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Teleparallel equivalent of non-Abelian Kaluza-Klein theory

A. L. Barbosa,* L. C. T. Guillen,† and J. G. Pereira‡
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Based on the equivalence between a gauge theory for the translation group and general relativity, a telepar-
allel version of the non-Abelian Kaluza-Klein theory is constructed. In this theory, only the fiber-space turns
out to be higher dimensional, spacetime being kept always four dimensional. The resulting model is a gauge
theory that unifies, in the Kaluza-Klein sense, gravitational and gauge fields. In contrast with the ordinary
Kaluza-Klein models, this theory defines a natural length scale for the compact submanifold of the fiber space,
which is shown to be of the order of the Planck length.
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I. INTRODUCTION

In ordinary Kaluza-Klein theories@1#, the geometrical ap-
proach of general relativity is adopted as the paradigm
the description of all other interactions of nature. In the ori
nal Kaluza-Klein theory, for example, gravitational and ele
tromagnetic fields are described by a Hilbert-Einstein L
grangian in a five-dimensional spacetime. In the case of
non-Abelian gauge theory, the unification with gravitation
possibility first raised in the 1960s@2#, was achieved by ex
tending the usual four-dimensional spacetime to
(41D)-dimensional spacetime@3–6#, with D the dimension
of the compact part of spacetime. According to this constr
tion, the isometries of theD-dimensional compact sub
manifold yield the non-Abelian gauge transformations.

On the other hand, it is widely known that, at least ma
roscopically, general relativity is equivalent to a gau
theory @7# for the translation group@8#, provided a specific
choice of parameters be made@9#. In this theory, known as
the teleparallel equivalent of general relativity, the funda-
mental field is the Weitzenbo¨ck connection, a connectio
presenting torsion, but no curvature. Differently from gene
relativity, in which gravitation is attributed to curvatur
teleparallel gravity attributes gravitation to torsion. Furth
more, whereas in general relativity curvature is used toge-
ometrizethe gravitational interaction, in teleparallel gravi
torsion plays the role of agravitational force @10#. This
agrees with the fact that, in any gauge theory, the class
interaction is always described by a force equation.

Now, the equivalence alluded to above opens new p
spectives for the study of unified theories. In fact, instead
using the geometrical description of general relativity,
can adopt the gauge description as the basic paradigm, a
this way construct what we call theteleparallel equivalent of
Kaluza-Klein models. According to this approach, bo
gravitational and non-Abelian gauge fields turn out to
described by a gauge-type Lagrangian. This means that
stead of obtaining the Yang-Mills construction from geo
etry, as is usually done in ordinary Kaluza-Klein models,

*Electronic address: analucia@ift.unesp.br
†Electronic address: lctorres@ift.unesp.br
‡Electronic address: jpereira@ift.unesp.br
0556-2821/2002/66~6!/064028~7!/$20.00 66 0640
r
-
-
-
e

a

-

-

l

-

al

r-
f

in

e
in-
-

the teleparallel Kaluza-Klein the geometry~that is, gravita-
tion! is obtained from a generalized gauge model. By follo
ing this approach, a teleparallel equivalent of the Abel
Kaluza-Klein theory has already been constructed@11#.

By adopting the gauge description as the basic paradi
the purpose of this paper will be to use the equivalence
tween general relativity and teleparallel gravity to constr
the teleparallel equivalent of a non-Abelian Kaluza-Kle
theory. In other words, instead of extending spacetime
higher dimensions, it is the internal~fiber! space that will be
extended to (41D) dimensions, spacetime being kept a
ways four dimensional. Similarly to the ordinary non
Abelian Kaluza-Klein model, the gauge transformations w
be obtained from the isometries of the fiber space. This c
struction will be achieved through the following steps.
Sec. II, from the analysis of the dynamics of a particle su
mitted to both gravitational and Yang-Mills type fields, th
unified gauge potentials and field strengths are defined
Sec. III the corresponding gauge transformations are
tained from the isometries of the fiber space, and in Sec.
the unified gauge Lagrangian is constructed. The coupling
matter fields with the unified gauge potential is studied
Sec. V, where the explicit dependence of all dynamical va
ables on the internal coordinates is examined. Finally, in S
VI, the basic properties of the model are discussed. In p
ticular, it is pointed out that the teleparallel Kaluza-Kle
model defines a natural length scale for the comp
D-dimensional sub-manifold of the fiber space, which
found to be of the order of the Planck length.

