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Exact Foldy-Wouthuysen transformation for real spin-0 particle in curved space
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Up to now, the only known exact Foldy-Wouthuysen transformation~FWT! in curved space is that concern-
ing Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real
spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value
of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the
conformal coupling is one-third of the corresponding term in the fermionic case. There are some arguments in
the literature that seem to favor the choicel 5

1
6 . We rehearse a number of claims of these works.
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The Colella-Overhauser-Werner~COW! experiment@1# as
well as the Bonse-Wroblewski@2# one have not only shed
new light on the physical phenomena in which gravitatio
and quantum effects are interwoven, they have also sh
that the aforementioned phenomena are no more beyond
reach. The theoretical analysis concerning these experim
consisted simply in inserting the Newtonian gravitational p
tential into the Schro¨dinger equation. To improve their analy
sis we need to learn certainly how to obtain an adequ
interpretation for relativistic wave equations in curved spa
In other words, we have to acquaint ourselves with the is
of the gravitational effects on quantum mechanical syste
This can be done by constructing the Foldy-Wouthuys
transformation ~FWT! @3,4#—the keystone of relativistic
quantum mechanics—for both bosons and fermions cou
to the spacetime metric. However, there are very few kno
problems in flat space that admit an exact FWT@5–7#. In
curved space the situation is quite dramatic since up to n
the only known exact FWT is that related to Dirac partic
coupled to a static spacetime metric@8#.

Here we address ourselves to the problem of finding
exact FWT for a real spin-0 particle coupled to the sta
metrics

ds25V2dt22W2dx2, ~1!

whereV5V(x) andW5W(x). For the sake of clarification
concerning the interpretation of the relativistic single parti
wave mechanics for spin-0 boson, we reproduce a rem
made by Feshbach and Villars@9# in the late 1950s: ‘‘Al-
though it is well known that the Dirac equation gives with
proper limits a relativistic wave-mechanical description o
single electron, we find in the literature the~incorrect!! state-
ment that an analogous formalism does not exist for char
spin-0 particles.’’

By the middle of the 1970s, Guertin@10# constructed the
generalized FWT for any 2(2J11)-component Poincare´-
invariant Hamiltonian theory that describes free massive s
2J particles and that is subject to the conditions:~a! every
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observable is either Hermitian or pseudo-Hermitian and~b!
the theory is invariant under certain discrete symmetries

In our convention the signature is (1222). The curva-
ture tensor is defined byRa

bgd52]dGa
bg1•••, the Ricci

tensor by Rmn5Ra
mna , and the curvature scalar byR

5gmnRmn , wheregmn is the metric tensor. Natural units ar
used throughout.

Currently, we do not have a standard theory of mass
spinless bosons in curved space. That is not the case as
the Dirac fermions are concerned. Therefore our first tas
to find out how the Klein-Gordon~KG! equation should be
written in the general case of a spacetime with nonvanish
curvature. Let us then start with the following scalar fie
equation

~h1m21lR!f50, ~2!

which is obtained from the action

S5E 1

2
A2g@gmn]mf]nf2~m21lR!f2#d4x. ~3!

Note that the coupling between the real scalar fieldf and
the gravitational field represented by the termlRf2, where
l is a numerical factor andR is the Ricci scalar, is included
as the only possible local scalar coupling of this sort@11#.
Here

h[gmn¹m¹n5
1

A2g
]m~A2ggmn]n!.

The coupling constantl, of course, can have any rea
value. This raises a delicate question: Which value ofl
should we single out? There are some arguments in the
erature that seem to favor the choicel5 1

6 . We rehearse a
number of claims of these works:~i! the equation for the
massless scalar field is conformally invariant@11–13#; ~ii !
under the assumption that~a! the scalar field satisfies Eq.~2!,
and~b! the fieldf does not violate the equivalence principl
the coupling constant is forced to assume the value
@14,15#; ~iii ! the minimal coupling leads to a tachyonic b
havior whereas the conformal one (l51/6) has a correct
quasiclassical limit@16#.
©2002 The American Physical Society01-1
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There are other reasons~see, e.g.,@17# and references
therein! that perhaps may justify the presence of the n
minimal term in Eq.~3!.

Here we examine the problem in the context of the ex
FWT transformations for spin-0 particles. Let us then co
centrate our attention on the curved spacetimes describe
Eq. ~1!. The Ricci scalar related to this metric is given by

R5
2

W4
~¹W!22

2

VW3
¹V•¹W2

2

VW2
¹2V2

4

W3
¹2W.

~4!

Inserting Eq.~4! into Eq. ~2!, we promptly obtain

f̈2F2¹2f2F2¹ ln~VW3!•¹f1m2V2f1lRV2f50,
~5!

whereF2[ V2/W2. Here the differentiation with respect t
time is denoted by dots.

In order to bring the equation in hand to Schro¨dinger form
we introduce the two-component formalism for the Klei
Gordon~KG! equation

f5f11f2 ,
i

m
ḟ5f12f2 .

Accordingly, the KG equation can be written in first-ord
form

i Ḟ5HF, ~6!

with the Hamiltonian given by

H5
m

2
jT2ju, ~7!

where

F5S f1

f2
D , j5S 1 1

21 21D
and the operatoru is defined by

u[
F2

2m
¹22

F2

2m
¹ ln~VW!•¹2

m

2
V22

l

2m
V2R.

Note that the matrixj has the following algebraic prop
erties

j250, $j,jT%54.

It is worth mentioning that the equations of motion d
rived from Eq.~6! are invariant underH→2H* and f1,2
→6f2,1, which implies that in the two-component descri
tion of neutral spin-0 particles the particle and antiparti
may be identified since the gravitational interaction does
remove the particle-antiparticle degeneracy.

