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We discuss the Gupta-Bleuler quantization of the free electromagnetic field outside static black holes in the
Boulware vacuum. We use a gauge which reduces to the Feynman gauge in Minkowski spacetime. We also
discuss its relation with gauges used previously. Then we apply the low-energy sector of this field theory to
investigate some low-energy phenomena. First, we discuss the response rate of a static charge outside the
Schwarzschild black hole in four dimensions. Next, motivated by string physics, we compute the absorption
cross sections of low-energy plane waves for the Schwarzschild and extreme Reissner-idotistkoholes
in arbitrary dimensions higher than three.
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I. INTRODUCTION spacetime. Then, we calculate some low energy quantities
The prediction that black holes should thermally evapo-n electrodynamics outside spherically symmetric black
rate[1] has sparked much interest in quantum field theory irholes. First, we review the calculation of the response rate of
curved spacetimes. One of the difficulties in studying fieldsa static charge outside the four-dimensional Schwarzschild
in Schwarzschild2] and other black hole spacetimes, evenblack hole in the Unruh vacuuf®]. Next we calculate the
when the fields are non-interacting, stems from the fact thabw energy absorption cross sections of photons for the
the solutions to the field equations are functions whose propSchwarzschild and extreme Reissner-Nordstidack holes
erties are not well knowh.In the low-frequency regime, in arbitrary dimensions higher than three, extending some
however, the situation is much simpler in Schwarzschildresults obtained by Gubsdd0] using a method 11,12
spacetime. In this regime, the mode functions of the massledsased on the Newman-Penrose formal[<r8.
scalar field are well knowp4]. The present authors and Su-  The paper is organized as follows. In Sec. Il we present
darsky used this fact to find the response rate of a statithe mode functions of the electromagnetic field in the space-
scalar sourcg5] and an analytic approximation for the emis- time of a spherically symmetric black hole in our modified
sion rate of low-energy particles from classical sourf@s Feynman gauge. Then we discuss the corresponding quan-
outside the Schwarzschild black hole in closed form. On théum theory and show how the Gupta-Bleuler condit{sae,
other hand, the field equations of the electromagnetic field ire.g.,[14]) is implemented to obtain the physical states. In
a black hole spacetime are not decoupled and are difficult t&ec. Il we compare the physical modes in the spherical Cou-
analyze in the Lorenz gauge. However, if we require the fieldomb gaugd 7] with the ones obtained in the modified Feyn-
to be divergence-free on a two-sphdthe spherical Cou- man gauge. In Sec. IV we review the calculation of the re-
lomb gaugg the equations for the physical modes reduce tosponse rate of a static charge outside a four-dimensional
decoupled scalar field equations. Furthermore, solutions iSchwarzschild black hole. In Secs. V and VI we present the
terms Of familiar SpeCial fUnCtionS can be found in the IOW' photon absorption Cross Sections by the Schwarzsch"d and
energy regime. These observations enabled us recently ireme Reissner-Nordétroblack holes of arbitrary dimen-
calculate the response rate pf a static electric charge outsidg,g higher than three. In Sec. VIl we summarize the main
a Schwarzschild black hole in closed fofi. . results and make some remarks. In Appendix A we compute
_In this paper we examine free quantum electrodynamicg,me components of field-strength two-point function in
in static spherically symmetric spacetimes of arbitrary di-\jinkowski spacetime using spherical polar coordinates and
mensions in a modified Feynman gaud&his gauge is ghoy that they agree with those obtained using Cartesian
closely related to théAo=0 gauge used by Cognola and .,qrdinates. In Appendix B a summation formula for Leg-
Lecca[8] and reduces to the Feynman gauge in Minkowskigngye functions used in Sec. IV is derived. In Appendix C, a
formula which relates the absorptigmobability to the ab-
sorptioncross sectioris derived in arbitrary dimensions. We
Isee Ref[3] for some known properties in the Schwarzschild use the metric signature— — - - - —) and the natural units
case. with G=A=c=1 throughout this paper.
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Il. GUPTA-BLEULER QUANTIZATION IN A MODIFIED 1 f1 P 1.
FEYNMAN GAUGE —~ ?ﬁtzAt-f— \[ﬁ_pé’r{\/ﬁﬁrAt +=V2A=0, (29
In this section we analyze the field equations for the elec- ' '
tromagnetic field in spherically symmetric and static space-
. 4 " ) 1 1 ff rP 1~
times in a modified Feynman gauge. Then we discuss the — _ Z2a 1 Zj \/:_[;) — A |+ ZVv2A
Gupta-Bleuler quantization in this gauge. U I (R N T I
The line element of the spacetime we study is L .
dr?=f(r)dt?*—h(r)dr?—r?ds3, (2.1 ol 2 V'A=0, (2.10
wheredsﬁ is the line element of a unfi-sphere. We assume . 5
thatf(r) andh(r) are positive for >r,, and that botH (r) _ 1072A-+ :a ( \/frpZO—, A-) _r, f oA
andh(r) ! have simple zeros or both have double zeros at RN T h T fh T 20T
r=ry, wherery is the horizon radius. We also assume that
f(r),h(r) =1 asr—o. (Most results in this section, how- 1 - - ~ ~.
ever, are independent of these assumptjdret. us introduce + r_z[V'(Vin —ViA)+ a6 (VIA)]=0, (211
the Wheeler tortoise coordinaté by
dr* h whereV2=7;; V'Vl
ar \/; (2.2 We shall now describe a complete set of solutions

