation value of an operator Ô(Φ̂, Π̂) as

〈Ô(Φ̂, Π̂)〉 = 1
Tr ρ̂(t)

Tr
[
ρ̂(t) Ô(Φ̂, Π̂

]
=

1
Z

Tr
[
ρ̂(t) Ô(Φ̂, Π̂

]
, (3.50)

where we defined

Z ≡ Tr ρ̂(t) =
∫

DΦ
DΠ
2π

W[Φ, Π; t] . (3.51)

We prove in Appendix C that

〈Ô(Φ̂, Π̂)〉 = 1
Z

∫
DΦ

DΠ
2π
O(Φ, Π)W[Φ, Π; t] , (3.52)

provided that the non-commuting operators inO are properly symmetrized. Every
operator corresponding to an asymmetric ordering of the operators Φ̂ and Π̂ must
be explicitly expressed as sums of symmetrized factors. Wigner functional in
the previous expression looks like a probability density in statistical mechanics,
but like the Wigner function case, it might not be positive definite, termed a
"quasi-distribution" functional.

A warning on the the meaning of quantities denoted by Z is necessary before
we proceed: Z means different quantities in different places in this work. In the
previous chapter we used Z to denote generating functional, here we used to
denote the trace of the density matrix, and shortly ahead we use Z to denote
thermal partition functions.

3.2.2 Equation of Motion

We know from Ref. [42], for example, that density matrix obey the dynamical
equation

ih̄
d
dt

ρ̂(t) =
[
Ĥ, ρ̂(t)

]
, (3.53)

and from Section 2.2 we know that for a scalar field theory we have a Hamiltonian
of the form

Ĥ =
∫

dx
[

1
2

(
Π̂2(x) + (∇Φ̂(x))2 + m2 ˆ̂Φ2(x)

)
−LI(Φ̂)

]
, (3.54)
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where Π̂ is the conjugated momentum. We derive in Appendix C.2 the equation
of motion for this Hamiltonian as being

∂

∂t
W[Φ, Π, t] +

∫
dx
[

Π(x)
δ

δΦ(x)

−
(

m2Φ(x)−∇2Φ(x)
) δ

δΠ(x)
+KI(x)

]
W[Φ, Π, t] = 0 , (3.55)

where

KI(x) = − i
h̄
LI

[
Φ(x) +

ih̄
2

δ

δΠ(x)

]
+

i
h̄
LI

[
Φ(x)− ih̄

2
δ

δΠ(x)

]
. (3.56)

In the LI(x) = − λ
4! Φ

4(x) case:

KI(x) =
λ

6

[
−Φ3(x)

δ

δΠ(x)
+

h̄2

4
Φ(x)

δ3

δΠ3(x)

]
. (3.57)

We note that this interaction term KI is always finite for renormalizable quantum
field theories in (3 + 1) spacetime dimensions because their Lagrangians contain
at most quartic terms in the interaction. This equation has the suggestive form of a
transport equation and can be written in the form of a classical Liouville equation
[44] when neglecting higher derivative terms[

∂

∂t
+
∫

dx
( δH

δΠ(x)
δ

δΦ(x)
− δH

δΦ(x)
δ

δΠ(x)

)]
W[Φ, Π, ; t] = 0 , (3.58)

where the neglected terms are of order h̄2 or higher, showing us that quantum
corrections are of orders of h̄ for this specific case, but not for all [53].

3.2.3 Free Field in Thermal Equilibrium

We will consider a scalar field in thermodynamical equilibrium at some tem-
peratue T; the corresponding density matrix is given by

ρ̂
(0)
β =

1
Z(0)

e−β Ĥ0 , (3.59)

where β = 1/T (we take the Boltzmann constant equal to unity). Z(0) is the
partition function, given by

Z(0) = Tr e−β Ĥ0 , (3.60)



Chapter 3. Wigner Functional Formalism 34

so that the thermal density matrix is normalized to unity:

Tr ρ̂(0) = 1 . (3.61)

The superscript (0) in ρ̂
(0)
β and Z(0) indicates that it corresponds to the Hamil-

tonian Ĥ0 of Eq. (3.64). In the following we will use the superscript (0) in all
quantities referring to Ĥ0 to avoid confusion when changing to other Hamiltoni-
ans. We shall also suppress from now on the time in the equations since we are
dealing with statistical mechanics under thermal equilibrium. Note that for a real
scalar field there is no conserved charge and thus no chemical potential (this is
similar to a gas of photons, but the particles here have a mass).

It is convenient to work in momentum space. In order to find the momentum
space version of Hamiltonian of Eq. (3.54) we first Fourier transform each term
explicitly

1
2

∫
dxΠ̂2(x) =

1
2

∫
dx
[ ∫ ∞

−∞

dp
2π

Π̂(p) e−ipx
][ ∫ ∞

−∞

dq
2π

Π̂(q) e−iqx
]

=
1
2

∫ ∞

−∞

∫ ∞

−∞

dpdq
2π2π

Π̂(p) Π̂(q)
∫

dx e−i(p+q)x

=
1
2

∫ ∞

−∞

∫ ∞

−∞

dpdq
2π2π

Π̂(p)Π̂(q) 2π δ(p + q)

=
1
2

∫ ∞

−∞

dp
2π

Π̂(p) Π̂(−p) =
1
2

∫ ∞

−∞

dp
2π

Π̂†(p) Π̂(p) , (3.62)

where we used the fact that Π and Π† commute. Likewise for the Φ̂ terms:

1
2

∫
dx
[
(∇Φ̂(x))2 + m2Φ2(x)

]
=

1
2

∫ ∞

−∞

dp
2π

(
p2 + m2

)
Φ̂†(p)Φ̂(p) , (3.63)

then we finally glue together Eqs. (3.62) and (3.63):

Ĥ0 =
1
2

∫ ∞

−∞

dp
2π

[
Π̂†(p)Π̂(p) + (p2 + m2)Φ̂†(p)Φ̂(p)

]
. (3.64)

We show in Appendix C that we can write the Wigner functional for this case as

W̃(0)
β [Φ, Π] = Cβ exp

{
− β

2

∫ ∞

−∞

dp
2π

∆̃β(p)
[
Π∗(p)Π(p) + E2(p)Φ∗(p)Φ(p)

]}
,

(3.65)
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where E(p) =
√

p2 + m2 and the thermal weight factor

∆̃β(p) =
2

βE(p)
tanh

βE(p)
2

. (3.66)

The normalization is

Cβ = exp
[

L
∫ ∞

−∞

dp
2π

ln
(

2 tanh
βE(p)

2

)]
, (3.67)

where L is the quantization volume (in this case in one-dimension).
In the high temperature limit we have ∆̃β(p) → 1 and we reproduce the

classical limit

W̃cl
β (Φ, Π) = exp

{
− β

2

∫ ∞

−∞

dp
2π

[
Π∗(p)Π(p) + E2(p)Φ∗(p)Φ(p)

]}
. (3.68)

We recognize that in this case the Wigner functional depends only on the total
energy of the system.

Now we can evaluate the correlation function 〈Φ̂†(p)Φ̂(p)〉 using the definition
of Eq. (3.50) and Wigner functional in Eq. (3.65):

〈Φ̂†(p)Φ̂(p)〉0 =
1

Z(0)

∫
DΦ

DΠ
2π

Φ∗(p)Φ(p)W(0)
β (Φ, Π)

=
1

Z(0)
Π Z(0)

Φ

∫
DΦ

DΠ
2π

Φ∗(p)Φ(p)W(0)
β (Φ)W(0)

β (Π)

=
1

Z(0)
Φ

∫
DΦ Φ∗(p)Φ(p)W0

β(Φ) , (3.69)

where
Z(0)

Φ =
∫

DΦ W(0)
β (Φ) and Z(0)

Π =
∫ DΠ

2π
W(0)

β (Π) , (3.70)

with

W(0)
β (Φ) =

√
Cβ exp

{
− β

2

∫ ∞

−∞

dp
2π

∆̃β(p) E2(p)Φ∗(p)Φ(p)
}

,

W(0)
β (Π) =

√
Cβ exp

{
− β

2

∫ ∞

−∞

dp
2π

∆̃β(p)Π∗(p)Π(p)
}

. (3.71)

Therefore, as shown step by step in Appendix C, the correlation function is
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given by

〈Φ̂†(p)Φ̂(p)〉0 =
L

2E(p) tanh βE(p)
2

=
L

E(p)

(
1

e
βE(p)

2 − 1
+

1
2

)
, (3.72)

where the last term is a zero temperature contribution. Likewise, we obtain

〈Π̂†(p)Π̂(p)〉0 =
1
Z

∫
DΦ

DΠ
2π

Π∗(p)Π(p)W(Φ, Π)

=
1

Z(0)
Π Z(0)

Φ

∫
DΦ

DΠ
2π

Π∗(p)Π(p)W(Φ)W(Π)

=
1

Z(0)
Π

∫ DΠ
2π

Π∗(p)Π(p)W(Π) , (3.73)

and finally we find

〈Π̂†(p)Π̂(p)〉0 =
E(p)L

2 tanh βE(p)
2

= E(p)L

(
1

e
βE(p)

2 − 1
+

1
2

)
. (3.74)

Consequently we conclude that√
〈Φ̂†(p)Φ̂(p)〉0 〈Π̂†(p)Π̂(p)〉0 =

L

2 tanh βE(p)
2

≥ L
2

, (3.75)

which shows us that the uncertainty picture is built in Wigner functional.
When we know the Wigner functional in momentum space, it is easy to find it

in configuration space by Fourier transforming their terms as

W(0)
β [Φ, Π] = C exp

[
− β

∫
dxdx′H0(x, x′)

]
, (3.76)

where

H0(x, x′) ≡ 1
2

∆β(x− x′)
[
Π(x)Π(x′) +∇Φ(x)∇Φ(x′) + m2Φ(x)Φ(x′)

]
, (3.77)

and it is understood that

∆β(x) =
∫ ∞

−∞

dp
2π

e−ipx ∆̃β(p) . (3.78)

We can see that ∆β(x) ≈ δ(x) for m−1, |x| � β i.e. the classical limit. In the m = 0
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limit this integral can be analytically computed in one dimension, yielding

∆β(x) =
2

βπ
ln
(

coth
π|x|
2β

)
, (3.79)

and approximated by the cases

∆β(x) ≈


2

βπ ln |x|β for |x| � β ,

4
βπ e−

π|x|
β for |x| � β .

(3.80)

3.2.4 Generating Functional in Phase Space

In this section we define the Generating Functional in phase space as:

Z[J(x)] =
∫

DΦ
DΠ
2π

W(Φ, Π) eβ
∫

dx Φ(x)J(x)

=
∫

DΦ
DΠ
2π

e
−β
∫

dx dx′
[
H(x,x′)−δ(x−x′)Φ(x)J(x′)

]
, (3.81)

where I have used H(x, x′) of Eq. (3.77) and J(x) is some external current. We
are now able to rewrite the previous results for the correlation function in a new
fashion for phase space, using this generating functional as (see Ref. [11])

Z[J(x)] = N exp
[

β

2

∫
dx dx′ J(x)G(x− x′)J(x′)

]
, (3.82)

where the propagator is

G(x) =
∫ dp

2π

e−ipx

∆̃β(p)(p2 + m2)
, (3.83)

As showed in previous section, using generating functionals it is easy to evaluate
the two-point correlation function:

〈Φ̂(x)Φ̂(y)〉 =
1
β2

1
Z[0]

δ2Z[J]
δJ(y)δJ(x)

∣∣∣
J=0

= G(x− y) . (3.84)

We can go even further, making use ∆̃β(p) of Eq. (3.66) to rewrite the propaga-
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tor as

G(x) =
∫ dp

2π

βE(p)e−ipx

2E2(p) tanh βE(p)
2

=
β

2

∫ dp
2π

e−ipx

E(p)
e

βE(p)
2 + e−

βE(p)
2

e
βE(p)

2 − e−
βE(p)

2

=
β

2

∫ dp
2π

e−ipx

E(p)
eβE(p) + 1
eβE(p) − 1

=
β

2

∫ dp
2π

e−ipx

E(p)

[ 2
eβE(p) − 1

+ 1
]

= β
∫ dp

2π

e−ipx

E(p)
1

e
βE(p)

2 − 1
+

β

2

∫ dp
2π

e−ipx

E(p)
, (3.85)

where we can clearly see the Bose-Einstein distribution in the first therm, which
vanishes in the limit of zero temperature. This integral for the propagator can be
evaluated analytically [57] for three dimensions and m = 0:

G(x) =
1

4π|x|
sinh(2π|x|

β )

cosh(2π|x|
β )− 1

, (3.86)

knowing that

G(x) =


1

4π|x| for β� |x| ,
β

4π2|x|2 for β� |x| .
(3.87)

For a finite mass we can evaluate the propagator integral in an approximate way
again for three dimensions:

G(x) =
1

4π|x| e−m|x| . (3.88)

If we have m−1 � β and |x| � β ( which is the classical limit condition):

G(x) ≈ βm
4π2|x| K1(m |x|) ≈

β
√

m
25/2π3/2|x|3/2 e−m |x| , (3.89)

where the first approximation holds under the assumption of m−1 � β, the second
requires also m−1 � |x|.
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3.2.5 Mean Field Approximation

In the mean field (MF) approximation for the scalar field we make the substitu-
tion

λ

4!
Φ̂4(x) −→ λ

4
〈

Φ̂2(x)
〉

Φ̂2(x) . (3.90)

The combinatorial factor 4! changes to 4 because there are 6 ways to select 2 out of
4 available. This change is pretty convenient since it represents (due to the Φ̂2(x)
dependence) a "mas term".

