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We propose a simple quantum field theoretical toy model for black-hole evaporation and study the
backreaction of Hawking radiation onto the classical background. It turns out that the horizon is also
‘‘pushed back’’ in this situation (i.e., the interior region shrinks) though this backreaction is not caused by
energy conservation but by momentum balance. The effective heat capacity and induced entropy variation
can have both signs—depending on the parameters of the model.
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I. INTRODUCTION

Black holes are arguably the most simple and at the
same time most intriguing objects in the Universe. The
no-hair theorem states that they can fully be described by a
small set of parameters such as their mass M and angular
momentum J. Yet our standard picture of black holes
contains many striking properties: Even though black holes
should be completely black classically, they emit Hawking
radiation due to quantum effects [1]. This evaporation
process causes the black hole (horizon) to shrink in the
absence of infalling matter due to the backreaction of
Hawking radiation. Therefore, black holes possess a nega-
tive heat capacity [2], i.e., the temperature grows with
decreasing energy. Extrapolating this picture till the final
stages of the evaporation, the black hole should end up in
an explosion, where its temperature blows up and thus
effects of quantum gravity should become important.
Perhaps most fascinating is the observation that the second
law of thermodynamics apparently [3] requires to assign an
entropy S to the black hole, which is determined by the
horizon surface area A via S � A=4 (in natural units with
@ � G � c � 1).

Taking the analogy between black holes and thermody-
namics seriously provides a very consistent picture, which
has been confirmed by various gedanken experiments [3,4]
considering the construction of heat engines with black
holes, etc. It almost seems as if nature was trying to give us
some hints regarding the underlying structure which unifies
quantum theory and gravity—which we do not fully
understand yet. In order to comprehend these hints better,
it might be useful to ask the question of whether (and how)
the aforementioned properties depend on the detailed
structure of the Einstein equations or whether they are
more universal. For example, the study of condensed-
matter based black-hole analogues [5,6] shows that
Hawking radiation is a fairly robust quantum phenomenon
[7], which just requires the occurrence of an effective
horizon and thus is quite independent of the Einstein

equations. In contrast, the introduction of a black-hole
entropy with the desired properties seems to rely on the
Einstein equations.

In the following, we try to further disentangle universal
features from properties which are specific to black holes
(e.g., Einstein equations, rotational symmetry, conserved
Arnowitt-Deser-Misner (ADM) mass). To this end, we
propose a toy model which captures some of the relevant
features of black holes and allows us to study the back-
reaction of the emitted Hawking radiation onto the classi-
cal background solution.

II. TOY MODEL

In the toy model we are going to discuss, the gravita-
tional field will be represented by a real scalar field  in
1� 1 dimensions with the Lagrangian (@ � 1)

 L  �
1
2�

_ 2 � c2
 �@x �

2� � V� �: (1)

With respect to the propagation speed c of the  field, this
form is Lorentz invariant. The potential V� � is supposed
to be very stiff, i.e., the field  is assumed to be heavy in
the sense that it can be approximated by a classical field.
For definiteness, we choose the sine-Gordon potential
V� � / 1� cos� = 0�, but other potentials admitting sta-
ble localized solutions would also work. The global ground
state  � 0 then corresponds to a vanishing gravitational
field whereas a kink (topological defect) models a black (or
white) hole horizon

  �x� � �4 0 arctan�expf���x� xkink�g�: (2)

The position x � xkink of the kink at rest is arbitrary and its
width 1=� is determined by V� � and c . In comparison to
other models of black holes (see, e.g., [8,9]), the advantage
of the above setup lies in the topologically protected
stability and localization of the kink (see also [10]). This
topological defect behaves very similar to a particle, i.e.,
the position of the kink is a dynamical variable with a
well-defined inertial mass Meff and the associated kinetic
energy Ekin � Meffc2

 ��1� _x2
kink=c

2
 �

1=2 � 1�.*schuetz@theory.phy.tu-dresden.de
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In order to study Hawking radiation and its impact on the
kink, we consider a massless quantum field � coupled to
the heavy field  via the coupling constant g

 L � �
1
2��@t�� g @x��

2 � c2
��@x��

2�: (3)

Note that the velocity c� of the light (massless) field may
differ from c . The propagation of the light field � in the
approximately classical background  is completely analo-
gous to that in a gravitational field described by the
Painlevé-Gullstrand-Lemaı̂tre metric (cf. [5,6])

 ds2 � �c2
� � v

2�dt2 � 2vdtdx� dx2; (4)

where v � g denotes the local velocity of freely falling
frames. A horizon occurs if this velocity v exceeds the
speed of light c�. Based on the analogy to gravity, we may
also derive the pseudo energy-momentum tensor of the �
field with respect to the above metric g��

 T�� �
2�������
�g
p

�A�

�g��
� �@����@��� �

1

2
g���@����@���:

(5)

The associated energy density T0
0 of the light field

 H � �
1
2��@t��

2 � �c2
� � v

2��@x��
2� (6)

contains negative parts beyond the horizon v2 > c2
�. Of

course, this is precisely the reason why effects like
Hawking radiation are possible.