II. PARTICLE DYNAMICS AND UNIFIED GAUGE
POTENTIALS

In what follows, the greek alphabetm,n,r, . . .
50, . . . ,3 will be used to denote indices related to spac
time. According to the gauge construction, at each point
spacetime there is a fiber space, which in our case will b
(41D)-dimensional space given by the direct productM4

^ BD, whereM4 is the tangent Minkowski space, andBD is
the group manifold associated to a Yang-Mills symmet
The first part of the latin alphabeta,b,c, . . . 50, . . . ,3will
be used to denote indices related to the Minkowski~or ex-
ternal! part of the fiber, whereas the second part of the la
alphabetm,n, . . . 55, . . . ,41D will be used to denote in-
©2002 The American Physical Society28-1
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dices related to the Yang-Mills~or internal! part of the fiber.
The second part of the latin capital alphabet will be used
denote the whole set of indices of the internal space, wh
runs through the valuesM ,N, . . . 50, . . . ,3,5, . . . 41D.
The metric of the (41D)-dimensional internal spaceM4

^ BD is

gMN5S hab 0

0 gmn
D , ~1!

wherehab is the metric ofM4, which is chosen to behab
5diag(11,21,21,21), and gmn is the metric of the
D-dimensional spaceBD. In general,BD is a ~compact!
curved Riemannian space, withgmn5gmn(x

m) a function of
the coordinatesxm of BD.

As already said, gravitation will enter as a gauge the
for the translation group, whose action will take place in t
Minkowski spaceM4. As the dimension of the translatio
group is the same as that of the Minkowski space, the
part of the latin alphabeta,b,c, . . . 50, . . . ,3 will also be
used to denote the indices related to the translation gro
The intermediary latin alphabeti , j ,k55, . . . ,41I will be
used to denote indices related to the Yang-Mills gauge gro
with I denoting the number of generators of the associa
Lie algebra. The latin capital lettersA,B,C, . . .
50, . . . ,3,5, . . . ,41I will be used to denote the whole s
of indices related to the group generators. Notice that
dimension 41D of the fiber does not need to coincide wi
the dimension 41I of the gauge group.

We denote byAa
m the gauge potential related to transl

tions, and byAi
m the Yang-Mills type gauge potentials. Ac

cording to the gauge description of interactions, the act
integral describing a particle of massm and gauge chargeqi ,
under the influence of both a gravitational and a gauge fi
is

S5E
a

bF2mcds2
1

c
~mAa

mua1gAi
mqi !dxmG , ~2!

whereds5(habdxadxb)1/2 is the Minkowski invariant inter-
val, ua5dxa /ds is the tangent space four-velocity, andqi is
the Noether charge related to the internal gauge transfor
tion @12#. Notice that the massm appears as the gravitation
coupling constant, whereas the gauge coupling constan
denoted byg. Notice, furthermore, that we are assuming t
weak equivalence principle, and equating the inertial a
gravitational masses.

The equation of motion following from the action~2! is

ea
m

dua

ds
5

1

c2
Fa

mnuaun1
g

mc2
~]mAi

n2]nAi
m!qiu

n

2
g

mc2
Ai

m

dqi

ds
, ~3!

where

Fa
mn5]mAa

n2]nAa
m ~4!
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is the gravitational field strength,ds5(gmndxmdxn)1/2 is the
spacetime invariant interval,un5dxn/ds is the spacetime
four-velocity, andea

m is the tetrad field

ea
m5]mxa1c22Aa

m . ~5!

