PHYSICAL REVIEW D 67, 067502 (2003

Do static sources respond to massive scalar particles from the Hawking radiation as uniformly
accelerated ones do in the inertial vacuum?
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We examine the recently found equivalence for the response of a static scalar source interacting with a
masslesKlein-Gordon field when the source {§ static in Schwarzschild spacetime, in the Unruh vacuum
associated with the Hawking radiation, afiid uniformly accelerated in Minkowski spacetime, in the inertial
vacuum, provided that the source’s proper acceleration is the same in both cases. It is shown that this equiva-
lence is broken when the massless Klein-Gordon field is replacednbgsaiveone.
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It was recently shown that the resporR&r,,M) of a  main technical difficulty associated with the field quantiza-
static scalar source with a radial coordinaig outside a tion in Schwarzschild spacetime is related to the fact that the
Schwarzschild black hole of mass interacting withmass-  positive and negative frequency modes used to expand the
less scalar particles of Hawking radiatiofassociated with quantum field cannot be expressed in terms of known special
the Unruh vacuumis exactly the same as the responsefunctions. Although for massless spin-0 and spin-1 fields out-
RM(ag)=q?ay/4m? of such a source when it is uniformly side Reissner-Nolstrom black holes, the quantization of the
accelerated in the inertial vacuum of Minkowski spacetime Jow-energy sector admits an analytic treatmgh#,5 (see
provided that the source’s proper acceleratigns the same also[6]), this is not the case for massive fields, for which a
in both caseq1]. (Here, g is a coupling constant.Now, numerical analysis turns out to be required. Throughout this
according to the Fulling-Davies-UnrutiFDU) effect [2,3],  paper, we adopt natural units in whick- G=#%=kg=1 and
the inertial vacuum in Minkowski spacetime corresponds tospacetime signature{— — —).

a thermal state as seen by uniformly accelerated observers The Schwarzschild line element describing a black hole of
confined to the Rindler wedge. Thus, the equivalence abovgmassM can be written a§7]

can be rephrased by saying tlilaé response of a static sca-

lar source with some fixed proper acceleration coupled to a ds?=f(r)dt?—f(r) " tdr?—r?(d6>+sirfode?), (1)
masslesscalar field is the same when it interacts either (i)

with the Hawking radiation associated with the Unruh wheref(r)=1-2M/r.

vacuum in Schwarzschild spacetime or (i) with the FDU Let us now consider a free Klein-Gordon fiebl(x*)
thermal bath in Rindler spacetim@his came as a surprise With massmin this background, described by the action
because structureless static scalar sources can only interact

with zero-frequency fielq modes. Such mod_es probg the glo- S=(1/2)f d4x\/—_g [VEDV, & — mPd?], @)

bal geometry of spacetime and are accordingljte differ- "

ent in Schwarzschild and Rindler spacetimes. Moreover, ) )

since the response in Schwarzschild spaceti®igro,M)  Whereg=de{g,,}. In order to quantize the field, we look
was expected to depend opandM separately, it is striking for a complete set of posmzve-frequer_]cy solutions of the
that these parameters should combine themselves precisdfjein-Gordon equationl{ +m“ug,,,=0 in the form

so thatRS(ry,M)=q2%a(ro,M)/47?, as found in Ref[1]. N

The fact that such an equivalence is not trivial can be also ue, (x#)= \ﬁ'/’wl(r) Y, (6, ¢)e it 3)
seen by the fact that it is not verified whén the Unruh @lm T T mi 7 '

vacuum is replaced by the Hartle-Hawking vaculf (ii)

the black hole is endowed with some electric chajeor ~ Wherel=0, me[—1,I] and » are the angular momentum
even(iii) when the massless Klein-Gordon field is replaced@nd frequency quantum numbers, respectively. Because the
by the electromagnetic on&]. A deeper understanding of Klein-Gordon equation is of second order, there will be in
why such an equivalence in the response is verifiedrfass- ~ 9eneral two independent sets of normalizable solutions, here
lessKlein-Gordon fields is still lacking. While imayprove ~ chosen to be incoming modes from the horizonand (ii)

to be just a remarkable coincidence, we feel that the problerffom infinity labeled bya=1 and a=1I, respectively. The
deserves further analysis. factor yw/m has been inserted for later convenience and