Al @™ we assignk the value 0 for what we call the

Thenr*(r) is a monotonic function with domairr § , + ) non-physical modes, 1 or 2 for the physical modes and 3 for

and range in £ %, +=). Let us define for any two functions the pure-gauge modegThese modes will be given below.
q,(r*) andg,(r*) the inner product The labeln distinguishes between modes incoming from the

past null infinity 7~ (denoted witln=«+) and those coming

Fo o — out from the past horizoti = (denoted withn=—).2 The
(01,02) = fo dr* gy (r*)ga(r*), (2.3 solutions WithAELOH; wlm) — g (u#t), and
where the overline denotes complex conjugation. AL M =REAV ()Y, e ot (212
The Lagrangian density of the electromagnetic field in a . )
modified Feynman gauge is will be called “non-physical modes” because they satisfy

the field equation$2.9—(2.11) but not the gauge condition

1 1, G=0. HereY), is a scalar spherical harmonic on the unit
Le=N—g| —7F, F*"—5G (2.9 i L Doy _
4 2 p-sphere  with V<Y, ,=—I(I+p—1)Y,,, Wwhere |
. =0,1,2... and m denotes a set ofp—1 integers
with (my, ... my_y) satisfyingl=m,_,=...=m,=|m,|. (See
o u Ref.[15] for a concise description of spherical harmonics on
G=VHA,+K*A,, 29 the p-sphere. They are normalized as
where the vectoK* is independent oA, . Hence the equa- o
tions of motion are f dQuY Y m =617 Omum (2.13
R+ VEG—-KAG=0. . . .
v.F VAG-KAG=0 2.8 whered(}, is the volume element of the ungtsphere. The
M= ' 2 p _
K“=(0,f'/(fh),0,0), 2.7 w_+\ﬁii(r_i)_|(|+p 1)]R(°|“)=0
2 ® '
in which case Eq(2.5) is written as f hredrifhdr r 2.14
GzlatAt— \ﬁiﬂr iAr _i%iAi. (2.9 V\{gn)will determine the normalization of.the functions
f hre 'l Jfh r2 R, " (r) later. The pure-gauge modes are given as

Here i denotes angular variables on the upisphereSP Af“; w'm>:VMA(nwlm), (2.15
with metric 7; and inverse metricy" [with signature

(+---+)], V, is the associated covariant derivative $h

and V'=71V,. This choice fork” is convenient because 2Here we treat only the solutions proportional €6t with
the equation foA; decouples from the other ones. The field 0. Thus, if there is any nonzero static field, we will be consider-
equationg2.6) become ing fluctuation about that solution.
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where In order to discuss Gupta-Bleuler quantization of this field
it is convenient to introduce a generalized Klein-Gordon

A(““"m)—i—R(Om(r)Y oot (2.16 product of classical solutions of E(R.6). We first define
_(1) wl Im . .
1 dLg
i i i | A= ——= " = [Frrp iG], (2.2
[As usual, the pure-gauge modes satisfy the field equations =g VA [ g'G], (2.29

(2.9—-(2.11) and G=0.] The other independent solutions

(A=1,2), which represent physical degrees of freedom, i'ewhereG is qiven in Ea.(2 Note thatV—gII' is the
which satisfy the field equations ar@=0 but are not pure . o0i-o) cc?njugate mg.nae.r?ﬁm Af. We writge
gauge, will be chosen to havg=0. Those withA,#0 are '

given as H(g)“”zﬂf‘leM:A(g) (2.25
"
(1n; wlm) _ p(1n) —iwt .
At =R,V Yime ', 219 for any solutionAlD=AQ" “™ - For any two (compley
where solutionsAﬁf) andAEf/) we define
w2 1(l+p—1) WH AW A(é’)]Ei[mn(é’)w_]‘[(DwA(é’)]_
- p R(ln)(r) 1 v v
f r2 wl (226)
The field equations ensure that this current is conserved. As
1d fopd P _ a result, the generalized Klein-Gordon inner product defined
+ - a H a _Rwl (r) =0. b
r fh y
(2.18

(A(é),A(Z’))EJ dEMW“[A(f),A“’)], (2.27)
Note here that the conditio®=0 cannot be solved if =
=0. Hence, we have=1. The corresponding angular com-
ponents can be found by solving the conditi@s0 as

i I(I+p=1) Vhdr| /fn ol

wheredX ,=do n,, is independent of the Cauchy surface
[17]. (Heredo is the volume element of the Cauchy surface
S with a normal unit vectom®.) Note that @A) A"
aiYim €' =(AY) A@). This guarantees that the norm defined

2.19 through_ Eq.(2.27)_ is real_(and pg_sitive definite for the s_ubset

' of physical solutions with positive frequencyBy working

We call these modes “physical modes I.” The other set oféxplicitly with the definition(2.27), we find in general that
physical solutions can be obtained by letting=A,=0 and 0N at=const surface

AN oIm) — RE) (pyy(Img-iot (2.20 (A(i),A(é’))z_if dPtixy—gf lgn”
where — , I
X(ALGAL) - AL AL) . (2.28
{wz + ! d ( \ﬁ p-2 d ) It is important to note that pure-gauge modes are orthogo
— —rPme— isi ure-gau -
f Jthyp=2dri Vh dr nal to any mode satisfyingg=0 and, as a resulty ,F"*

=0. This can be shown as follows. Suppose mgf and
R&V(r)=0. (2.2) A" satisfy the condiionG=0. Then sincelI!¥V#=
—F#|a,—a0, and similarly for A"), the inner product
"

Here, theY{"™ are divergence-free vector spherical harmon-(2.27) can be written as&?,A¢")=(A® AE)).  where
ics on the unitp-sphere satisfying

(I+1)(1+p—2)
2

r

-~ ~ A ALY E-f AR v _EQ@Qrapld).
Vk(Vle(lm)—V|Y(klm))=—(|+1)(|+p—2)Yl(|m) ( ’ )|nv I EdE,u.[ v v ]

(2.22 (2.29
and Now, letAl?=v , A be a pure-gauge mode. Then
J' de%ini(lm)Yj(wm,): S Sy - (2.23 (A(Z),A(g’))invzi LdE#F(‘”)V“VVW

(See, e.g., Refd15,16.) We call these modes “physical ) — n,

modes I.” Physical modes | and Il obtained hegnd re- :'Ldzﬁvu(f\m SRR

stricted to four dimensionsare identical with those in the

Ap,=0 gaug€8]. =0 (2.30
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sinceF €)% is anti-symmetrié Thus (A, A =0 if A up to a phase factor, wher@?=w?—V[r*(ry)]=0 and
is a pure-gauge mode ard?") is a physical or pure-gauge R'y ’ andR ) are constantgwith |R §7)|=|R 7)),

mode, i.e., we have
"'l - 0 . 0— ,
(AGR: olm) A@n"; o'1'm')y g (2.3) (57,680 =(l47 .60y =278(0— 0").

(2.37
(A(Sn; wlm)’A(ln’; w'l'm/)):O, (A(3n; wlm),A(Zn’; w/llm')) =0.

