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Synchronization: Stability and duration time
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We consider the problem of stability and duration of the synchronization process between self-excited
oscillators, both in their regular and chaotic states. Making use of the properties of Hill equation describing the
deviation between the slave and the master, we derive the stability conditions and expressions of the synchro-
nization time. A fairly good agreement is obtained between the analytical and numerical results.
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I. INTRODUCTION

Synchronization of nonlinear oscillators both in the
regular and chaotic states is presently one of the main
search topics in the field of nonlinear science since the
neering work of Pecora and Carrol@1#. The great interes
devoted to such a topic is not only due to the possibility
masking the information bearing signal by chaotic sign
coming from electronic@1–4# or optical @5–8# sources, but
also due to its applications in other fields, such as electr
and automation engineering, biology, and chemistry@9–12#.

But despite the amount of theoretical and experimen
results already obtained, a great deal of effort is still requi
to find optimal parameters to shorten the synchroniza
time, define the synchronization threshold parameters@13#,
and to avoid loss of synchronization@14# and instability dur-
ing the synchronization process. This problem is importan
all the mentioned fields where synchronization finds or w
find practical interest. For instance, as the communicatio
concerned, the range of time during which the chaotic os
lators are not synchronized corresponds to the range of
during which the encoded message can unfortunately no
recovered or sent. More than a grave and irreversible los
information, this is a catastrophe in digital communicatio
since the first bits of standardized bit strings always con
the signalization data or identity card of the message.

Here we aim to shed some light on this issue for osci
tors in their regular and chaotic states. The class of nonlin
oscillators, where the synchronization problem appears in
regular and chaotic states, is that of self-sustained oscilla
Recent studies on their synchronization process have b
carried out and phenomena such as phase locking and cl
phase synchronization have been observed@15–17#. The
classical van der Pol oscillator is a representative of s
sustained oscillators. It is described by the following eq
tion:

ẍ2d~12x2!ẋ1x50, ~1!

where dots denote differentiation with respect to time. T
quantityd is a positive parameter. This model is encounte
in various fields: physics, electronics, and biology@18–20#.

*Corresponding author.
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Its final state is a sinusoidal limit cycle for smalld, develop-
ing into relaxation oscillations whend becomes large. One
particular characteristics of the van der Pol oscillator is t
its phase depends on initial conditions, so that two ident
van der Pol oscillators, set into motion with different initi
conditions, will have the same amplitude and frequency,
have different phases.

In view of studying the phase locking or synchronizati
of two van der Pol oscillators, Leung considered recen
various types of couplings including the continuous feedb
difference coupling of Pyragas@21#. In particular, he ob-
tained that synchronization is possible for some appropr
ranges of the coupling strength and that the synchroniza
time has a critical slowing down character near the bou
aries of the synchronization domain@22#. This study has
been extended to generalized synchronization.

In this paper, we consider two points. We first show th
the critical slowing down behavior of the synchronizatio
time and the boundaries of the synchronization domain
be estimated, at least approximately by analytical consid
ations. The case of the relaxation oscillations is also car
out. For the second point, we extend the study to the s
chronization process of two externally excited van der P
oscillators in their chaotic state. This extension is import
since recent studies showed that the critical and comp
behavior of the synchronization time also appears for cha
oscillators and the synchronization is more efficient only b
yond a critical value of the synchronization weight@9,25#.
One would like to know if some aspects of this compl
behavior can be explained analytically.

The organization of the paper is as follows. In the follow
ing section, we study analytically the stability of the sy
chronization process and derive expressions of the sync
nization time. The analytical results are then compared to
numerical ones. In Sec. III, we extend the investigation to
synchronization of two forced van der Pol oscillators in
chaotic state. Section IV is devoted to the conclusion.

II. STABILITY AND SYNCHRONIZATION TIME

A. Stability of the synchronization process

As quoted here before, the van der Pol oscillator is se
tive to initial conditions. When two such oscillatorsx andu
with the same parameters are set into motion with differ
initial conditions, they evolve in the same limit cycle, b
©2002 The American Physical Society25-1
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with different phasesf1 andf2 . To phase lock so thatf1
2f250, the good strategy is to use the conventional fe
back scheme in the following manner:

ẍ2d~12x2!ẋ1x50, ~2a!