In this paper we show that providing some mass to theYim(6,¢) are the spherical harmonics. As a consequence,
Klein-Gordon field is enough to break the equivalence. The/;, (r) must satisfy

d d
—_ - I o — 2
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V(1) =(1—2M/r)[2M/r3+1(1+1)/r?+m?]. (5)  sion and absorption amplitudes, respectively, of Boulware
state§ awlm) andn“(w) is defined below. It is not difficult
We note thatlose toandfar away fromthe horizon we have to show that
Ver(r)=~0 and Vgu(r)~m?, respectively. Thus, the fre- @ em 1 sa ab
quency of the modes?, ., with =1 and o= Il will be con- [AGim™ 1 =1AGm™

wlm
strained so thaw=0 and w=m, respectively. Now, it is =2qymf(ro)/rolthe(ro)l|Yim(bo, o) 8(w).
convenient to recast E@4) in a Schralinger-like form. For ¢
this purpose, we define a new dimensionless coordigate (12
=r/2M and perform the change of variabje-x=y+Inly  The 5(4) reflects the fact that our structureless static source
—1], so that Eq(4) becomes (8) can only interact wittzero-energymodes. By letting Eq.

(= 1A+ AMPV o 1 () % (X) = AM 202 (X). (12) in Eq. (11), we obtain, from Eq(10),

(6) .
RS=2, Ci(ro)olyy(ro)l[1+2n"(@)]lp=0 (13
We can expand the scalar field operfﬁdrx“) in terms of
annihilationa?,, and creatiora?/., operators as usual: with C;(ro)=q*(2I +1)Vf(ro)/(2mr5). Here, we have used
the summation formula for spherical harmoni¢40],
A L A S Yim(60.00)|2= (21 + 1) /4, the fact thaty!, van-
d(xH= > > > do[us (x*)a% ,+H.cl, ishes foro<m and =27 fY4(ry)lim, .,8(w) (see Refs.
a=1Il =0 m=-1 Jo
@ [1] and[4]).
In the Boulware vacuumstatic observers see no particles
whereuy, (x*) are orthonormalized according to the Klein-

at all and son“(w)=0. Thus, sincaﬂ{n(ro) is finite forry
4 o 0 >2M (see below, it is straightforward from Eq(13) that
Gordon inner produdi8]. As a consequencey,,, anda®}.,

o ot the response of our source vanishes in this dasee precise
satisfy [a% .80 ] = Ouar Ol Smm S(w—w') and the  form of ¢4, (ro) is only numerically available but close and
Boulware vacuuno) is defined bya?,|0)=0 for everya, far away from the horizon it can be inferred analytically from

, | and m[9]. Eg. (15).] In the Unruh vacuum, however, this is not so. The
Now, let us consider a pointlike static scalar source lyingUnruh vacuum corresponds] to a thermal flux radiated
at (ro,00,¢0) and described by away from the horizon at temperatyge 1=1/8xM [11] as

measured by asymptotic static observers and henge)
J(x*)=(q/—h )8(r—r)8(0— 0g)S(0—wg), (8 =(e“?=1)"*andn"=0. In the presence of a background
thermal bath, the absorption and stimulated emission rates
whereh=—f(r) ~!r4sird is the determinant of the spatial will Igad in general to a non-zero responfe._This is only
metric induced on the equatime hypersurfac&, andq is a pqslS'ble because the thermal facte{—1)"* diverges as
small coupling constant. We will be interested in analyzing® /8 whenw—0. Thus, in the Unruh vacuum case, on

the behavior of this source, coupled to the Klein-GordonWhich we focus, we need a “regulator” to avoid the appear-
ance of intermediate indefinite results XG<” (for a more

comprehensive discussion on the interaction of static sources

with zero-energy modes, see Rgf2]). For this purpose, we

“slzf d*x\V—g j &), (9) let the coupling constar oscillate with frequencyw, by
replacingqg by Ooy= V20 cosfwt) in Eq. (8) and taking the

when it is immersed in the Hawking radiation emitted from limit @o—0 at the end of our calculations. The fact@ f;as
the black hole. All the calculations will be carried out at the P€€n introduced to ensure that the time averdgg, (t)|).
tree level. =2 since the absorption and emission rates are functions of
The total response, i.e., particle emission and absorptiog®. Other equivalent regularization procedures can be de-
probabilities per unit proper time of the source, is given by vised[13]. A straightforward calculation with the oscillating
source[4] gives