However, an energy density which is not bounded from
below seems unphysical and typically indicates instabil-
ities (already on the classical level). In order to avoid this
problem, we may add an extra term which does not modify
the linearized low-energy behavior of our model

 L reg
� � L� � �

2�c2
� � v

2�2�@x��
4 �

1

16�2 ; (7)

but generates a positive definite energy density

 H reg
� �

1

2

�
�@t��2 �

�
��c2

� � v
2��@x��2 �

1

4�

�
2
�
: (8)

In the exterior region c2
� > v2, the classical ground state is

still given by � � 0, but beyond the horizon c2
� < v2, we

have 2��@x�� � �v
2 � c2

��
�1=2. Thus, the classical

ground state profile would not be differentiable at the
horizon, i.e., the term �@x��2 in the energy density, for
example, would be ill-defined. This problem can be cured
by adding another term (which again does not modify the
low-energy behavior) and we finally arrive at the total
Lagrangian of our toy model

 L full � L �Lreg
� � �

2�@2
x��

2: (9)

The last term smoothens the classical ground state profile
at the horizon and induces a superluminal dispersion rela-
tion ��� vk�2 � c2

�k
2 � 2�2k4 at large wave numbers.

Assuming that the effective surface gravity 	 in Eq. (15)
is much smaller than the knee frequency where the disper-
sion relation changes 	� c�=�, such a superluminal
dispersion relation does not lead to alterations of the
Hawking effect. On the contrary, it helps us to solve the
trans-Planckian puzzle and to understand the origin of
Hawking radiation in this model: Since wave packets
with large k	 c2

�=� have a superluminal group velocity
d!=dk	 c�, they may overcome the frame-dragging
speed v and thus approach the horizon from the inside.
During that process, the inhomogeneity of v (i.e., v is
smaller on the front end of the wave packet than on its
rear end) stretches the wave packet and reduces its wave
number (analogous to the gravitational redshift) and
thereby its group velocity. Eventually, the wave packet
gets ‘‘ripped apart’’ and one part (the Hawking radiation)
escapes into the exterior region whereas the remaining part
(the infalling partner particle) is swept away into the
interior domain. Assuming that the wave packet was in
its ground state initially (for large k), the combined quan-
tum state of the outgoing Hawking quanta and their infal-
ling partner particles is a pure state, but the reduced density
matrix of the Hawking radiation alone is thermal with the
Hawking temperature [7]. Having established this thermal
emission for our model, we may now ask what are its
consequences.

III. BACKREACTION

The equation of motion of the light field can be derived
from the Lagrangian above

 �@t � v@x��@t � @xv�� � c2
�@

2
x��O�@4

x�; (10)

where O�@4
x� denote the higher-order � and � terms we

added for stability and regularity reasons. Similarly, the
heavy field evolves according to

 

� � c2
 @

2
x � V0� � � g�@t�� g @x��@x��O�@4

x�:

(11)

From the full set of equations, we see that the kink profile
in Eq. (2) together with � � 0 exactly solves the classical
equations of motion (though it is not the ground state).
However, the impact of quantum fluctuations changes this
picture: For 2
g 0 > c�, the kink acts as a black-hole
horizon and thus emits Hawking radiation. Of course, the
energy/momentum given off must come from somewhere
and hence this quantum effect should have some impact on
the classical kink background.

In order to estimate the quantum backreaction, we quan-
tize the fields �! �̂ as well as  !  ̂ and employ a
mean-field expansion  ̂ �  cl � � ̂ where  cl denotes the
classical kink profile in Eq. (2) and � ̂ as well as �̂ are
supposed to be small (i.e., �̂, � ̂�  cl). Taking the
expectation value of Eq. (11) and comparing it with
Eq. (5), we find that the lowest-order contributions of the
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quantum backreaction force are just given by the expecta-
tion value of the pseudo energy-momentum tensor [11]

 �@2
t � c2

 @
2
x � V00� cl��h� ̂i 
 �ghT̂

0
1i: (12)

Remembering the covariant energy-momentum balance

 r�T
�
� �

1�������
�g
p @��

�������
�g
p

T�� � �
1

2
T��@�g�� � 0; (13)

we find that T0
1 denotes the momentum density 
��

0,
which varies with position in general. In contrast, the
energy flux T1

0 measured with respect to the stationary
frame is constant @xhT̂

1
0i � 0 for a kink at rest.