(2.32
Cw T w'l'm’ _ 0 !
Next let us examine the inner product of the non-physicallA®" '™, AN @MYy = — 2 6( oM ) B it S

solutions. By letting = A8, 81 Sy S0 — @)
nn’ "Omm’

Now, by using Eq(2.28 we find

ROV(N=VF r P2 (r), (233 (2.39
we find from Eq.(2.14 where we have used(w—o')=(w/w)d(w—w'). Noting
, that AO™ @M gnd AGM @M haye the samé-components,
w2t d —Vo(r*)) <P(0|")=0 (2.34 we immediately obtain from Eq$2.28 and(2.31) that
dr*z ¢ , r e’ r
(A(On; wlm),A(Sn ro’l'm )): _47Tw5nn/5||/6mm/ 5((1)_(1),)
wherer* is given in Eq.(2.2) and (2.39
o fI(I tp-1) flp2—p) 2 Next let us examine the physical modes. By letting
olF () ]= 2 h 2 52 /
r Ar 2f [(I+p—1) i
RO (r)= —————(fh) ¥ P2 1600(r),
p ! h' f” f'n’ (24(»
*E(T+W)+E‘—4fh : _
we find from Eq.(2.18
For spacetimes wherr) andh(r) ! have simple zeros at 5
r=ry, we find Vo[r*(ry)]#0 in general. IfVq[r*(ry)] 2, NV (r* () _q 2.4
>0, then the non-physical modes coming out from the @ dr*?2 (1) i ' (2.49
horizon have frequencies satisfyings?>Vo[r*(ry)].
In particular, for Reissner-Nordstro spacetime in Wwhere
(p+2)dimensiond 18], where
I(l+p—1 -2) f
AR (e Vil ()=t P2
f(r)=h(r)1:{l—(7) } 1—(7) r 4r
(p—2) f [f" h’
with r2 *=M=M?—Q? (so thatry=r), we find T4 hr\f n/ (2.42
Vo[r*(r )]:(p_l)z (= P1)2 (We note thatV,;—0 asr—r, for Reissner-Nordstr
0 T r )2 r, ' spacetime unlik&/,.) We first note that the modes " «I™

are orthogonal to both the non-physical and pure-gauge
As expected, we havgp(§), 0% ))=0, i.e., the solutions Modes. Next we note

of Eg. (2.34) incoming fromH™ and those incoming from (1n: olm) A’ o'1'm) an @n’)
J~ are orthogonal to one another with respect to the innerf(A™™" ™, A )=20(@ui 1@ r11 ) O Ot Oy -

product defined by Eq2.3). By normalizing these solutions (2.43
so that izinap (1M
Thus, by normalizingp,;”(r) as
0=) e ) (el @™ 0-)g-ior* _
Pl w/w(e' ' +Rw| e 'r ) (r*_) oo), gDfujli%)weiwr*_|_IR/SU:|iH)e—iwr* (r*_>—oo), (244)
(2.35
qDfl?f_)%efiwr*_i_,R(mor—)eiwr* (r* = +), gofulf)me_i‘”r*-l—'lziﬁe)eiwr* (r* —+4o0),
(2.36 (2.45

we have

*Note that Eq.(2.30 would hold even ifA() was an arbitrary ~ (AIM @Im) AN & V'M)y = 470,58 S (@ — ).
function. This shows thatA(©), A)). , is gauge invariant. (2.46

124008-4
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Finally, we let
REM(ry=r (P~ 272pG0 (r),
Then from Eq.(2.21), we have

2

d
o dr*2 _Vz(r*)) @Ejn)za

(2.47)

where
. (I+1)(1+p—2) (p—2)(p—4)
VA (0] = g
(p—2) f (' h’
T3 m(T‘F) (248

(We again note that,—0 asr—r , in Reissner-Nordstra
spacetime.Notice thatV,;=V, if p=2. Hence, in the four-
dimensional casep*"

ol

(r) and ¢3V(r) satisfy the same
equation. These modes can easily be shown to be orthogonal

PHYSICAL REVIEW D63 124008

By using Eq.(2.59 in Eq. (2.53 one finds
MP1P2[ a al,ps]Mp3p4=47Tpr1p45(w—w').

(2.595

wpy!

Then, sinceM??’ is invertible in our case, we find

(8,8, ]=470(M 1Y), dw-0'). (250
Note here that we immediately havye,,,,a, , ]=0 for
w,0'>0 by lettingw’ ——w' in EQ. (2.56 . By using the
Klein-Gordon inner products computed above, we find the
following commutators:

[, ali 1= —[am,aln)t ]

m wlm 1 "I'm’
:5nnr5||75mmr 5((1)_(1),), (257}
! T ’ T
[alim alnn1=ralm a0
:5nn75||/5mmr 5((,0_(1),) (258)

to the modes previously discussed. By normalizing the funCyith all other commutators vanishing. The Gupta-Bleuler

tions 3V(r) in the same way asp}"(r) [see Egs.

(2.44,(2.45], we have

(AN elm) AN 0™ = 4700 8 By Sy S0 — @)
(2.49
In order to quantize the field,,,
time commutation relations on the fiefkiM and momentum
IT'*# operators:

[A(t,%),A,(t,x")]=[TT%#(t,%),[1%(t,x")]=0,
(2.50

H 4

N ~ )
[A (60, [T(t,x' )] =~ 82 L (x—x'),
14 \/_

(2.51

wherex andx’ represent all spatial coordinates. The fiélg

can be expanded using the modes we have obtained before; (on)

n +o  dw
— _ ——  pAlwp)
A, (t,x) ; f 4W|w|Aﬂ (tx)a,,, (252

WhereAL“’”) is proportional toe™'", AEL—wP)EAM(“’Pj,

_ At
=awp

a_,,

form as is the case for scalar fieldk9]:

[(A(g),A),(A,A“’))]=(A(5),A(§’)). (2.53

Since the inner product must Heindependent, the inner

product of A%?) and A(*'*") can be nonzero only if
=w'. Thus, we can write

(AlR) AL PN =MPP S(w—w'). (2.54

we impose the equal-

condition[14] requires that any physical stgtghys satisfy

G|phys =0, (2.59
where G*) is the positive-frequency part ofs=V*A,
+K“AM. Since this quantity is nonvanishing only for
AL @™ this condition is equivalent to

al®|phys=0 forall(n,w,I,m) (with w>0).