9*f(ro)*?

field <i>(xf‘), via the interaction action

[

I o
RS=> > > fo dwR%,, (10

ST 150 m=2 RS(rg,M)=——— Ilim 20+ )[4 (ro)]?

Tl m (ro,M) 162 rgwo—»olgo( )|lﬂwo|( 0]

where (14)
N 1 e emo2 N « abs2u Note that onlya=1 appears in Eq(14). This can be seen as
om=7 AL L1+ n%(0) ]+ A5 1N (w)} reflecting the fact that the Unruh vacuum corresponds to a

(1)  thermal flux of particles being radiated only from the hori-
) ) zon. It should be noticed, however, that the same response
and 7 is the total proper time of the source. Hes;,™  (14) holds when we replace the Unruh with the Hartle-
=(awlm|§]0) and A% 3=(0|S|awlm) are the emis- Hawking vacuum. This is so because the extra thermal flux
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FIG. 1. Ln(R%RM) is plotted as a function ah (where, for the FIG. 2. In this figure, it becomes clear how the equality between

sake of convenience, we have used the black hole mhss a RS andRM is broken for various masses of the Klein-Gordon field.
standard scajeThe equality betweeRS andRM is recovered when Note that the more we move the source away from the horizon
m—0, as expected, but not for general valuesofin plotting this  (which corresponds to decreasiag), the moreRS deviates from
graph, we have summed up lte 18 in Eq.(14).] RM. On the other handRS—RM as we approach the horizoay
—) (see discussion in the tex{In plotting this graph, we have
coming from infinity in the Hartle-Hawking vacuuwhich ~ summed up td =18 in Eq.(14).]
should be considered in addition to the one coming from the
horizon is composed of particles with frequeney=m [see  formly acceleratedwith proper accelerationy) in the usual
discussion below Eq5)]; i.e., this extra thermal flux is not inertial vacuum in Minkowski spacetim&" can be equiva-
populated with zero-energy particles which are the only oneently computed either with respect to inertial or uniformly
which can interact with our source. accelerated observers. We favor the latter here. Accordingly,
In order to comput®S in Eq. (14), we shall evaluate! we shall perform the quantization of the massive Klein-
. : . o 0 Gordon field in the Rindler wedge, which can be described
(with wy—0) numerically. By using Eq6), it is easy to see

that w'ml(x) has the following asymptotic forms whea by the line elemenf8]

<m: ds?=e?0f(d7r?— dé?) — dx*—dy? (16)
A, (e2Moxy R e 2Mox)y (y<—1), with —oo<7,£&,X,y<+0. The corresponding Klein-Gordon
z/f'w|(x)~ MV (x>1) orthonormalized positive-frequency modes are
Bw| N e X> L]
(15 4 Vsinh(me/ay) Vk? +m? gdo¢
uka(X )_ szaé/z Kiw/ao ag

whereA,, andB,, are constants andR ,,|>=1, which is
calculated by using Eq15) in Eq. (6). For ~0 it can be x gk X —ior 17
shown thatR ,,~ — 1+ O(w) (see[1] and[4] for a deriva-

tion in the massless casdndeed, this solution describes where K, (x) is the modified Bessel functiofl0], x;
modes that leave the horizon, “scatter off the geometry” and=(x,y) andk, =(ky,k,) denotes the momentum transverse
fall back to the horizon. The normalization constakf,  to the direction of acceleration. In these coordinates, our
=(2w) ! is analytically obtainedup to an arbitrary phage source with constant proper acceleratigwill be described

by demanding that the normal mod@s be orthonormalized by j(x*)=qd(&)4(x)d(y). The total response is given, in
with respect to the Klein-Gordon inner produstee, e.g., this case, by

