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Quantization of the electromagnetic field outside static black holes
and its application to low-energy phenomena
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We discuss the Gupta-Bleuler quantization of the free electromagnetic field outside static black holes in the
Boulware vacuum. We use a gauge which reduces to the Feynman gauge in Minkowski spacetime. We also
discuss its relation with gauges used previously. Then we apply the low-energy sector of this field theory to
investigate some low-energy phenomena. First, we discuss the response rate of a static charge outside the
Schwarzschild black hole in four dimensions. Next, motivated by string physics, we compute the absorption
cross sections of low-energy plane waves for the Schwarzschild and extreme Reissner-Nordstro¨m black holes
in arbitrary dimensions higher than three.
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I. INTRODUCTION

The prediction that black holes should thermally evap
rate@1# has sparked much interest in quantum field theory
curved spacetimes. One of the difficulties in studying fie
in Schwarzschild@2# and other black hole spacetimes, ev
when the fields are non-interacting, stems from the fact
the solutions to the field equations are functions whose p
erties are not well known.1 In the low-frequency regime
however, the situation is much simpler in Schwarzsch
spacetime. In this regime, the mode functions of the mass
scalar field are well known@4#. The present authors and S
darsky used this fact to find the response rate of a st
scalar source@5# and an analytic approximation for the emi
sion rate of low-energy particles from classical sources@6#
outside the Schwarzschild black hole in closed form. On
other hand, the field equations of the electromagnetic fiel
a black hole spacetime are not decoupled and are difficu
analyze in the Lorenz gauge. However, if we require the fi
to be divergence-free on a two-sphere~the spherical Cou-
lomb gauge!, the equations for the physical modes reduce
decoupled scalar field equations. Furthermore, solution
terms of familiar special functions can be found in the lo
energy regime. These observations enabled us recent
calculate the response rate of a static electric charge ou
a Schwarzschild black hole in closed form@7#.

In this paper we examine free quantum electrodynam
in static spherically symmetric spacetimes of arbitrary
mensions in a modified Feynman gauge.~This gauge is
closely related to theA050 gauge used by Cognola an
Lecca@8# and reduces to the Feynman gauge in Minkow

1See Ref.@3# for some known properties in the Schwarzsch
case.
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spacetime.! Then, we calculate some low energy quantiti
in electrodynamics outside spherically symmetric bla
holes. First, we review the calculation of the response rat
a static charge outside the four-dimensional Schwarzsc
black hole in the Unruh vacuum@9#. Next we calculate the
low energy absorption cross sections of photons for
Schwarzschild and extreme Reissner-Nordstro¨m black holes
in arbitrary dimensions higher than three, extending so
results obtained by Gubser@10# using a method@11,12#
based on the Newman-Penrose formalism@13#.

The paper is organized as follows. In Sec. II we pres
the mode functions of the electromagnetic field in the spa
time of a spherically symmetric black hole in our modifie
Feynman gauge. Then we discuss the corresponding q
tum theory and show how the Gupta-Bleuler condition~see,
e.g., @14#! is implemented to obtain the physical states.
Sec. III we compare the physical modes in the spherical C
lomb gauge@7# with the ones obtained in the modified Fey
man gauge. In Sec. IV we review the calculation of the
sponse rate of a static charge outside a four-dimensio
Schwarzschild black hole. In Secs. V and VI we present
photon absorption cross sections by the Schwarzschild
extreme Reissner-Nordstro¨m black holes of arbitrary dimen
sions higher than three. In Sec. VII we summarize the m
results and make some remarks. In Appendix A we comp
some components of field-strength two-point function
Minkowski spacetime using spherical polar coordinates a
show that they agree with those obtained using Carte
coordinates. In Appendix B a summation formula for Le
endre functions used in Sec. IV is derived. In Appendix C
formula which relates the absorptionprobability to the ab-
sorptioncross sectionis derived in arbitrary dimensions. W
use the metric signature (122•••2) and the natural units
with G5\5c51 throughout this paper.
©2001 The American Physical Society08-1
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II. GUPTA-BLEULER QUANTIZATION IN A MODIFIED
FEYNMAN GAUGE

In this section we analyze the field equations for the el
tromagnetic field in spherically symmetric and static spa
times in a modified Feynman gauge. Then we discuss
Gupta-Bleuler quantization in this gauge.

The line element of the spacetime we study is

dt25 f ~r !dt22h~r !dr22r 2dsp
2 , ~2.1!

wheredsp
2 is the line element of a unitp-sphere. We assum

that f (r ) andh(r ) are positive forr .r H and that bothf (r )
andh(r )21 have simple zeros or both have double zeros
r 5r H , wherer H is the horizon radius. We also assume th
f (r ),h(r )21→1 asr→`. ~Most results in this section, how
ever, are independent of these assumptions.! Let us introduce
the Wheeler tortoise coordinater * by

dr*

dr
5Ah

f
. ~2.2!

Then r * (r ) is a monotonic function with domain (r H ,1`)
and range in (2`,1`). Let us define for any two function
q1(r * ) andq2(r * ) the inner product

^q1 ,q2&5E
2`

1`

dr* q1~r * !q2~r * !, ~2.3!

where the overline denotes complex conjugation.
The Lagrangian density of the electromagnetic field in

modified Feynman gauge is

LF5A2gF2
1

4
FmnFmn2

1

2
G2G ~2.4!

with

G5¹mAm1KmAm , ~2.5!

where the vectorKm is independent ofAm . Hence the equa
tions of motion are

¹nFnm1¹mG2KmG50. ~2.6!

Here we choose

Km5„0,f 8/~ f h!,0,0…, ~2.7!

in which case Eq.~2.5! is written as

G5
1

f
] tAt2A f

h

1

r p
] rF r p

Af h
Ar G2

1

r 2
¹̃ iAi . ~2.8!

Here i denotes angular variables on the unitp-sphereSp

with metric h̃ i j and inverse metrich̃ i j @with signature

(1•••1)], ¹̃ i is the associated covariant derivative onSp

and ¹̃ i[h̃ i j ¹̃ j . This choice forKm is convenient becaus
the equation forAt decouples from the other ones. The fie
equations~2.6! become
12400
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2
1

f
] t

2At1A f

h

1

r p
] rF r p

Af h
] rAtG1

1

r 2
¹̃2At50, ~2.9!

2
1

f
] t

2Ar1
1

f
] rFA f

h

f

r p
] rS r p

Af h
Ar D G1

1

r 2
¹̃2Ar

1
1

f
] rS f

r 2D ¹̃ iAi50, ~2.10!

2
1

f
] t

2Ai1
r 22p

Af h
] r SA f

h
r p22] rAi D 2

r 2

f h
] rS f

r 2D ] iAr

1
1

r 2
@¹̃ j~¹̃ jAi2¹̃ iAj !1] i~¹̃ jAj !#50, ~2.11!

where¹̃2[h̃ i j ¹̃
i¹̃ j .