(2.60

(We let >0 below) The Boulware vacuunO) [20] is
defined by requiring that it be annihilated by af}\") opera-
tors \=0,1,2,3). Note that the states obtained by applying
any number of creation operators excludiag”" are all
physical states. Any state of the fora}3™'|phys is un-
physical because

a(Sn)T|phy$: — S 81+ Sy 8(w— ) | phy9 #0.

o'l'm' @ olm

Note also that the physical states of the foafj™'|phys
have zero norm and are orthogonal to any physical states.
Thus, as is well known, a physical stdfghys) can be re-
garded as equivalent to any state of the fofphys)

andp labels discrete quantum numbers. The commu~+a{j"|phys). We can take as the representative elements
tation relations(2.50,(2.51) are equivalent to the following the states obtained by applyi
commutation relations in the “symplectically smeared”

AWt A=1,2, on|0).
Unphysical particles created @3 " will be in thermal
equilibrium in the Hartle-Hawking vacuuf21] for a static
black hole if we require the gauge-fixed two-point function
be non-singular on the horizons as in the scalar ¢agg
There will also be a flux of unphysical particles in the Unruh
vacuum. Therefore, technically speaking, the Hartle-
Hawking and Unruh vacua are unphysical if we impose the
Gupta-Bleuler condition using the positive-frequency notion
in the Boulware vacuum. Fortunately, the Becchi-Rouet-
Stora-Tyutin(BRST) quantization does not suffer from this

124008-5
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problem since the physical state condition does not refer tgnhe componentA§l'”; “m can be found from Eq(3.1).
any notion of positive frequenci3]. This issue, however, - (Then, one can readily show thét¢F ,,=0.) Indeed one can
will not concern us in the following, since all our calcula- verify that these modes are related to the ones in the modi-

tions will be at the tree level. _ fied Feynman gauge by a gauge transformation:
Mode expansions in spherical polar coordinates are not

very widely used and are quite different from the ordinary AN @lm) A (105 wlm) _ A (10 olm) _ g g (1n; olm)
method using Cartesian coordinates. For this reason, we s m m r ’(3 3
compute in Appendix A some components of field-strength '
two-point function in four-dimensional Minkowski space- \where

time using spherical polar coordinates. We find that they

agree with the standard results obtained in Cartesian coordi- 2 ol r2-p \ﬁ d/l rP . »
nates, as they should. o “l+p-1) hdr( \/mel Yime '
(3.9
lll. THE PHYSICAL MODES IN THE SPHERICAL
COULOMB GAUGE This gives us

As we have seen, the modified Feynman gauge defined by i or2-=p fd/ (P
Eq. (2.7) is useful in finding explicit mode functions. We Agl’n: wlm):—\ﬁ_(_R(lln) Yime et
also noted that this gauge results in the same physical modes I(I+p—1) Vhdr \/ﬁ ¢
as in theA,=0 gauge. There is another convenient gauge for (3.9
finding physical modes, i.e., the spherical Coulomb gauge, -
V'A;=0. (One can readily show that any vectby, is gauge- AN wlm) et 2 RUNY, g~iot, (3.6)
equivalent to a vector satisfying this gauge conditidmet us ' I(I+p—1) f " M
discuss the relation of the physical modes obtained in this
gauge and those found in the previous section. IV. RESPONSE RATE OF A STATIC CHARGE OUTSIDE

It is clear that the physical mode\éf”; “IM in the previ- A FOUR-DIMENSIONAL SCHWARZSCHILD
ous section are also in the spherical Coulomb gauge. The BLACK HOLE

other independent physical modes must haye 0 in this ) ) i i
gauge. First we note that i, and A, are assumed to be Here we briefly review, in the context of the previous two

spherically symmetric, then we find from the equationsS€ctions, the calculation of response rate in the Unruh
VAF,=V#F,=0 that F, is tindependent and Vacuum [9] of a static electric charge in Schwarzschild

rP/Jfh)F is r-independent. Hence, if in addition the spacetime performed in Refr]. , .
fnodgérg assumed Ec)o be proportionabté® with w0 The line element of the four-dimensional Schwarzschild

they must be pure gauge becausg =0. (A time- spacetime is
independent solution ha, «/fh/rP. This will represent a 2 2 1402 o2
static Coulomb field, which we will disregard herdo find dr?=f(rde—f(r)~ldr*~r’ds; .0
the solutions which are not spherically symmetric we Ietvvith f(ry=1—2M/r whered%—d02+sin20d¢2 is the line
*|(l)t . s — . - y -
Av A Yime . From the equatioV#F,;=0 we find element of the unit two-spheréThe horizon radius is
=2M.) We compute the response rate of the static electric

] _\/? 1 \/? -2 charge to the Hawking radiation present in the Unruh
—lwA= ﬁrp_z‘?r ﬁr Ar|. 3.9 vacuum. The charge is placed at, §,¢)=(rq,0q,¢9) as

described by the current density
By substituting this andd;=0 in V#F , =0, we find that

A ’ B - q
AL elm = M (r)y, e~T*t (here we use primed indices jh=of 5 ——08(r—rg)d(0—00)S(dp—). (4.2
to refer to the spherical Coulomb gaugehere resing

Since this current density is static, it couples to photons with
o? 1(l+p—1) 1'n zero energy. It turns out that the rate of response of this
T_r—z Rai (1) current to a single photon vanishes. However, the Bose-
Einstein distribution of the thermal photons coming out of

1d f 1 d f ) the horizon diverges at zero energy. This makes the rates of
+ Tar \[ﬁﬁ a( \/%rp‘ZRE}, n)(r)) =0. absorption and stimulated emission indefinite. This ambigu-
r ity can be resolved by replacing the current denéity) by
3.2 i*=(j.i",0,0), where
2 qcosEt
o | o R PP PR PP
Again, we only treat solutions proportional €&'“" with w#0. r<sin

124008-6
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_ J2qEsinEt d da,, 2 (z+1)°]
=, O T0)d(0- 0039 g, 44 (1=2%)—= | +{ 11+ 1) = o5 ~M2o* ———|q,)
=0, (4.10

Here,®(x)=1 if x>0 and®(x) =0 if x<0. (The factor of

J2 is necessary to make the time average of the squarasherez=r/M—1. For smallw, the wave is almost com-
charge equal tay®.) We take the limitE—0 in the end, pletely reflected back to the horizon. This implies that
assuming that the rate is continuoussat 0. This continuity

has been verified in Minkowski spacetirf@4]. o3~ -2 sifw(r* —T,)]~—2wr* +const
Since the current4.2) is conserved, it does not interact
. . . . 3
with pur%%?uge particles corresponding to the creation op- (r—ry<o?y,|or*|<1), (4.11
eratorsa,, . It does interact with the states created by
alm" but these have zero norm and do not contribute tavherer , are constants. The minus sign has been inserted for

physical probabilities. Hence, as usual, we need to considéater convenience. The Wheeler tortoise coordindtede-
only the physical modes. Note also that only physical mode$ined by Eq.(2.2) is written in Schwarzschild spacetime as
| are relevant becaus = A, =0 for physical modes II.