It is important to emphasize that the choice for 〈Φ2(x)〉 is the only useful one,
since the other ones like 〈Φ(x)〉 or 〈Φ3(x)〉would lead to null terms in the vacuum.
This becomes clear when we factorize the Φ̂2(x) terms in the Hamiltonian and
blend them together so that

Ĥ → ĤMF =
1
2

∫
dx
[

Π̂2(x) + [∇Φ̂]2(x) +
(

m2 +
λ

2
〈
Φ̂2(x)

〉)
Φ̂2(x)

]
. (3.91)

In this expression the "new" mass is m2
∗ = m2 + λ

2 〈Φ̂2(x)〉. We shall restrict the
mass to m2 > 0 (the case m2 < 0 shall be used in symmetry breaking models). We
are actually doing an ansatz in the interacting theory, bringing it to a free theory
form so that the interactions is thrown into the mass term. This effective mass is
determined by the so called "gap equation"

m2
∗ = m2 +

λ

2
G(0)

= m2 +
λ

2

∫ +∞

−∞

dp
2π

1√
p2 + m2∗

[
1

eβ
√

p2+m2∗ − 1
+

1
2

]
, (3.92)

where we have used the G(0) term from Eq. (3.83), but now with the new mass
m2
∗. In order to solve this equation we need first to renormalized it because

it is logarithmically divergent. This can be done by systematically using the
appropriate counterterms in the model Hamiltonian. If one is interested only in
the finite temperature contribution to m∗, one can subtract the zero temperature
contribution at order λ and obtain [11]:

m2
∗ = m2 +

λ

2

∫ +∞

−∞

dp
2π

1√
p2 + m2∗

1

eβ
√

p2+m2∗ − 1
, (3.93)

which is finite for any finite value of the temperature.



Chapter 4

Variational Method for Wigner Functionals

This chapter contains our original contribution to the Wigner functional the-
ory in quantum field theory (QFT). We restrict our work to the λ/4! Φ4 theory
in thermodynamical equilibrium, the theory discussed in the previous chapter.
As mentioned in the Introduction, we transcribe to the QFT Wigner functional
theory a variational method developed in statistical mechanics to go beyond the
traditional mean field approximation for the free energy of nonrelativistic many-
body theories. As mentioned in the Introduction, the method was first proposed
in the context of the theory of superconductivity by Bogoliubov, Zubarev and
Tserkovnikov (BZT) in Ref. [26] and further extended by Wentzel [28] to the theory
of superfluidity. Later on, Girardeau [29] generalized the method to allow a wider
range of applications.

The whole idea behind this variational method is to single out a number of
possible scattering processes in the Hamiltonian of the theory to obtain a tractable
problem using variational methods. One part of the full Hamiltonian, that contains
only those selected processes, is quadratic in the fields and can be solved exactly,
whereas the other part of the Hamiltonian is nonquadratic in the fields and should
be treated in perturbation theory. Since the density matrix defining the free energy
also defines the thermal Wigner functional, one can transcribe the formalism to
the Wigner functional formalism to QFT in a straightforward manner. The method
does not provide a criterion for choosing one or another process, the choice should
be guided by the problem of interest. The traditional mean field approximation, in
particular, refers to the direct and exchange scattering processes. In this work we
abstract from any specific problem, and treat the method in its full generality.

We present in the beginning of the chapter a preview to the method, preparing
the Hamiltonian of the model to obtain the density matrix to define the Wigner
functional. Next, we obtain the gap equation that diagonalizes the quadratic

40
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Hamiltonian. We show how the mean field approximation, discussed in the
previous chapter, arises from the direct and exchange processes. We also compute
the two point correlation function and the 2nd-Rényi entropy corresponding to the
quadratic Hamiltonian. We close the chapter with a numerical exercise.

4.1 The Variational Hamiltonian

In preparation for the application of the variational method to the Wigner
functional formalism, we need to write the model Hamiltonian in momentum
space. For simplicity of presentation and easy comparison with the results of
Ref. [11], we write most of the formulas for the 1 + 1 dimensional theory; the
transcription to d + 1 dimensions is straightforward, but we will make explicit
those results that are valid for d = 1 only. It is convenient to work with discrete
momenta by quantizing the system in a box of volume V = L. As shown in Ap-
pendix B, by Fourier transforming the field Φ̂(x) and conjugate momentum Π̂(x),
the Hamiltonian in configuration space,

Ĥ =
1
2

∫
dx
[
Π̂2(x) + [∇Φ̂(x)]2 + m2Φ̂2(x)

]
+

λ

4!

∫
dx Φ̂4(x) , (4.1)

can be written in momentum space as:

Ĥ = Ĥ0 + ĤI , (4.2)

with

Ĥ0 =
1

2L ∑
p

[
Π̂†(p)Π̂(p) + ( p̄2 + m2)Φ̂†(p)Φ̂(p)

]
, (4.3)

ĤI =
λ

4!
1
L3 ∑

p,p′,q
Φ̂†(p′ + q)Φ̂†(p− q)Φ̂(p)Φ̂(p′) . (4.4)

where p̄ in Eq. (4.3) indicates

p̄ =


2π
L n for x continuous

2
a sin

(
π
N n
)

for x discrete
with n = 0,±1, . . . . (4.5)

In the latter case, x → xl = la, l = 0, 1, . . . , N− 1, where a is the lattice spacing and
L = Na. In addition, the momentum indices vary as n = −N/2+ 1, . . . , 0, . . . N/2.
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For the presentation of the formalism we do not need to specify which case we are
using, but the numerical results we present at the end of this chapter are for the
lattice discretization.

We show in Fig. 4.1 the convention for the momentum flow in the scattering
processes implied by the Hamiltonian ĤI . At this stage, one can already identify
special values of q, namely q = 0 and q = p− p′. They are special because they
lead to a separable ĤI , that is, ĤI can be written as the product of two terms
of the form ∑p Φ̂†(p)Φ̂(p). Those q characterize forward and exchange processes,
and lead to the mean field approximation discussed in the previous chapter. The
variational Hamiltonian generalizes the mean field approximation implied by
these two momenta and still leads to a tractable Wigner functional formalism.

q

p p’ 

p’ + qp − q

Figure 4.1: Momentum flow convention in a scattering process as implied by HI
in Eq. (4.4).

We start separating from the Hamiltonian ĤI a set of transferred momenta q.
Following Ref. [29], let S denote the set with the selected momenta S and n(S) the
corresponding density of states. For now, it is not necessary to specify n(S), the
only restriction is that n(S) is independent of the volume in the thermodynamic
limit. Therefore, we omit explicit reference to n(S) in the following formulas.
Specifically, we split ĤI into two parts:

ĤI = ĤI(q ∈ S) + ĤI(q /∈ S) . (4.6)

Next, we define operators Ĝ(q) and Ĝ(p, q) (in Ref. [29], Ĝ was denoted ρ̂):

Ĝ(q) =
1
L ∑

p
Φ̂†(p)Φ̂(p + q) =

1
L ∑

p
Ĝ(p, q) , (4.7)
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so that one can rewrite ĤI as

ĤI =
λ

4!
1
L ∑

q
Ĝ†(q) Ĝ(q)

=
λ

4!
1
L ∑

q∈S
Ĝ†(q)Ĝ(q) +

λ

4!
1
L ∑

q/∈S
Ĝ†(q) Ĝ(q) . (4.8)

Finally, we rewrite ĤI(q ∈ S) as

ĤI(q ∈ S) =
λ

4!
1
L3 ∑

p
∑
p′

∑
q∈S

{[
Ĝ†(p, q)− g∗(p, q)

] [
Ĝ(p′, q)− g(p′, q)

]
+ g(p′, q)Ĝ†(p, q) + g∗(p, q)Ĝ(p′, q)− g∗(p, q)g(p′, q)

}
. (4.9)

At this point, the functions g(p, q) do not play any role, as they simply drop out.
However, as we show in the following, they can be used as trial functions to define
a variational Hamiltonian through the Gibbs variational principle applied to the
full Hamiltonian. Having obtained the variational density matrix that gives the
best approximation to the free energy, one can then use that density matrix to
define the thermal Wigner functional.

The last term in Eq. (4.9) is independent of the fields; as such, we drop it from
now on since it does not contribute in the computation of physical quantities. The
full Hamiltonian can then be written as

Ĥ = Ĥq + Ĥ′(q ∈ S) + Ĥ′′(q /∈ S) (4.10)

where we define Ĥq as being the Hamiltonian quadratic in the fields:

Ĥq =
1

2L ∑
p

[
Π̂†(p)Π̂(p) + ( p̄2 + m2)Φ̂†(p)Φ̂(p)

]
+

λ

4!
1
L3 ∑

p
∑
p′

∑
q∈S

[
g(p′, q)Ĝ†(p, q) + g∗(p, q)Ĝ(p′, q)

]
, (4.11)

and Ĥ′(q ∈ S) is nonquadratic in the fields:

Ĥ′(q ∈ S) = λ

4!
1
L3 ∑

p
∑
p′

∑
q∈S

[
Ĝ†(p, q)− g∗(p, q)

] [
Ĝ(p′, q)− g(p′, q)

]
, (4.12)
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and Ĥ′′(q /∈ S) = ĤI(q /∈ S) is also nonquadratic:

Ĥ′′(q /∈ S) = λ

4!
1
L ∑

q/∈S
Ĝ†(q) Ĝ(q) . (4.13)

We show in the following how the Gibbs variational principle (GVP) can be
used to obtain a gap equation for the functions g(p, q) [29]. The GVP is reviewed
in Appendix D; we reiterate here its relevant features for determining g(p, q). Let
ρ̂β be the exact equilibrium density matrix corresponding to the full Hamiltonian
of the model, Eq. (4.10):

ρ̂β =
1
Z

e−βĤ , Z = Tr e−βĤ , Tr ρ̂β = 1 , (4.14)

and ρ̂
(q)
β the equilibrium density matrix corresponding to Ĥq:

ρ̂
(q)
β =

1
Z(q)

e−βĤq , Z(q) = Tr e−βĤq , Tr ρ̂
(q)
β = 1 . (4.15)

The GVP principle states that:

1. ρ̂β minimizes the functional ψ(ρ̂) = Tr
(

Ĥρ̂
)
+ 1

β Tr (ρ̂ ln ρ̂),

2. The Helmholtz free energy is given by F = − 1
β ln Z = ψ(ρ̂β).

We have proven these results in Appendix D. We use these results to determine
g(p, q) as follows. First, we note that, since ψ(ρ̂) computed with ρ̂β is always
smaller than when computed with any other density matrix, we have the inequal-
ity

F ≤ Tr
(

Ĥ ρ̂
(q)
β

)
+

1
β

Tr
(

ρ̂
(q)
β ln ρ̂

(q)
β

)
≡ Fvar(ρ̂

(q)
β ) . (4.16)

Second, the variational condition

∂Fvar(ρ̂(q))

∂g∗(p, q)
= 0 , (4.17)

is a necessary condition for a minimum of Fvar(ρ̂(q)); this is a gap equation, a
terminology borrowed from the theories of superconductivity and superfluidity.

Next, we derive explicit expression for the gap equation. Initially, we use
Ĥ = Ĥq + Ĥ′ + Ĥ′′ in Eq. (4.16) to obtain

Fvar(ρ̂
(q)
β ) = Fq + 〈H′〉q + 〈H′′〉q , (4.18)
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where Fq is the Helmholtz free energy corresponding to ρ̂
(q)
β :

Fq = −
1
β

ln Tr e−βĤq = − 1
β

ln Z(q) . (4.19)

and the expectation values 〈· · · 〉q Eq. (4.18) are taken with respect to ρ
(q)
β :

〈· · · 〉q =
1

Z(q)
β

Tr (· · · )e−βĤq . (4.20)

Now, one can show [29] that, in the thermodynamic limit, the variational condition
in Eq. (4.17) is satisfied by

g(p, q) = 〈Ĝ(p, q)〉q = 〈Φ̂†(p)Φ̂(p + q)〉q

=
1

Z(q)
β

Tr
[
Φ̂†(p)Φ̂(p + q)e−βĤq

]
. (4.21)

The proof of this result is outlined in Ref. [29] using Hilbert space methods. In par-
ticular, Ref. [29] proves that 〈H′〉q = 0 and 〈H′′〉q = 0 if Eq. (4.21) is satisfied.
We do not repeat that proof here, as a step by step demonstration can be found
in Ref. [30]. But for completeness, we use the Wigner functional formalism to
prove that 〈H′〉q = 0 and 〈H′′〉q = 0.

Equation (4.21) is a nonlinear equation for the functions g(p, q), as Ĥq depends
on the g(p, q). To obtain an explicit expression for this nonlinear equation, it is
convenient to have Ĥq in diagonal form in the field operators, because then one
can compute the expectation value 〈Φ̂†(p)Φ̂(p + q)〉q in closed form. In the next
section we discuss the diagonalization of Ĥq.