We shall now describe a complete set of solutio
Am

(ln; v lm) . We assignl the value 0 for what we call the
non-physical modes, 1 or 2 for the physical modes and 3
the pure-gauge modes.~These modes will be given below.!
The labeln distinguishes between modes incoming from t
past null infinityJ 2 ~denoted withn5←) and those coming
out from the past horizonH2 ~denoted withn5→).2 The
solutions withAm

(0n; v lm)50 (mÞt), and

At
(0n; v lm)5Rv l

(0n)~r !Ylme2 ivt ~2.12!

will be called ‘‘non-physical modes’’ because they satis
the field equations~2.9!–~2.11! but not the gauge condition
G50. HereYlm is a scalar spherical harmonic on the un

p-sphere with ¹̃2Ylm52 l ( l 1p21)Ylm , where l
50,1,2, . . . and m denotes a set ofp21 integers
(m1 , . . . ,mp21) satisfyingl>mp21> . . . >m2>um1u. ~See
Ref. @15# for a concise description of spherical harmonics
the p-sphere.! They are normalized as

E dVpYlmYl 8m85d l l 8dmm8 , ~2.13!

wheredVp is the volume element of the unitp-sphere. The
function Rv l

(0n)(r ) satisfies

Fv2

f
1A f

h

1

r p

d

dr S r p

Af h

d

dr D 2
l ~ l 1p21!

r 2 GRv l
(0n)50.

~2.14!

We will determine the normalization of the function
Rv l

(0n)(r ) later. The pure-gauge modes are given as

Am
(3n; v lm)5¹mL (nv lm), ~2.15!

2Here we treat only the solutions proportional toe2 ivt with v
Þ0. Thus, if there is any nonzero static field, we will be consid
ing fluctuation about that solution.
8-2
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where

L (nv lm)5
i

v
Rv l

(0n)~r !Ylme2 ivt. ~2.16!

@As usual, the pure-gauge modes satisfy the field equat
~2.9!–~2.11! and G50.# The other independent solution
(l51,2), which represent physical degrees of freedom,
which satisfy the field equations andG50 but are not pure
gauge, will be chosen to haveAt50. Those withArÞ0 are
given as

Ar
(1n; v lm)5Rv l

(1n)~r !Ylme2 ivt, ~2.17!

where

Fv2

f
2

l ~ l 1p21!

r 2 GRv l
(1n)~r !

1
1

r 2

d

dr FA f

h
r 22p

d

dr S r p

Af h
Rv l

(1n)~r !D G50.

~2.18!

Note here that the conditionG50 cannot be solved ifl
50. Hence, we havel>1. The corresponding angular com
ponents can be found by solving the conditionG50 as

Ai
(1n; v lm)5

r 22p

l ~ l 1p21!
A f

h

d

dr F r p

Af h
Rv l

(1n)G] iYlm e2 ivt.

~2.19!

We call these modes ‘‘physical modes I.’’ The other set
physical solutions can be obtained by lettingAt5Ar50 and

Ai
(2n; v lm)5Rv l

(2n)~r !Yi
( lm)e2 ivt, ~2.20!

where

Fv2

f
1

1

Af h rp22

d

dr SA f

h
r p22

d

dr D
2

~ l 11!~ l 1p22!

r 2 GRv l
(2n)~r !50. ~2.21!

Here, theYi
( lm) are divergence-free vector spherical harmo

ics on the unitp-sphere satisfying

¹̃k~¹̃kYi
( lm)2¹̃ iYk

( lm)!52~ l 11!~ l 1p22!Yi
( lm)

~2.22!

and

E dVph̃ i j Yi
( lm)Yj

( l 8m8)5d l l 8dmm8 . ~2.23!

~See, e.g., Refs.@15,16#.! We call these modes ‘‘physica
modes II.’’ Physical modes I and II obtained here~and re-
stricted to four dimensions! are identical with those in the
A050 gauge@8#.
12400
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In order to discuss Gupta-Bleuler quantization of this fie
it is convenient to introduce a generalized Klein-Gord
product of classical solutions of Eq.~2.6!. We first define

Pmn[
1

A2g

]LF

]@¹mAn#
52@Fmn1gmnG#, ~2.24!

where G is given in Eq.~2.5!. Note thatA2g P tn is the
canonical conjugate momentum ofAn . We write

P (z)mn[PmnuAm5A
m
(z) ~2.25!

for any solutionAm
(z)[Am

(ln; v lm) . For any two ~complex!

solutionsAm
(z) andAm

(z8) we define

Wm@A(z),A(z8)#[ i @An
(z)P (z8)mn2P (z)mnAn

(z8)#.
~2.26!

The field equations ensure that this current is conserved
a result, the generalized Klein-Gordon inner product defin
by

~A(z),A(z8)![E
S
dSmWm@A(z),A(z8)#, ~2.27!

wheredSm[ds nm , is independent of the Cauchy surfaceS
@17#. ~Hereds is the volume element of the Cauchy surfa
S with a normal unit vectornm.! Note that (A(z),A(z8))

5(A(z8),A(z)). This guarantees that the norm defin
through Eq.~2.27! is real~and positive definite for the subse
of physical solutions with positive frequency!. By working
explicitly with the definition~2.27!, we find in general that
on a t5const surface

~A(z),A(z8)!52 i E dp11xA2g f21gmn

3~Am
(z)] tAn

(z8)2An
(z8)] tAm

(z)!. ~2.28!

It is important to note that pure-gauge modes are ortho
nal to any mode satisfyingG50 and, as a result,¹nFnm

50. This can be shown as follows. Suppose thatAm
(z) and

Am
(z8) satisfy the conditionG50. Then sinceP (z)mn5

2FmnuAm5A
m
(z), and similarly for Am

(z8) , the inner product

~2.27! can be written as (A(z),A(z8))5(A(z),A(z8)) inv where

~A(z),A(z8)! inv[ i E
S
dSm@An

(z)F (z8)nm2F (z)nmAn
(z8)#.

~2.29!

Now, let Am
(z)5¹mL (z) be a pure-gauge mode. Then

~A(z),A(z8)! inv5 i E
S
dSmF (z8)nm¹nL (z)

5 i E
S
dSm¹n~L (z) F (z8)nm!

50 ~2.30!
8-3
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sinceF (z8)nm is anti-symmetric.3 Thus (A(z),A(z8))50 if Am
(z)

is a pure-gauge mode andA(z8) is a physical or pure-gaug
mode, i.e.,

~A(3n; v lm),A(3n8; v8 l 8m8)!50, ~2.31!

~A(3n; v lm),A(1n8; v8 l 8m8)!50, ~A(3n; v lm),A(2n8; v8 l 8m8)!50.

~2.32!

Next let us examine the inner product of the non-physi
solutions. By letting

Rv l
(0n)~r ![Af r 2p/2wv l

(0n)~r !, ~2.33!

we find from Eq.~2.14!

S v21
d2

dr* 2
2V0~r * !D wv l

(0n)50, ~2.34!

wherer * is given in Eq.~2.2! and

V0@r * ~r !#5 f
l ~ l 1p21!

r 2
2

f

h F p~22p!

4r 2
2

f 82

2 f 2

1
p

4r S f 8

f
1

h8

h D1
f 9

2 f
2

f 8h8

4 f h G .