Fortunately, the expectation value hT̂�� i can be calcu-
lated analytically for a scalar field in 1� 1 dimensions. In
the Unruh state (which is the appropriate state for describ-
ing black-hole evaporation), one obtains [12]

 hT̂0
1i �

4vc��	2 � �v0�2 � �vv00� � 	2�c� � v�2

48
c3
��

2 ; (14)

with � � 1� v2=c2
� and the effective surface gravity 	

determining the Hawking temperature

 THawking �
	

2

�

1

2


�
dv
dx

�
v2�c2

�

: (15)

Note that hT̂0
1i calculated in the Unruh state is regular

across the black-hole horizon v � �c�, but singular at
the white-hole horizon v � �c�. [The Israel-Hartle-
Hawking state is regular at both horizons, cf. Eq. (18).]
Far away from the kink/horizon v! 0, we just get the
usual thermal flux hT̂0

1i � �	
2=�48
c��.

The corrections induced by the quantum backreaction
can be visualized by incorporating them into an effective
potential Veff via

 V 0eff� � � V 0� cl� � ghT̂
0
1i: (16)

For the classical potential V� �, all minima  2 2
 0Z

occur at the same energy V � 0. However, the effective
potential Veff is distorted such that the central minimum is
lower than the next one describing the black-hole interior
Veff� � 0�<Veff��2
 0�. In this sense, the exterior
region is effectively energetically favorable and thus the
horizon starts to move inwards, i.e., the black hole shrinks.
Alternatively, the same result can be derived directly from
Eq. (12) via classical time-dependent perturbation theory
around the kink solution. The differential operator on the
left-hand side of Eq. (12) possesses a continuum of gapped
propagating (delocalized) modes with !2 > 0 and one
localized zero mode / 1= cosh���x� xkink�� with ! � 0,
which just corresponds to a translation of the kink position
[13]. After expanding the source term �ghT̂0

1i in Eq. (12)
into these modes, the perturbations in the continuous spec-
trum !2 > 0 just propagate away from the kink—whereas

the spatial overlap between �ghT̂0
1i and the zero mode

determines the acceleration �xkink < 0 of the kink position.

IV. ENERGY AND MOMENTUM

In contrast to the fluid analogues for black holes (with a
steady inflow and outflow of energy and momentum), for
example, the kink considered here represents a well-
localized object, which allows us to ask the question of
where the force pushing back the horizon comes from. In
most cases, such an analysis is rather complicated [14]
because the contribution of the � field to the total energy-
momentum tensor T �� (defined with respect to the
Minkowski metric @�T

�� � 0) differs from the pseudo
energy-momentum tensor r�T�� � 0 in (5) defined with
respect to the effective metric (4). Fortunately, these diffi-
culties are absent in our toy model since the mixed com-
ponents of both tensors coincide T �

� � T�� . The energy
density T0

0 is given by Eq. (6) and the classical expression
for the momentum flux density just reads T1

1 � �T
0
0 due to

conformal invariance of the scalar field in 1� 1 dimen-
sions. Note, however, that the quantum expectation values
differ due to the trace anomaly [12]. The energy flux
density

 T1
0 �

_�
@L
@�0
� _��v _�� �v2 � c2

���
0�; (17)

also deviates from the momentum density T0
1 in Eqs. (11)

and (12) for v � 0.
Far away from the kink, we may estimate the above

quantities by employing the geometric-optics approxima-
tion and replacing _�! � and�0 ! k. For solutions of the
dispersion relation ��� vk�2 � c2

�k
2 �O�k4� corre-

sponding to the outgoing Hawking radiation and its infal-
ling partner particles, the energy density per normalized
amplitude T0

0 � c�2=�c� jvj� changes its sign at the
horizon, cf. Eq. (6). The energy flux density T1

0 � c�2 is
constant and positive everywhere (which is even true be-
yond the geometric-optics approximation). Note that � is
conserved as we are considering a quasistationary scenario.
Thus, the total energy budget is balanced since the out-
going Hawking radiation carries away positive energy, but
the infalling partners have a negative energy.

The momentum density T0
1 � �c�2=�c� jvj�2, on the

other hand, turns out to be negative everywhere—or more
precisely, far away from the kink, cf. the exact expression
(14) with �� 	. Thus the momentum flux density T1

1 �
�c�2=�c� jvj�, i.e., the pressure, also changes sign at the
horizon. (The trace anomaly vanishes in the asymptotic
region v0 � v00 � 0 far away from the kink where the
geometric-optics approximation applies T1

1 � �T
0
0 .)

