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Do static sources respond to massive scalar particles from the Hawking radiation as uniformly
accelerated ones do in the inertial vacuum?

J. Castin˜eiras,* I. P. Costa e Silva,† and G. E. A. Matsas‡
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We examine the recently found equivalence for the response of a static scalar source interacting with a
masslessKlein-Gordon field when the source is~i! static in Schwarzschild spacetime, in the Unruh vacuum
associated with the Hawking radiation, and~ii ! uniformly accelerated in Minkowski spacetime, in the inertial
vacuum, provided that the source’s proper acceleration is the same in both cases. It is shown that this equiva-
lence is broken when the massless Klein-Gordon field is replaced by amassiveone.
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It was recently shown that the responseRS(r 0 ,M ) of a
static scalar source with a radial coordinater 0 outside a
Schwarzschild black hole of massM interacting withmass-
less scalar particles of Hawking radiation~associated with
the Unruh vacuum! is exactly the same as the respon
RM(a0)[q2a0/4p2 of such a source when it is uniforml
accelerated in the inertial vacuum of Minkowski spacetim
provided that the source’s proper accelerationa0 is the same
in both cases@1#. ~Here, q is a coupling constant.! Now,
according to the Fulling-Davies-Unruh~FDU! effect @2,3#,
the inertial vacuum in Minkowski spacetime corresponds
a thermal state as seen by uniformly accelerated obser
confined to the Rindler wedge. Thus, the equivalence ab
can be rephrased by saying thatthe response of a static sca
lar source with some fixed proper acceleration coupled t
masslessscalar field is the same when it interacts either
with the Hawking radiation associated with the Unru
vacuum in Schwarzschild spacetime or (ii) with the FD
thermal bath in Rindler spacetime. This came as a surpris
because structureless static scalar sources can only int
with zero-frequency field modes. Such modes probe the
bal geometry of spacetime and are accordinglyquite differ-
ent in Schwarzschild and Rindler spacetimes. Moreo
since the response in Schwarzschild spacetimeRS(r 0 ,M )
was expected to depend onr 0 andM separately, it is striking
that these parameters should combine themselves prec
so thatRS(r 0 ,M )5q2a0(r 0 ,M )/4p2, as found in Ref.@1#.
The fact that such an equivalence is not trivial can be a
seen by the fact that it is not verified when~i! the Unruh
vacuum is replaced by the Hartle-Hawking vacuum@1#, ~ii !
the black hole is endowed with some electric charge@4# or
even~iii ! when the massless Klein-Gordon field is replac
by the electromagnetic one@5#. A deeper understanding o
why such an equivalence in the response is verified formass-
lessKlein-Gordon fields is still lacking. While itmayprove
to be just a remarkable coincidence, we feel that the prob
deserves further analysis.

In this paper we show that providing some mass to
Klein-Gordon field is enough to break the equivalence. T
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main technical difficulty associated with the field quantiz
tion in Schwarzschild spacetime is related to the fact that
positive and negative frequency modes used to expand
quantum field cannot be expressed in terms of known spe
functions. Although for massless spin-0 and spin-1 fields o
side Reissner-No¨rdstrom black holes, the quantization of th
low-energy sector admits an analytic treatment@1,4,5# ~see
also @6#!, this is not the case for massive fields, for which
numerical analysis turns out to be required. Throughout
paper, we adopt natural units in whichc5G5\5kB51 and
spacetime signature (1222).

The Schwarzschild line element describing a black hole
massM can be written as@7#

ds25 f ~r !dt22 f ~r !21dr22r 2~du21sin2udw2!, ~1!

where f (r )[122M /r .
Let us now consider a free Klein-Gordon fieldF(xm)

with massm in this background, described by the action

S5~1/2!E d4xA2g @¹mF¹mF2m2F2#, ~2!

whereg[det$gmn%. In order to quantize the field, we loo
for a complete set of positive-frequency solutions of t
Klein-Gordon equation (h1m2)uv lm

a 50 in the form

uv lm
a ~xm!5Av

p

cv l
a ~r !

r
Ylm~u,w!e2 ivt, ~3!

where l>0, mP@2 l ,l # and v are the angular momentum
and frequency quantum numbers, respectively. Because
Klein-Gordon equation is of second order, there will be
general two independent sets of normalizable solutions, h
chosen to be incoming modes~i! from the horizonand ~ii !
from infinity labeled bya5I and a5II, respectively. The
factor Av/p has been inserted for later convenience a
Ylm(u,w) are the spherical harmonics. As a consequen
cv l

a (r ) must satisfy

F2 f ~r !
d

dr S f ~r !
d

dr D1Veff~r !Gcv l
a ~r !5v2cv l

a ~r !, ~4!

where the effective scattering potentialVeff(r ) is given by
©2003 The American Physical Society02-1
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Veff~r !5~122M /r !@2M /r 31 l ~ l 11!/r 21m2#. ~5!