We remark that, whereas the Minkowski indicesa,b,c, . . .
are raised and lowered with the Minkowski metrichab , the
spacetime indicesm,n,r, . . . are raised and lowered wit
the Riemannian metric

gmn5habe
a

meb
n , ~6!

which is used to write the spacetime invariant intervalds.
Considering now that the gauge chargeqi satisfies the

Wong equation@13#

dqi

ds
1

g

\c
f i jkAj

mqkum50, ~7!

with f i jk the structure constants of the gauge group, the eq
tion of motion ~3! can be rewritten in the form

ea
m

dua

ds
5

1

c2
Fa

mnuaun1
g

mc2
Fi

mnqiu
n, ~8!

where

Fi
mn5]mAi

n2]n Ai
m1

g

\c
f i

jkAj
mAk

n ~9!

is the gauge field strength. In the absence of Yang-Mills fie
the equation of motion~8! can be shown to reduce to th
geodesic equation of general relativity@10#.

The gauge structure of teleparallel gravity allows the de
nition of aunifiedgauge potentialA A

m , which is assumed to
have the same dimension of the gravitational potentialAa

m .
Consequently, the internal gauge potentialAi

m must appear
multiplied by an appropriate dimensional factor, which w
write in the form

A A
m[~Aa

m ,Ãi
m!5S Aa

m ,
g

k
Ai

mD , ~10!

wherek is a parameter to be determined later. Consequen
if we define a generalized (41I ) Noether chargepA
5mcuA , with

uA[~ua ,ũi !5S ua ,
k

m
qi D ~11!

a generalized (41I ) ‘‘velocity,’’ the action ~2! can be rewrit-
ten in the form

S5E
a

bF2mcds2
1

c2
A A

mpAdxmG . ~12!

In the same way, we can define now a generalized fi
strength,
8-2
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F A
mn[~Fa

mn ,F̃ i
mn!5S Fa

mn ,
g

k
Fi

mnD . ~13!

With these definitions, the equation of motion~8! assumes
the form

ea
m

dua

ds
5c22F A

mnuAun. ~14!

This is theunified—gravitational plus Yang-Mills—analog o
the electromagnetic Lorentz force. Its solution determin
the trajectory of the particle under the influence of bo
gravitational and Yang-Mills fields.

III. GENERALIZED GAUGE TRANSFORMATIONS

A point in the (41D)-dimensional internal spaceM4

^ BD will be denoted byxM5(xa,xm), where xa are the
coordinates ofM4, and xm the coordinates ofBD. A local
transformation of these coordinates, which leaves the me
gMN invariant, can be written in the form

dxM5daAKAxM, ~15!

where daA5daA(xm) are the infinitesimal parameter
whose components are written in the form

daA~xm![~daa,dã i !5S daa,
g

kc2
da i D , ~16!

and KA represent the generators of the transformatio
These generators have the form

KA5KN
A]N , ~17!

where the coefficientsKN
A are the Killing vectors@14# asso-

ciated with the infinitesimal isometries of the internal spa
M4

^ BD. They form a set of 41I linearly independent vec
tors for this space@1#, and are given by

KN
A5S db

a 0

0 Kn
i
D , ~18!

with db
a the Killing vectors ofM4, andKn

i the Killing vec-
tors of BD. The generators are, consequently,

Ka5db
a]b5Pa , ~19!

which are the isometry generators ofM4, and

Ki5Kn
i]n , ~20!

which are the isometry generators ofBD. The coordinate
transformations, therefore, are given by

dxa5daa, ~21!

and

dxn5
g

kc2
da iKn

i[
g

kc2
djn, ~22!
06402
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i the transformation parameter in the Kil

ing basis.
The generatorsKA obey the algebra

@KA ,KB#5 f C
ABKC , ~23!

where f A
BC are the~dimensional! structure constants, whos

components are

f A
BC5H f a

bc50 for A,B,C5a,b,c,

f̃ i
jk[x f i

jk for A,B,C5 i , j ,k.
~24!

The constant

x5k
c

\
, ~25!

was introduced for dimensional reasons, and in such a wa
yield correct forms for the field strengths and gauge trans
mations. We have thus the following commutation relatio

@Ka ,Kb#50, ~26!

and

@Ki ,K j #5x f k
i j Kk . ~27!