Consequently, while the Hawking particles carry away
positive momentum and push back the kink, their infalling
partner particles act in the opposite way and pull on the
kink. In summary, the momentum is not balanced and thus
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the kink starts to move, i.e., the black-hole interior region
shrinks.

Of course, the above considerations can only be applied
in the weak-field limit, i.e., when the acceleration �xkink of
the kink is negligibly small during the typical emission
time O�1=	� for one Hawking quantum j �xkinkj � 	c�.
Using the above momentum balance Meff �xkink / 	

2, this
translates to Meff 	 	=c2

�, which is analogous to the usual
semiclassical requirement MPlanck 	 	=c2 in the black-
hole case and will be automatically satisfied for sufficiently
stiff potentials V� � in Eq. (1) leading to an approximately
classical background solution  cl in Eq. (2).

V. THERMODYNAMICS

The application of thermodynamic concepts to our toy
model (in analogy to real black holes) presents some
difficulties and ambiguities: Considering the heat capacity
C � dE=dT, for example, we would associate T with the
Hawking temperature (15). The variation of the internal
energy dE, however, could be identified with the heat given
off by the Hawking radiation dE � �Q / 	2dt during a
time interval dt or, alternatively, with the change of the
kinetic energy of the kink E � Meff _x2

kink=2 (for _x2
kink �

c2
 ). Since the kink does not possess a conserved ADM

mass, these quantities will be different in general. Either
way, the heat capacity C � dE=dT could be positive as
well as negative (or even infinite—at the turning point
where dT � 0) since the Hawking temperature can be
increased dT > 0 or decreased dT < 0 by the quantum
backreaction of the evaporation process [15].

Similar ambiguities apply to the entropy dS � dE=T.
Choosing dE � �Q / 	2dt just reproduces the entropy
flow of the Hawking radiation into the exterior region—
which is of course indeed thermal. Inserting the kinetic
energy E � Meff _x2

kink=2, on the other hand, does also yield
a total differential dS � dE� _xkink�=T� _xkink� and hence al-
lows us to define an alternative entropy concept. However,
using this definition, we could violate the 2nd law since the
kink can be accelerated or slowed down by incident co-
herent radiation (carrying zero entropy).

VI. CONCLUSIONS

Modeling the black hole (horizon) by a stable topologi-
cal defect in the form of a kink, we were able to derive the
quantum backreaction of the resulting evaporation process.
It turns out that the kink/horizon is also pushed inwards as
in a real black hole though, in contrast to the gravitational
case, this backreaction force is not caused by energy
conservation but by momentum balance. Energetically,
the expansion of the horizon should be favorable because
the minimum energy density in exterior region� �  � 0
lies far above 1=�4��2 > 0 the ground state in the interior
region. Hence, going beyond the linear analysis performed

here, one might suspect that the � field approaches its
ground state via nonlinear (quantum) instabilities until the
evaporation stops.

Note that in the Israel-Hartle-Hawking state with

 hT̂0
1iIHH �

4vc��	2 � �v0�2 � �vv00�

48
c3
��

2 ; (18)

the horizon is still pushed inwards—i.e., this state does
also not correspond to the thermal equilibrium for the
combined system [kink in Eq. (2) plus � field]. This
observation is related to the fact that the Lagrangian of
our model in Eqs. (1) and (3) is only invariant under time
reversal if we simultaneously invert  ! � , which does
not leave the background kink solution unaffected—but
turns it into an antikink (corresponding to a white-hole
horizon v! �v).

Further thermodynamical concepts such as heat capacity
or entropy (variation) cannot be defined unambiguously
and can have both signs—depending on the considered
parameters [16]. Thus, in contrast to Hawking radiation,
which is quite robust (i.e., independent of the Einstein
equations) and just requires the existence of an effective
horizon, the heat capacity and the entropy concept strongly
depend on the underlying structure (e.g., Einstein equa-
tions). This observation may cast some doubt on the pro-
posed explanation of black-hole entropy solely based on
the entanglement entropy of the Hawking radiation (the
latter is universal, the former not).

Together with the results in [9], our calculations and the
energy-momentum considerations above suggest that the
resulting backreaction force ‘‘pushing’’ the horizon in-
wards may also be universal. Speculating a bit further,
one may ask whether the observation that the horizon
‘‘wants’’ to shrink could be somehow linked to the black-
hole information paradox because a shrinking horizon (in
contrast to a growing one) might perhaps entail the possi-
bility of finally releasing the information which fell into
the black hole.
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