4.2 Diagonalization of Ĥq

The Hamiltonian Ĥq is quadratic in Φ̂ and Π̂. It is diagonal in Π but not in
Φ. To obtain an explicit expression for the gap equation determining the g(p, q)
trial functions, we need to diagonalize Ĥq. As we will show in Section 4.4, the gap
equation we obtain is similar to Eq. (3.92) for the effective mass m∗ in the mean
field approximation. In fact, we recover Eq. (3.92) by restricting the scattering
processes to the direct and exchange processes, characterized by the momenta
q = 0 and q = p− p′, shown in Fig. 4.2.
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q = 0 

p p’ 

p’p

Forward

q = p − p’ 

p p’ 

pp’

Exchange

Figure 4.2: Scattering processes in HI leading to the mean field approximation.

We start rewriting Ĥq given in Eq. (4.11) as

Ĥq = Ĥq(Π, Φ) = Ĥq(Π) + Ĥq(Φ) , (4.22)

with

Ĥq(Π) =
1

2L ∑
p

Π̂†(p)Π̂(p) , (4.23)

Ĥq(Φ) =
1

2L ∑
p,p′
E2(p, p′) Φ̂†(p)Φ̂(p′) , (4.24)

with E2(p, p′) being the energy matrix:

E2(p, p′) = E2
D(p) δpp′

+ 2
1
L2

λ

4!

′
∑
q∈S

[
δp′,p+q ∑

p′′
g∗(p′′, q) + δp′,p−q ∑

p′′
g(p′′, q)

]
,(4.25)

where the diagonal part E2
D(p) is given by

E2
D(p) = p̄2 + m2 + 3× 2

1
L2

λ

4! ∑
p′

[
g∗(p′, 0) + g(p′, 0)

]
. (4.26)

The factor 3 comes from the contributions with q = 0, q = p − p′ > 0, and
q = p − p′ < 0, and the ′ in ∑′q in Eq. (4.25) indicates that the sum does not
contain these q values. This shows that the direct and exchange contributions are
equal, which is a feature of the contact-interaction nature of the Φ4 interaction; for
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finite-range interactions, this is not the case [29].
Before we proceed, we recall that we have omitted in the above explicit refer-

ence to the density of states n(S). This is crucial element in the method, as n(S)
determines the weight with which the different scattering processes contribute
to the energy matrix E2(p, p′). We come back to this issue in Section 4.4. It is
also important to make clear the meaning of the delta functions δp,p+q and δp,p′+q

in Eq. (4.25). These delta functions reflect the fact that for generic values of q, the
single-particles energies E2(p, p′) are nondiagonal, reflecting off-diagonal transi-
tions induced by single-particle p→ p′ rescattering processes. The energy being
nondiagonal signals that different momentum modes are entangled, i.e. different
momentum modes are not independent from each other. Since different momen-
tum modes are entangled, one cannot write the energy as a sum of the energies of
each mode. Also, the density matrix in the basis of the field operators Φ̂ is not a
product of density matrices for each momentum mode. Now for the special values
of q discussed above, the final state momenta in the scattering contributing to
E2(p, p′) are the same of the initial state, as depicted by the two graphs in Fig. 4.2.
In these very special cases, E2(p, p′) is diagonal, reflecting p → p rescattering
processes. In addition, one one can write the energy as sum of the energies of each
mode, and the corresponding density matrix is a product state in the basis of the
field Φ .

The Hamiltonian Ĥq can be diagonalized by a linear canonical transformation
on the field operators Φ̂†(p) and Φ̂(p):

Φ̂(p) = ∑
p′

U(p, p′) χ̂(p′) , (4.27)

where U(p, p′) is a unitary matrix, which connects momenta p and p + q with
q ∈ S . Since the unitary transformation is time independent and Π̂ = −i δ

δΦ̂
, one

can write
Π̂(p) = ∑

p′
U(p, p′) Π̂χ(p′) . (4.28)

Unitarity of U means:

UU† = U†U = 1→∑
k

U(p, k)U∗(p′, k) = ∑
k

U∗(k, p)U(k, p′) = δpp′ . (4.29)

We then apply this transformation to the Π̂- and Φ̂-dependent terms in Eqs. (4.23)
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and (4.24). The Π̂-dependent terms transforms trivially:

∑
p

Π̂†(p)Π̂(p) = ∑
p,p′,p′′

U∗(p′, p)Π†
χ(p′)U(p, p′′)Π̂χ(p′′)

= ∑
p

Π̂†
χ(p)Π̂χ(p) , (4.30)

whereas the Φ̂-dependent term transforms nontrivially:

Ĥq(Φ) =
1

2L ∑
p

∑
p′

∑
k

∑
k′

U∗(k, p) E2(p, p′)U(p′, k′)χ̂†(k) χ̂(k′). (4.31)

If we denote φk(p) the orthonormalized eigenvectors of E2(p, p′) and ω2(k) the
corresponding eigenvalues:

∑
p′
E2(p, p′) φk(p′) = ω2(k) φk(p) , (4.32)

and take
U(p, k) = φk(p) , (4.33)

one obtains Ĥq[Φ] in diagonal form, namely:

Ĥq(Φ)→ Ĥq(χ) =
1

2L ∑
p

ω2(p) χ̂†(p)χ̂(p) . (4.34)

The complete Ĥq is then in diagonal form:

Ĥq(Π, Φ)→ Ĥq(Πχ, χ) =
1

2L ∑
p

[
Π̂†

χ(p)Π̂χ(p) + ω2(p) χ̂†(p)χ̂(p)
]

. (4.35)

In terms of continuum momenta, Ĥq(Πχ, χ) is given by:

Ĥq(Πχ, χ) =
1
2

∫ ∞

−∞

dp
2π

[
Π̂†

χ(p)Π̂χ(p) + ω2(p) χ̂†(p)χ̂(p)
]

=
∫ ∞

0

dp
2π

[
Π̂†

χ(p)Π̂χ(p) + ω2(p) χ̂†(p)χ̂(p)
]

. (4.36)
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4.3 The Wigner Functional from Ĥq

To obtain the gap equation, we need to have an explicit expression for the
expectation value

〈
Φ̂†(p)Φ̂(p + q)

〉
q. Therefore, we need to be able to compute,

more generally, expectation values of operators Ô(Π̂, Φ̂) using the Wigner func-
tional corresponding to Ĥq. To do so, we use the density matrix given in Eq. (4.15),
expressing Ĥq in terms of the Π̂χ(p) and χ̂(p) field operators. We do this because
Ĥq is diagonal in those fields and one can follow the same derivation steps used
in the calculations of the Wigner functional for Ĥ0 (which is diagonal in the fields
Π̂ and Φ̂). Since the Jacobian of the transformation from the Φ̂ to χ̂ fields is unity,
one can take over the result in Eq. (3.65) and write:

W(q)
β (χ, Πχ) =

∫
Dϕ(p) e−i

∫ ∞
−∞ dx Πχ(p)ϕ(p)

〈
χ(p) +

ϕ(p)
2

∣∣∣ ρ̂(t)
∣∣∣ χ(p)− ϕ(p)

2

〉
= C(q)

β e
− β

2
∫ ∞
−∞

dp
2π ∆̃ω

β (p)
[

Π∗χΠχ+ω2(p)χ∗(p)χ(p)
]

(4.37)

in which the thermal weight factor ∆̃ω
β (p) is now given by

∆̃ω
β (p) =

2
βω(p)

tanh
βω(p)

2
, (4.38)

and the normalization Cω by

C(q)
β = exp

[
L
∫ ∞

−∞

dp
2π

ln
(

2 tanh
βω(p)

2

)]
. (4.39)

To compute Ô(Π̂, Φ̂) using this Wigner functional, we rewrite Ô(Π̂, Φ̂) in
terms of the Π̂χ and χ̂:

Ô(Π̂, Φ̂) = Ô(UΠ̂χ, Uχ̂) . (4.40)

Then, one can write

〈
Ô(Π̂, Φ̂)

〉
q =

〈
Ô(UΠ̂χ, Uχ̂)

〉
q = Tr

[
Ô(UΠ̂χ, Uχ̂) ρ̂

(q)
β

]
, (4.41)

with ρ̂
(q)
β being the equilibrium density matrix given in Eq. (4.15). Computing the
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traces in the basis of the eigenstates of the χ̂ and Π̂χ field operators:

χ̂(p) |χ(p)〉 = χ(p) |χ(p)〉 ,

Π̂χ(p) |Πχ(p)〉 = Πχ(p) |Πχ(p)〉 ,
(4.42)

we can now follow the derivation for Ĥ0. Again, due to the unitarity of U, the
integration measure is invariant under the Φ̂ to χ̂ transformation, and one can
write:

〈
Ô(Π̂, Φ̂)

〉
q = Tr

[
Ô(UΠ̂χ, Uχ̂) ρ̂

(q)
β

]
=

∫
Dχ

DΠχ

2π
O(UΠ̂χ, Uχ̂)W(q)

β (χ, Πχ) . (4.43)

In the following, we will need
〈
Φ̂†(p)Φ̂(p)

〉
q. This can be computed using the

result just derived, Eq. (4.43), namely:

〈
Φ̂†(p)Φ̂(p)

〉
q =

∫
DΦ

DΠ
2π

Φ†(p)Φ(p)W(q)
β (Φ, Π)

= ∑
k,k′

U∗(p, k)U(p, k′)
∫

Dχ
DΠχ

2π
χ∗(k)χ(k′)W(q)

β (χ, Πχ)

= ∑
k

U∗(p, k)U(p, k)
∫

Dχ
DΠχ

2π
χ∗(k)χ(k)W(q)

β (χ, Πχ), (4.44)

where in the last step we used the fact that the functional integral is different from
zero only for k = k′, as can be verified very easily using the methods in Appendix C.
Now, we simply transcribe the result obtained previously for

〈
Φ̂†(k) Φ̂(k)

〉
0 in

Eq. (3.72):

〈
Φ̂†(p)Φ̂(p)

〉
q = L ∑

k

U∗(p, k)U(p, k)
β ∆̃β(k)ω2(k)

= L ∑
k

1
ω(k)

U∗(p, k)U(p, k)
eβω(k) − 1

+
L
2 ∑

k

U∗(p, k)U(p, k)
ω(k)

= L ∑
k

1
ω(k)

φ∗k (p) φk(p)
(

1
eβω(k) − 1

+
1
2

)
, (4.45)

where we replaced U(p, k) by φk(p); see Eq. (4.33). When φk(p) = δkp, i.e. when
the energy matrix E2(p, p′) is diagonal in the fields Φ, Eq. (4.45) collapses to the
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result obtained in the previous chapter, namely Eq. (3.72).
Another quantity of interest we can compute with W(q)

β [Φ, Π] is the equivalent
to the quantum mechanical 2−Rényi entropy S2, defined in Eq. (3.44). Specifically,
the S2 corresponding to W(q)

β [Φ, Π], which we denote S(q)
2 , is given by

S(q)
2 = − ln Tr

(
ρ̂
(q)
β

)2
= − ln

∫
DΦ

DΠ
2π

(
W(q)

β [Φ, Π]
)2

. (4.46)

We note that it is important to work with a properly normalized ρ̂
(q)
β , as in Eq. (4.15).

Repeating the computations in Appendix C.3 by taking into account the explicit
appearance of the partition function in ρ̂

(q)
β , we obtain for the functional integral

of
(

W(q)
β [Φ, Π]

)2
the following result:

∫
DΦ

DΠ
2π

(
W(q)

β [Φ, Π]
)2

=
(

C(q)
β

)2
exp

[
L
∫ ∞

−∞

dp
2π

ln
(

4 tanh
βω(p)

2

)]

= exp
{

L
∫ ∞

−∞

dp
2π

[
2 ln

(
2 tanh

βω(p)
2

)
− ln

(
4 tanh

βω(p)
2

)]}

= exp
[

L
∫ ∞

−∞

dp
2π

ln
(

tanh
βω(p)

2

)]
. (4.47)

After taking the ln of this result, one obtains for 2-Rényi entropy S(q)
2 :

S(q)
2 = −L

∫ ∞

−∞

dp
2π

ln
(

tanh
βω(p)

2

)
. (4.48)

In the zero temperature limit (β → ∞) we obtain a vanishing entropy. This is
the correct result since at zero temperature we are dealing with the vacuum state,
which is a pure state. When the state is pure, one has the maximum possible
information about the system.
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4.4 The Gap Equation

With the result of Eq. (4.45), the gap equation becomes

g(p, q) =
〈
Φ̂†(p)Φ̂(p + q)

〉
q

= ∑
k,k′

U∗(p, k)U(p + q, k′)
∫

Dχ
DΠχ

2π
χ∗(k)χ(k′)W(q)

β (χ, Πχ)

= ∑
k

U∗(p, k)U(p + q, k)
∫

Dχ
DΠχ

2π
χ∗(k)χ(k)W(q)

β (χ, Πχ)

= ∑
k

φ∗k (p) φk(p + q)
L

ω(k)

(
1

eβω(k) − 1
+

1
2

)
, (4.49)

where again we replaced U(p, k) by φk(p). Equation (4.49) is a nonlinear equation,
as the right hand side is a functional of g(p, q) through ω(k) and φk(p). Moreover,
we need to specify the qs and corresponding weights n(S).

What processes does one need to use? As mentioned at the beginning of this
chapter, the answer to this question depends on the physics of the problem at hand.
For example, the physics of the problem might be driven by scattering processes
defined by a few values of transferred momenta. Classical examples include those
for which the direct and exchange scattering processes suffice to describe the main
features of the phenomena one wants to describe. In that case, all the weight n(S)
would be on those processes. But for other systems, it might happen that those
direct and exchange contributions are no more, or even are less important than
others that lead to off-diagonal contributions to the energy E2(p, p′).