For spacetimes wheref (r ) andh(r )21 have simple zeros a
r 5r H , we find V0@r * (r H)#Þ0 in general. IfV0@r * (r H)#
.0, then the non-physical modes coming out from t
horizon have frequencies satisfyingv2.V0@r * (r H)#.
In particular, for Reissner-Nordstro¨m spacetime in
(p12)dimensions@18#, where

f ~r !5h~r !215F12S r 1

r D p21GF12S r 2

r D p21G
with r 6

p215M6AM22Q2 ~so thatr H5r 1), we find

V0@r * ~r H!#5
~p21!2

~2r 1!2 F12S r 2

r 1
D p21G2

.

As expected, we havêwv l
(0→) ,wv8 l

(0←)&50, i.e., the solutions
of Eq. ~2.34! incoming fromH2 and those incoming from
J 2 are orthogonal to one another with respect to the in
product defined by Eq.~2.3!. By normalizing these solution
so that

wv l
(0→)'Av/ṽ~ei ṽr* 1R v l

(0→)e2 i ṽr* ! ~r * →2`!,

~2.35!

wv l
(0←)'e2 ivr* 1R v l

(0←)eivr* ~r * →1`!,
~2.36!

3Note that Eq.~2.30! would hold even ifL (z) was an arbitrary

function. This shows that (A(z),A(z8)) inv is gauge invariant.
12400
l

e

r

up to a phase factor, whereṽ25v22V0@r * (r H)#>0 and
R v l

(0→) and R v l
(0←) are constants~with uR v l

(0→)u5uR v l
(0←)u),

we have

^wv l
(0←) ,wv8 l

(0←)&5^wv l
(0→) ,wv8 l

(0→)&52pd~v2v8!.

~2.37!

Now, by using Eq.~2.28! we find

~A(0n; v lm),A(0n8; v8 l 8m8)!522v^wv l
(0n) ,wv8 l 8

(0n8)&dnn8d l l 8dmm8

524pvdnn8d l l 8dmm8d~v2v8!

~2.38!

where we have usedd(ṽ2ṽ8)5(ṽ/v)d(v2v8). Noting
that A(0n; v lm) and A(3n; v lm) have the samet-components,
we immediately obtain from Eqs.~2.28! and ~2.31! that

~A(0n; v lm),A(3n8; v8 l 8m8)!524pvdnn8d l l 8dmm8d~v2v8!.

~2.39!

Next let us examine the physical modes. By letting

Rv l
(1n)~r ![

Al ~ l 1p21!

v
~ f h!1/2r 2p/221wv l

(1n)~r !,

~2.40!

we find from Eq.~2.18!

S v21
d2

dr* 2
2V1~r * !D wv l

(1n)50, ~2.41!

where

V1@r * ~r !#5 f
l ~ l 1p21!

r 2
1

p~p22!

4r 2

f

h

2
~p22!

4

f

hr S f 8

f
2

h8

h D . ~2.42!

~We note thatV1→0 as r→r 1 for Reissner-Nordstro¨m
spacetime unlikeV0.! We first note that the modesA(1n; v lm)

are orthogonal to both the non-physical and pure-ga
modes. Next we note

~A(1n; v lm),A(1n8; v8 l 8m8)!52v^wv l
(1n) ,wv8 l 8

(1n8)&dnn8d l l 8dmm8 .

~2.43!

Thus, by normalizingwv l
(1n)(r ) as

wv l
(1→)'eivr* 1R v l

(1→)e2 ivr* ~r * →2`!, ~2.44!

wv l
(1←)'e2 ivr* 1R v l

(1←)eivr* ~r * →1`!,
~2.45!

we have

~A(1n; v lm),A(1n8; v8 l 8m8)!54pvdnn8d l l 8dmm8d~v2v8!.

~2.46!
8-4
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Finally, we let

Rv l
(2n)~r ![r 2(p22)/2wv l

(2n)~r !.

Then from Eq.~2.21!, we have

S v21
d2

dr* 2
2V2~r * !D wv l

(2n)50, ~2.47!

where

V2@r * ~r !#5 f
~ l 11!~ l 1p22!

r 2
1

~p22!~p24!

4r 2

f

h

1
~p22!

4

f

hr S f 8

f
2

h8

h D . ~2.48!

~We again note thatV2→0 asr→r 1 in Reissner-Nordstro¨m
spacetime.! Notice thatV15V2 if p52. Hence, in the four-
dimensional casewv l

(1n)(r ) and wv l
(2n)(r ) satisfy the same

equation. These modes can easily be shown to be orthog
to the modes previously discussed. By normalizing the fu
tions wv l

(2n)(r ) in the same way aswv l
(1n)(r ) @see Eqs.

~2.44!,~2.45!#, we have

~A(2n; v lm),A(2n8; v8 l 8m8)!54pvdnn8d l l 8dmm8d~v2v8!.

~2.49!

In order to quantize the fieldAm , we impose the equal
time commutation relations on the fieldÂm and momentum

P̂ tm operators:

@Âm~ t,x!,Ân~ t,x8!#5@P̂ tm~ t,x!,P̂ tn~ t,x8!#50,
~2.50!

@Âm~ t,x!,P̂ tn~ t,x8!#5
idm

n

A2g
dp11~x2x8!, ~2.51!

wherex andx8 represent all spatial coordinates. The fieldÂm
can be expanded using the modes we have obtained be

Âm~ t,x!5(
r
E

2`

1` dv

A4puvu
Am

(vr)~ t,x!avr , ~2.52!

whereAm
(vr) is proportional toe2 ivt, Am

(2vr)[Am
(vr), a2vr

[avr
† andr labels discrete quantum numbers. The comm

tation relations~2.50!,~2.51! are equivalent to the following
commutation relations in the ‘‘symplectically smeared
form as is the case for scalar fields@19#:

@~A(z),Â!,~Â,A(z8)!#5~A(z),A(z8)!. ~2.53!

Since the inner product must bet independent, the inne

product of Am
(vr) and Am

(v8r8) can be nonzero only ifv
5v8. Thus, we can write

~A(vr),A(v8r8)!5M rr8d~v2v8!. ~2.54!
12400
nal
-
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-

By using Eq.~2.54! in Eq. ~2.53! one finds

M r1r2@avr2
,av8r3

†
#M r3r454pvM r1r4d~v2v8!.

~2.55!

Then, sinceM rr8 is invertible in our case, we find

@avr ,av8r8
†

#54pv~M 21!rr8d~v2v8!. ~2.56!

Note here that we immediately have@avr ,av8r8#50 for
v,v8.0 by lettingv8→2v8 in Eq. ~2.56! . By using the
Klein-Gordon inner products computed above, we find
following commutators:

@av lm
(3n) ,av8 l 8m8

(3n8)†
#52@av lm

(0n) ,av8 l 8m8
(3n8)†

#

5dnn8d l l 8dmm8d~v2v8!, ~2.57!

@av lm
(1n) ,av8 l 8m8

(1n8)†
#5@av lm

(2n) ,av8 l 8m8
(2n8)†

#

5dnn8d l l 8dmm8d~v2v8! ~2.58!

with all other commutators vanishing. The Gupta-Bleu
condition @14# requires that any physical stateuphys& satisfy

Ĝ(1)uphys&50, ~2.59!

where Ĝ(1) is the positive-frequency part ofĜ5¹mÂm

1KmÂm . Since this quantity is nonvanishing only fo
Am

(0n; v lm) , this condition is equivalent to

av lm
(0n)uphys&50 for all ~n,v,l ,m! ~with v.0!.