The generalized derivative, covariant under the transform
tion ~15!, is

Dm5]m1c22A A
mKA . ~28!

In fact, as a simple computation shows, its commutator gi
rise to the generalized field strength,

@Dm ,Dn#5c22F A
mnKA , ~29!

where

F A
mn5]mA A

n2]nA A
m1c22f A

BCA B
mA C

n . ~30!

Using the appropriate definitions, this expression is ea
seen to yield the correct expressions for the gravitational
the Yang-Mills field strengths. We notice in passing that t
tetrad field is given by the covariant derivative ofxa, the
coordinates of the non-compact partM4 of the fiber space:

ea
m5D mxa.

This means that this part of the fiber space presents the
dering property@15#.

Now, from the covariance ofDm under the isometric
transformation~15!, we obtain the gauge transformation
the generalized potential:

dA A
m52c2DmdaA[2c2]mdaA2 f A

BCA B
mdaC.

~31!

For A5a, the usual transformation law for the~Abelian!
gravitational gauge potential is obtained:

dAa
m52c2]mdaa. ~32!
8-3
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For A5 i , it gives

dAi
m52D mda i[2]mda i2

g

\c
f i

jkAj
mdak, ~33!

which is the usual non-Abelian gauge transformation. Wh
daa50, therefore, the coordinate transformation~15! leads
to a pure gauge transformation.

IV. GAUGE LAGRANGIAN AND FIELD EQUATIONS

Considering the generalized field strengthF A
mn , we can

write the unified Lagrangian density for the gauge field a

L5
e

16pG S 1

4
F A

mnF B
urgmuNAB

nrD , ~34!

where e5det(ea
m). The algebraic indicesA,B,C, . . . are

raised and lowered with the Cartan-Killing metric

hAB5S hab 0

0 h i j
D , ~35!

whose components related to the translation group coin
with the Lorentzian metrichab of the Minkowski tangent
space. The explicit form of the components ofNAB

nr are

Nab
nr5Ahabec

necr1Bea
reb

n1Cea
neb

r, ~36!

with A, B, C arbitrary parameters@9#, which gives the La-
grangian of the gravitational sector, and

Ni j
nr5h i j ec

necr, ~37!

which gives the Lagrangian of the gauge sector. The dif
ence in the form ofNAB

nr for the different sectors of the
theory is directly related to the fact that, due to the prese
of a tetrad field in the gravitational sector, the algebraic a
spacetime indices of this sector are of the same type,
consequently there are additional ways of contracting the
dices. Since there are no tetrads relating the algebraic an
spacetime indices in the gauge sector, only the usual con
tion is present. For the specific choice of the parameters

A5
B
2

52
C
4

51,

teleparallel gravity yields the so-called teleparallel equi
lent of general relativity. In this case, the Lagrangian~34!
becomes

L5
c4e

16pG
SrmnTrmn1

k22g2

16pG
h i j Fe

4
Fi

mnF j mnG , ~38!

where

Trmn5c22earFa
mn[Grnm2Grmn

is the torsion of the Weitzenbo¨ck connection Gr
mn

5er
a]nea

m , andSrmn is the tensor
06402
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Srmn5
1

4
(Trmn1Tmrn2Tnrm)

2
1

2
~grnTu

mu2grmTu
nu!. ~39!

To obtain the correct form of the gauge Lagrangian, t
conditions must be imposed on the second term of Eq.~38!.
The first one is that@6#

k25
g2

16pG
[

g2

G 2
. ~40!

The constantk, therefore, is simply the relation between th
gauge coupling constantg and the gravitational coupling
constantG. The second condition concerns the relative sig
between the gravitational and the Yang-Mills Lagrangians
order to get the appropriate sign, it is necessary that

h i j 52d i j . ~41!

Therefore, the Cartan-Killing metric~35! of the unified
gauge group becomes

hAB5S hab 0

0 2d i j
D . ~42!

With these conditions, we obtain

L[LG1LYM5
c4e

16pG
SrmnTrmn2

e

4
Fi

mnFi
mn. ~43!