We note thatclose toandfar away fromthe horizon we have
Veff(r )'0 and Veff(r )'m2, respectively. Thus, the fre
quency of the modesuv lm

a with a5I and a5II will be con-
strained so thatv>0 and v>m, respectively. Now, it is
convenient to recast Eq.~4! in a Schro¨dinger-like form. For
this purpose, we define a new dimensionless coordinay
[r /2M and perform the change of variabley→x[y1 lnuy
21u, so that Eq.~4! becomes

$2d2/dx214M2Veff@r ~x!#%cv l
a ~x!54M2v2cv l

a ~x!.
~6!

We can expand the scalar field operatorF̂(xm) in terms of
annihilationâv lm

a and creationâv lm
a† operators as usual:

F̂~xm!5 (
a5I,II

(
l 50

`

(
m52 l

l E
0

`

dv@uv lm
a ~xm!âv lm

a 1H.c.#,

~7!

whereuv lm
a (xm) are orthonormalized according to the Klei

Gordon inner product@8#. As a consequence,âv lm
a and âv lm

a†

satisfy @ âv lm
a ,âv8 l 8m8

a8†
#5daa8d l l 8dmm8d(v2v8) and the

Boulware vacuumu0& is defined byâv lm
a u0&50 for everya,

v, l and m@9#.
Now, let us consider a pointlike static scalar source ly

at (r 0 ,u0 ,w0) and described by

j ~xm!5~q/A2h !d~r 2r 0!d~u2u0!d~w2w0!, ~8!

whereh52 f (r )21r 4sin2u is the determinant of the spatia
metric induced on the equalt time hypersurfaceS t andq is a
small coupling constant. We will be interested in analyzi
the behavior of this source, coupled to the Klein-Gord

field F̂(xm), via the interaction action

ŜI5E d4xA2g j F̂, ~9!

when it is immersed in the Hawking radiation emitted fro
the black hole. All the calculations will be carried out at t
tree level.

The total response, i.e., particle emission and absorp
probabilities per unit proper time of the source, is given

RS[ (
a5I,II

(
l 50

`

(
m52 l

l E
0

1`

dvRv lm
a , ~10!

where

Rv lm
a [t21$uA v lm

a emu2@11na~v!#1uA v lm
a absu2na~v!%

~11!

and t is the total proper time of the source. HereA v lm
a em

[^av lmuŜI u0& and A v lm
a abs[^0uŜI uav lm& are the emis-
06750
g

n

n

sion and absorption amplitudes, respectively, of Boulw
statesuav lm& andna(v) is defined below. It is not difficult
to show that

uA v lm
a emu5uA v lm

a absu

52qApv f ~r 0!/r 0ucv l
a ~r 0!uuYlm~u0 ,w0!ud~v!.

~12!

Thed(v) reflects the fact that our structureless static sou
~8! can only interact withzero-energymodes. By letting Eq.
~12! in Eq. ~11!, we obtain, from Eq.~10!,

RS5(
l 50

`

Cl~r 0!vucv l
I ~r 0!u2@112nI~v!#uv50 ~13!

with Cl(r 0)5q2(2l 11)Af (r 0)/(2pr 0
2). Here, we have used

the summation formula for spherical harmonics@10#,
(m52 l

l uYlm(u0 ,w0)u25(2l 11)/4p, the fact thatcv l
II van-

ishes forv,m and t52p f 1/2(r 0)limv→0d(v) ~see Refs.
@1# and @4#!.