The operatoru is formally self-adjoint@18# with respect
to an inner product provided the spatial integrations are
ried out using the correct measure@19#
06750
-

t
-
by

t
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^u&5E r d3xc†uc, ~8!

wherer[g00A2g5 W3/V.
However, it is more convenient to write the wave functio

so thatu is Hermitian with respect to the usual flat spa
measure. We do this by means of a transformation

F→F85 f F, u85 f u f 21, and H85 fHf 21,

with f [Ar5V21/2W3/2.
Therefore

H85
m

2
jT2ju8,

where

u8F85 f u f 21F8.

Performing the computation, we then find thatu8 can be
written as

u852
m

2
V22

1

2m
Fp̂2F1

1

8m
¹F•¹F2

1

2m
Dl~V,W!,

~9!

wherep̂52 i¹ denotes the momentum operator and the l
term becomes

Dl~V,W![lF S 1

2l
22D V

W2
¹2V22

V

W3
¹V•¹W

1S 1

2l
24D V2

W3
¹2W12

V2

W4
~¹W!2G . ~10!

The fascinating property of the transformed Hamiltoni
H8 is that its square,

H8h52
m

2
u8$j,jT%522mu8I , ~11!

where

I 5S 1 0

0 1D .

Note that formally

AH8h5~22mu8!1/2I 1/2.

Since the square root of the 232 identity matrix is not
unique the FWT transformation needs an extra diagonaliz
transformation to the basis where positive and negative
ergy eigenstates are decoupled. This process can be m
with the help of a nondegenerate matrixU such that@20#

H9[~22mu8!1/2U I 1/2U21

5~22mu8!1/2h,
1-2
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where

h5S 1 0

0 21D .

Accordingly,H→H9 is the exact FWT for the KG equa
tion in curved space.

Taking Eq. ~9! into account, we arrive at the following
expression for the Hamiltonian squared:

H8h5m2V21Fp̂2F2 1
4 ¹F•¹F1Dl~V,W!. ~12!

The quasirelativistic Hamiltonian is simply obtained b
assuming thatm is the dominating term. We thus arrive at

H9'H mV1
1

4m
~W21p̂2F1Fp̂2W21!

2
1

8mV
¹F•¹F1

1

2m
Dl~V,W!J h. ~13!

Some comments are in order here.
~i! Notice the appearance of a Darwin-like ter

1/2mDl(V,W) in the quasirelativistic Hamiltonian~13!. For
l51/6 conformal invariance constrains the structure of
Darwin-like term to the form

1

12mW
¹2F. ~14!

Therefore one obtains

H9'H mV1
1

4m
~W21p̂2F1Fp̂2W21!

2
1

8mV
¹F•¹F1

1

12mW
¹2FJ h. ~15!

~ii ! Equation~15! is identical to the spinless sector foun
by Obukhov@8# for the Dirac particle except for the Darwi
term which is one-third of the corresponding term in t
fermionic case@21#.

~iii ! The Darwin term~14! only exists in the context of the
exact FWT if the interaction of the scalar field with gravity
of the conformal typel51/6, while for lÞ1/6 the Darwin
term is more complicated.

Some remarks about~i! and ~iii !. It is claimed in the lit-
erature that Eq.~2! with l51/6 violates the equivalenc
principle and leads to the appearance of anomalous R-fo
between two ‘‘scalar charged’’ particles@22#. Grib and
Poberii @16# showed, however, that this is not the case. A
cording to them the conformal coupling leads to a corr
quasiclassical limit while the minimal one is responsible
a tachyonic behavior.

To conclude we shall prove that the conformal coupli
does not violate the equivalence principle by making a co
parison of the true gravitational coupling with the pure in
tial case. To do that, we recall that far from the source
solution of the Einstein equation for a point particle of ma
M located atr 50 is given by
06750
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g00'12
2MG

r
, ~16!

g115g225g33'212
2MG

r
. ~17!

From Eqs.~16! and ~17! we get immediately

V'12
MG

r
, W'11

MG

r
, ~18!

and F'122
MG

r
. ~19!

Inserting Eqs.~18! and ~19! into Eq. ~15! we obtain the
nonrelativistic FW Hamiltonian, namely,

H95Fm1m g•x1
p̂2

2m
1

3

2m
p̂•~g•x!p̂Gh, ~20!

whereg52GM r /r 3. On the other hand, in the case of th
flat Minkowski space in accelerated frame,

V511a•x, W51, and F5V,

one gets

H95Fm1m a•x1
p̂2

2m
1

1

2m
p̂•~a•x!p̂Gh. ~21!

In Eqs. ~20! and ~21! we have neglected the higher ord
relativistic and gravitational/inertial terms.

For the particlem far away from the bodyM one can
neglect the terms 3/2mp̂•(g•x)p̂ and 1/2mp̂•(a•x)p̂ in Eqs.
~20! and ~21!, respectively, since they are less than the
netic term by a factor ofGM/r;1026 ~for observations in
the solar system! and much weaker by several orders than
leading and next to leading order terms linear inm. In Eq.
~21! we are assuming thata is such thatua•xu;GM/r . The
Darwin term contributions in these expansions are zero
each case; in fact, in Eq.~20! we have¹2F50 ~far away
from the source and in the approximation considered! and in
Eq. ~21! for obvious reasons. Then, we come to the conc
sion that the conformal coupling is in agreement with t
equivalence principle.

Last but not least, we call attention to the fact that we
not claiming that the conformal coupling is the correct co
pling for the various scalar particles. The question of wh
value~s! of l should constitute the correct coupling to gravi
depends on the particular field theory used for the scalar fi
~see, e.g.,@23# and references therein!. Given the current
theoretical situation it seems more of an experimental pr
lem to identify which would be the correctl coupling~s! for
the various scalar particles.
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