As is well known, up to a divergence, the first term of th
Lagrangian is the teleparallel equivalent of the Einste
Hilbert Lagrangian of general relativity@10#. The second
term, on the other hand, is the usual gauge Lagrangian in
presence of gravitation.

It is interesting to notice that, when the Cartan-Killin
metric related to the~external! translation groupT4 is chosen
to be hab5diag(11,21,21,21), the corresponding
Cartan-Killing metric related to the~internal! Yang-Mills
group GYM has necessarily the formh i j 52d i j . If we had
chosen the other possible convention forhab , that is,hab
5diag(21,11,11,11), the consistency condition woul
require thath i j 51d i j . Therefore, the teleparallel Kaluza
Klein construction imposes a constraint between the Car
Killing metric convention adopted for the translation gau
group, and consequently for the Minkowski tangent spac
see the comment just after Eq.~35!—and that adopted for the
Yang-Mills gauge group.

Performing a functional variation ofL in relation to the
componentsAa

t , and using the definition of the Weitzen
böck connectionGr

mn , we obtain the gravitational field
equation

]s~eSl
ts!2

4pG

c4
ettl5

4pG

c4
eQt

l , ~44!

where
8-4
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ettl5
c4e

4pG
Gm

nlSm
tn2dt

lLG ~45!

stands for the teleparallel canonical energy-momen
pseudo-tensor of the gravitational field@16#. The source of
the field equation~44! is the energy-momentum tensor of th
Yang-Mills field in the presence of gravitation, which is d
fined by

eQt
l[2c22ea

l

dLYM

dAa
t

52ea
l

dLYM

dea
t

. ~46!

Finally, variation ofL with respect to the componentsAi
m

yields the Yang-Mills equation in the presence of gravitatio

]m~eFimn!2
ge

\c
j in50,

where

j in52 f i
jkAj

mFkmn

stands for the~pseudo! current of the Yang-Mills field@17#.
We mention in passing that the teleparallel field equat
~44! is an equation written in terms of the Weitzenbo¨ck con-
nection only. It can alternatively be written in terms of th
Levi-Civita connection, in which case it reduces to the ge
eral relativity Einstein’s equation. The teleparallel field equ
tion ~44!, however, has the advantage of presenting the s
formal structure of the Yang-Mills equation.

V. MATTER FIELDS

The geometrical structure underlying every gauge the
exists independently of the presence or not of gauge fie
For example, in the teleparallel Kaluza-Klein theory, t
non-compact four-dimensional part of the fiber, which
given by the tangent Minkowski space, is a geometri
structure that is always present independently of the pres
or not of a gravitational gauge field. The same is true of
D-dimensional compact part of the fiber in relation to t
corresponding Yang-Mills gauge field. It should be notic
that the fiber space of teleparallel Kaluza-Klein theories c
responds to the ground state spacetime of ordinary Kalu
Klein theories. In these theories, the transition from a high
dimensional theory to the effective four-dimensional theo
is made with the help of an harmonic expansion around
ground state, whose excitations represent the field varia
of the model. As a consequence, an infinite spectrum of
ticles is obtained. In particular, the lowest order excitatio
have vanishing mass, giving rise to the massless sector o
emerging gauge theory.

On the other hand, in the teleparallel Kaluza-Klein the
ries, all dynamical variables are functions of the fou
dimensional spacetime points. Furthermore, the action fu
tional and the field equations are written in the fou
dimensional spacetime, and not in the higher-dimensio
fiber space. This means that no dimensional reduction is
essary, no harmonic expansion around the ground state h
06402
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be performed, and consequently the field variables of
model cannot be represented by excitations. In fact, like
any other gauge theory, the basic fields are represente
gauge potentials givena priori, which are the basic ingredi
ents for the construction of gauge theories.