Although the model we are using, a real scalar field in 1 + 1 spacetime di-
mensions, is adequate for our purposes of presenting the use of the variational
method in the Wigner functional formalism, unfortunately it is not rich enough
for phenomenologically interesting applications. Besides the inherent limitations
of one-dimensional scattering, a real scalar field cannot describe phenomena like
superfluidity, condensate formation and phase transition phenomena. But the
structure of the energy matrix E2(p, p′) reveals a feature that one will face when
tackling more realistic models regarding the role played by the weight n(S). There
is a relatively large imbalance in the contributions of the interaction in favor of
the diagonal elements of the matrix, namely: a diagonal element comes multi-
plied by 12 whereas a off-diagonal term comes multiplied by 2. Therefore, if the
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diagonal and off-diagonal terms enter with equal weight, in the sense that n(S)
is taken as process independent, the off-diagonal terms are, from the outset, one
order of magnitude smaller than the diagonal ones. Moreover, the off-diagonal
overlaps φ∗k (p)φk(p+ q), that enter the gap equation in Eq. (4.4), will then be small,
magnifying the smallness of the off-diagonal elements of E2(p, p′).

In view of the limitations of the model, we will examine the consequences of
decreasing the weight with which the direct and exchange processes contribute to
E2(p, p′) while increasing the weight of the off-diagonal contributions. The exact
way we change the weight is explained shortly ahead when we discuss numerical
results. It should be clear that this is a theoretical exercise with the sole aim of
illustrating the effect of the off-diagonal elements of E2(p, p′) on the spectrum,
correlation function, and entropy. It is also worth mentioning that we are unaware
of any other study in the literature with which we could compare results.

The contributions of the direct and exchange processes, shown in Fig. 4.2, lead
to a diagonal energy E(p, p′) matrix with elements ED(p). The eigenvalues ω2

∗(p)
are of course the diagonal elements of the matrix:

ω2
∗(p) = ED(p) = p̄2 + m2

∗ , (4.50)

where

m2
∗ = m2 + 6

λ

4!
1
L2 ∑

p

[
g∗(p, 0) + g(p, 0)

]
. (4.51)

Using the gap equation, Eq. (4.49), for g(p, 0) into Eq. (4.51), one obtains for m2
∗:

m2
∗ = m2 + 6

λ

4!
1
L2 ∑

k

L
ω∗(k)

[
1

eβω∗(k) − 1
+

1
2

]
2 ∑

p
U∗(p, k)U(p, k)

= m2 +
λ

2
1
L ∑

k

1
ω∗(k)

(
1

eβω∗(k) − 1
+

1
2

)

→ m2 +
λ

2

∫ ∞

−∞

dk
2π

1
ω∗(k)

(
1

eβω∗(k) − 1
+

1
2

)
. (4.52)

which is the mean field result given in Eq. (3.92). This equation can be solved
numerically on a lattice.

Now, when other than the direct and exchange processes are taken into account,
to obtain the Wigner functional W(q)

β [Φ, Π], Eq. (4.37), we need to compute the
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eigenvalues ω2(k) and corresponding eigenfunctions φk(p) of the matrix E2(p, p′).
As mentioned earlier, we are dealing with a nonlinear problem, in that to determine
ω2(k) and φk(p), we need the g(p, q) to obtain E2(p, p′), but the functions g(p, q)
depend on ω2(k) and φk(p). We approach the solution of this nonlinear problem
by an iterative scheme. We explain how precisely we do this in Section 4.6. We
present illustrative numerical results in Section 4.6.

We still have the contributions of H′ and H′′. We discuss them in the next
section. H′ and H′′ are required, e.g. to explore features associated with the
negativity of the Wigner functional. This is because W(q)

β is a single Gaussian. Of

course, this W(q)
β does describe entanglement of the Φ field momentum modes

that the mean field approximation misses.

4.5 The Terms Ĥ′ and Ĥ′′

Up to now, we have addressed the problem of diagonalizing Ĥq to obtain the
gap functions g(p, q). These gap functions enter explicitly in Ĥ′ and implicitly in
Ĥ′′ through the selection of S . As already mentioned, the contributions of Ĥ′ and
Ĥ′′ to physical quantities should be computed in perturbation theory. The relative
importance of their contributions depends crucially on how much of the physics
of the problem at hand is captured by Ĥq. But if one knows the Wigner functional
W(q)

β [Φ, Π], one can compute the contributions of Ĥ′ and Ĥ′′ in a straightforward
manner.

A key quantity in the computation of thermodynamical quantities is the parti-
tion function Zβ. It is a feature of the method that Ĥ′ does not contribute to Zβ in
all orders of perturbation theory, whereas Ĥ′′ only contributes to Zβ at second and
higher orders. These features were proved in Ref. [29] using traditional Hilbert
space methods. In the following, we outline a proof, using mixed Hilbert space
and Wigner functional techniques, that the first order contributions of Ĥ′ and Ĥ′′

vanish. Although this is a somewhat trivial exercise, it nevertheless serves the
purpose of illustrating the way one would compute perturbative corrections to
the Wigner functional itself using Hilbert space techniques in the context of the
Wigner functional formalism. We come back to this shortly ahead.

We start from the definition of the partition function:

Z = Tr e−β(Ĥq+Ĥ′+Ĥ′′) . (4.53)
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We use the well known expression:

e−β(Ĥq+Ĥ′+Ĥ′′) = e−βĤq

[
1−

∫ β

0
dτ eτĤq

(
Ĥ′ + Ĥ′′

)
e−τĤq + · · ·

]
, (4.54)

so that
Zβ = Tr e−β(Ĥq+Ĥ′+Ĥ′′) = Z(q)

β + Z(1)
β + · · · , (4.55)

where Z(q)
β is the partition function corresponding to Ĥq and

Z(1)
β =

∫ β

0
dτ Tr

[
e−βĤq eτĤq

(
Ĥ′ + Ĥ′′

)
e−τĤq

]
. (4.56)

Using the cyclic property of the trace, we can write Z(1) as

Z(1)
β = −

∫ β

0
dτ Tr

[
e−βĤq eτĤq

(
Ĥ′ + Ĥ′′

)
e−τĤq

]
= −β Tr

[
e−βĤq

(
Ĥ′ + Ĥ′′

)]
= Z(q)

β

[
−β

〈
Ĥ′ + Ĥ′′

〉
q

]
. (4.57)

Therefore, using the results proven earlier regarding computation of expectation
values with the Wigner functional, we can write

Z(1) = −β Z(q)
β

∫
DΦ

DΠ
2π

W(q)
β [Φ, Π]

(
Ĥ′[Φ] + Ĥ′′[Φ]

)
. (4.58)

We consider first
〈

Ĥ′
〉

q. Inserting the expression in Eq. (4.12) for Ĥ′ and using
the fact that it depends on Φ only, we can write

〈
Ĥ′
〉

q =
λ

4!
1
L3 ∑

p,p′
∑
q∈S

∫
DΦ W(q)

β [Φ]
[

G∗(p, q)G(p′, q)− g(p′, q)G∗(p, q)

− g∗(p, q)G(p′, q) + g∗(p, q)g(p′, q)
]

. (4.59)

Next, we change from Φ to χ, and use the gap equation for the g(p′, q)G∗(p, q)
and g∗(p, q)G(p′, q). This leads to the cancellation between these terms and
g∗(p, q)g(p′, q), with the net result − g∗(p, q)g(p′, q). We are then left with an
integral involving four χ fields:∫

Dχ W(q)
β [χ] χ∗(k4) χ∗(k3) χ(k2) χ(k1) . (4.60)
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Since W(q)
β [χ] is quadratic and diagonal in χ(k), one can easily show, using the

methods of Appendix C, that this integral factorizes into products of two integrals
of a pair of fields χ∗(k)χ(k′). This is nothing else then Wick’s theorem at work in
the context of the Wigner functional formalism. Using again the gap equation for
each of such integrals, and working out the combinatoric factors coming from the
different pairings among the k1, · · · , k4, one obtains that the integrals cancel the
term g∗(p, q)g(p′, q), and one establishes the result that

〈
Ĥ′
〉

q vanishes.

Now, the proof that
〈

Ĥ′′
〉

q vanishes is trivial. The unitary transformation

U(p, p′) connects momenta p and p′ = p± q with q ∈ S—see Eq. (4.25). But Ĥ′′

excludes q ∈ S , as such, Eq. (4.60) is zero trivially in this case.
The contributions of Ĥ′ and Ĥ′′ to the full Wigner functional itself should

be computed in perturbation theory as well. It is out of the scope of this work
to compute such contributions, but we must stress that they are an important
aspect to the variational method. They are important because they provide a
self-consistency check on a specific application, in that their contributions should
provide “corrections" to the zeroth-order results computed with Ĥq. That is, if Ĥq

does capture most of the physics of the problem, then the remaining parts of the
full Hamiltonian should not have a large impact on the results. Moreover, it is
conceivable that Ĥq describes well some observables, like bulk thermodynamical
properties of the system, but it does not describe well more subtle properties, like
e.g. those for which the entanglement of momentum modes is the dominant effect.
In such a situation, one needs to compute those perturbative corrections.

There exist well-advanced techniques to compute perturbative corrections
to the Wigner function both in quantum mechanics [58, 12, 59] and quantum
field theory [16], without the use of Hilbert space techniques as we used in the
demonstration above. One difficulty one faces to implement perturbation theory
directly to the the Wigner function is the appearance of off-diagonal generalized
Wigner functions, originally introduced by Moyal in Ref. [47], which are technically
involved. In this respect, techniques based on generating functionals as those of
Ref. [16] lead to compact evaluations.

4.6 Numerical Results

We solved numerically the nonlinear eigenvalue problem using lattice dis-
cretization. We followed the procedure of Monte Carlo lattice simulations of
quantum field theories, in that we rescaled all dimensionful quantities by the
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lattice spacing a so that the lattice spacing does not appear in the equations.
At the end of the simulations, one can restore the physical dimensions of com-
puted observables to fix the lattice spacing by a procedure known as scale setting
and renormalization. The scalar theory in 1 + 1-dimensions is superrenomalizable,
i.e. there is only one divergent Feynman diagram, the one-loop tadpole. Such a
divergence is reflected by the factor 1/2 in, e.g., Eqs. (4.45) and (4.49). We followed
Ref. [11] to simplify this procedure: we consider only the finite temperature con-
tribution, which means that we eliminated the factor 1/2 in Eqs. (4.45) and (4.49)
by subtracting the corresponding zero temperature contribution, as explained
previously. In principle, we would still need to take the N → ∞ limit; in lattice
simulations of quantum field theories, this limit is usually taken by using finite
size scaling theory. In this work we did not take the N → ∞ limit, we simply
checked the stability of the results by changing N.

For the 1 + 1 scalar field theory, the mass dimension of the relevant quantities
are (recall we are using h̄ = c = 1):

[Φ(p)] = −1, [Π(p)] = 0, [m] = 1, [λ] = 2, [β] = −1 . (4.61)

Here and in the following, we denote with a hat ˆ the dimensionless rescaled
quantities. The appropriate rescalling of the dimensionful quantities are :

m = a−1 m̂, λ = a−2 λ̂, Φ(p) = a Φ̂(p), β = a β̂ . (4.62)

We present results in terms of the dimensionless quantities, so that we do not need
to specify the energy scale through the lattice spacing.

We made the numerical calculations using a code written in the Python lan-
guage. We used the intrinsic scipy.linalg package to obtain the eigenvalues
and eigenvectors. As mentioned in Section 4.4, we solved the problem by iteration.
Our iteration procedure was essentially the one proposed in Ref. [29], namely:

1. We started the iteration with simple ansätze for ω2(k) and φk(p), we used
the noniteracting single-particle energy, ω2(k) = p̄2 + m2, and took φk(p) =
(1, 1, · · · , 1)/

√
N, where N is the number of lattice sites;

2. We then computed the g(p, q) with these ansätze and determined the energy
matrix E2(p, p′);

3. Then we computed the eigenvalues ω2(k) and eigenfunctions φk(p) of
E2(p, p′) obtained in 2);
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4. With the ω(k) and φk(p) found in 3), we computed again g(p, q) and E2(p, p′),
and found the eigenvalues and eigenvectors of the latter;

5. We kept iterating the process until we obtained convergence of the eigenval-
ues up to some prescribed precision.

We obtained stable results with an N = 64 lattice and 50 iterations. We checked
our results with the continuum extrapolated mean field formula of Eq. (4.52) by
solving that nonlinear equation with the Mathematica Solve function. We found
that the Python and Mathematica results agree almost perfectly.

We fix the numerical values of the parameters as follows. We set m̂ = 1, and
considered two values for the inverse temperature, β̂ = 1 and β̂ = 0.5. The first
value of β̂ corresponds to a temperature equal to the mass and the latter to a
temperature 2 times larger than the mass. Regarding λ, we want a strong coupling
to characterize a nonperturbative situation. Since λ is dimensionful, one needs
a criterion to characterize its strength. We assume that λ̂ characterizes strong
coupling if the interaction changes the mass by at least 50% in the mean field
approximation, i.e. m∗/m = 1.5. We found that, for m̂ = 1 and β̂ = 1, the value of
λ̂ satisfying that criterion is λ̂ ∼ 25. Therefore, we put λ̂ = 25.