ü2d~12u2!u̇1u5K~u2x!H~ t2T0!, ~2b!

whereK is the feedback coupling coefficient or strength a
H the Heaviside function defined as

H~x!50 for x,0 and H~x!51 for x>0.

t is the time andTo is the onset time of the synchronizatio
process. Herex is called the master andu the slave. The role
of the feedback is thus to force the convergence of the s
towards the master orbit.

When the synchronization process is launched, the s
configuration changes and one would like to determine
range ofK for the synchronization process to be achiev
and for the dynamics of the slave to remain stable. To ca
out such an investigation, let us introduce the variable

z5u2x, ~3!

which is the measure of the nearness of the slave to
master. Introducingz in Eq. ~2b! and considering only linea
terms, we obtain the following equation:

z̈2d~12x2!ż1~2dxẋ112K !z50. ~4!

The synchronization is achieved whenz goes to zero ast
increases or, practically, is less than a given precision.
behavior ofz depends onK and on the form of the slavex.
Assuming smalld, the master dynamics can be described

x5A cos~vt2f1!, ~5!

where the amplitudeA and the frequencyv depend ond. If
we let t5vt2f1 , the variational equation~4! takes the
form

z̈1@2l1F1~t!# ż1G~t!z50, ~6!

where

F1~t!5
A2

2v
cos 2t,

G~t!5
12K2dA2 cos 2t

v2 ,

and

l5
1

2v S A2

2
21D .

From the expression ofG(t), we find that ifK.1, z will
grow indefinitely leading the slave to continuously dr
away from its original limit cycle. In this case, the feedba
coupling is dangerous since it continuously adds energ
the slave system. This boundary, obtained here from
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simple analytical consideration, has been observed by Le
@22,23#, in its numerical simulation of Eq.~2!. We note that
this critical value ofK also works in the case of relaxatio
and chaotic oscillations.

To discuss further the stability process, let us rewrite E
~6! in a standard form. For this purpose, we use the trans
mation

z5W exp~2lt!expS 2
1

2 E F1~t!dt D ~7!

and obtain thatW satisfies the following Hill equation:

Ẅ1~a012a1s sin 2t12a1c cos 2t12a2c cos 4t!W50
~8!

with

a05
1

vz F12K2
d2

4 S A2

2
21D 2

2
d2A4

32 G , a1s5
2dA2

dv
,

a1c5
2d2

16v2 ~~A222!A2!, a2c5
2d2A4

64v2 .

Equation~8! presents two main parametric resonances ata0
5n2 ~with n51, 2!. The stability boundaries of the synchro
nization process are to be found around these two re
nances. For this purpose, we use the Whittaker method@18#.
We assume that at thenth unstable region, the solution of Eq
~8! has the following form:

W5emr sin~nt2s!, ~9!

where m is the characteristic exponent ands a parameter.
Substituting Eq.~9! into Eq. ~8! and equation coefficients o
sin(nt) and cos(nt), we find that the expression of the cha
acteristic exponent is

m252~a01n2!1A4n2a01an
2

with

an
25ans

2 1anc
2 .

From the transformation~7!, it comes that forz to tend to
zero with increasing time, the real parts of2l6m should be
negative. Consequently, the synchronization process is st
under the condition~assuming thatm is real!

~a02n2!212~a01n2!l21l4.an
2 with n51,2.

~10!

We have checked for the validity of these criteria by solvi
numerically Eq.~2! for d50.3 andd51. The values ofA
andv are resorted from the numerical simulation. In the ca
d50.3, we obtain from Eq.~10! that the synchronization
process is unstable forKP@20.09,0# ~and obviously forK
.1!. We note here that the synchronization process is
stable means thatz(t) never goes to zero, but has a bound
oscillatory behavior or goes to infinity. Our analytical d
main agrees well with the numerical simulation. F
5-2
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d51 ~the parameter used in Ref.@22#!, it is found from our
analytical consideration that the synchronization proces
unstable forKP@21.03,0# while the numerical simulation
givesKP@20.39,0#. Here we find a deviation between th
analytical and numerical results. This deviation is und
standable since the analytical investigation assumes smd
and a pure sinusoidal form for the masterx. This is not
exactly the case ford51. One could expect that the agre
ment between the analytical and numerical results can
improved if instead of using only one harmonics, one co
siders more so that the analytical form ofx is closer to the
exact profile ofx. However, despite the deviation, the pu
sinusoidal approximation still presents other stability bou
aries and the range where the synchronization could be
tained more quickly.