In the Boulware vacuum, static observers see no particle
at all and sona(v)50. Thus, sincec0l

I (r 0) is finite for r 0

.2M ~see below!, it is straightforward from Eq.~13! that
the response of our source vanishes in this case.@The precise
form of c0l

I (r 0) is only numerically available but close an
far away from the horizon it can be inferred analytically fro
Eq. ~15!.# In the Unruh vacuum, however, this is not so. T
Unruh vacuum corresponds@8# to a thermal flux radiated
away from the horizon at temperatureb2151/8pM @11# as
measured by asymptotic static observers and hencenI(v)
[(evb21)21 and nII50. In the presence of a backgroun
thermal bath, the absorption and stimulated emission r
will lead in general to a non-zero response. This is o
possible because the thermal factor (evb21)21 diverges as
v21/b when v→0. Thus, in the Unruh vacuum case, o
which we focus, we need a ‘‘regulator’’ to avoid the appe
ance of intermediate indefinite results ‘‘03` ’’ ~for a more
comprehensive discussion on the interaction of static sou
with zero-energy modes, see Ref.@12#!. For this purpose, we
let the coupling constantq oscillate with frequencyv0 by
replacingq by qv0

[A2q cos(v0t) in Eq. ~8! and taking the

limit v0→0 at the end of our calculations. The factorA2 has
been introduced to ensure that the time average^uqv0

(t)u2& t

5q2 since the absorption and emission rates are function
q2. Other equivalent regularization procedures can be
vised@13#. A straightforward calculation with the oscillatin
source@4# gives

RS~r 0 ,M !5
q2f ~r 0!1/2

16p2Mr 0
2

lim
v0→0

(
l 50

`

~2l 11!ucv0l
I ~r 0!u2.

~14!

Note that onlya5I appears in Eq.~14!. This can be seen a
reflecting the fact that the Unruh vacuum corresponds t
thermal flux of particles being radiated only from the ho
zon. It should be noticed, however, that the same respo
~14! holds when we replace the Unruh with the Hartl
Hawking vacuum. This is so because the extra thermal
2-2
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BRIEF REPORTS PHYSICAL REVIEW D67, 067502 ~2003!
coming from infinity in the Hartle-Hawking vacuum~which
should be considered in addition to the one coming from
horizon! is composed of particles with frequencyv>m @see
discussion below Eq.~5!#; i.e., this extra thermal flux is no
populated with zero-energy particles which are the only o
which can interact with our source.

In order to computeRS in Eq. ~14!, we shall evaluatecv0l
I

~with v0→0) numerically. By using Eq.~6!, it is easy to see
that cv l

I (x) has the following asymptotic forms whenv
,m:

cv l
I ~x!'H Av l~e2iM vx1R v le

22iM vx! ~x!21!,

Bv le
22MAm22v2x ~x@1!,

~15!

whereAv l and Bv l are constants anduR v l u251, which is
calculated by using Eq.~15! in Eq. ~6!. For v'0 it can be
shown thatRv l'211O(v) ~see@1# and @4# for a deriva-
tion in the massless case!. Indeed, this solution describe
modes that leave the horizon, ‘‘scatter off the geometry’’ a
fall back to the horizon. The normalization constantAv l
5(2v)21 is analytically obtained~up to an arbitrary phase!
by demanding that the normal modes~3! be orthonormalized
with respect to the Klein-Gordon inner product~see, e.g.,
Ref. @1# for details!. Bv l is obtained numerically and is finit
for v>0. The modescv l

I can be obtained numerically fo
smallv/m and differentl values by evolving Eq.~6! with the
effective potential~5! and ‘‘boundary conditions’’~15!. The
corresponding total responseRS can be obtained, then, from
Eq. ~14!. We note that the larger the value ofl, the higher the
barrier of the scattering potentialVeff(r ) @14# and therefore
the main contributions come from modes with smalll. How
far we must sum overl in Eq. ~14! to obtain a satisfactory
numerical result will depend on how close to the black h
horizon the source lies. The closer to the horizon, the furt
over l we must sum. We have checked our numerical co
for m50 where the response is known analytically@1#.