Now, the transition amplitude from the Boulware vacuum
|0) to the statd1n; wlm)=al""|0) by the classical current
densityj# is given by

r
r*=r+2M In(m—l). (4.12

Thus, Eq.(4.11) can be written as

Zlm:if d*x\=gj*(1n; wIm[A,[0). (4.5 oA~ —AMwin(z—1) (r—ry<w?d, |or*|<1).
(4.13
Let us recast Eq4.5) as Now, Eq. (4.10 can be solved explicitly forw=0. By
choosing the solution for q,; such that ¢{™)
Agm=2m T jn6(w—E), (4.6)  =[r/(2M)]q,; tends to zero ag— +%, we find in the
small w limit

where7}), will be calculated later. The corresponding tran- (-1) dQy(2)
sition rate, i.e. transition probability per asymptotic proper (1-)_ N 2= 1(Z
time, is expressed as Pol Mo(z+1) Qi(2) [(I+1) dz |

(4.19

where this has been normalized such that E4sl3 and

. . (4.14) are in agreement at~r .

Now we take into account that in the Unruh vacuum there is  From gauge invariance of the amplitu@5) it is clear

a thermal flux of photons coming out of the horizon with {nat we may use the modes in the spherical Coulomb gauge,

inverse temperaturg8=8=7M (with no particles coming A =i oim) place of those in the modified Feynman
from infinity). In the limit E—0, only the absorption and ° # A(l;? oM Th th tributi f th
stimulated emission of these thermal photons contribute gauge Ay X en € ~contribution — from €

the response rate. For this reason, we treat only the mod&gcomponent will be suppressed in the low energy limit due

coming out of the horizonr{=—). The total response rate to extra factors ofw [see Eq.(3.6)]. Therefore we need to

due to these modes with fixed angular momentum, in whicﬁ:onsti)defr onlg 'the;]compﬁtla.nt.inf this :iEmit. 'ghfcor;ponegt
absorption, spontaneous and stimulated emissions are %fn e found in the smad limit from Egs.(2.40, (3.9 an

taken into account, is 14 as

Nm=2mT" |?8(w—E). 4.7

wlm

diw(z—1) dQi(2)

oo (l'—»;a)lm): —iwt
RE|m=f dwR;m(LJrl =27rcoth'[E|TETm|2. A [(1+1) dz Yim(6,#)e
0 efo_1 2 (4.15
4.9
where we have used the Legendre equation satisfied by
Thus, in the limitE—0 we find Qi(2). By using Eqg.(4.19 in Eq. (4.5 and comparing the
result with Eq.(4.6), we obtain
Roim= lim | 7¢,.|?/(2ME). (4.9
E—0 2wq(zp—1) dQi(zg)—
s N20a(zo—1) dQ( VY orde) (416

wim= | \/7
ml(I+1) dz
Next 7 g, will be calculated. The equation satisfied by
the functiong;(r)=(2M/r)¢A~)(r) can be obtained from wherez,=r,/M—1. Then we find theroperresponse rate
Eqg. (2.41) with p=2 as of the charge apsee Eq(4.9)]
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Roim 9A(zo—1)2 dQ(z0)]2 Equation(5.1) is derived in Appendix C.
= { } [Yim( 6o, b0) |2, For either physical modes | or Il, we have for large
Vi(rg)  aMI(1+1)Vf(ro) 412 (=r*) that[see Eqs(2.41) and(2.47)]

2 —
where the factor/f(ry) appears because here we are calcu- [w2+ d__ l(1+p—1)+ P(p )} } (Ae)(r) 0.
lating the transition rate per proper time of the charge. We dr? 4 r?

can sum ovet andm by using (5.4

l The asymptotic solution with the correct normalization, i.e.
> Yim(60,d0)|2= (21 +1)/(47) (4.189  with the coefficient ofe™'“" being one, is
m=—I

e ) =\27wrd |, p-1ylwr)  (ry<r). (5.5

and
- ) Thus, for smallwr
21+1 {dQ(2) 2Q4(2)
200D| dz | - 21z 41 PO N=Ci(r/ry) P2 (ry<r<o™), (5.
A derivation of this formula is given in Appendix B. Thus, where
Fhe total transition probability per proper time of the charge . N w1 FPP2 :
i = - |7
S T+ (pr D) 2 .7
+o | 2
Riot_ Roim _ 97a(ro) Q4(rg/M—1) Now, near the horizon, wher¥, <w? (A=1,2), these
im0 Jf(rg)  2a2 ' solutions behave likgsee Egs(2.41) and(2.47)]
(4.20 .
, U =DMe " (r—ry<o??d), (5.9
wherea(ro) =Mry “/{f(rg) is the proper acceleration of the
charge. where the constan8™ will be determined later. Hence, for

It is of course possible to work with the modes in the |wr*|<1 we have in this regions’, (r)~D™ and the
modified Feynman gauge directly and obtain the same resulibsorption probability is given b =|D™)|2.

If we do so, the contribution will come from the In order to find the coefficiend® , we solve the equa-
r-component of the current because theomponents of ons for<p(”‘_)(r) with @=0. For physical modes |, it turns

physical modes | vanish. out that the functionrPR{}~) satisfies a hypergeometric

equation with the variablev=1—(r/ry)P~*. Thus, we find

V. LOW ENERGY ABSORPTION CROSS SECTION in the smallw limit

OF THE SCHWARZSCHILD BLACK HOLE

(1<—) (1) 1-pl2p(_ _ _
Here we consider the Schwarzschild black holgi2 (=D (r/ry) F(=(+p=D/(p=-1),

dimensions given by the line elemef®.1) with f(r)=1 TR
—(ry/r)P~L. If the absorption probability of the black hole 1(p=1);1;w). .9

associated with physical modes |1 and Il @¢” andP(*’,  This function approache®(® for r—r,, as required. By
respectively, then the absorption cross section is given by ysing the formuld25]

(2m)P F(yI(B—a) _
MOPD M@ pR 5.1 Fla,B; W)~ ————(—w) ¢
o= pﬂpwplZ[ I 6 (@B VW)~ F gy —a) (W)
where| and w are the angular momentum and frequency, (a<p,—w>1) (5.10

respectively, of the modes arfd, 27r(p+1)’2/1“[(p+ 1)/2]
is the volume of the unip- sphere HereM andM 2) are
the multiplicities of the scalar and dlvergence free vector Ay =~DOEM(r/r ) P2 (rL<r<w !
spherical harmonics, respectively, on tpesphere. These eol (1) ) (T © )’(5 11)
multiplicities are given by(see, e.g., Ref§15,16]) '

in Eq. (5.9, we find asymptotically

where
_(@2+p=1)(I+p-2)!