~2.60!

~We let v.0 below.! The Boulware vacuumu0& @20# is
defined by requiring that it be annihilated by allav lm

(ln) opera-
tors (l50,1,2,3). Note that the states obtained by apply
any number of creation operators excludingav lm

(3n)† are all
physical states. Any state of the formav lm

(3n)†uphys& is un-
physical because

av8 l 8m8
(0n8) av lm

(3n)†uphys&52dnn8d l l 8dmm8d~v2v8!uphys&Þ0.

Note also that the physical states of the formav lm
(0n)†uphys&

have zero norm and are orthogonal to any physical sta
Thus, as is well known, a physical stateuphys1& can be re-
garded as equivalent to any state of the formuphys1&
1av lm

(0n)†uphys2&. We can take as the representative eleme
the states obtained by applyingav lm

(ln)† , l51,2, onu0&.
Unphysical particles created byav lm

(3n)† will be in thermal
equilibrium in the Hartle-Hawking vacuum@21# for a static
black hole if we require the gauge-fixed two-point functio
be non-singular on the horizons as in the scalar case@22#.
There will also be a flux of unphysical particles in the Unr
vacuum. Therefore, technically speaking, the Hart
Hawking and Unruh vacua are unphysical if we impose
Gupta-Bleuler condition using the positive-frequency noti
in the Boulware vacuum. Fortunately, the Becchi-Rou
Stora-Tyutin~BRST! quantization does not suffer from thi
8-5
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problem since the physical state condition does not refe
any notion of positive frequency@23#. This issue, however
will not concern us in the following, since all our calcula
tions will be at the tree level.

Mode expansions in spherical polar coordinates are
very widely used and are quite different from the ordina
method using Cartesian coordinates. For this reason,
compute in Appendix A some components of field-stren
two-point function in four-dimensional Minkowski space
time using spherical polar coordinates. We find that th
agree with the standard results obtained in Cartesian coo
nates, as they should.

III. THE PHYSICAL MODES IN THE SPHERICAL
COULOMB GAUGE

As we have seen, the modified Feynman gauge define
Eq. ~2.7! is useful in finding explicit mode functions. W
also noted that this gauge results in the same physical m
as in theA050 gauge. There is another convenient gauge
finding physical modes, i.e., the spherical Coulomb gau

¹̃ iAi50. ~One can readily show that any vectorAm is gauge-
equivalent to a vector satisfying this gauge condition.! Let us
discuss the relation of the physical modes obtained in
gauge and those found in the previous section.4

It is clear that the physical modesAm
(2n; v lm) in the previ-

ous section are also in the spherical Coulomb gauge.
other independent physical modes must haveAi50 in this
gauge. First we note that ifAt and Ar are assumed to b
spherically symmetric, then we find from the equatio
¹mFmt5¹mFmr50 that Ftr is t-independent and
(r p/Af h)Ftr is r-independent. Hence, if in addition th
modes are assumed to be proportional toe2 ivt with vÞ0,
they must be pure gauge becauseFtr50. ~A time-
independent solution hasFtr}Af h/r p. This will represent a
static Coulomb field, which we will disregard here.! To find
the solutions which are not spherically symmetric we
At ,Ar}Ylme2 ivt. From the equation¹mFm i50 we find

2 ivAt5A f

h

1

r p22
] rFA f

h
r p22Ar G . ~3.1!

By substituting this andAi50 in ¹mFmr50, we find that

Ar
(18n; v lm)5Rv l

(18n)(r )Ylme2 ivt ~here we use primed indice
to refer to the spherical Coulomb gauge!, where

Fv2

f
2

l ~ l 1p21!

r 2 GRv l
(18n)~r !

1
1

f

d

dr FA f

h

1

r p22

d

dr SA f

h
r p22Rv l

(18n)~r ! D G50.

~3.2!

4Again, we only treat solutions proportional toe2 ivt with vÞ0.
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The componentAt
(18n; v lm) can be found from Eq.~3.1!.

~Then, one can readily show that¹mFmt50.! Indeed one can
verify that these modes are related to the ones in the m
fied Feynman gauge by a gauge transformation:

Am
(1n; v lm)→Am

(18n; v lm)5Am
(1n; v lm)2¹mF (1n; v lm),

~3.3!

where

F (1n; v lm)5
r 22p

l ~ l 1p21!
A f

h

d

dr S r p

Af h
Rv l

(1n)D Ylme2 ivt.

~3.4!

This gives us

At
(18n; v lm)5

ivr 22p

l ~ l 1p21!
A f

h

d

dr S r p

Af h
Rv l

(1n)D Ylme2 ivt,

~3.5!

Ar
(18n; v lm)5

v2r 2

l ~ l 1p21!

1

f
Rv l

(1n)Ylme2 ivt. ~3.6!

IV. RESPONSE RATE OF A STATIC CHARGE OUTSIDE
A FOUR-DIMENSIONAL SCHWARZSCHILD

BLACK HOLE

Here we briefly review, in the context of the previous tw
sections, the calculation of response rate in the Un
vacuum @9# of a static electric charge in Schwarzschi
spacetime performed in Ref.@7#.

The line element of the four-dimensional Schwarzsch
spacetime is

dt25 f ~r !dt22 f ~r !21dr22r 2ds2
2 ~4.1!

with f (r )5122M /r , whereds2
25du21sin2u df2 is the line

element of the unit two-sphere.~The horizon radius isr H
52M .! We compute the response rate of the static elec
charge to the Hawking radiation present in the Unr
vacuum. The charge is placed at (r ,u,f)5(r 0 ,u0 ,f0) as
described by the current density

j m5d t
m q

r 2sinu
d~r 2r 0!d~u2u0!d~f2f0!. ~4.2!

Since this current density is static, it couples to photons w
zero energy. It turns out that the rate of response of
current to a single photon vanishes. However, the Bo
Einstein distribution of the thermal photons coming out
the horizon diverges at zero energy. This makes the rate
absorption and stimulated emission indefinite. This ambi
ity can be resolved by replacing the current density~4.2! by
j m5( j t, j r ,0,0), where

j t5
A2 qcosEt

r 2sinu
d~r 2r 0!d~u2u0!d~f2f0!, ~4.3!
8-6
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j r5
A2qE sinEt

r 2sinu
Q~r 2r 0!d~u2u0!d~f2f0!. ~4.4!

Here,Q(x)51 if x.0 andQ(x)50 if x<0. ~The factor of
A2 is necessary to make the time average of the squ
charge equal toq2.! We take the limitE→0 in the end,
assuming that the rate is continuous atE50. This continuity
has been verified in Minkowski spacetime@24#.

Since the current~4.2! is conserved, it does not intera
with pure-gauge particles corresponding to the creation
eratorsav lm

(3n)† . It does interact with the states created
av lm

(0n)† but these have zero norm and do not contribute
physical probabilities. Hence, as usual, we need to cons
only the physical modes. Note also that only physical mo
I are relevant becauseAt5Ar50 for physical modes II.