B. The synchronization time

For practical purpose, having an analytical expression
lating the synchronization time to the synchronizati
strength and other parameters of the physical system is in
esting, since it gives not only an estimate of the synchro
zation time for a given set of parameters, but also a way
monitor the synchronization by adjusting the coupli
strength. In this section, we derive expressions for the s
chronization time from the variational Eqs.~6! and ~8!.

There are two ways to compute the synchronization tim
The first way is to follow the time trajectory of the slav
system relative to that of the master. In this case, synchr
zation is achieved when the deviationz obeys the following
condition:

uz~ t !u,h ; t.ts , ~11a!

where h is the synchronization precision or tolerance. T
second way is to follow the orbit of the slave in the pha
space. Here the synchronization criterion is

A~u2x!21~n2y!2,h ; .ts , ~11b!

where y and v are the velocities of the master and slav
respectively. Our analytical calculation leads to the same
pression for the synchronization time for both equations
both cases, the synchronization time is defined as

Ts5ts2T0. ~11c!

Returning now to the variational equation~8!, near the reso-
nant state,z takes the form

z~t!5$c1 exp@2~l2m!t#sin~nt2s1!

1c2 exp@2~l1m!t#sin~nt2s2!%

3expF21

2 E F1~t!dtG ,
wherec1 andc2 are two constants depending on initial co
ditions for z. Since the term proportional toc2 decreases
more quickly, we only consider the first term and obtain th
03622
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21S ż01~l2m!z0

n2 D 2

,

wherez0 and ż0 are the values of the deviation and its v
locity at the timeT0 when the synchronization process
launched. Consequently, following Eq.~11a! or ~11b!, it
comes that near the resonances, the expression of the
chronization time is defined by

T05
1

l2m
ln

c1

h
. ~12!

Far from the resonant states, the variational equation red
to

z̈12l ż1V0
2z50, ~13!

where V0
25(12K)/v2. This is simply the equation of a

damped harmonic oscillator whose solution depends on
sign of D5V0

22l2. Following the procedure used abov
we find that the synchronization time has the following e
pressions. ForD.0, we have

T05
1

l
ln

b0

h
, ~14a!

with b0
25z0

21
ż0

2

D
,

and forD,0, we have

T05
1

A2D2l
ln

c0

h
, ~14b!

with c05
A2Dz01 ż0

2A2D
.

We have checked for the validity of these analytical resu
by comparing the values given by Eqs.~12! and~14! to those
obtained from the numerical simulation. The numeric
simulation uses the fourth-order Runge-Kutta algorithm w
a time stepDt50.01. We use Eq.~11b! to compute the syn-
chronization time with the precisionh51025.

Three values ofd have been considered:d50.3, 1, and 5.
For d50.3, the results are reported in Fig. 1 where the s
chronization time is plotted vs the coefficientK. The agree-
ment between the analytical~lines! and numerical~lines with
dots! results is good over the entire synchronization doma
Near the second main parametric resonance, which from
analytical calculation occurs atK523.02, we have no insta
bility domain. But this resonance manifests itself in a relat
increase of the synchronization time~this is not shown here!.
The cased51 is presented in Fig. 2. Here, we also find th
Eqs.~12! and ~14! give quite good estimation of the quant
tative and qualitative behavior ofTs . But as we quoted ear
lier, we can understand some disagreement between the
lytical and numerical results, in particular for small values
K. Figures 3 and 4 are related to the variati
5-3
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of Ts in the case of relaxation oscillations (d55). It is found
that the variation ofK in the range@21.70, 1# has a complex
hatched structure with various domains of no synchron
tion ~Fig. 3!. But even here, whenK is large, the analytica
formula forTs @Eq. ~14a!# gives results comparable to that
the numerical simulation~Fig. 4!.

From the analytical expressions ofTs , we can resort the
following comments. First, the agreement between the a
lytical and numerical results clearly indicates that, at least
smalld, the slowing down behavior ofTs asK varies is well
described by the analytical expressions~12! and ~14!. Sec-
ond, our expressions indicate how the synchronization t
is related to the synchronization onset time and on the to
anceh. Third, from Eq.~14a!, we see that asuKu increases,Ts
decreases towards a minimal limiting value

Ts5
1

l
ln

uz0u
h

, ~15!

which is independent of the synchronization coupli
strengthK, but depends on the toleranceh. Hence Eq.~15!