M= TR : (5.2 I'[(2+p-1)/(p—1)]

(1)
o ST nira+2p-2p-01 12
2 1 ) By comparing Eqs(5.6) and(5.11), we obtain
+p—1)(I+p—1)!
=T D=2 (- 210-D1" ®3 PY=[C/E[V]. (5.13

124008-8
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Thus, the absorption probability behaves li@ ™.
Similarly, for physical modes II, we find in the smadl
limit
e () =DP(r/ry) P2 DR (= (1+1)/(p-1),
(I+p=2)/(p—1);1;w). (5.149
Then by using Eq(5.10 we find asymptotically

G (N=DPEP(r/ry) P2 (ry<r<o™),

(5.15
where
) I[(21+p—1)/(p—1)]
' TI(+p=2)/(p—DIT[(1+p)/(p—1)]
(5.16
By comparing Egs(5.6) and(5.15, we obtain
PP=[C /E2 (5.17)

Again, the absorption probability behaves liké'*P. There-
fore the physical modes with=1 give the dominant contri-
bution to the absorption probability, as expected.

By substitutingP{® andP{? in Eq. (5.1), we obtain the
total absorption cross section for low energy as

_erAH 2p[I'(p/(p—1N]*
77 2(p+ 1) [r((p+1)/(p—1))]2+1’ (>18

whereA,=Qrf; is the area of the black hole.

One would need to solve the differential equations satis-
fied by ) numerically to find the low-energy absorption

cross section for non-extreme Reissner-Norastrblack

holes® However, it is possible to calculate it analytically for
the extreme Reissner-Nordstncblack hole. We turn to this

problem in the next section.

VI. LOW ENERGY ABSORPTION CROSS SECTION
OF THE EXTREME REISSNER-NORDSTRO M
BLACK HOLE

The line element of the extreme Reissner-Nordstro

spacetime is given by Eq2.1) with f(r)=h(r) *=[1

—(ry/r)P 12 As in the Schwarzschild case, we have

QU r)=Cy(rIry) P2 for rp<r<owt
by Eqg.(5.7).

whereC, is given

Now, let us analyze the physical modes close to the hori-

zon. Concerning mode |, we write

2
JRRL G () PR
dr*Z (p_1)2r*2

wl

0’r*3>ry),

(6.

PHYSICAL REVIEW D63 124008

where we have used that the Wheeler tortoise coordirfate
[see Eq(2.2)] behaves in this region as

-1 *2r2
T*N—%. (6.2)

Hence we obtain

_ r*
qosuﬁg)%Dfl)\/ﬂ-Tst}l)(—wr*) (—wzr*3>rH)
(6.3
with
1/2

1 I(l+p—-1) 1 |
y=|o—— ) =Sy 6.4
4 (p-1)? 2 p-1 ©4

This solution behaves likBMe™"*™ (up to a phase factpr
very close to the horizon<{ wr*>1), where the effective
potentialV,; becomes negligible, as expected. Hence, the ab-
sorption probability isP{?=|D|2. Note that, for smalk
with positive v, one has

HS}l)(z)w— ir'(v) (;)v

o

(6.5

Hence,

—1)(r—r v—1/2
o 1~)~D(1)K<1){w}

IH
(wry) < —wr*<1), (6.6
where
v—1/2

2(p—1)

er

cw_ T

| Vm

Again, in order to determinB{*, we solve the equation for
@47)(r) in the smallw limit:

(6.7)

r 1-p/2
4 =nf| |

X(l—H_p—_:LW)(—W)”(pl), (68)

wherew=1—(r/ry)P" %, and we note that Eq(6.8) has
been normalized such that it agrees with E&6) near the
horizon. On the other hand, we find asymptotically

|
(1)
Pol l+p—1

(ry<r<w™ ).
(6.9

D,‘”K,‘”(L

1+p/2
rH)

SIt is possible to obtain a result in a closed form if one takes the

limit «—0 andr,—r _ simultaneously11].

By comparing this with Eq(5.6) we find

124008-9
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(I+p-1)C, 2 static charge outside the four-dimensional Schwarzschild
Pl=|——F— (6.10  black hole. It is easy to extend our result to the Schwarzs-
IK; child black hole in arbitrary dimensions, though we cannot

simplify the resulting infinite series. A closed-form expres-

(1) p+2lp/(p—1) i .. . .
We note thatP™/o wP"* . Hence the dominant con- gjon for the response rate of a static source has been obtained
tribution to the scattering cross section comes from Ithe 5 massless scalar field in four-dimensional Reissner-

=1 term: Nordstran black hole[26]. The extension of the results in
- this paper to the Reissner-Nordstrdlack hole will also be
P 4m°p possible in principle, but the result will probably not be ex-

! [(p—D)YP=II[(p+3)/2IT[(p+1)/(2p—2)]T? pressible(even as an infinite series of familiar special func-
tions in any dimensions.