Now, the transition amplitude from the Boulware vacuu
u0& to the stateu1n; v lm&5av lm

(1n)†u0& by the classical curren
density j m is given by

A v lm
n 5 i E d4xA2g jm^1n; v lmuÂmu0&. ~4.5!

Let us recast Eq.~4.5! as

A v lm
n [2p i T v lm

n d~v2E!, ~4.6!

whereTv lm
n will be calculated later. The corresponding tra

sition rate, i.e. transition probability per asymptotic prop
time, is expressed as

R v lm
n 52puT v lm

n u2d~v2E!. ~4.7!

Now we take into account that in the Unruh vacuum there
a thermal flux of photons coming out of the horizon wi
inverse temperatureb58pM ~with no particles coming
from infinity!. In the limit E→0, only the absorption and
stimulated emission of these thermal photons contribute
the response rate. For this reason, we treat only the m
coming out of the horizon (n5→). The total response rat
due to these modes with fixed angular momentum, in wh
absorption, spontaneous and stimulated emissions are
taken into account, is

RElm5E
0

1`

dvR v lm
→ S 2

ebv21
11D 52p coth

bE

2
uTElm

→ u2.

~4.8!

Thus, in the limitE→0 we find

R0lm5 lim
E→0

uT Elm
→ u2/~2ME!. ~4.9!

Next T Elm
→ will be calculated. The equation satisfied b

the functionqv l
→(r )[(2M /r )wv l

(1→)(r ) can be obtained from
Eq. ~2.41! with p52 as
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dz F ~12z2!
dqv l

→

dz G1F l ~ l 11!2
2

z11
2M2v2

~z11!3

z21 Gqv l
→

50, ~4.10!

where z[r /M21. For smallv, the wave is almost com
pletely reflected back to the horizon. This implies that

wv l
(1→)'22 sin@v~r * 2 r̃ v!#'22vr * 1const

~r 2r H!v2r H
3 , uvr * u!1!, ~4.11!

wherer̃ v are constants. The minus sign has been inserted
later convenience. The Wheeler tortoise coordinater * de-
fined by Eq.~2.2! is written in Schwarzschild spacetime a

r * 5r 12M lnS r

2M
21D . ~4.12!

Thus, Eq.~4.11! can be written as

wv l
(1→)'24Mv ln~z21! ~r 2r H!v2r H

3 , uvr * u!1!.

~4.13!

Now, Eq. ~4.10! can be solved explicitly forv50. By
choosing the solution for qv l

→ such that wv l
(1→)

5@r /(2M )#qv l
→ tends to zero asz→1`, we find in the

small v limit

wv l
(1→)54Mv~z11!FQl~z!2

~z21!

l ~ l 11!

dQl~z!

dz G ,
~4.14!

where this has been normalized such that Eqs.~4.13! and
~4.14! are in agreement atr'r H .

From gauge invariance of the amplitude~4.5! it is clear
that we may use the modes in the spherical Coulomb ga

Am
(18→; v lm) , in place of those in the modified Feynma

gauge Am
(1→; v lm) . Then the contribution from the

r-component will be suppressed in the low energy limit d
to extra factors ofv @see Eq.~3.6!#. Therefore we need to
consider only thet-component in this limit. Thet-component
can be found in the smallv limit from Eqs.~2.40!, ~3.5! and
~4.14! as

At
(18→; v lm)5

4iv~z21!

Al ~ l 11!

dQl~z!

dz
Ylm~u,f!e2 ivt,

~4.15!

where we have used the Legendre equation satisfied
Ql(z). By using Eq.~4.15! in Eq. ~4.5! and comparing the
result with Eq.~4.6!, we obtain

Tv lm
→ 52 i

A2v q~z021!

Ap l ~ l 11!

dQl~z0!

dz0
Ȳlm~u0 ,f0! ~4.16!

wherez05r 0 /M21. Then we find theproper response rate
of the charge as@see Eq.~4.9!#
8-7
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R0lm

Af ~r 0!
5

q2~z021!2

pMl ~ l 11!Af ~r 0!
FdQl~z0!

dz0
G2

uYlm~u0 ,f0!u2,

~4.17!

where the factorAf (r 0) appears because here we are cal
lating the transition rate per proper time of the charge.
can sum overl andm by using

(
m52 l

l

uYlm~u0 ,f0!u25~2l 11!/~4p! ~4.18!

and

(
l 51

`
2l 11

l ~ l 11! FdQl~z!

dz G2

5
2Q1~z!

~z221!2
. ~4.19!

A derivation of this formula is given in Appendix B. Thus
the total transition probability per proper time of the char
is

Rtot5(
l 51

1`

(
m52 l

l
R0lm

Af ~r 0!
5

q2a~r 0!

2p2
Q1~r 0 /M21!,

~4.20!

wherea(r 0)5Mr 0
22/Af (r 0) is the proper acceleration of th

charge.
It is of course possible to work with the modes in t

modified Feynman gauge directly and obtain the same re
If we do so, the contribution will come from th
r-component of the current because thet-components of
physical modes I vanish.

V. LOW ENERGY ABSORPTION CROSS SECTION
OF THE SCHWARZSCHILD BLACK HOLE

Here we consider the Schwarzschild black hole inp12
dimensions given by the line element~2.1! with f (r )51
2(r H /r )p21. If the absorption probability of the black hol
associated with physical modes I and II areP l

(1) andP l
(2) ,

respectively, then the absorption cross section is given b

s5
~2p!p

pVpvp (
l 51

`

@Ml
(1)P l

(1)1Ml
(2)P l

(2)#, ~5.1!

where l and v are the angular momentum and frequen
respectively, of the modes andVp52p (p11)/2/G@(p11)/2#
is the volume of the unitp-sphere. Here,Ml

(1) andMl
(2) are

the multiplicities of the scalar and divergence-free vec
spherical harmonics, respectively, on thep-sphere. These
multiplicities are given by~see, e.g., Refs.@15,16#!

Ml
(1)5

~2l 1p21!~ l 1p22!!

~p21!! l !
, ~5.2!

and

Ml
(2)5

~2l 1p21!~ l 1p21!!

~ l 11!~ l 1p22!~p22!! ~ l 21!!
. ~5.3!
12400
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Equation~5.1! is derived in Appendix C.
For either physical modes I or II, we have for larger

('r * ) that @see Eqs.~2.41! and ~2.47!#

H v21
d2

dr2
2F l ~ l 1p21!1

p~p22!

4 G 1

r 2J wv l
(l←)~r !'0.

~5.4!

The asymptotic solution with the correct normalization, i
with the coefficient ofe2 ivr being one, is

wv l
(l←)~r !'A2pvrJl 1(p21)/2~vr ! ~r H!r !. ~5.5!

Thus, for smallvr

wv l
(l←)~r !'Cl~r /r H! l 1p/2 ~r H!r !v21!, ~5.6!

where

Cl5
A4p

G„l 1~p11!/2… S vr H

2 D l 1p/2

. ~5.7!

Now, near the horizon, whereVl!v2 (l51,2), these
solutions behave like@see Eqs.~2.41! and ~2.47!#

wv l
(l←)~r !'Dl

(l)e2 ivr* ~r 2r H!v2r H
3 !, ~5.8!

where the constantsDl
(l) will be determined later. Hence, fo

uvr * u!1 we have in this regionwv l
(l←)(r )'Dl

(l) and the
absorption probability is given byP l

(l)5uDl
(l)u2.