Now, comes the question on how the dynamical variab
of the theory depend on the coordinatesxM of the fiber
space. Concerning the coordinatesxa of the non-compact
four-dimensional part (M4) of the fiber, as this space is so
dered to spacetime, and as all dynamical variables are fu
tions of the spacetime coordinatesxm, the dependence o
these variables onxa has necessarily to be through the arg
ment of the dynamical variables. Concerning the coordina
xm of the compactD-dimensional part (BD) of the fiber, as a
change inxm must correspond to a change, not in the arg
ment, but in the components of the field variable, the dep
dence of any dynamical variable onxm will be analogous to
the dependence on the gauge parameter in a gauge th
This is a direct consequence of the fact that the isome
transformations ofBD are ultimately equivalent to interna
gauge transformations. Accordingly, the dependence of
matter fieldC on the coordinatesxm can be written in the
form

C~xm!5exp@ ixbnxn#c, ~47!

wherex is defined in Eq.~25!, andbn are parameters relate
to the geometry of the compact manifoldBD. In addition, as
a change inxm is related to a gauge transformation,bn must
necessarily assume values in the Lie algebra of the ga
group. In other words,bn5bn

jTj , with Tj a matrix repre-
sentation of the Lie algebra generators. In fact, according
Eq. ~47!, the action of the~derivative! isometry generators
Kn

i]n turns out to be equivalent to the action of the~multi-
plicative! matrix generatorsixKn

ibn . This means that it is
possible to relateixKn

ibn to another realization of the gen
erators of the gauge group. As already said, this possibilit
a direct consequence of the fact that the~internal! gauge
transformations are obtained as the isometries ofBD.

Let us explore better this point. Under the coordina
transformation~15!, a matter fieldC changes according to

dC5daAKAC[daa]aC1
g

kc2
da iKn

i]nC. ~48!

By using Eq.~47!, we see that

]nC5 ixbnC5 i
kc

\
bnC, ~49!

where use has been made of Eq.~25!. Substituting into the
transformation~48!, it becomes

dC5daa]aC1
ig

\c
da iKn

ibnC. ~50!

On the other hand, we have already seen thatKi5Kn
i]n

satisfy the commutation relations~27!, that is

@Kn
i]n ,Km

j]m#C5x f k
i j K

n
k]nC.
8-5
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As the Killing vectorsKn
i depend onxm in the same manne

asC does, it is an easy task to verify that

@ iK n
ibn ,iK m

jbm#C5 f k
i j iK

n
kbnC. ~51!

This means that

Ti5 iK n
ibn[ iK n

ibn
jTj ~52!

can be identified as another realization of the~anti-
Hermitian! Lie algebra generators. With this identificatio
the transformation~50! acquires the form

dC5daaPaC1
g

\c
da iTiC, ~53!

which is in fact a gauge transformation of matter fields.
The covariant derivative ofC is defined by

DmC5]mC1A A
m

dC

daA
. ~54!

Substituting the transformation~31!, and using the appropri
ate identifications, it becomes

DmC5ea
m]aC1

g

\c
Ai

mTiC, ~55!

which is the usual expression of the gauge covariant der
tive in the presence of gravitation. DefiningAi

m5Ai
aea

m , it
can be rewritten in the form

DmC5ea
mDaC, ~56!

whereDaC is the gauge covariant derivative in Minkows
spacetime.

VI. FINAL REMARKS

Replacing the general relativity paradigm by a gau
paradigm, and making use of the teleparallel description
gravitation, which corresponds to a gauge theory for
translation group, we have succeeded in constructin
teleparallel version of the non-Abelian Kaluza-Klein theo
In other words, we have succeeded in unifying, in t
Kaluza-Klein sense, teleparallel gravitation with Yang-Mi
type theories. The resulting model turns out to be a ga
theory for the groupT4^ GYM , with the fiber space given by
M4

^ BD, where M4 is the Minkowski tangent spacetime
andBD is the manifold associated with the Yang-Mills gau
groupGYM . In this model, the translational gauge transfo
mation arises as the isometries of the non-compact fo
dimensional part of the fiber, which is always a Minkows
spacetimeM4, whereas the non-Abelian gauge transform
tions arise as the isometries of the compactD-dimensional
part of the fiber, which is the part related to the intern
gauge symmetry.