In the numerical computations, we used the interval −π/a ≤ q ≤ π/a as the
set S . This means that all off-diagonal elements of the matrix E2(p, p′) are nonzero.
But, as already mentioned, in view of the limitations of the model and the lack
of phenomenological or theoretical guidance on n(S), we simulated its possible
effects by changing the weight with which the direct and exchange interactions
contribute to E2(p, p′). The aim of this theoretical experiment is solely to illustrate
the impact off diagonal elements with sufficient strength have on the spectrum.
We introduced a parameter 1/2 ≤ κ ≤ 1 that controls that weight, namely: if the
interaction contributes with weight κ to the diagonal terms, then it contributes to
the off-diagonal terms with weight 1− κ of the diagonal contribution. The value
κ = 1 leads to the mean field result and for κ < 1/2 the determinant of the matrix
is zero and our code breaks down.

Figure 4.3 displays the eigenvalues ω̂2(k) for four values of κ. The two panels
differ by the value of the coupling; the right panel is for a coupling twice as big than
that of the left panel. The black curve is the eigenvalue of the noninteracting theory,
λ = 0, whereas the red dash-dotted is the mean field (MF) result. A first inspection
of the figure reveals that the off diagonal terms indeed impact significantly the
energy spectrum. Of course, this is a consequence of our setup and not of the
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model. But there is a model feature, not of our setup, in that doubling the coupling,
and keeping the same values for β̂ and κ, does not lead to a substantial change
in the spectrum. The numerical data files show that the mass m∗ increases by
only 10% when one doubles the coupling. This is a feature of the model because
one can take the MF analytical formula in Eq. (3.92) and use Mathematica to
analyse the results. One finds that as the coupling keeps increasing, there is a
saturation effect on the increase of m∗.
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Figure 4.3: The eigenvalues of E(p, p′), Eq. (4.25), for m̂ = 1 and N = 64 lattice
sites.

We show the results for the correlation function in Fig. 4.4, for the same set of
parameters. We denote by D̂( p̂n) the lattice version of Eq. (4.45):

D̂( p̂n) = N ∑
m

φ∗
k̂m
( p̂n) φk̂m

( p̂n)

ω̂(k̂m)

1

eβ̂ω̂(k̂m)) − 1
. (4.63)

Essentially the same features seen for ω̂ are seen for D̂ regarding parameter
dependence. As the interaction gets stronger the mass m∗ gets larger and the
momentum dependence spreads out (in coordinate space it peaks toward the
origin). We discussed this feature in Chapter 3, around Eq. (3.78). The more the
mass increases, the more classical the system becomes.

For completeness, we repeated the previous computations for a β̂ = 0.5, that
is, a temperature two times smaller than of the examples above. We show the
results in Figs. 4.5 and 4.6. Nothing changes qualitatively, but there is clear
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Figure 4.4: The correlation function D̂( p̂n), Eq. (4.63), for m̂ = 1 and N = 64 lattice
sites.
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Figure 4.5: Same as in Fig. 4.3, but for β̂ = 0.5.

quantitative impact on both quantities, although it seems larger on the correlation
function. The Bose-Einstein distribution involving the product β̂ω̂ does not change
much, β̂ decreases by a factor of two but ω̂ concomitantly increases by almost
the same factor. The effect on D̂ comes from the 1/ω̂ in (4.63). The black curve
for D̂ increases compared to the previous case because it affects the Bose-Einstein
distribution, as there is no temperature effect on the noninteracting eigenvalue.
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Figure 4.6: Same as in Fig. 4.4, but for β̂ = 0.5.

Table 4.1 displays the results for the 2nd-Rényi entropy S(b)
2 . Noticeable is the

decrease of S(b)
2 as λ̂ increases. This is so because as λ̂ increases, m∗ increases and

the more classical the system is becoming. The more classical the system is, the
more information one has on the system. Now, the behavior with respect to the
temperature is just the opposite, S(b)

2 increases with the temperature, as expected.
This is expected because the higher the temperature the less information one has
on the system.

Table 4.1: The 2nd Rényi entropy S(b)
2 , Eq. (4.48), for the same values of β̂ and λ̂

used in Figs 4.3-4.6.

β̂ = 1.0 β̂ = 0.5

κ λ̂ = 25 λ̂ = 50 λ̂ = 25 λ̂ = 50

1.00 4.5 2.5 10.0 5.4

0.85 5.8 3.5 12.9 7.7

0.70 7.8 5.3 17.7 11.8

0.55 11.9 10.1 28.7 23.6
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To conclude, this numerical exercise illustrates the importance of the off di-
agonal terms of the E(p, p′) for accessing effects beyond the traditional mean
field approximation. Additional effects come from the contributions of H′ and
H′′. These contributions are also beyond mean field. Moreover, as remarked
earlier, the contributions of H′ and H′′ are crucial to explore features associated
with the negativity of the Wigner functional, since W(q)

β is a single Gaussian. We
reserve for future work the study of these issues within a more realistic model.
For example, complex real fields in dimensions larger than 1 + 1-dimensions and
fermionic fields are natural candidates for further explorations of the method here
developed.



Chapter 5

Conclusion and Perspectives

The primary aim of our study was to construct a formalism to compute correc-
tions to the mean field approximation for the Wigner functional in QFT. To fulfill
that aim, we transcribed to the QFT Wigner functional formalism introduced in
Ref. [11] the variational method developed in statistical mechanics in Ref. [29].
The starting point of the variational method is to select a number of scattering
processes in the Hamiltonian of the model. Those processes should capture most
of the physics of the problem at hand and, at the same time, lead to a problem
that can be solved by using a combination of the Gibbs variational principle and
perturbation theory. The full Hamiltonian was split into a Hamiltonian that is
quadratic in the fields, Ĥq, and a sum of two nonquadratic Hamiltonians Ĥ′ + Ĥ′′.
The Hamiltonian Ĥq contains only those selected processes, characterized by the
transferred momentum q. Ĥq is diagonalized through a linear unitary transfor-
mation that depends on trial gap functions determined by the Gibbs variational
principle. The nonquadratic part, that also depends on the trial functions, should
be treated by perturbation theory.

The reason for employing the construction of Ref. [11], instead of the more
traditional ones [19, 9, 15], was that that construction is a natural generalization of
the standard Wigner function in quantum mechanics. Fields and their conjugate
momenta are the dynamical variables defining the phase space, instead of the
particle coordinates and momenta. As such, many aspects of the standard Wigner
function in quantum mechanics are brought into quantum field theory.

The fact that the variational method of Ref. [29] builds on the equilibrium
thermal density matrix was key to the construction of a Wigner functional that
goes beyond the traditional mean field approximation that keeps only the direct
and exchange processes. We believe that we have developed a novel, promising
formalism to treat nonperturbative problems in quantum field theory using phase
space methods. Although we relied on the self-interacting real scalar quantum
field theory in 1+ 1 dimensions to set up the variational method, the model served
the purpose to reveal general features of the formalism which will be present in
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more realistic models. It also allowed us to do a numerical exercise to explore
some features of the formalism. We computed with relative ease the spectrum
of Ĥq and presented numerical results for interesting quantities, the two-point
correlation function and the 2nd-Rényi entropy. Now, it is important to reiterate
that for this method to be useful in real applications one needs a good starting
point. That is, one needs to have a good idea on what processes to include in Ĥq.
If the starting point does not capture the main physics of the problem, then too
much weight is left for Ĥ′ and Ĥ′′ to capture that physics. In such a situation,
Ĥ′ and Ĥ′′ might not be perturbative.

We did not go very deep into the question on how to implement the pertur-
bative corrections from Ĥ′ and Ĥ′′ to the Wigner functional. As mentioned in
Chapter 4, one most likely would need to extend to QFT the off-diagonal Wigner
function formalism discussed in Ref. [58, 12, 3, 59]. We also envisage the use of
the QFT method of Ref. [16], which does not rely on the use of Hilbert space
techniques but uses generating functionals. These questions are perspectives for
future studies.

The Wigner functional formalism we have used is well suited to employ infor-
mation theory concepts in quantum field theory. Traditional field theory methods
have been used to study e.g. entanglement between two spatial regions [55] and
entanglement of field momentum modes [60, 61] in the vacuum. To obtain the vac-
uum density matrix in our formalism, one needs to take the limit of temperature
at the end of the calculation. Taking this limit might not be an easy task when one
does not have an analytical result. Nevertheless, one can borrow techniques used
to compute entanglement entropies in lattice simulations of quantum field theo-
ries [62]. The strategy of approaching vacuum properties starting with a thermal
density matrix was recently used to study entanglement entropy with perturba-
tion theory in quantum mechanics [63] and field theory [61]. We envisage great
opportunities of using this Wigner functional formalism to tackle such questions.
In particular, since the use of the Wigner functional provides a bridge between
quantum and classical phase-space physics, it provides the natural framework to
address issues related to nonclassicality and decoherence[64] in quantum field
theory.



Appendix A

Gaussian Functional Integral

In this appendix we evaluate a general Gaussian integral for the bosonic case
treated along this work.

A.1 Simple Case

We start from the general form

I =
∫

Dx e−xT Mx =
∫

Dx e−∑i,j xi Mijxj , (A.1)

where M is an invertible matrix. This leads to

I =
∞

∏
i

∫ dxi√
π

e−Mx2
, (A.2)

since it is implicit that we defined
∫

Dx = ∏∞
i
∫ dxi√

π
with this 1√

π
factor as a mere

normalization. Equation (A.2) is an infinity productory of gaussian integrals, that
we can evaluate for one dimension as

I
′
=
∫

dx e−Mx2
. (A.3)

Conveniently squaring this integral leads to

I
′2 =

[∫
dx e−Mx2

]2

=
∫

R2
e−(x2+y2)M dxdy . (A.4)

No we can changing variables to polar coordinates

I
′2 =

∫ 2π

0

∫ ∞

0
e−Mr2

rdrdθ . (A.5)
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Changing variables again so that u = r2 and du = 2rdr (integration limits remain
the same as r)

I
′2 =

1
2

∫ 2π

0

∫ ∞

0
e−Mududθ =

1
2

∫ 2π

0
dθ

[
− e−Mu

M

]∞

0
=

1
2

2π
1
M

=
π

M
, (A.6)

so, taking the square root

I′ =
√

π

M
. (A.7)

The generalization of this result to infinity integrals where M must be a diagonal
matrix:

I =
∞

∏
i

∫ dxi√
π

e−Mx2
=

√
1

det[M]
(A.8)

A.2 General Case

The general case of such functional integrals is the field version deformed by a
source term so that

I =
∫ ∞

−∞

dφ(x)√
π

e−a(x)φ2(x)+b(x)φ(x) . (A.9)

We drop the argument in the equation now on to easy notation, unless necessary.
In order to compute such integral we need to complete the square of the argument
of exponential

I =
∫ ∞

−∞

dφ√
π

e−a(φ− b
2a )

2+
φ
4a , (A.10)

then we shift the integrand variable φ(x) −→ φ(x)− b(x)
2a(x) . The Jacobian is obvi-

ously 1 because such shift does not change the integration measure,

I = e
|b|2
4a

∫ ∞

−∞

dφ√
π

e−aφ2
. (A.11)

Now we use the same trick as before and get

I = e
|b|2
4a

√
1
a

. (A.12)

The generalization to multidimensional integrals needs a generelization of the
variable φ so that aφ2 −→ φ∗i aij φj = φ†aφ. After diagonalizing a the integral
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becomes a product of one-dimensional Gaussian integrals over φ(xi), with a being
replaced by an eigenvalue of a:∫

Dφ e−φ† a φ+b φ =
∫ ∞

−∞
dφ(x1) exp

[
− φ†(x1) a(x1) φ(x1) + b(x1)φ(x1)

]
×
∫ ∞

−∞
dφ(x2) exp

[
− φ†(x2) a(x2) φ(x2) + b(x2)φ(x2)

]
× · · ·

∫ ∞

−∞
dφ(xn) exp

[
− φ†(xn) a(xn) φ(xn) + b(xn)φ(xn)

]
= e−

|b|2
4a

∞

∏
x

√
π

a(x)
, (A.13)

where it is understood that Dφ(x) = ∏∞
x

dφ(x)√
πn .
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Discretization of the Hamiltonian

We start from the expression for the Hamiltonian in the continuum of the
model, Eq. (3.54) with LI(Φ̂) = − λ

4! Φ̂
4:

Ĥ = Ĥ0 + ĤI , (B.1)

with

Ĥ0 =
1
2

∫
dx
[
Π̂2(x)− Φ̂(x)∇2Φ̂(x) + m2Φ̂2(x)

]
, (B.2)

ĤI =
λ

4!

∫
dx Φ̂4 . (B.3)

The term with the Laplacian comes from an integration by parts. We employ
a one dimensional quantization box of length L and impose periodic boundary
conditions on the fields. As mentioned in the main text, we can maintain the
spatial coordinate x continuous, or discretize it by using a lattice. We start with
continuous x.