In order to find the coefficientDl
(l) , we solve the equa-

tions forwv l
(l←)(r ) with v50. For physical modes I, it turns

out that the functionr pRv l
(1←) satisfies a hypergeometri

equation with the variablew512(r /r H)p21. Thus, we find
in the smallv limit

wv l
(1←)~r !5Dl

(1)~r /r H!12p/2F„2~ l 1p21!/~p21!,

l /~p21!;1;w…. ~5.9!

This function approachesDl
(1) for r→r H as required. By

using the formula@25#

F~a,b;g;w!'
G~g!G~b2a!

G~b!G~g2a!
~2w!2a

~a,b,2w@1! ~5.10!

in Eq. ~5.9!, we find asymptotically

wv l
(1←)~r !'Dl

(1)El
(1)~r /r H! l 1p/2 ~r H!r !v21!,

~5.11!

where

El
(1)5

G@~2l 1p21!/~p21!#

G@ l /~p21!#G@~ l 12p22!/~p21!#
. ~5.12!

By comparing Eqs.~5.6! and ~5.11!, we obtain

P l
(1)5@Cl /El

(1)#2. ~5.13!
8-8
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Thus, the absorption probability behaves likev2l 1p.
Similarly, for physical modes II, we find in the smallv

limit

wv l
(2←)~r !5Dl

(2)~r /r H!(p/221)F„2~ l 11!/~p21!,

~ l 1p22!/~p21!;1;w…. ~5.14!

Then by using Eq.~5.10! we find asymptotically

wv l
(2←)~r !'Dl

(2)El
(2)~r /r H! l 1p/2 ~r H!r !v21!,

~5.15!

where

El
(2)5

G@~2l 1p21!/~p21!#

G@~ l 1p22!/~p21!#G@~ l 1p!/~p21!#
.

~5.16!

By comparing Eqs.~5.6! and ~5.15!, we obtain

P l
(2)5@Cl /El

(2)#2. ~5.17!

Again, the absorption probability behaves likev2l 1p. There-
fore the physical modes withl 51 give the dominant contri-
bution to the absorption probability, as expected.

By substitutingP 1
(1) andP 1

(2) in Eq. ~5.1!, we obtain the
total absorption cross section for low energy as

s5
v2r H

2 AH

2~p11! F 2p@G„p/~p21!…#4

@G„~p11!/~p21!…#2
11G , ~5.18!

whereAH5Vpr H
p is the area of the black hole.

One would need to solve the differential equations sa
fied by wv l

(l←) numerically to find the low-energy absorptio
cross section for non-extreme Reissner-Nordstro¨m black
holes.5 However, it is possible to calculate it analytically fo
the extreme Reissner-Nordstro¨m black hole. We turn to this
problem in the next section.

VI. LOW ENERGY ABSORPTION CROSS SECTION
OF THE EXTREME REISSNER-NORDSTRÖ M

BLACK HOLE

The line element of the extreme Reissner-Nordstr¨m
spacetime is given by Eq.~2.1! with f (r )5h(r )215@1
2(r H /r )p21#2. As in the Schwarzschild case, we ha
wv l

(l←)(r )'Cl(r /r H) l 1p/2 for r H!r !v21 whereCl is given
by Eq. ~5.7!.

Now, let us analyze the physical modes close to the h
zon. Concerning mode I, we write

Fv21
d2

dr* 2
2

l ~ l 1p21!

~p21!2r * 2Gwv l
(1n)'0 ~2v2r * 3@r H!,

~6.1!

5It is possible to obtain a result in a closed form if one takes
limit v→0 andr 1→r 2 simultaneously@11#.
12400
-

i-

where we have used that the Wheeler tortoise coordinater *
@see Eq.~2.2!# behaves in this region as

r * '2
~p21!22r H

2

r 2r H
. ~6.2!

Hence we obtain

wv l
(1←)'Dl

(1)A2pvr *

2
Hn

(1)~2vr * ! ~2v2r * 3@r H!

~6.3!

with

n5F1

4
1

l ~ l 1p21!

~p21!2 G 1/2

5
1

2
1

l

p21
. ~6.4!

This solution behaves likeDl
(1)e2 ivr* ~up to a phase factor!

very close to the horizon (2vr * @1), where the effective
potentialV1 becomes negligible, as expected. Hence, the
sorption probability isP l

(1)5uDl
(1)u2. Note that, for smallz

with positiven, one has

Hn
(1)~z!'2

iG~n!

p S 2

zD n

. ~6.5!

Hence,

wv l
(1←)'Dl

(1)Kl
(1)F ~p21!~r 2r H!

r H
Gn21/2

~~vr H!1/3!2vr * !1!, ~6.6!

where

Kl
(1)52

iG~n!

Ap
F2~p21!

vr H
Gn21/2

. ~6.7!

Again, in order to determineDl
(1) , we solve the equation fo

wv l
(1←)(r ) in the smallv limit:

wv l
(1←)~r !5Dl

(1)Kl
(1)S r

r H
D 12p/2

3S 12
l

l 1p21
wD ~2w! l /(p21), ~6.8!

where w512(r /r H)p21, and we note that Eq.~6.8! has
been normalized such that it agrees with Eq.~6.6! near the
horizon. On the other hand, we find asymptotically

wv l
(1←)'

l

l 1p21
Dl

(1)Kl
(1)S r

r H
D l 1p/2

~r H!r !v21!.

~6.9!

By comparing this with Eq.~5.6! we find
e

8-9
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P l
(1)5U~ l 1p21!Cl

l K l
(1) U2

. ~6.10!

We note thatP l
(1)}vp12lp/(p21). Hence the dominant con

tribution to the scattering cross section comes from thl
51 term:

P 1
(1)5

4p2p2

†~p21!1/(p21)G@~p13!/2#G@~p11!/~2p22!#‡2

3S vr H

2 D 21p12/(p21)

. ~6.11!

The contribution from physical modes II can be found in
similar manner. By substituting Eq.~6.2! in Eq. ~2.47!, we
have near the horizon

Fv21
d2

dr* 2
2

~ l 11!~ l 1p22!

~p21!2r * 2 Gwv l
(2n)'0 ~2v2r * 3@r H!.

~6.12!

Then wv l
(2←) will have the same form aswv l

(1←) in Eq. ~6.3!
except thatn in Eq. ~6.4! is replaced by

n85F1

4
1

~ l 11!~ l 1p22!

~p21!2 G 1/2

.

For p>3, the contribution from physical mode II is sup
pressed compared to that from physical modes I sincen8
.n. For p52, i.e. in four dimensions, Eqs.~6.1! and~6.12!
satisfied bywv l

(1n) andwv l
(2n) are the same. Thus, the absor

tion probabilities of these two types of modes are equal
eachl.

Hence, we obtain the following results:

s5
4

3
~vr H!4AH for p52, ~6.13!

s5
pp~vr H!212/(p21)AH

~p11!@2~p21!#2/(p21)
†G@~p11!/~2p22!#‡2

for p>3. ~6.14!

