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Synchronization: Stability and duration time
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We consider the problem of stability and duration of the synchronization process between self-excited
oscillators, both in their regular and chaotic states. Making use of the properties of Hill equation describing the
deviation between the slave and the master, we derive the stability conditions and expressions of the synchro-
nization time. A fairly good agreement is obtained between the analytical and numerical results.
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[. INTRODUCTION Its final state is a sinusoidal limit cycle for smdll develop-
ing into relaxation oscillations whed becomes large. One
Synchronization of nonlinear oscillators both in their particular characteristics of the van der Pol oscillator is that
regular and chaotic states is presently one of the main rdts phase depends on initial conditions, so that two identical
search topics in the field of nonlinear science since the piovan der Pol oscillators, set into motion with different initial
neering work of Pecora and Carrfil]. The great interest conditions, will have the same amplitude and frequency, but
devoted to such a topic is not only due to the possibility ofhave different phases.
masking the information bearing signal by chaotic signals In view of studying the phase locking or synchronization
coming from electroni¢1-4] or optical [5—8] sources, but of two van der Pol oscillators, Leung considered recently
also due to its applications in other fields, such as electricatarious types of couplings including the continuous feedback
and automation engineering, biology, and chemifdy12.  difference coupling of Pyraga1]. In particular, he ob-
But despite the amount of theoretical and experimentatained that synchronization is possible for some appropriate
results already obtained, a great deal of effort is still requiredanges of the coupling strength and that the synchronization
to find optimal parameters to shorten the synchronizatioriime has a critical slowing down character near the bound-
time, define the synchronization threshold paramefie®,  aries of the synchronization domaf22]. This study has
and to avoid loss of synchronizatiph4] and instability dur- been extended to generalized synchronization.
ing the synchronization process. This problem is important in In this paper, we consider two points. We first show that
all the mentioned fields where synchronization finds or willthe critical slowing down behavior of the synchronization
find practical interest. For instance, as the communication i§me and the boundaries of the synchronization domain can
concerned, the range of time during which the chaotic oscilbe estimated, at least approximately by analytical consider-
lators are not synchronized corresponds to the range of timations. The case of the relaxation oscillations is also carried
during which the encoded message can unfortunately not beut. For the second point, we extend the study to the syn-
recovered or sent. More than a grave and irreversible loss athronization process of two externally excited van der Pol
information, this is a catastrophe in digital communicationsoscillators in their chaotic state. This extension is important
since the first bits of standardized bit strings always contairsince recent studies showed that the critical and complex
the signalization data or identity card of the message. behavior of the synchronization time also appears for chaotic
Here we aim to shed some light on this issue for oscilla-oscillators and the synchronization is more efficient only be-
tors in their regular and chaotic states. The class of nonlinearond a critical value of the synchronization weid$25].
oscillators, where the synchronization problem appears in th®ne would like to know if some aspects of this complex
regular and chaotic states, is that of self-sustained oscillatorbehavior can be explained analytically.
Recent studies on their synchronization process have been The organization of the paper is as follows. In the follow-
carried out and phenomena such as phase locking and clusieg section, we study analytically the stability of the syn-
phase synchronization have been obser{&#8-17. The chronization process and derive expressions of the synchro-
classical van der Pol oscillator is a representative of selfnization time. The analytical results are then compared to the
sustained oscillators. It is described by the following equafumerical ones. In Sec. I, we extend the investigation to the
tion: synchronization of two forced van der Pol oscillators in a
chaotic state. Section IV is devoted to the conclusion.
x—d(1—x?)Xx+x=0, )
IIl. STABILITY AND SYNCHRONIZATION TIME
where dots denote differentiation with respect to time. The - o
quantityd is a positive parameter. This model is encountered A. Stability of the synchronization process
in various fields: physics, electronics, and biolddy—20. As quoted here before, the van der Pol oscillator is sensi-
tive to initial conditions. When two such oscillatoxsand u
with the same parameters are set into motion with different
*Corresponding author. initial conditions, they evolve in the same limit cycle, but
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with different phasesp, and ¢»,. To phase lock so thap;  simple analytical consideration, has been observed by Leung
— ¢,=0, the good strategy is to use the conventional feedf22,23, in its numerical simulation of Eq2). We note that

back scheme in the following manner: this critical value ofK also works in the case of relaxation
) and chaotic oscillations.
%—d(1-x*)x+x=0, (2a) To discuss further the stability process, let us rewrite Eq.
. . (6) in a standard form. For this purpose, we use the transfor-
U—d(1—u?)U+u=K(u—x)H(t—Typ), (2b)  mation

whereK is the feedback coupling coefficient or strength and 1
H the Heaviside function defined as z=Wexp(—)w)ex;{ - Ef Fo( T)dT) (7