The periodic boundary conditions imply that the momentum is discrete:

pn =
2π

L
n, n = 0,±1,±2, . . . . (B.4)

The fields Φ̂(x) and Π̂(x) are written in a Fourier series:(
Φ̂(x)
Π̂(x)

)
=

1
L ∑

n
eipnx

(
Φ̂(p)
Π̂(p)

)
. (B.5)

Replacing these series in Eq. (B.2), one obtains

Ĥ0 =
1

2L ∑
p

Π̂†(p) Π̂(p) +
1

2L ∑
p
(p2 + m2) Φ̂†(p) Φ̂(p) , (B.6)

where we omitted the index n of pn to conform with the expression given in
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the main text, Eq. (4.3). To obtain this result, we used Φ̂(−p) = Φ̂†(p) and
Π̂(−p) = Π̂†(p), and also

∫ L

−L
dx e−i(pn+pn′ )x = L δn,−n′ . (B.7)

For the ĤI , we obtain:

ĤI =
λ

4!
1
L4 ∑

n1,...,n4

Φ̂(pn4)Φ̂(pn3)Φ̂(pn1)Φ̂(pn2) L δpn1+pn2 ,−pn3−pn4
, (B.8)

where we have used again Eq. (B.7). If we choose to eliminate pn4 using the
Kronecker delta, pn4 = −pn1 − pn2 − pn3 , we obtain:

ĤI =
λ

4!
1
L3 ∑

n1,n2,n3

Φ̂(−pn1 − pn2 − pn3)Φ̂(pn3)Φ̂(pn2)Φ̂(pn1)

=
λ

4!
1
L3 ∑

n1,n2,n3

Φ̂†(pn1 + pn2 + pn3)Φ̂(pn3)Φ̂(pn2)Φ̂(pn1)

=
λ

4!
1
L3 ∑

n1,n2,n3

Φ̂†(pn1 + pn2 − pn3)Φ̂
†(pn3)Φ̂(pn2)Φ̂(pn1) , (B.9)

where we made pn3 → −pn3 in the last step. Now changing pn1 − pn3 = q we end
up with

ĤI =
λ

4!
1
L3 ∑

p,p′,q
Φ̂†(p′ + q)Φ̂†(p− q)Φ̂(p)Φ̂(p′) , (B.10)

where again we omitted the discrete indices to conform with the expression in the
main text, Eq. (4.4).

Next, we consider discrete x on a lattice [43] with N sites, such that x → xl = la,
l = 0, 1, . . . , N− 1, where a is the lattice spacing and L = Na. To Fourier transform,
there must be exactly the same number of momentum values; we choose them
symmetrically as:

n = −N/2 + 1, . . . , 0, . . . N/2 . (B.11)

The the possible values of the momentum in the infinite volume limit, N → ∞
and a fixed, are then:

− π

a
≤ p ≤ +

π

a
. (B.12)

This is so because the shortest wave length is λmin = 2a and the largest momentum



Appendix B. Discretization of the Hamiltonian 70

pmax is then (recall we are using h̄ = 1):

pmax =
2π

λmin
=

π

a
. (B.13)

For the discretization of the Laplacian we use the standard central difference
formula:

∇2Φ(x)→ Φ(x + a)− 2Φ(x)−Φ(x− a)
a2 . (B.14)

This leads to∫
dx Φ(x)∇2Φ(x) → a ∑

l

1
a2

1
(Na)2 ∑

nn′
Φ(n′)Φ(n)ei 2π

N n′l

×
(

ei 2π
N n(l+1) − 2ei 2π

N nl + ei 2π
N n(l−1)

)
= − 1

N2a3 ∑
nn′

4 sin2
(π

N
n
)

Φ(n′)Φ(n)∑
l

ei 2π
N (n′+n)l . (B.15)

Next, we use here the result [43]:

r = ei 2π
N (n−n′) → 1

N

N−1

∑
l=0

rl =
1
N

1− rN

1− r
= δn,n′ , (B.16)

to obtain: ∫
dx Φ(x)∇2Φ(x) → − 1

Na ∑
n

Φ†(n)
4
a2 sin2

(π

N
n
)

Φ(n) , (B.17)

where we used Φ(−n) = Φ†(n).
The mass and interaction terms of the Hamiltonian have the same structure as

in the previous discretization. This establishes the results shown in Eqs (4.3) and
(4.4), with the two momentum discretization schemes distinguished by p̄ given in
Eq. (4.5).
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Wigner Functional in Phase Space

C.1 Expectation Values

In this section we aim to prove Eqs. (3.50) and (3.51). We start from the defini-
tion of Z in Eq. (3.51):

Z = Tr ρ̂(t). (C.1)

The aim is to express the trace in terms of the Wigner functional W[Φ, Π; t]. We
compute the trace in the basis of the eigenstates of Φ̂(x):

Φ̂(x) |Φ〉 = Φ(x) |Φ〉 . (C.2)

Equation (C.1) is then given by the path integral

Z = Tr ρ̂(t) =
∫

DΦ(x) 〈Φ(x)|ρ̂|Φ(x)〉 , (C.3)

which we rewrite as

Z =
∫

DΦ(x)Dϕ(x) δ(ϕ(x))
〈

Φ(x) +
ϕ(x)

2

∣∣∣ρ̂(t)∣∣∣Φ(x)− ϕ(x)
2

〉
=

∫
DΦ(x)Dϕ(x)

DΠ(x)
2π

e−i
∫

dx Π(x)ϕ(x)

×
〈

Φ(x) +
ϕ(x)

2

∣∣∣ρ̂(t)∣∣∣Φ(x)− ϕ(x)
2

〉
, (C.4)

in which we used the fact that

δ(ϕ(x)) =
∫ DΠ(x)

2π
e−i

∫
dx Π(x)ϕ(x) . (C.5)
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The desired result follows trivially, as one can identify the Wigner functional as
the functional integral over ϕ and rewrite Z as:

Z =
∫

DΦ(x)
DΠ(x)

2π
W[Φ, Π, t] . (C.6)

Next, we prove Eq. (3.50) for the case Ô(Π̂). Again, we start computing the
trace in the basis of the eigenstates of Φ̂(x) and make the same tricks made above
with respect to the insertion of a δ(ϕ(x)) functional followed by the field shift
Φ(x)→ Φ(x)− ϕ(x)/2 (to avoid clutter we drop in some places the x dependence
in the field operators ):

〈Ô(Π̂)〉 =
1
Z

∫
DΦDϕ

DΠ
2π

e−i
∫

dx Π(x)ϕ(x) 〈Φ +
ϕ

2
|ρ̂(t)Ô(Π̂)|Φ− ϕ

2
〉 . (C.7)

Next, we insert the completeness relation of the momentum field operator Π̂(x)
eigenfunctions |Π(x)〉, namely

1 =
∫

DΠ |Π〉〈Π| , (C.8)

to obtain

〈Ô(Π̂)〉 =
1
Z

∫
DΦDϕ

DΠ
2π

∫ DΠ1

2π

DΠ2

2π
e−i

∫
dx Π(x)ϕ(x)

×〈Φ +
ϕ

2
|Π1〉 〈Π1|ρ̂(t)Ô(Π̂)|Π2〉 〈Π2|Φ−

ϕ

2
〉 , (C.9)

where the factor 2π was put in for convenience of comparison with Ref. [11]. Then,
we use the (unnormalized) relation

〈Φ|Π〉 = e−i
∫

dxΠ(x)Φ(x) , (C.10)

to write

〈Φ +
ϕ

2
|Π1〉 = e

i
∫

dx
[

Π1(x)Φ(x)+Π1 ϕ
2

]
, (C.11)

〈Π2|Φ−
ϕ

2
〉 = e

−i
∫

dx
[

Π2(x)Φ(x)−Π2 ϕ
2

]
(C.12)
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so that one can express 〈Ô(Π̂)〉 as

〈Ô(Π̂)〉 =
1
Z

∫
DΦDϕ

DΠ
2π

DΠ1

2π

DΠ2

2π
e−i

∫
dxΠ(x)ϕ(x) O(Π2)

× exp
{

i
∫

dx
[
(Π1 −Π2)Φ +

1
2
(Π1 + Π2)ϕ

]}
〈Π1|ρ̂(t)|Π2〉 .

Now, we observe that

O(Π2) exp
{

i
∫

dx
[
(Π1 −Π2)Φ +

1
2
(Π1 + Π2)ϕ

]}
= O

( 1
i

δ

δϕ(x)
− 1

2i
δ

δΦ(x)

)
exp

{
i
∫

dx
[
(Π1 −Π2)Φ +

1
2
(Π1 + Π2)ϕ

]}
.(C.13)

Then we integrate partially in ϕ(x) to obtain

〈Ô(Π̂)〉 =
1
Z

∫
DΦDϕ

DΠ
2π

DΠ1

2π

DΠ2

2π
e−i

∫
dxΠ(x)ϕ(x)O

(
Π− 1

2i
δ

δΦ(x)

)
× exp

{
i
∫

dx
[
(Π1 −Π2)Φ +

1
2
(Π1 + Π2)ϕ

]}
〈Π1|ρ̂(t)|Π2〉 .

A further partial integration in Φ amounts to put O
(
Π− (1/2i)δ/δΦ

)
= O(Π)

because the functional derivative δ/δΦ(x) acting on exp(−i
∫

dxΠ(x)ϕ(x)) van-
ishes. Therefore, one obtains the desired result:

〈Ô(Π̂)〉 =
1
Z

∫
DΦDϕ

DΠ
2π

∫ DΠ1

2π

DΠ2

2π
e−i

∫
dx Π(x)ϕ(x)

×O(Π) 〈Φ +
ϕ

2
|Π1〉 〈Π1|ρ̂(t)|Π2〉 〈Π2|Φ−

ϕ

2
〉

=
1
Z

∫
DΦ

DΠ
2π

∫
Dϕ e−i

∫
dx Π(x)ϕ(x)〈Φ +

ϕ

2
|ρ(t)O(Π)|Φ− ϕ

2
〉

=
1
Z

∫
DΦ

DΠ
2π
O(Π) W(Φ(x), Π(x)) . (C.14)

The case in which Ô(Φ̂) is straightforward, similar to the demonstration of
the result for Z. The situation gets a little more complicated for Ô(Φ̂(x), Π̂(x))
because the operators Φ̂(x) and Π̂(x) do not commute. A direct computation
shows 〈

Π̂(x)Φ̂(y)
〉
=
〈

Π(x)Φ(y)
〉
− i

2
δ(x− y) , (C.15)
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while 〈
Φ̂(y)Π̂(x)

〉
=
〈

Π(x)Φ(y)
〉
+

i
2

δ(x− y) , (C.16)

so 〈{
Π̂(x), Φ̂(y)

}〉
=
〈

Π(x)Φ(y)
〉

, (C.17)

where the anticommutator is defined as {Â, B̂} ≡ 1
2(ÂB̂ + B̂Â). If we generalize

this result above we prove the equality 〈Ô(Φ̂, Π̂)〉 = 〈O(Φ, Π)〉 assuming that
the pair of non-commuting operators are symmetrized.

To conclude this part, we mention that similar results hold when using the field
operators in momentum space. The only difference is that one has to integrate over
real and imaginary parts of the field operators and be careful in not overcounting
degrees of freedom due to the constraint Φ∗(p) = Φ(−p) (and of course Π∗(p) =
Π(−p)).

C.2 Equation of Motion

We want to prove Eq. (3.55). We separate the Hamiltonian of Eq. (3.54) in
several parts, naming them ĤΠ, Ĥ∇, Ĥm and ĤI . The contribution of each one to
the equation of motion is GΠ, G∇, Gm and GI , respectively.

Gi =
∫

Dϕ exp
[
− i

∫
dx Π(x)ϕ(x)

]
〈Φ(x) +

ϕ

2
|
[

Ĥi, ρ̂
]
|Φ(x)− ϕ

2
〉 . (C.18)

We start by Ĥm = m2

2 Φ̂2

Gm =
m2

2

∫
dx
∫

Dϕ e−i
∫

dxΠ(x)ϕ(x)〈Φ(x) +
ϕ

2
| Φ̂2ρ̂− ρ̂Φ̂2 |Φ(x)− ϕ

2
〉

=
m2

2

∫
dx
∫

Dϕ e−i
∫

dxΠ(x)ϕ(x)
( ∣∣∣Φ(x) +

ϕ

2

∣∣∣2 − ∣∣∣Φ(x)− ϕ

2

∣∣∣2 )
×〈Φ(x) +

ϕ

2
| ρ̂ |Φ(x)− ϕ

2
〉 , (C.19)

now using that ϕ e−i
∫

dxΠ(x)ϕ(x) = ih̄ δ
δΠ e−i

∫
dxΠ(x)ϕ(x)

Gm = m2ih̄
∫

dx Φ(x)
δ

δΠ

∫
Dϕ e−i

∫
dxΠ(x)ϕ(x)〈Φ(x) +

ϕ

2
| ρ̂ |Φ(x)− ϕ

2
〉

= ih̄m2
∫

dx Φ(x)
δ

δΠ

∫
Dϕ e−i

∫
dxΠ(x)ϕ(x)W(Π, Φ; t) . (C.20)
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The GI case is immediate demanding that L̂(Φ) is a polinomial in Φ and
ϕ e−i

∫
dxΠ(x)ϕ(x) = ih̄ δ

δΠ e−i
∫

dxΠ(x)ϕ(x). We follow the same steps toward

GI = −
∫

dx
[
L̂
(

Φ +
ih̄
2

δ

δΠ

)
− L̂

(
Φ− ih̄

2
δ

δΠ

)]
W(Π, Φ; t) . (C.21)