Equation~6.13! is in agreement with the result derived b
Gubser@10# . It is interesting to note that the low energ
absorption cross section is proportional to a fractional po
of v if p>4.

VII. CONCLUSIONS

In this paper we showed that the field equations for f
electrodynamics can be reduced to decoupled scalar
equations in a modified Feynman gauge in the spacetim
spherically symmetric black hole.~We also noted that the
equations for the physical modes simplify in the spheri
Coulomb gauge.! Then we examined the Gupta-Bleul
quantization in this modified Feynman gauge.

Next we reviewed the calculation of the response rate
12400
r

r

e
ld
of

l

a

static charge outside the four-dimensional Schwarzsc
black hole. It is easy to extend our result to the Schwar
child black hole in arbitrary dimensions, though we cann
simplify the resulting infinite series. A closed-form expre
sion for the response rate of a static source has been obta
for massless scalar field in four-dimensional Reissn
Nordström black hole@26#. The extension of the results i
this paper to the Reissner-Nordstro¨m black hole will also be
possible in principle, but the result will probably not be e
pressible~even! as an infinite series of familiar special func
tions in any dimensions.

Finally we calculated the absorption cross sections of l
energy photons by the Schwarzschild and extreme Reiss
Nordström black holes in arbitrary dimensions. The corr
sponding cross section of massless scalar particles is kn
to be equal to the horizon area@27# as long as the black hole
is spherically symmetric. No such universality holds for ph
tons as our results and previous results@10# show. It is inter-
esting that there are two modes, modes I and II, which
have differently in higher dimensions. It is also intriguin
that the absorption cross section scales as a fractional po
of the energyv, i.e. asv21p12/(p21) in p12 dimensions.
Finally, it would be interesting to compare the results here
similar results obtained using our gauge with those in str
theory. ~See, e.g., Ref.@10# and references therein for ex
amples of such comparison.!

ACKNOWLEDGMENTS

L.C. and G.M. would like to acknowledge partial financi
support from CAPES through the PICDT program and Co
selho Nacional de Desenvolvimento Cientı´fico e Tecno-
lógico, respectively.

APPENDIX A: FIELD-STRENGTH TWO-POINT
FUNCTION IN SPHERICAL POLAR COORDINATES
IN FOUR-DIMENSIONAL MINKOWSKI SPACETIME

Minkowski spacetime is the simplest spherically symm
ric spacetime. In this appendix we compute some com
nents of the two-point function

Gmnrs~x,x8![^0uF̂mn~x!F̂rs~x8!u0& ~A1!

in spherical polar coordinates and verify that they agree w
those previously computed in Cartesian coordinates in fo
dimensional Minkowski spacetime. We need to consid
only physical modes because pure-gauge modes do not
tribute to F̂mn and the coefficient operators of the no
physical modes have zero commutators with all opera
appearing on the right-hand side of Eq.~A1!.

Since there is no horizon, all modes come in from infin
and go out to infinity. Therefore, we do not need here
label n5←, → which distinguished between the mod
coming out of the horizon and those incoming from infinit
By the remark after Eq. ~2.43! we have wv l

(1)(r )
52vr j l(vr ), wherej l(x) is the spherical Bessel function o
orderl, in four-dimensional Minkowski spacetime. Hence f
physical modes I we have exactly
8-10
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Ar
(1; v lm)5

2Al ~ l 11!

r
j l~vr !Ylm~u,f!e2 ivt, ~A2!

whereYlm(u,f) are the familiar scalar spherical harmoni
on S2. The tr -component of the corresponding field streng
is

Ftr
(1; v lm)52 i

2Al ~ l 11! v

r
j l~vr !Ylm~u,f!e2 ivt,

~A3!

since thet-component vanishes. These modes are suffic
for computingGtrtr (x,x8) because physical modes II hav
At5Ar50. We obtain with x5(t,r ,u,f) and x8
5(t8,r 8,u8,f8)

Gtrtr ~x,x8!5
1

prr 8
(
l 51

`

l ~ l 11! (
m52 l

l

Ylm~u,f!Ȳlm~u8,f8!

3E
0

`

dvv j l~vr ! j l~vr 8!e2 iv(t2t8)

5
1

8p2~rr 8!2 (
l 51

`

l ~ l 11!~2l 11!

3Pl~cosg!QlF2~ t2t82 i e!21r 21r 82

2rr 8
G ,

~A4!

where we have used in the last step the formulas

(
m52 l

l

Ylm~u,f!Ȳlm~u8,f8!5
2l 11

4p
Pl~cosg!,

with cosg5cosu cosu81sinu sinu8cos(f2f8), and@25#

E
0

`

dvv j l~vr ! j l~vr 8!e2 iv(t2t8)

5
1

2rr 8
QlF2~ t2t82 i e!21r 21r 82

2rr 8
G .

We will simplify Eq. ~A4! later.
Next we consider the component

Gufuf~x,x8!5
sinu sinu8

4
ẽ i j ẽ i 8 j 8Gi ji 8 j 8~x,x8!,

where the anti-symmetric tensor onS2, ẽ i j , has the compo-
nent ẽuf5(sinu)21. ~This definition differs from that of
Regge and Wheeler@28# by a minus sign.! Only the modes
Am

(2; v lm) contribute here. First, we havewv l
(2)(r )

52vr j l(vr ). Then sinceRv l
(2)(r )5wv l

(2)(r ) for p52, we
find

Ai
(2; v lm)52vr j l~vr !Yi

( lm)~u,f!e2 ivt, ~A5!
12400
nt

where the transverse vector spherical harmonicsYi
( lm) are

given by

Yi
( lm)5

ẽ i j ¹̃
jYlm

Al ~ l 11!
. ~A6!

The corresponding field strength is given by

1

2
ẽ i j Fi j

(2; v lm)52Al ~ l 11!vr j l~vr !Ylm~u,f!e2 ivt.

~A7!

Then in exactly the same way as forGtrtr , we find

Gufuf~x,x8!5
sinu sinu8

8p2 (
l 51

`

l ~ l 11!~2l 11!

3Pl~cosg!QlF2~ t2t82 i e!21r 21r 82

2rr 8
G .

~A8!

On the other hand one can calculateGabgd(x,x8) using
plane wave modes. In the Cartesian coordinate system th
given in components as~see, e.g., Ref.@29#!

Gtata
(C) ~x,x8!524p$112@~za!22~z t!

2#j22%G6
1~x,x8!,

~A9!

Gtatb
(C) ~x,x8!528pzazbj22G6

1~x,x8!, ~A10!

Gtaab
(C) ~x,x8!5Gabta

(C) ~x,x8!528pz tzbj22G6
1~x,x8!,

~A11!

Gabab
(C) ~x,x8!54p$112@~za!21~zb!2#j22%G6

1~x,x8!,

~A12!

Gacbc
(C) ~x,x8!58pzazbj22G6

1~x,x8!, ~A13!

where a,b,c take valuesx,y,z with a, b and c being all
distinct ~no summation convention is used here! and za

5xa2x8a. We have definedG6
1(x,x8)5(4p3j4)21, where

j25~ t2t82 i e!22~x2x8!22~y2y8!22~z2z8!2

5~ t2t82 i e!22r 22r 8212rr 8cosg. ~A14!