Ref.[1] for detail9. B, is obtained numerically and is finite

for ©=0. The modes//'w, can be obtained numerically for RMEJ dkfrwdw - s
smallw/m and different values by evolving Eq6) with the 0 L

effective potential5) and “boundary conditions’(15). The

corresponding total respon& can be obtained, then, from whereR,, =7 H{|AZY [A[1+ n(w)]+|A2?(j|2n(w)}. Here
Eq.(_14). We note that_ the Iarger_the valuelothe higher the Aem E(ka|AS||O> andAf‘o'f(S E(O|”S||ka> are the emission
barrier of the scattering potentid.(r) [14] and therefore L v

the main contributions come from modes with smalHow ok, ) and n(w)=1/[exp(Bw)—1], where B~ 1=ay/2m is

far we must sum over in Eq. (14) to obtain a satisfactory the temperature of the FDU thermal bath associated with the

numerical result will depend on how close to the black hole; ial d by the Rindler ob Vi :
horizon the source lies. The closer to the horizon, the furthel’€rt1al vacuum as measured by the Rindler observer lying a

over| we must sum. We have checked our numerical codézo' The response can be shown to be
for m=0 where the response is known analyticdlly.

2 ®
Our results forR® will be exhibited in comparison with RM(ag) = wf dxxK2[ X2+ (m/ag)?]. (19)
the respons&kM obtained when our scalar source is uni- 2w Jo

and absorption amplitudes, respectively, of Rindler states
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In Fig. 1 we plotRS(ay,M)/RM(a,) as a function of the We have shown in this paper that the response of a static
scalar field massn for different ay’s. We recall that the scalar source with some fixed proper acceleration coupled to
source’s proper acceleratiag is a one-to-one function of its a massivescalar field isnot the same when it interacts)
radial positionry: ag= M/(rS\/l—ZM/rO ). We note that in  with the Hawking radiation in Schwarzschild spacetime and
generaRS(ay,M) #RM(a,). The equivalence is only recov- (i) with the FDU thermal bath in Rindler spacetime. This
ered wherm—0. reinforces how unexpected was the equivalence found for the

In Fig. 2 we display how the equivalence is broken forresponses in the massless case, since the normal modes de-
various values om. HereR® deviates fromR™ as one goes pend in general on thelobal structure of the underlying
away from the horizon at a rate dependingronNote that  spacetime. Despite our best efforts we have found no special
indeedR® approache®R" asm goes to zero. The fact that features in the massless Klein-Gordon field suggesting that
RYRY—1 in the massive case fap— could be analyti- the equivalence found in this case was to be expected. In
cally predicted from the equivalence found in the maSS|eS§1articular, we emphasize that there is no equivalefie
case as follows. On the one hand, close to the black holghen the massless scalar particles are replaced by photons
horizon, the pote_nt|a(5) is not S|gn|f|cantly mf!uencgd by (which are also massléssThus, any eventual explanation
the mass of the field. As a consequence, in this region, Mag, 14 have to deal not only with the mass but also with the

sive and non-massive outgoing m,Od,‘f’§l’ which are the  gnin of the field. A deeper understanding of this issue would
relevant ones in Eq(14), behave similarly. Thus, it is ex- be welcome.

pected that for sources close enough to the horizon, i.e.

ap/m>1, RS should be approximately the same for massive J.C. and |.C. would like to acknowledge full support from
and non-massive fields. On the other hand, it is easy to sgeunda@o de Amparo aPesquisa do Estado dé G®&aulo.
from Eq.(19) that the same statement is true R)¥. Hence  G.M. is thankful to Conselho Nacional de Desenvolvimento
the equivalence found for the massless case also implies th@ientfico e Tecnolgico and Fundéo de Amparo aPes-

RS/RM—1 for massivefields as long as,/m— . quisa do Estado de 8a&Paulo for partial support.
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