FIG. 1. Synchronization time versusK for d50.3: numerical
results~lines with dots! and analytical results~lines!.

FIG. 2. Same as Fig. 1 ford51.
03622
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gives an incompressible asymptotic duration below which
synchronization can be obtained however much we incre
the value ofK.

III. SYNCHRONIZATION OF TWO FORCED
CHAOTIC OSCILLATORS

We have extended the analysis of the synchronization
two nonautonomous van der Pol oscillators described
conventional feedback scheme in the following manner:

ẍ2d~12x2!ẋ1x5E cosVt, ~16a!

ü2d~12u2!u̇1u5E cosVt1K~u2x!H~ t2T0!,
~16b!

where E and V are, respectively, the amplitude and fr
quency of the external excitation. A similar study had alrea
been carried out for Duffing oscillators@24,25#. The objec-
tive of this extension is to see how the synchronization ti
evolves for chaotic van der Pol oscillators and to what ext
the analytical investigation of Sec. II could be of any help f
the synchronization of chaotic process in general.

FIG. 3. Numerical values of the synchronization time versusK
for d55.

FIG. 4. Numerical~lines with dots! and analytical~lines! results
for largeK in case of relaxation oscillations (d55).
5-4
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As it is known, chaos is not very abundant in Eq.~16a!. In
Ref. @26#, it had been shown that chaos appears only for h
values ofd andE, and in a limited range of the frequencyV.
Typically, with d5E55, chaos is found in the rangeV
P@2.463,2.466#. Here we useV52.465. The synchroniza
tion time vsK is reported in Fig. 5 forK,23.4 ~the range
where the synchronization is more efficient!. In the domain
KP@23.4,1#, various intervals~sometimes reduced to
single value ofK with a stepDK50.01! of synchronization
alternate with that of no synchronization. This is a domain
avoid. This qualitative behavior resembles the one obtai
in Ref. @25# for the synchronization of chaotic Duffing osci
lators.

As concerns the analytical investigation, we are obviou
limited by the fact that a chaotic orbit is aperiodic and
composed of an infinite number of orbits. However, to eva
atel in Eq. ~6! for the calculation ofTs given by Eq.~14a!,
we have used the valueA51.757. This amplitude can b
obtained by finding a solution defined by Eq.~5! with an
analytical approximate method~e.g., the harmonic balanc
method! for nonlinear oscillators applied to Eq.~16a!. Using
this value and the frequencyV52.465~in place ofv! in the
formula ~14a!, we obtain the results reported in Fig.
~dashed line!. This shows that even for the synchronizati
of chaotic oscillators, we can predict theK dependence of the
synchronization time whenK is large by using Eq.~14a!.

FIG. 5. Synchronization time versusK for chaotic oscillators:
numerical results~lines with dots! and analytical results~lines!.
in
tic

.
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Moreover, the analytically predicted critical valueK51, is
also valid here so that launching the synchronization of t
chaotic van der Pol oscillators withK.1 will drive continu-
ously the slave from the master~and practically leads to
harmful consequences since the slave amplitude grows
definitely!.

IV. CONCLUSION

This paper has considered the question of an analyt
determination of the stability boundaries and duration ti
for the synchronization of two nonlinear oscillators in th
regular and chaotic states. The model used is the clas
van der Pol oscillator, which shows dependence on ini
conditions in its regular and chaotic states. The analyt
investigation is based on the properties of the Hill equati
which described the deviation between the slave and
master oscillators. We have found the synchronizat
boundaries and derive the expressions for the synchron
tion time. We have found good agreement between the a
lytical and numerical results, in particular, in cases of a sm
nonlinear coefficient where the state of the master can
described by a sinusoidal wave form. The extension to s
chronization of chaotic oscillators gives a hint for the det
mination of necessary and sufficient conditions for hig
quality synchronization of chaotic systems. Indeed, o
recent analytical investigation of the same question in
case of synchronization of chaotic single-well Duffing osc
lators shows that when the chaotic attractor possess
single strong spectral component, the analytical proced
based on the variational equation gives good results for
boundaries and duration of the synchronization process.
expect that this analytical procedure could give an alterna
way, besides the numerical calculation of the Lyapunov sp
trum of the slave system@1#, to optimize the synchronization
process even in the model described by first-order differ
tial equations, such as Rossler and Lorenz oscillators.
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