HO)=0 for x<0 and H(x)=1 for x=0 and obtain thatV satisfies the following Hill equation:

t is the time andT,, is the onset time of the synchronization . )
process. Hera is called the master andthe slave. The role W+ (8oF 2835 Sin 27422, €08 2r+ 2@, cos 47)W=0
of the feedback is thus to force the convergence of the slave ®)
towards the master orbit. with

When the synchronization process is launched, the slave

configuration changes and one would like to determine the 1 d2 /A2 2 g2p4 —dA2
range ofK for the synchronization process to be achieved, ag —Z[l—K— Z(?_l) T3 | A= do
and for the dynamics of the slave to remain stable. To carry
out such an investigation, let us introduce the variable 2 — d2p%
a1c=—z((A2—2)A2), Q= F7, 2
Z=U—X, 3 16w 64w

which is the measure of the nearness of the slave to thEquation(8) presents two main parametric resonancesgat
master. Introducing in Eq. (2b) and considering only linear =n? (with n=1, 2). The stability boundaries of the synchro-

terms, we obtain the following equation: nization process are to be found around these two reso-
B . ) nances. For this purpose, we use the Whittaker mefth8H
z2—d(1-x%)z+(2dxx+1-K)z=0. (4 We assume that at thieh unstable region, the solution of Eq.

The synchronization is achieved wheigoes to zero at (8) has the following form:

increases or, practically, is less than a given precision. The W=e“" sin(nr— o), 9)
behavior ofz depends oK and on the form of the slave
Assuming smalb, the master dynamics can be described bywhere u is the characteristic exponent anda parameter.
Substituting Eq(9) into Eq. (8) and equation coefficients of
x=Acogwt—¢y), )  sin(r) and costr), we find that the expression of the char-

where the amplitudé and the frequencw depend ord. If acteristic exponent is

¥¥)(ramlet 7=wt— ¢,, the variational equatiort4) takes the 2= —(ag+n?)+ \/m
7+[2N+F4(7)]2+G(1)2=0, e Wi
2 2 2
Where aﬂ: aﬂS+ anc-
A2 From the transformatiofi7), it comes that foz to tend to
Fiur)= 5= cos 2r, zero with increasing time, the real parts-oh = u should be
w

negative. Consequently, the synchronization process is stable
) under the conditiorfassuming thaj is rea)
_ 1-K-dAcos2r
G(7)= Y : (ag—n?)2+2(ag+n?)N\2+\*>a2 with n=1,2.

(10

and
We have checked for the validity of these criteria by solving

1 (A2 numerically Eq.(2) for d=0.3 andd=1. The values ofA
T 2w\ 2 andw are resorted from the numerical simulation. In the case
d=0.3, we obtain from Eq(10) that the synchronization

From the expression d&(7), we find that ifK>1, z will process is unstable fd¢ e [ —0.09,0] (and obviously forkK

grow indefinitely leading the slave to continuously drift >1). We note here that the synchronization process is un-

away from its original limit cycle. In this case, the feedback stable means thaf(t) never goes to zero, but has a bounded

coupling is dangerous since it continuously adds energy tascillatory behavior or goes to infinity. Our analytical do-

the slave system. This boundary, obtained here from thenain agrees well with the numerical simulation. For
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d=1 (the parameter used in R¢R2)), it is found from our , o [Zot(N—p)Zg 2
analytical consideration that the synchronization process is Ci=125+ R

unstable forK e[ —1.03,0] while the numerical simulation

givesK e[ —0.39,0]. Here we find a deviation between the wherez, and z, are the values of the deviation and its ve-
analytical and numerical results. This deviation is underqocity at the timeT, when the synchronization process is
standable since the analytical investigation assumes small|gunched. Consequently, following Eql1a or (11b), it

and a pure sinusoidal form for the master This is not  comes that near the resonances, the expression of the syn-
exactly the case fod=1. One could expect that the agree- chronization time is defined by