Finally we calculated the absorption cross sections of low
energy photons by the Schwarzschild and extreme Reissner-
Nordstran black holes in arbitrary dimensions. The corre-
The contribution from physical modes Il can be found in asponding cross section of massless scalar particles is known
similar manner. By substituting E@6.2) in Eq. (2.47), we  to be equal to the horizon arg27] as long as the black hole
have near the horizon is spherically symmetric. No such universality holds for pho-

5 tons as our results and previous res{di§] show. It is inter-
e =  (+D(+p-2) esting that there are two modes, modes | and II, which be-
dr*? (p—1)2r*2 have differently in higher dimensions. It is also intriguing
(6.12  that the absorption cross section scales as a fractional power
of the energyw, i.e. asw? PT?®~1 in p+2 dimensions.
Then ¢~ will have the same form ag'}™) in Eq. (6.9  Finally, it would be interesting to compare the results here or

er

2

2+p+2/(p—1)
o o3

BV~0 (—w?r*3>ry).

w

except thatv in Eq. (6.4) is replaced by similar results obtained using our gauge with those in string
" theory. (See, e.g., Ref{10] and references therein for ex-
|1 N (I+1)(I+p=2) amples of such comparison.
4 (p—1)?
ACKNOWLEDGMENTS

For p=3, the contribution from physical mode Il is sup-

pressed compared to that from physical modes | since L.C. and G.M. would like to acknowledge partial financial
>yp. Forp=2, i.e. in four dimensions, Eq¢6.1) and(6.12  Support from CAPES through the PICDT program and Con-
satisfied byed™ and ¢@" are the same. Thus, the absorp- selho Nacional de Desenvolvimento Cidicb e Tecno-

wl wl o .
tion probabilities of these two types of modes are equal fof9icO, respectively.

eachl.
Hence, we obtain the following results: APPENDIX A: FIELD-STRENGTH TWO-POINT
FUNCTION IN SPHERICAL POLAR COORDINATES

4 -
o= §(er)4AH for p=2, 6.13 IN FOUR-DIMENSIONAL MINKOWSKI SPACETIME

Minkowski spacetime is the simplest spherically symmet-
ric spacetime. In this appendix we compute some compo-

2+2/(p—1) . .
mp(wry) An nents of the two-point function

7T (p+D2(p— 1) e O[T (p+ 1)/(2p—2)]F
for p=3. (6.14

G upo(X,X')=(0|F ,,(X)F,,,(x")|0) (A1)

. . . . in spherical polar coordinates and verify that they agree with
Equation(6.13 IS In agreement with the result derived by those previously computed in Cartesian coordinates in four-
Gubser_[lo] - Itis interesting to note that the lO.W ENeIYY dimensional Minkowski spacetime. We need to consider
absorption cross section is proportional to a fractional powelr)nly physical modes because pure-gauge modes do not con-

of w if p=4. . R L

tribute to F,, and the coefficient operators of the non-
physical modes have zero commutators with all operators
appearing on the right-hand side of E41).

In this paper we showed that the field equations for free Since there is no horizon, all modes come in from infinity
electrodynamics can be reduced to decoupled scalar fieldnd go out to infinity. Therefore, we do not need here the
equations in a modified Feynman gauge in the spacetime d&bel n=«, — which distinguished between the modes
spherically symmetric black holéWe also noted that the coming out of the horizon and those incoming from infinity.
equations for the physical modes simplify in the sphericaBy the remark after Eq.(2.43 we have eLP(r)
Coulomb gauge. Then we examined the Gupta-Bleuler =2wrj(wr), wherej,(x) is the spherical Bessel function of
guantization in this modified Feynman gauge. orderl, in four-dimensional Minkowski spacetime. Hence for

Next we reviewed the calculation of the response rate of @hysical modes | we have exactly

VIl. CONCLUSIONS

124008-10
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Ao 20D
(1 oim VU7 2)
r

jil(onNYim(0,¢)e ' (A2)

whereY,(6, ) are the familiar scalar spherical harmonics
on S?. Thetr-component of the corresponding field strength

is

2VI(I+1) »

r

il elm — (@)Y (6, d)e e,

(A3)

PHYSICAL REVIEW D63 124008

where the transverse vector spherical harmoifg’ are
given by

L —
since thet-component vanishes. These modes are sufficient 5 IFZ =211+ D)wrj(wr)Ym(0,¢)e .

for computing Gy, (X,x") because physical modes Il have

A=A,=0.
=(t',r

We obtain with x=(t,r,6,¢)
!,071¢/)

and x’

1z ! _
G (XX ) =—— 2, 1(1+1) > Yn(6,0)Ym(6,")
rr’ 1=1 m=—1
” Fd“’wh(wr)j|(wr’)e"‘”‘H’)
0
_ [(1+21)(21+1
gy )le (I+1)(21+1)
—i€)%+r2+r'?

—(t—t’
><P|(c08y)Q|{ o :

(A4)
where we have used in the last step the formulas

| _ 21+1
2 Yin(6.6)Yin(0',¢")= ——Pi(cosy),
m=—1| T

with cosy=cosdcosd’ +sindsind'cosip—¢'), and[25]

f dwwj|(wl’)j|(wl")efi“’(t7t,)
0

—(t—t'—ie)®+r?+r’?

2rr’

2rr’

We will simplify Eq. (A4) later.
Next we consider the component

sin@sind’—. .

Gygop(X,X")= 4 el Gijirjr (X,X"),

where the anti-symmetric tensor &, €, has the compo-
nent €’?=(sin#) L. (This definition dlffers from that of
Regge and Wheeld28] by a minus sign. Only the modes
AZielmcontribute  here.  First, we havee(2)(r)

=2owrj,(wr). Then sinceR(r)=¢3)(r) for p=2, we
find

AP =20rj(wr)YI™(g,p)e ', (A5)

VY,
yim_4 - m A6
SN T (A6)
The corresponding field strength is given by
(A7)
Then in exactly the same way as Gk, , we find
S|n05|n9’ -
Gogos(X,X') = 2 I(1+1)(21+1)
—(t—t' —ie)?+r2+r'2
X Py(cosy)Q, , .
2rr
(A8)

On the other hand one can calcul&gg,s(x,x") using

plane wave modes. In the Cartesian coordinate system this is

given in components asee, e.g., Ref.29))

GEh(x,x") = = 4m{1+2[ (L)~ (L)1 2 Gg (x,X),
(A9)
G, X" )= —87LalpnE 2Gg (x,X)), (A10)
GOy x,x) =G (x,x") = =87 LpE 2Gg (X,X),
(A11)
GO XX ) =471+ 2[({a)?+ (L)€ 2Ge (x,X'),
(A12)
GO (X, X" ) =87 Lalpé G (x,X)), (A13)

where a,b,c take valuesx,y,z with a, b and c being all
distinct (no summation convention is used herm@nd ¢
=x“—x'® We have define®{ (x,x') = (473" "1, where

E=(t—t' —ie)> = (x—x")?=(y-y')?*~(z-2')?
=(t—t'—ie)>—r?—r'2+2rr'cosy. (A14)

The component$§,,,, in spherical polar coordinates can be
obtained from the Cartesian on@s9)—(A13) by using stan-
dard tensor transformation:
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’ 4m ’ ’ 1\ ¢2
Girer (X,X ):”—,((XX +yy' +27)¢§

+2[(xy’ —x"y)?+ (xZ' —x'z)?