As in the Abelian case@11#, the teleparallel equivalent o
the non-Abelian Kaluza-Klein model turns out to be mu
more natural than the ordinary Kaluza-Klein model. In fa
in the teleparallel model both gravitational and Yang-Mi
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type fields are described by a gauge theory, with the Ya
Mills field strength appearing as extra gauge component
torsion, the field strength of teleparallel gravity. This mea
that the gravitational and the Yang-Mills field strengths a
different components of a unique tensor. Another interest
point concerns the relation between geometry and ga
theories. According to ordinary Kaluza-Klein models, gau
theories emerge from higher-dimensional geometric theo
as a consequence of the dimensional reduction process.
cording to the teleparallel Kaluza-Klein approach, howev
gauge theories are the natural structures to be introduced
four-dimensional geometry~gravitation! emerging from the
non-compact sector of the fiber space. In fact, only this s
tor presents the soldering property@15#, and can conse-
quently give rise to a tetrad field, which is the responsible
the geometrical structure~either metric or teleparallel! in-
duced in spacetime. Furthermore, as the gauge theories
introduced in their original form—they do not come fro
geometry—the unification, though not trivial, turns out to
much more natural and easier to be performed.

An important characteristic of the ordinary non-Abelia
Kaluza-Klein model is that the metric~1! is not a solution of
the higher-dimensional Einstein equations as these equa
cannot have solutions of the formM4

^ BD. This is related to
the fact that theD-dimensional internal space is in gener
curved, leading then to difficulties for defining the groun
state~vacuum! of the higher-dimensional gravitational field
These models, therefore, require an initial non-compact
1D)-dimensional spacetime, and a subsequent compac
cation scheme for theD extra dimensions. One way of solv
ing this problem is to introduce extra matter fields in t
form of a higher-dimensional energy-momentum tensor,
that a spontaneous compactification of the extra dimens
is achieved@18#. Another solution was that provided by Fre
und and Rubin@19# in eleven-dimensional supergravity
where not only is there compactification, but the space na
rally separates in (417) dimensions. On the other han
since in the teleparallel Kaluza-Klein model the gauge th
ries are not obtained from the geometry, but introduced
their original forms, the fiber space of these theories can
assumed to present a compact sub-manifoldBD from the
very beginning. In other words, the compactification proble
does not exist for these theories. In addition, as both
action and the field equations are always written in the fo
dimensional spacetime, and not in the higher-dimensio
fiber space, no dimensional reduction is necessary, and
sequently no expansion of the dynamical variables in te
of the complete set of harmonics ofBD has to be performed
As a consequence, the infinite spectrum of new particle
absent, strongly reducing the redundancy present in ordin
Kaluza-Klein theories. A similar achievement has alrea
been obtained by a modified Kaluza-Klein theory in whi
the internal coordinates are replaced by generators of a
commutative algebra@20#. In this model, no truncation to
eliminate extraneous modes is necessary as only a fi
number of them is present.

Finally, as a last remark, let us take the internal coordin
transformation~22!, and substitute on it the value ofk, given
8-6
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by Eq. ~40!. As BD is compact, this transformation can b
written in the form

dxn5rdun, ~57!

where

r5 l P[S G\

c3 D 1/2

~58!

is the length scale associated with the compact internal
manifold, and

dun5S 16p

\c D 1/2

djn ~59!

is the angular coordinate associated withxm. We see in this
way that the teleparallel Kaluza-Klein model defines a na
n

e

,

tio
n

06402
b-

-

ral length scale for the compact part of the fiber space, gi
by the Planck length. In the specific case of the ordin
Abelian Kaluza-Klein theory, the radius of the fifth dimen
sion can only be inferred from the value of the element
electric charge. Since the teleparallel model yields a nat
length scale, we can reverse the argument and use this le
to calculate the elementary electric charge. Furthermore,
is well known, a length of the order of the Planck length, li
ther above, through the application of the Bohr-Sommerfe
quantization rule to the periodic motion in the fifth dime
sion, gives the correct value for the elementary elec
charge.
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