ment between the analytical and numerical results can be
improved if instead of using only one harmonics, one con- 1 Cq1
siders more so that the analytical formfs closer to the Tozmlnﬁ- (12)
exact profile ofx. However, despite the deviation, the pure
sinusoidal approximation still presents other stability bound+ar from the resonant states, the variational equation reduces
aries and the range where the synchronization could be ate
tained more quickly.
7+ 202+ Q32=0, (13
B. The synchronization time where Q3= (1—K)/w?. This is simply the equation of a
For practical purpose, having an analytical expression regamped harmonic oscillator whose solution depends on the
lating the synchronization time to the synchronizationsign of A=02-\2. Following the procedure used above,

strength and other parameters of the physical system is intége find that the synchronization time has the following ex-
esting, since it gives not only an estimate of the synchronipressions. For>0, we have
zation time for a given set of parameters, but also a way to

monitor the synchronization by adjusting the coupling 1 by
strength. In this section, we derive expressions for the syn- To=y N4 (143
chronization time from the variational Eq&®) and (8).
There are two ways to compute the synchronization time. 52
The first way is to follow the time trajectory of the slave with bgzzSJr —O,
system relative to that of the master. In this case, synchroni- A
zation is .ach|eved when the deviatiarobeys the following and forA<0, we have
condition:
1 c
lz(t)|<h V t>tq, (119 Ty= — '”FO’ (14b)
where h is the synchronization precision or tolerance. The
second way is to follow the o_rblt o_f th_e sl_ave in the phase . V= Az0+ 2
space. Here the synchronization criterion is with co=——r—r—.
2V—A
Ju—x)%+(r—y)’°<h V >t (11b

We have checked for the validity of these analytical results
wherey andv are the velocities of the master and slave,by C(_)mparing the values gi\_/en by_ Ecﬁ$2)_ and(14) to those_
respectively. Our analytical calculation leads to the same ex2Pt@ined from the numerical simulation. The numerical
pression for the synchronization time for both equations. ipimulation uses the fourth-order Runge-Kutta algorithm with

both cases, the synchronization time is defined as a time stepAt=0.01. We use Eq11b) to S(gmpute the syn-
chronization time with the precisiom=10"".

T=t—T,. (110 Three values ofl have been considered=0.3, 1, and 5.
For d=0.3, the results are reported in Fig. 1 where the syn-
Returning now to the variational equatié8), near the reso- Cchronization time is plotted vs the coefficieiit The agree-
nant statez takes the form ment betwee_n the analyticdines) gnd numerlc_a(lm_es with _
dot9 results is good over the entire synchronization domain.
Near the second main parametric resonance, which from our

2n={erexd—(\~p)rlsin7=0y) analytical calculation occurs &= —3.02, we have no insta-
+coexgd — (N +up)7lsin(nt—o,)} bility domain. But this resonance manifests itself in a relative
increase of the synchronization tirtthis is not shown heje
Xexp{_—lf Fy(ndr|, The casad=1 is pr(_asente.d in Fig. 2. Herg, we also find th.at
2 Egs.(12) and(14) give quite good estimation of the quanti-
tative and qualitative behavior dfs. But as we quoted ear-
wherec, andc, are two constants depending on initial con- lier, we can understand some disagreement between the ana-
ditions for z. Since the term proportional to, decreases lytical and numerical results, in particular for small values of
more quickly, we only consider the first term and obtain thatk. Figures 3 and 4 are related to the variation
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FIG. 3. Numerical values of the synchronization time verus

FIG. 1. Synchronization time versus for d=0.3: numerical for d=5.

results(lines with dot$ and analytical resultdines).
gives an incompressible asymptotic duration below which no

synchronization can be obtained however much we increase

of T in the case of relaxation oscillationd£5). It is found
the value ofK.

that the variation oK in the rangd —1.70, 1 has a complex
hatched structure with various domains of no synchroniza-
tion (Fig. 3. But even here, wheK is large, the analytical
formula for T4 [Eq.(148] gives results comparable to that of
the numerical simulatioFig. 4). . o
From the analytical expressions ©f, we can resort the We have extended the analysis of the synchronlz_anon to
following comments. First, the agreement between the andWC nonautonomous van der Pol oscillators descrlbefj by
lytical and numerical results clearly indicates that, at least fofonventional feedback scheme in the following manner:
smalld, the slowing down behavior dfs asK varies is well R N
described by the analytical expressiqd®) and (14). Sec- X=d(1=x7)x+x=E cosQlt, (169
ond, our expressions indicate how the synchronization time . . . 5. B _
is related to the synchronization onset time and on the toler- U=d(1-uT)u+u=EcosQt+K(u=x)H(t=To),
anceh. Third, from Eq.(149, we see that a| increasesT
decreases towards a minimal limiting value