G (x,x")
+(yz'—y'z>2]>ﬁT,

{[(t—t'—ie)?—r2—r'2]

=ﬂ_2§6
X cosy+2rr'}. (A15)
Similarly, we find
Gy (') rr’'2singsing’
X, X')=—————
0p0¢ 71_256
x{[(t—t'—i€e)?—r2—r'2]cosy+2rr'}.
(A16)

Equations(A15) and (A4) and Eqgs.(A16) and (A8) can be

shown to agree by using the formula

2(tz—1)
(z—1)°

which can be proved by applyingd{dt)[ (t?—1)d/dt] on
both sides of the well-known formula

2‘1 [(1+1)(21+1)P,(H)Q(2) = . (A17)

ZO (21+1)P,(H)Q(2) =1/(z—1)

(A18)
and using the Legendre equation satisfiedpft).
APPENDIX B: A DERIVATION OF EQ. (4.19
Define
- _i 21+1 [d 2 a1
(Z)=|:1—I(I+1) 7@ - (B1)

By the Legendre equation satisfied Qy(z), we have
]

d
=21(1+ 1)(22—1)Q|(Z)EQ|(Z)- (B2)

d
EQKZ)

d
E!(Zz—l)z

Hence,

d d | <
E[(Zz—l)zF(Z)F(Zz—l)E[ 21 (2l +1)[Q|(Z)]2]-
(B3)
Now recall that5]

PHYSICAL REVIEW D63 124008

;0 21+ 1)[Q(2)]?= (B4)

22-1

[This can be obtained by squaring both sides of &d.8)
and integrating over the variabtefrom —1 to 1.] By sub-
stituting Eq.(B4) in Eq. (B3), we obtain

d 2 12p _21d 1(|z+12
L EFEVF@I=E-D 2 a\"z71
_ 2z | z+1 B5
T T2 tino—, (B5)
where we have used
_ 1 | z+1 B6
Qo(Z)—E n-—7- (B6)
Integration of Eq.(B5) leads to
z+1
(22— 1)%F(2)=zIn =1 2+C (B7)

where C is a constant. Recalling thad,(z2)~z'"* asz
—oo, we find that the left-hand side tends to zero in this
limit. ThereforeC=0. Hence,

z+1 2) ~2Q4(2)

=12y O

1
F(z)=(22_1)2(zln

APPENDIX C: ABSORPTION CROSS SECTION
IN SPHERICAL POLAR COORDINATES:
A DERIVATION OF EQ. (5.1)

We consider the divergence-free vector eigenfunctions of
the Laplacian on thep(+ 1)-dimensional Euclidean space.
That is, we examine the solutions of the following equations:

VP(VyB,—V.By) = —w?B, (C1)
and
VéB,=0. (C2

Let x=(X1,Xz, ... Xps+1) be the Cartesian coordinates.
There are plane wave solutions of the form
BJ(C; wke) _ ;J eik~X (CS)

with >0, wherek is a unit vector ank=wk, ande is a
polarization unit vector orthogonal fa We define

(B(l),B(Z))EEJ dp+1XWaB(2)a, (C4)

for any vectorsB{") andB{® on this space. Then

(B(C; w&;)’B(C; w'&';'))E:(Zﬂ,)p+1;_ ;/ S p+1(k—k,).
(CH)
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Now, suppose tha{"* “*) are solutions of EqC1) and  where the partial derivativé; is with respect tax whereas
(C2) with a discrete labek satisfying the partial derivatives, is with respect tox’. Since the

modesB;P' %) are divergence-free, these derivatives can be
dropped when we average E(C9) over the polarization

Suppose that the plane wave solutions are expanded as Vectors. By averaging E4C9) over e andk and then using

(BPi@x) BP: @'k =275 Slo—w'). (CH

Bgc; wk;):z a(w,f(,%; K)ng; wK), C7) f do’ w/pd‘keiwr&.(x—xr):(27)p5p+1(x_xr),
) (C10
where a(w,k, €; k) are constants. As can be seen from the .. N T o
mode analysis in Sec. Il, a solution of E4€1) and(C2) "¢ find |a(w; x)|* the average ofa(w.k.€; x)|* overk
satisfies the normalization conditi¢@6) if its incoming an- ande, as
gular components at largeare B;~r P2~ 1"y, | with the

p—1
spherical harmonic orp-sphere; being normalized by  |4(w; x)[2wPé(w— w"):m(B(P; wr) g(P.0"k))
fdeYiYi= 1. (The componenB, can be shown to be sup- P&y c11
pressed by an extra power oj Thus, if we define the flux (C1Y)
so that the solutioB{"’ “*) has a unit flux, then its content Then from Eq.(C6), we find
of the incoming modeB{™* ) is |a(w,k,€; «)|? per unit (2mp
: T
time. . . . |a(w; K)|2= . (C12
By using orthonormality of these solutions, we find JONAL
(k& K)2m S(w—w')=(BP: @) B(Ci ke Thus, if a plane wave has a unit flux, it contains the incom-
(C8  ing mode with label« given by Eq.(C12) per unit time on

average.

The angular components, of physical modes | are gra-
dients of scalar spherical harmonics. On the other hand,
physical modes Il are divergence-free vectors on the

B P o) (G oK a(C 0k alP: o p-sphere. LetM(? and M{? be the multiplicities of these

ZJO do' o'P(B™ 9, B™ Je(B™ B )e. two types of modes with a given angular momenturfihen

the number of physical modes | with angular momentum
(C9  M{® and that of physical modes Il {?. Then, if there is
— a plane wave with a unit flux, the content of physical modes
Now, the average otje'“ “Xee™'* ¥ over the polariza- | and Il with angular momenturhare[ (27)?/pQ wP]M®

From this one readily finds

la(w,k, € k)|2(27)2wPé(w—o")

tion vectors Is and[(27)P/pQ,wPIM{ per unit time, respectively. There-
fore, if the absorption probabilities of physical modes | and
l(g_l_R_Rl)eiw/k-(x—x’)zl S if”( gl k(x—x). Il by a spherical black hole are{*) andP{?, respectively,
prt p\ " 2! then the absorption cross section is given by &a).
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