In the GΠ case we need to introduce two momentum identities

GΠ =
1
2

∫
dx
∫

Dϕ
DΠ1

2π

DΠ1

2π
e−i

∫
dx Π(x)ϕ(x) (Π2

1(x)−Π2
2(x) )

×〈Φ +
ϕ

2
|Π1〉〈Π1 | ρ̂ |Π2〉〈Π2 |Φ−

ϕ

2
〉 , (C.22)

then remembering that 〈Φ|Π〉 = ei
∫

dx Φ(x)Π(x) we can rewrite it as

GΠ =
1
2

∫
dx
∫

Dϕ
DΠ1

2π

DΠ1

2π
e−i

∫
dx Π(x)ϕ(x) 2h̄2

i2
δ

δΦ
δ

δϕ

× exp
{ i

h̄

∫
dx
[
(Π1 −Π2 )Φ +

1
2
(Π1 + Π2 )ϕ

]}
〈Π1 |ρ̂|Π2〉 .(C.23)

Partial integrating in ϕ

GΠ = −h̄2
∫

dx
∫

Dϕ
DΠ1

2π

DΠ1

2π

[
i
h̄

Π(x) e−i
∫

dx Π(x)ϕ(x)
]

× δ

δΦ
exp

{ i
h̄

∫
dx
[
(Π1 −Π2 )Φ +

1
2
(Π1 + Π2 )ϕ

]}
〈Π1 |ρ̂|Π2〉 . (C.24)

Now we can restore the identities in the previous expression

GΠ = −ih̄
∫

dx
∫

Dϕ
DΠ1

2π

DΠ1

2π
Π(x)

δ

δΦ
e−i

∫
dx Π(x)ϕ(x)

×〈Φ +
ϕ

2
|Π1〉〈Π1 |ρ̂|Π2〉〈Π2 |Φ−

ϕ

2
〉 , (C.25)

and taking off the identities

GΠ = −ih̄
∫

dx Π(x)
δ

δΦ

∫
Dϕ e−i

∫
dx Π(x)ϕ(x)〈Φ +

ϕ

2
| ρ̂ |Φ− ϕ

2
〉

= −ih̄
∫

dx Π(x)
δ

δΦ
W(Π, Φ; t) . (C.26)
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Finally, to evaluate the G∇ term we first discretize Φ(x) in a lattice so that

Ĥ∇ = [∇Φ]2 −→ a
2 ∑

i

[
Φ̂i+1 − Φ̂i

a

]2

, (C.27)

so

G∇ =
a
2

∫
dx
∫

Dϕ e−
i
h̄
∫

Πϕ ∑
i

[
Φi+1 +

ϕi+1
2 −Φi − ϕi

2
a

]2

−
[

Φi+1 − ϕi+1
2 −Φi +

ϕi
2

a

]2

〈Φ +
ϕ

2
| ρ̂ |Φ− ϕ

2
〉 . (C.28)

Using that ϕ e−
i
h̄
∫

dx Π ϕ = ih̄ δ
δΠ e−

i
h̄
∫

dx Π ϕ and after some manipulations

G∇ = ih̄ ∑
i

Φi+1 −Φi

a

[
∂

∂Πi+1
− ∂

∂Πi

]
W(Πj, Φj; t) , (C.29)

multiplying by a/a

G∇ = ih̄a ∑
i

Φi+1 −Φi

a2

[
∂

∂Πi+1
− ∂

∂Πi

]
W(Πj, Φj; t) , (C.30)

and we can perform the limit to continuum making a −→ 0; recognizing the
derivatives

G∇ = ih̄
∫

dx∇Φ∇ δ

δΠ
W(Π, Φ; t) , (C.31)

and finally, partially integrating

G∇ = −ih̄
∫

dx∇2Φ
δ

δΠ
W(Π, Φ; t) . (C.32)

Collecting all terms and gluing them together we find Eq. (3.55){
∂

∂t
+
∫

dx
[

Π(x)
δ

δΦ(x)
−
(

m2Φ(x)−∇2Φ(x)
) δ

δΠ(x)
+KI(x)

]}
W[Φ, Π, t] = 0 .

(C.33)
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C.3 Proofs of Results Involving the Thermal Wigner

Functional

C.3.1 Wigner Functional for Thermal Equilibrium

In this section we aim to prove Eq. (3.65). We use Eq. (3.64) for the free Hamil-
tonian Ĥ0 in Eq. (3.48) that defines the momentum space Wigner functional:

W̃(0)
β [Φ, Π] =

1
Z(0)

∫
Dϕ e−i 1

2
∫ ∞
−∞

dp
2π [Π∗(p)ϕ(p)+Π(p)ϕ∗(p)]

×
〈

Φ +
ϕ

2

∣∣∣e−β
∫ ∞
−∞

dp
2π

1
2 [Π̂

†(p)Π̂(p)+(p2+m2)Φ̂†(p)Φ̂(p)]
∣∣∣Φ− ϕ

2

〉
. (C.34)

Here we wrote the momentum integrals from −∞ to ∞ because the restriction to
field variables with momenta p > 0, to avoid double counting, applies to the fields’
real and imaginary parts. Therefore, expressing the field variables in terms of their
real and imaginary parts and restricting the momentum integrals to 0 ≤ p < ∞,
we can write W̃(0)

β [Φ, Π] as

W̃(0)
β [Φ, Π] =

1
Z(0)

∫
DϕR DϕI e−i

∫ ∞
0

dp
2π [ΠR(p)ϕR(p)+ΠI(p)ϕI(p)]

×
〈

ΦR +
ϕR

2

∣∣∣e−β
∫ ∞

0
dp
2π

1
2 [Π̂

2
R+(p2+m2)Φ̂2

R]
∣∣∣ΦR −

ϕR

2

〉
×
〈

ΦI +
ϕI

2

∣∣∣e−β
∫ ∞

0
dp
2π

1
2 [Π̂

2
I+(p2+m2)Φ̂2

I ]
∣∣∣ΦI −

ϕI

2

〉
. (C.35)

We perform the path integral by discretizing the momentum integrals into
sums with periodic boundary conditions and using Eqs. (2.52)-(2.54) to compute
the expectation values. Specifically:

p→ pn =
2π

L
n with n = 0,±1,±2, . . . , (C.36)

∫ ∞

−∞

dp
2π

f (p)→ 1
L ∑

pn

f (pn) , (C.37)

〈Φ′| · · · |Φ〉 →∏
p
〈Φ′(p)| · · · |Φ(p)〉 . (C.38)

This transforms the path integral into a product of ordinary integrals, effectively
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transforming the computation of the Wigner functional into the computation of a
Wigner function for each momentum mode p characterized by a coordinate Φ̂(p)
and associated momentum Π̂(p). Moreover, the Hamiltonian for each momentum
mode resembles that of the harmonic oscillator (HO) and we can use the known
HO wave functions to compute the expectation value involved in the Wigner
function. To do so, we must be careful with the identification of the variables
Φ̂(p) and Π̂(p) with x̂ and p̂ of the HO. First, note that when we discretize the
momentum, the commutation relation in Eq. (2.47) becomes

[ Φ̂(p′), Π̂(p) ] = i 2πδ(p′ − p)→ [ Φ̂(pn′), Π̂(pn) ] = i L δn′n , (C.39)

where δn′,n is the Kronecker delta. Clearly, this is not in the form of the quantum
mechanical commutation relation [x̂n′ , p̂n] = iδn′n. But it can be put in this form by
redefining the field Φ(p) by Φ(p)→ Φ(p)/L.

Therefore, implementing the discretization and using Eqs. (C.36)-(C.38), one
can write Eq. (C.35) as:

W̃(0)
β [Φ, Π] =

1
Z(0) ∏

p
w̃(0)

β [ΦR(p), ΠR(p)]× w̃(0)
β [ΦI(p), ΠI(p)] , (C.40)

where w̃β[ΦR,I(p), ΠR,I(p)] are the Wigner functions for just one momentum
mode p, namely (to avoid clutter we omit the p dependence in the fields):

w̃β[ΦR, ΠR] =
∫ ∞

−∞
dϕR e−

i
L ΠR ϕR

×
〈

ΦR +
ϕR

2

∣∣∣e− β
2L [Π̂

2
R+(p2+m2)Φ̂2

R]
∣∣∣ΦR −

ϕR

2

〉
, (C.41)

and similarly for w̃β[ΦI , ΠI ]. Next, we rewrite the operator in the second exponen-
tial in way that one use the known energy eigenfunctions of the HO. Specifically,

Ĥ =
1

2L
Π̂2

R +
1

2L
(p2 + m2)Φ̂2

R

=
1

2L
Π̂2

R +
1
2
(p2 + m2)L Φ̂

2
R, (C.42)

so that L plays the role of the M and (p2 + m2) plays the role of ω2 in the HO
Hamiltonian:

ĤHO =
1

2M
p̂2 +

1
2

Mω2x̂2 . (C.43)
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The eigenvalues of ĤHO are En = (n + 1/2)ω and the corresponding eigenstates
are

〈x|n〉 = ψn(x) =
1√
2nn!

(
Mω

π

)1/4

Hn(
√

Mω x) e−
1
2 Mωx2

, (C.44)

where Hn(x) are Hermite polynomials. Then, using the correspondence M = L
and Mω = E(p)L, we can write for w̃β[ΦR, ΠR]:

w̃β[ΦR, ΠR] =
∫ ∞

−∞
dϕR e−i ΠR ϕR

〈
ΦR +

ϕR
2

∣∣∣e− β
L

[
Π̂2

R+(p2+m2)L Φ̂
2
R

]∣∣∣ΦR −
ϕR
2

〉

= ∑
n

e−β (1/2+n) E

2nn!

(
EL
π

)1/2 ∫ ∞

−∞
dϕR e−i ΠR ϕR

×Hn(X) Hn(Y) e−
1
2 (X2+Y2) , (C.45)

where we denoted X =
√

EL
(
ΦR + ϕR/2

)
and Y =

√
EL
(
ΦR − ϕR/2

)
. We now

use the result

∞

∑
n

an

n!
Hn(X)Hn(Y) =

1√
1− 4a2

exp
[

4aXY− 4a2(X2 + Y2)

1− 4a2

]
, (C.46)

with a = e−βE/2, which leads to

w̃β[ΦR, ΠR] =
e−

βE
2√

1− 4a2

(
EL
π

)1/2 ∫ ∞

−∞
dϕR e−i ΠR ϕR

× exp
[
−1

2

(
X2 + Y2

)
+

4aXY− 4a2(X2 + Y2)

1− 4a2

]
. (C.47)

We write now the exponent of the last exponential in terms of Φ and ϕ:

−X2 + Y2

2
+

4aXY− 4a2(X2 + Y2)

1− 4a2 = −EL
(

1− 2a
1 + 2a

Φ2
+

1
4

1 + 2a
1− 2a

ϕ2
)

= −EL
[

tanh(βE/2) Φ2
+

1
4 tanh(βE/2)

ϕ2
]

. (C.48)

The ϕ integral amounts to a Fourier transform of a Gaussian (Appendix A):

∫ ∞

−∞
dϕ e−i Π ϕ− EL

4 tanh(βE/2) ϕ2
=

[
4 tanh(βE/2)

EL

]1/2

e−
tanh(βE/2)

EL Π2
. (C.49)
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Putting all together, we then obtain for w̃β[ΦR, ΠR]:

w̃β[ΦR, ΠR] =
2 e−βE/2√

tanh(βE/2)
e−EL

[
tanh(βE/2) Φ2

R+
tanh(βE/2)

E2L2 Π2
R

]

=
2 e−βE/2√

tanh(βE/2)
e−

tanh(βE/2)
EL

(
Π2

R+E2L2 Φ2
R

)

=
2 e−βE/2√

tanh(βE/2)
e−

β
L

2 tanh(βE/2)
βE

1
2(Π2

R+E2 Φ2
R)

=
2 e−βE/2√

tanh(βE/2)
e−

β
L ∆̃β

1
2(Π2

R+E2 Φ2
R) , (C.50)

where
∆̃β =

2
βE

tanh(βE/2) . (C.51)

Finally, one can absorb the overall constant (w.r.t. to the fields) into Z in
Eq. (C.40) and call this constant C, and write back the integrals in momentum
from −∞ to +∞. One can then write the result for W̃(0)

β [Φ, Π] as

W̃(0)
β [Φ, Π] = C e−β

∫ ∞
−∞

dp
2π ∆̃β(p) 1

2{Π2
R(p)+Π2

I (p)+(p2+m2)[Φ2
R(p)+Φ2

I (p)]}

= C e−β
∫ ∞
−∞

dp
2π ∆̃β(p) 1

2 [Π
∗(p)Π(p)+(p2+m2)Φ∗(p)Φ(p)] , (C.52)

which is the desired result. Again, it is important to note that when this result is
used in a path integration over fields Π(p) and Φ(p), the momentum integral in
the above expression must be restricted to the interval p ∈ [0, ∞).