The componentsGtrtr in spherical polar coordinates can b
obtained from the Cartesian ones~A9!–~A13! by using stan-
dard tensor transformation:
8-11
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Gtrtr ~x,x8!5
4p

rr 8
~~xx81yy81zz8!j2

12@~xy82x8y!21~xz82x8z!2

1~yz82y8z!2# !
G6

1~x,x8!

j2
,

5
1

p2j6
$@~ t2t82 i e!22r 22r 82#

3cosg12rr 8%. ~A15!

Similarly, we find

Gufuf~x,x8!5
r 2r 82sinu sinu8

p2j6

3$@~ t2t82 i e!22r 22r 82#cosg12rr 8%.

~A16!

Equations~A15! and ~A4! and Eqs.~A16! and ~A8! can be
shown to agree by using the formula

(
l 51

`

l ~ l 11!~2l 11!Pl~ t !Ql~z!5
2~ tz21!

~z2t !3
, ~A17!

which can be proved by applying (d/dt)@(t221)d/dt# on
both sides of the well-known formula

(
l 50

`

~2l 11!Pl~ t !Ql~z!51/~z2t ! ~A18!

and using the Legendre equation satisfied byPl(t).

APPENDIX B: A DERIVATION OF EQ. „4.19…

Define

F~z![(
l 51

`
2l 11

l ~ l 11! Fd

dz
Ql~z!G2

. ~B1!

By the Legendre equation satisfied byQl(z), we have

d

dz H ~z221!2Fd

dz
Ql~z!G2J

52l ~ l 11!~z221!Ql~z!
d

dz
Ql~z!. ~B2!

Hence,

d

dz
@~z221!2F~z!#5~z221!

d

dz H (
l 51

`

~2l 11!@Ql~z!#2J .

~B3!

Now recall that@5#
12400
(
l 50

`

~2l 11!@Ql~z!#25
1

z221
. ~B4!

@This can be obtained by squaring both sides of Eq.~A18!
and integrating over the variablet from 21 to 1.# By sub-
stituting Eq.~B4! in Eq. ~B3!, we obtain

d

dz
@~z221!2F~z!#5~z221!

d

dzF 1

z221
2

1

4 S ln
z11

z21D 2G
52

2z

z221
1 ln

z11

z21
, ~B5!

where we have used

Q0~z!5
1

2
ln

z11

z21
. ~B6!

Integration of Eq.~B5! leads to

~z221!2F~z!5z ln
z11

z21
221C, ~B7!

where C is a constant. Recalling thatQl(z);z2 l 21 as z
→`, we find that the left-hand side tends to zero in th
limit. ThereforeC50. Hence,

F~z!5
1

~z221!2 S z ln
z11

z21
22D5

2Q1~z!

~z221!2
. ~B8!

APPENDIX C: ABSORPTION CROSS SECTION
IN SPHERICAL POLAR COORDINATES:

A DERIVATION OF EQ. „5.1…

We consider the divergence-free vector eigenfunctions
the Laplacian on the (p11)-dimensional Euclidean space
That is, we examine the solutions of the following equatio

¹b~¹bBa2¹aBb!52v2Ba ~C1!

and

¹aBa50. ~C2!

Let x5(x1 ,x2 , . . . ,xp11) be the Cartesian coordinate
There are plane wave solutions of the form

Bj
(C; v k̂ê)5 ê je

ik•x ~C3!

with v.0, wherek̂ is a unit vector andk5v k̂, and ê is a
polarization unit vector orthogonal tok̂. We define

~B(1),B(2)!E[E dp11xB(1)
aB(2)a, ~C4!

for any vectorsBa
(1) andBa

(2) on this space. Then

~B(C; v k̂ê),B(C; v8k̂8 ê8)!E5~2p!p11ê• ê8d p11~k2k8!.
~C5!
8-12
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Now, suppose thatBa
(P; vk) are solutions of Eqs.~C1! and

~C2! with a discrete labelk satisfying

~B(P; vk),B(P; v8k8)!E52p dkk8d~v2v8!. ~C6!

Suppose that the plane wave solutions are expanded as

Ba
(C; v k̂ê)5(

k
a~v,k̂,ê; k!Ba

(P; vk) , ~C7!

wherea(v,k̂,ê; k) are constants. As can be seen from t
mode analysis in Sec. II, a solution of Eqs.~C1! and ~C2!
satisfies the normalization condition~C6! if its incoming an-
gular components at larger areBi;r 2p/2e2 ivrYi , with the
spherical harmonic onp-sphere Yi being normalized by
*dVpȲiYi51. ~The componentBr can be shown to be sup
pressed by an extra power ofr.! Thus, if we define the flux

so that the solutionBa
(C; v k̂ê) has a unit flux, then its conten

of the incoming modeBa
(P; vk) is ua(v,k̂,ê; k)u2 per unit

time.
By using orthonormality of these solutions, we find

a~v,k̂,ê; k!2p d~v2v8!5~B(P; vk),B(C; v8k̂ê)!E.
~C8!

From this one readily finds

ua~v,k̂,ê; k!u2~2p!2vpd~v2v9!

5E
0

`

dv8 v8p~B(P; vk),B(C; v8k̂ê)!E~B(C; v8k̂ê),B(P; v9k)!E.

~C9!

Now, the average ofē̂ je
iv8k̂•xê le

2 iv8k̂•x8 over the polariza-
tion vectors is

1

p
~d j l 2 k̂ j k̂l !e

iv8k̂•(x2x8)5
1

p S d j l 2
1

v2
] j] l8D eiv8k̂•(x2x8),
D

s.

v

12400
e

where the partial derivative] j is with respect tox whereas
the partial derivative] l8 is with respect tox8. Since the

modesBa
(P8 vk) are divergence-free, these derivatives can

dropped when we average Eq.~C9! over the polarization
vectors. By averaging Eq.~C9! over ê and k̂ and then using

E dv8 v8pdk̂eiv8k̂•(x2x8)5~2p!pd p11~x2x8!,

~C10!

we find ua(v; k)u2, the average ofua(v,k̂,ê; k)u2 over k̂

and ê, as

ua~v; k!u2vpd~v2v9!5
~2p!p21

pVp
~B(P; vk),B(P,v9k)!E.

~C11!

Then from Eq.~C6!, we find

ua~v; k!u25
~2p!p

pVpvp
. ~C12!

Thus, if a plane wave has a unit flux, it contains the inco
ing mode with labelk given by Eq.~C12! per unit time on
average.

The angular componentsAi of physical modes I are gra
dients of scalar spherical harmonics. On the other ha
physical modes II are divergence-free vectors on
p-sphere. LetMl

(1) and Ml
(2) be the multiplicities of these

two types of modes with a given angular momentuml. Then
the number of physical modes I with angular momentuml is
Ml

(1) and that of physical modes II isMl
(2) . Then, if there is

a plane wave with a unit flux, the content of physical mod
I and II with angular momentuml are@(2p)p/pVpvp#Ml

(1)

and@(2p)p/pVpvp#Ml
(2) per unit time, respectively. There

fore, if the absorption probabilities of physical modes I a
II by a spherical black hole areP l

(1) andP l
(2) , respectively,

then the absorption cross section is given by Eq.~5.1!.
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