I1l. SYNCHRONIZATION OF TWO FORCED
CHAOTIC OSCILLATORS

(16b)

where E and ) are, respectively, the amplitude and fre-

quency of the external excitation. A similar study had already
1 |z been carried out for Duffing oscillatof24,25. The objec-

Ts=yIn=-=, (15 tive of this extension is to see how the synchronization time
evolves for chaotic van der Pol oscillators and to what extent

. L o . the analytical investigation of Sec. Il could be of any help for

which is independent of the synchronization couplingipe synchronization of chaotic process in general.

strengthK, but depends on the toleranbeHence Eq.(15)
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FIG. 2. Same as Fig. 1 fat=1. for largeK in case of relaxation oscillationsl €5).
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Moreover, the analytically predicted critical valke=1, is
also valid here so that launching the synchronization of two
chaotic van der Pol oscillators with>1 will drive continu-
ously the slave from the mastéand practically leads to
harmful consequences since the slave amplitude grows in-
definitely).

IV. CONCLUSION

This paper has considered the question of an analytical
determination of the stability boundaries and duration time
for the synchronization of two nonlinear oscillators in the
regular and chaotic states. The model used is the classical
van der Pol oscillator, which shows dependence on initial
conditions in its regular and chaotic states. The analytical

investigation is based on the properties of the Hill equation,
which described the deviation between the slave and the
master oscillators. We have found the synchronization
o . . boundaries and derive the expressions for the synchroniza-
As it |s_known, chaos is not very abundant in E163. In ._tion time. We have found good agreement between the ana-
Ref.[26], it had been shown t_hat chaos appears only for hlgrfytical and numerical results, in particular, in cases of a small
valges ofd apdE, andina I|m|ted.range of t.he frequenty nonlinear coefficient where the state of the master can be
Typically, with d=E=5, chaos is found in the rang_ﬁ described by a sinusoidal wave form. The extension to syn-
€[2.463,2.466. Here we use)=2.465. The synchroniza- ., nization of chaotic oscillators gives a hint for the deter-
tion time vsK is rep(_)rte_d in Fig. 5 foK_<_—3.4(the range€  mination of necessary and sufficient conditions for high-
where the synchr.omzapon IS more eff.|C|)3r1'n the domain quality synchronization of chaotic systems. Indeed, our
Ke[—3.4,1], various intervals(sometimes reduced 10 @ recent analytical investigation of the same question in the
single value ofk with a stepAK=0.01) of synchronization  ca5e of synchronization of chaotic single-well Duffing oscil-
alternate with that of no synchronization. This is a domain Q4415 shows that when the chaotic attractor possesses a
av0|d. This qualitative behaymr_ resembles_the one obta_lneé’ilngb strong spectral component, the analytical procedure
in Ref.[25] for the synchronization of chaotic Duffing oscil- paseq on the variational equation gives good results for the
lators. o o _boundaries and duration of the synchronization process. We
_ As concerns the analytical investigation, we are obviously,, hact that this analytical procedure could give an alternative
limited by the fact that a chaotic orbit is aperiodic and is,yay hesides the numerical calculation of the Lyapunov spec-
comp_osed of an infinite numb(_er of orblt_s. However, to evalu+,,m of the slave systefii], to optimize the synchronization
ateX in Eq. (6) for the calculation offs given by Eq.(148,  process even in the model described by first-order differen-
we have used the valud=1.757. This amplitude can be {5 equations, such as Rossler and Lorenz oscillators.
obtained by finding a solution defined by E¢) with an
analytical approximate metho@.g., the harmonic balance ACKNOWLEDGMENTS
method for nonlinear oscillators applied to E(L6a). Using
this value and the frequendy=2.465(in place ofw) in the P.W. is grateful to FAPESPBRASIL) for financial sup-
formula (148, we obtain the results reported in Fig. 5 port and to Instituto de Fisica Teorica-Unsep,0S2aulo,
(dashed ling This shows that even for the synchronization Brazil for hospitality. The authors are grateful to A. Kam-
of chaotic oscillators, we can predict tKedependence of the chatnov and B. A. Umarov for helpful and stimulating dis-
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FIG. 5. Synchronization time versus$ for chaotic oscillators:
numerical resultglines with dot$ and analytical resultdlines).
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