C.3.2 Proof of Normalization

We can fix the normalization of the Wigner functional by requiring a normal-
ized density matrix, i.e. Tr ρ̂ = 1. This leads to the condition:

∫
DΦ(p)

DΠ(p)
2π

W̃β(Φ(p), Π(p)) = 1 , (C.53)

using Eq. (3.65) for the Wigner functional in thermal equilibrium. We recall that
Φ(p) and Π(p) are complex field variables under the constraint Φ(−p) = Φ∗(p)
(same for Π) and so we need to restrict the integrals over p to positive values of p.
We separate the fields into real and imaginary parts and discretize the momentum
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integrals (restricting of course the sums to positive momenta):

1 = C
∫ DΠR(p)

2π
exp

[
− ∑

p>0

2 tanh( βE(p)
2 )

E(p)L
Π2

R(p)

]

×
∫ DΠI(p)

2π
exp

[
− ∑

p>0

2 tanh( βE(p)
2 )

E(p)L
Π2

I (p)

]

×
∫

DΦR(p) exp

[
− ∑

p>0

2E(p) tanh( βE(p)
2 )

L
Φ2

R(p)

]

×
∫

DΦI(p) exp

[
− ∑

p>0

2E(p) tanh( βE(p)
2 )

L
Φ2

I (p)

]
. (C.54)

We see that we get four functional integrals (in ΠR, ΠI , ΦR and ΦI) similar in form
to each other, up to a 1/2π factor; each integral means

∫
Dφ(p) e−∑p f (p)φ2(p) =

n

∏
p

∫ ∞

−∞
dφ(p) e− f (p)φ2(p)

=
∫ ∞

−∞
dφ(p1) e− f (p1)φ

2(p1)
∫ ∞

−∞
dφ(p2) e− f (p2)φ

2(p2)

· · ·
∫ ∞

−∞
dφ(pn) e− f (pn)φ2(pn)

=

√
π

f (p1)

√
π

f (p2)
· · ·

√
π

f (pn)
=

n

∏
p

√
π

f (p)
, (C.55)

where φ(p) stands for any of ΠR, ΠI , ΦR and ΦI . To simplify the notation, we
make:

a(p) =
2 tanh βE(p)

2
E(p)L

,

b(p) =
2E(p) tanh βE(p)

2
L

,

(C.56)
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and rewrite the integrals as

1 = C
∫ DΠR(p)

2π
exp

[
−∑

p
a(p)Π2

R(p)

] ∫ DΠI(p)
2π

exp

[
−∑

p
a(p)Π2

I (p)

]

×
∫

DΦR(p) exp

[
−∑

p
b(p)Φ2

R(p)

] ∫
DΦI(p) exp

[
−∑

p
b(p)Φ2

I (p)

]

= C
n

∏
p

1
2π

√
π

a(p)

n

∏
p

1
2π

√
π

a(p)

n

∏
p

√
π

b(p)

n

∏
p

√
π

b(p)

= C
n

∏
p

1
4

√
1

a2(p)b2(p)
. (C.57)

Using our previous definitions for a(p) and b(p)

1 = C L−2n
n

∏
p

1
4

√√√√ E2(p)L2

4 tanh2 βE(p)
2

L2

4E2(p) tanh2 βE(p)
2

, (C.58)

and doing some algebra it is easy to show that

1 = C (2L)−2n ∏
p

L2

4 tanh2 βE(p)
2

= C (2L)−2n exp

{
ln ∏

p

[
1

4 tanh2 βE(p)
2

]}

= C (2L)−2n exp

{
∑
p>0

ln

[
1

4 tanh2 βE(p)
2

]}
. (C.59)

We now restore the continuous limit:

1 = C (2L)−2n exp
{
−L

∫ ∞

−∞

dp
2π

ln
[

2 tanh
βE(p)

2

]}
, (C.60)

where we have changed the integration limits in the last step. One can see that
isolating C we find

C = (2L)2n exp
{

L
∫ ∞

−∞

dp
2π

ln
[

2 tanh
βE(p)

2

]}
. (C.61)

We note that the factor (2L)2n is temperature independent and can be absorbed in
C (it could be absorbed in the normalization of integration measure also) i.e. we



Appendix C. Wigner Functional in Phase Space 83

could have defined

C′ ≡ (2L)−2n C = exp
{

L
∫ ∞

−∞

dp
2π

ln
[

2 tanh(
βE(p)

2
)

]}
, (C.62)

which is the result of Ref. [11].

C.3.3 Two Point Correlation Function

We insert Eq. (3.65) in Eq. (3.50) for O(Φ̂, Π̂) = Φ̂†(p)Φ̂(p):

〈Φ̂†(p)Φ̂(p)〉 =
1
Z

∫
DΦ(p)

DΠ(p)
2π

Φ∗(p)Φ(p) W̃β(Φ(p), Π(p))

=
C
Z

∫
DΦ(p)

DΠ(p)
2π

Φ∗(p)Φ(p)

× exp
[
−β

2

∫ ∞

−∞

dp
2π

∆̃β(p)
(

Π∗(p)Π(p) + E2(p)Φ∗(p)Φ(p)
)]

, (C.63)

In the same fashion as previous sections we separate the functional integrals in real
and imaginary parts and discretize the momentum integrals inside the exponential

〈Φ̂†(p)Φ̂(p)〉 =
C′

Z

∫
DΦR(p)DΦI(p)

(
Φ2

R(p) + Φ2
I (p)

)
× exp

[
−∑

E(p) tanh βE(p)
2

L

(
Φ2

R(p) + Φ2
I (p)

)]

×
∫ DΠR(p)

π

DΠI(p)
π

exp

[
−∑

tanh βE(p)
2

E(p)L

(
Π2

R(p) + Π2
I (p)

)]
, (C.64)

where we have changed to C′ instead of C to absorb the 1/4 and all irrelevant
constants there will be. We can see that we have two terms to integrate, and they
are equal in value. We already did the integrals in Π(p) and in Φ in Section C.3.2.
The integrals in Φ(p) with Φ2 are a little bit trickier; we can make the substitution

a(p) = 2 tanh( βE(p)
2 )

E(p)L and b(p) = 2E(p) tanh( βE(p)
2 )

L again in the exponentials so that we
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can write Φ2
R/I(p) = − d

db(p) outside the integral. What we have is

〈Φ̂†(p)Φ̂(p)〉 = Iφ Iφπ + Iφ Iφπ

=
C′

Z

∫
DΦR(p)Φ2

R(p) e−∑ b(p)Φ2
R(p)

∫
DΦI(p) e−∑ b(p)Φ2

I (p)

×
∫ DΠR(p)

π
e−∑ a(p)Π2

R(p) DΠI(p)
π

e−∑ a(p)Π2
I (p)

+
C′

Z

∫
DΦR(p) e−∑ b(p)Φ2

R(p)
∫

DΦI(p)Φ2
I (p) e−∑ b(p)Φ2

I (p)

×
∫ DΠR(p)

π
e−∑ a(p)Π2

R(p) DΠI(p)
π

e−∑ a(p)Π2
I (p) . (C.65)

We need to evaluate only one of these path integrals, i.e.

〈Φ̂†(p)Φ̂(p)〉 = 2Iφ IφΠ , (C.66)

where φ = ΦR or φ = ΦI . We start with Iφ:

Iφ =
∫

Dφ(p) φ2(p) e−∑ b(p)φ2(p)

=
∫ ∞

−∞
dφ(p1) e−b(p1)φ

2(p1) · · ·
[
− d

db(pi)

∫ ∞

−∞
dφ(pi) e−b(pi)φ

2(pi)

]
· · ·

∫ ∞

−∞
dφ(pn) e−b(pn)φ2(pn)

=

√
π

b(p1)
· · ·

[
− d

db(pi)

√
π

b(pi)

]
· · ·

√
π

b(pn)

=

√
π

b(p1)
· · · 1

2b(pi)

√
π

b(pi)
· · ·

√
π

b(pn)
=

1
2b(p) ∏

p

√
π

b(p)
. (C.67)

Next, we evaluate IφΠ:

IφΠ =
C′

Z

∫
DΦI(p) e−∑ b(p)Φ2

I (p)
∫ DΠR(p)

π
e−∑ a(p)Π2

R(p)

×
∫ DΠI(p)

π
e−∑ a(p)Π2

I (p)

=
C′

Z ∏
p

1
π2

√
π3

a2(p)b(p)
. (C.68)
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One then obtains for the two point correlation function:

〈Φ̂†(p)Φ̂(p)〉 =
2C′

Z
1

2b(p)

n

∏
p

√
π

b(p) ∏
p

1
π2

√
π3

a2(p)b(p)

=
C′

Z
1

b(p)

n

∏
p

√
1

a2(p)b2(p)
. (C.69)

Making use of Z:

Z = C′
n

∏
p

√
1

a2(p)b2(p)
, (C.70)

we arrive at

〈Φ̂†(p)Φ̂(p)〉 =
1

b(p)
=

L

2E(p) tanh βE(p)
2

. (C.71)

The 〈Π̂†(p)Π̂(p)〉 is analogous; following the same steps but with Π instead, one
obtains

〈Π̂†(p)Π̂(p)〉 = E(p)L

2 tanh βE(p)
2

. (C.72)
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Gibbs Variational Principle

The Gibbs variational principle makes two statements. The first statement is
that one obtains the equilibrium density matrix ρ̂eq of the canonical ensemble for a
given Hamiltonian Ĥ:

ρ̂eq =
1

Zeq
e−βĤ with Zeq = Tr e−βĤ (D.1)

by minimizing the functional

ψ(ρ̂) = Tr(Ĥ ρ̂) +
1
β

Tr(ρ̂ ln ρ̂) , (D.2)

with respect to ρ̂ under the assumption that ρ̂ is a positive density matrix normal-
ized to unity:

Tr ρ̂ = 1 . (D.3)

The second statement is that the Helmholtz free energy F is given by

F = − 1
β

ln Zeq = ψ(ρ̂eq) . (D.4)

We follow Ref. [65] to prove the two statements. Let’s evaluate the first δψ and
second δ2ψ variations of ψ(ρ̂):

δψ = Tr (Ĥδρ̂) +
1
β

Tr δρ̂ ln ρ̂ + δρ̂ = Tr
[(

Ĥ +
1
β
(1 + ln ρ̂)

)
δρ̂

]
, (D.5)

δ2ψ = Tr
[(

0 +
1
β
(0 + ρ̂−1 δρ̂)

)
δρ̂

]
=

1
β

Tr
[
ρ̂−1 (δρ)2

]
. (D.6)

Since δ2ψ > 0 (because ρ̂ is positive), we conclude that ψ(ρ̂) is a convex function
and so δψ = 0 is a minimum. Next, we vary ρ̂ under the normalization constraint
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in Eq. (D.3) using a Lagrange multiplier λ:

0 = δψ + λ δ(Tr ρ̂) = Tr
[(

Ĥ +
1
β
(1 + ln ρ̂) + λ

)
δρ̂

]
. (D.7)

Since δρ̂ is arbitrary:

Ĥ +
1
β
(1 + ln ρ̂) + λ = 0 , (D.8)

and we conclude that
ρ̂ = e−(1+βλ)e−βĤ . (D.9)

One determines λ using the normalization condition:

1 = Tr ρ̂ = Tr
[
e−(1+βλ)e−βĤ

]
= e−(1+βλ) Tr e−βĤ . (D.10)

Substituting this result in Eq. (D.9) proves the first statement. Now, using this
result in Eq. (D.2) proves the second statement:

ψ(ρ̂eq) = Tr

[
Ĥ

e−βĤ

Tr e−βĤ

]
+

1
β

Tr

[
e−βĤ

Tr e−βĤ
ln

(
e−βĤ

Tr e−βĤ

)]

= − 1
β

ln
(

Tr e−βĤ
)

. (D.11)

We use the Gibbs variational principle as follows. Let ρ̂ be the normalized
equilibrium density matrix corresponding to a Hamiltonian Ĥ and ρ̂0 a normalized
equilibrium density matrix corresponding to a Hamiltonian Ĥ0, namely:

ρ̂ =
1
Z

e−βĤ with Z = Tr e−βĤ , (D.12)

and
ρ̂0 =

1
Z0

e−βĤ0 with Z0 = Tr e−βĤ0 . (D.13)

The Gibbs variational principle states that

F(ρ̂) = Tr(Ĥρ̂) +
1
β

Tr(ρ̂ ln ρ̂) ≤ Tr(Ĥρ̂0) +
1
β

Tr(ρ̂0 ln ρ̂0) . (D.14)
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Now, if Ĥ = Ĥ0 + Ĥ1, this is equivalent to

F(ρ̂) ≤ Tr(Ĥ0ρ̂0) + Tr(Ĥ1ρ̂0) +
1
β

Tr(ρ̂0 ln ρ̂0)

= Tr(Ĥ0ρ̂0) + Tr(Ĥ1ρ̂0)− Tr(Ĥ0ρ̂0) + F(ρ̂0)

= F(ρ̂0) + Tr(Ĥ1ρ̂0) , (D.15)

where we used that
F(ρ̂0) = −

1
β

ln Z0 . (D.16)

Suppose that Ĥ0 depends on some undetermined parameters g1, . . . , gn, i.e. Ĥ0 =

Ĥ0(g1, . . . , gn); thereby ρ̂0 = ρ̂0(g1, . . . , gn). One can determine the parameters
g1, . . . , gn by treating them as variational trial parameters in the Gibbs variational
principle, namely:

F(ρ̂) ≤ F(ρ̂0) + Tr(Ĥ1ρ̂0) ≡ Fvar(g1, . . . , gn), (D.17)

with
∂Fvar(g1, . . . , gn)

∂gi
= 0 for i = 1, . . . , n . (D.18)

In our case, Ĥ0 = Ĥq and Ĥ1 = H′(q ∈ S) + H′′(q /∈ S), and the g(k, q) are the
trial parameters.
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