Our results forRS will be exhibited in comparison with
the responseRM obtained when our scalar source is un

FIG. 1. Ln(RS/RM) is plotted as a function ofm ~where, for the
sake of convenience, we have used the black hole massM as a
standard scale!. The equality betweenRS andRM is recovered when
m→0, as expected, but not for general values ofm. @In plotting this
graph, we have summed up tol 518 in Eq.~14!.#
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formly accelerated~with proper accelerationa0) in the usual
inertial vacuum in Minkowski spacetime.RM can be equiva-
lently computed either with respect to inertial or uniform
accelerated observers. We favor the latter here. Accordin
we shall perform the quantization of the massive Kle
Gordon field in the Rindler wedge, which can be describ
by the line element@8#

ds25e2a0j~dt22dj2!2dx22dy2 ~16!

with 2`,t,j,x,y,1`. The corresponding Klein-Gordon
orthonormalized positive-frequency modes are

uvk'
~xm!5

Asinh~pv/a0!

2p2a0
1/2

Kiv/a0
FAk'

2 1m2 ea0j

a0
G

3eik'•x'2 ivt, ~17!

where Kn(x) is the modified Bessel function@10#, x'

5(x,y) andk'[(kx ,ky) denotes the momentum transver
to the direction of acceleration. In these coordinates,
source with constant proper accelerationa0 will be described
by j (xm)5qd(j)d(x)d(y). The total response is given, i
this case, by

RM[E dk'
2 E

0

1`

dv Rvk'
, ~18!

whereRvk'
[t21$uAvk'

em u2@11n(v)#1uAvk'

abs u2n(v)%. Here

Avk'

em [^vk'uŜI u0& andAvk'

abs [^0uŜI uvk'& are the emission

and absorption amplitudes, respectively, of Rindler sta
uvk'& and n(v)51/@exp(bv)21#, where b215a0/2p is
the temperature of the FDU thermal bath associated with
inertial vacuum as measured by the Rindler observer lyin
j50. The response can be shown to be

RM~a0!5
q2a0

2p2 E0

`

dxxK0
2@Ax21~m/a0!2#. ~19!

FIG. 2. In this figure, it becomes clear how the equality betwe
RS andRM is broken for various masses of the Klein-Gordon fie
Note that the more we move the source away from the hori
~which corresponds to decreasinga0), the moreRS deviates from
RM. On the other hand,RS→RM as we approach the horizon (a0

→`) ~see discussion in the text!. @In plotting this graph, we have
summed up tol 518 in Eq.~14!.#
2-3
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In Fig. 1 we plotRS(a0 ,M )/RM(a0) as a function of the
scalar field massm for different a0’s. We recall that the
source’s proper accelerationa0 is a one-to-one function of its
radial positionr 0 : a05M /(r 0

2A122M /r 0 ). We note that in
generalRS(a0 ,M )ÞRM(a0). The equivalence is only recov
ered whenm→0.

In Fig. 2 we display how the equivalence is broken f
various values ofm. HereRS deviates fromRM as one goes
away from the horizon at a rate depending onm. Note that
indeedRS approachesRM as m goes to zero. The fact tha
RS/RM→1 in the massive case fora0→` could be analyti-
cally predicted from the equivalence found in the massl
case as follows. On the one hand, close to the black h
horizon, the potential~5! is not significantly influenced by
the mass of the field. As a consequence, in this region, m
sive and non-massive outgoing modescv l

I , which are the
relevant ones in Eq.~14!, behave similarly. Thus, it is ex
pected that for sources close enough to the horizon,
a0 /m@1, RS should be approximately the same for mass
and non-massive fields. On the other hand, it is easy to
from Eq. ~19! that the same statement is true forRM. Hence
the equivalence found for the massless case also implies
RS/RM→1 for massivefields as long asa0 /m→`.
D

,

n-
y
-
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We have shown in this paper that the response of a s
scalar source with some fixed proper acceleration couple
a massivescalar field isnot the same when it interacts~i!
with the Hawking radiation in Schwarzschild spacetime a
~ii ! with the FDU thermal bath in Rindler spacetime. Th
reinforces how unexpected was the equivalence found for
responses in the massless case, since the normal mode
pend in general on theglobal structure of the underlying
spacetime. Despite our best efforts we have found no spe
features in the massless Klein-Gordon field suggesting
the equivalence found in this case was to be expected
particular, we emphasize that there is no equivalence@5#
when the massless scalar particles are replaced by pho
~which are also massless!. Thus, any eventual explanatio
would have to deal not only with the mass but also with t
spin of the field. A deeper understanding of this issue wo
be welcome.
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