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Chiral corrections to baryon properties with composite pions
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A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with
composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark
model. The model is amenable to standard many-body techniques such as the BCS and random phase approxi-
mation formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the
macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective
hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the
pion-nucleon form factor and the calculation of pionic self-energy corrections to the nucleoh(&4282)
masses.
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[. INTRODUCTION perturbative renormalization-group treatments of the QCD
Hamiltonian[17] and Hamiltonian lattice QCIP18].

The incorporation of chiral symmetry in quark models is  One important development of the model, in the context
an important issue in hadronic physics. The subject datesf the present paper, was its extension in R&8)] to baryon
back to the early workgl—6] aimed at restoring chiral sym- structure. In Ref[19] a variational calculation was imple-
metry to the MIT bag mode]7]. The early attempts were mented for the masses of baryons and it was shown that a
based on coupling elementary pion fields directly to quarkssizeableA(1232)N mass difference is obtained from the
A great variety of chiral quark-pion models have been consame underlying hyperfine interaction that gives a reasonable
structed since then and the subject continues to be of interesalue for them-p mass difference. This hyperfine interaction,
in the recent literaturB8—10]. Despite the long history, there along with other spin-dependent interactions such as tensor
are many important open questions in this field. In theand spin-orbit, stem from Bogoliubov-Valatin rotated spinors
present paper, we are concerned with one of such questionat depend on the “chiral angle.” The chiral angle gives the
namely the coupling of the pion as a quark-antiquark bounaxtent of the chiral condensation in the vacuum and deter-
state to the baryons. Starting from a model chiral quarkmines the chiral condensate. The very same variational wave
Hamiltonian, we construct an effective low-energy chiralfunction was used later for studyin§wave kaon-nucleon
pion-baryon Hamiltonian appropriate for calculating chiral[20] scattering and the repulsive core of the nucleon-nucleon
loop corrections to hadron properties. The composite piorfiorce[21]. Both calculations obtaiS-wave phase shifts that
and baryon states are determined by the same underlyir@mpare reasonably well with experimental data. A remark-
quark chiral dynamics. able feature of all these results for the low-lying spectrum of

The model we use belongs to a class of quark modelsesons and baryons ar@lwave scattering phase shifts is
inspired in the Coulomb gauge QCD Hamiltonigtl] and that they are obtained with a single free parameter, the
generalizes the Nambu—Jona-Lasinio mdde]] to include  strength of the confining potential.
confinement and asymptotic freedom. This class of models is In the present paper we go one step forward in the devel-
amenable to standard many-body techniques such as tlpment of the model and set up a calculational scheme to
BCS formalism of superconductivity. The initial studies treat chiral corrections in hadron spectroscopy. In a recent
within these models were aimed at studying the interplaypublication[22], two of us have calculated the pion-nucleon
between confinement and dynamical chiral symmetry breakeoupling constant in this model and obtained reasonable
ing (DxSB), and concentrated on critical couplings] for ~ agreement with its experimental value. Here, we are inter-
DxSB and light-meson spectroscopy4]. The model has ested in developing a scheme for calculating chiral correc-
been extended to study the pion beyond BCS level and meions to hadron properties. We study the requirements to ob-
son resonant decays in the context of a generalized resond&in in the context of the model the correct leading
ing group method15]. Since the model is formulated on the nonanalytic behaviofLNA) of chiral loops. Our scheme fol-
basis of a Hamiltonian, it provides a natural way to studylows the standard practi¢é,23] of constructing an effective
finite temperature and chemical potential quark mdtié;. baryon-pion Hamiltonian by projecting the quark Hamil-
The model and the many-body techniques to solve it makéonian onto a Fock-space basis of single composite hadronic
direct contact with first-principle developments such as nonstates. Chiral loop corrections are then calculated with the
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effective Hamiltonian in time-ordered perturbation theory.with (x) the Dirac field operator, anHl, a chirally sym-
The difference here is that while in the previous works themetric four-fermion interaction
pion is an elementary particle, in our approach the pions are

composites described by a Salpeter amplitude. 1 + N
A difficulty appears in the implementation of the projec- 1=2 dx | dy ¢ ()T P()Vr(x=y) ¢ (N TT ¢(y).

tion of the microscopic quark Hamiltonian onto the compos- 3)
ite hadron states, which is not present when the pion is
treated as an elementary particle. The difficulty is related tdlere, T°=1/2A%a=1, ... ,8 are thegenerators of the color

the two-component nature of the Salpeter amplitude of th&U(3) group,T" is one, or a combination of Dirac matrices,
pion. The two components correspond to positive and negend Vi contains a confining interaction and other spin-
tive energiegforward and backward moving, in the language dependent interactions. One example/pfwill be presented

of of time-ordered perturbation thegrythey are 4 2 matri-  in Sec. V, when we make a numerical application of the
ces in spin space and are called energy-sgirsin) wave  formalism.

functions. For the pion, the negative-energy component is as Once the model Hamiltonian is specified, the next step
important as the positive-energy one—in the chiral limit theyconsists in constructing an explicit but approximate vacuum
are equal—because of the Goldstone-boson nature of th#ate of the Hamiltonian in the form of a pairing ansatz. This
pion. Because of this, the Fock-space representation of thé most easily implemented in the form of a Bogoliubov-
pion state is not simple. We overcome the difficulty by re-Valatin transformationBVT). The transformation depends
phrasing the formalism of the Salpeter equation in terms opn a pairing function, or chiral angle that determines the
the random-phase approximati0RPA) equations of many- strength of the pairing in the vacuum. The quark field opera-
body theory. The single-pion state is obtained in terms of dor is expanded as

creation operator acting on the RPA vacuum. The pion cre-

ation operator is a linear combination of creation and anni- dqg o

hilation operators of pairs of quark-antiquark operators; the ~ #(X)= f (ZT)g/z[us(q)b(Q)+Us(Q)dT(—CI)]e'q X (4
positive-energy Salpeter component comes with the creation

operator of the quark-antiquark pair, and the negative-energyhere the quark and antiquark annihilation operatoesidd
one comes with the annihilation operator of the quark-gpninilate the paired vacuum, or BCS stiigco). Here the

antiquark pair. In this way, the projection of the microscopicgpinorsu(q) andv(q) depend upon the chiral angie as
guark Hamiltonian onto the single hadron states becomes

feasible and simple. 1 A

The paper is organized as follows. In the next section we ug(q)=—={[1+sine(q)]¥?+[1—sine(q)]*%e- qju?,
review the basic equations of the model. We show the rela- V2
tionship of the formalisms of the Salpeter equation and of the ®)
many-body technique of the RPA. In Sec. Il we derive the .
pion-baryon vertex function in terms of the bound-state Sal- _ . . ~ 0
peter amplitudes for the pion and the baryon. We obtain an Vs(® = E{[HS'n‘P(Q)]UZ_[1_S'n¢(q)]ma' gjvs.
expression that is valid for a general microscopic quark in- (6)
teraction, not restricted to a specific form of the potential.
Given the pion-baryon vertex function, we derive the expreswhereu? andv? are the spinor eigenvectors of Dirac matrix
sion for the baryon self-energy correction in Sec. IV. Al- yozﬁ with eigenvaluest 1, respectively.
though the derivation of the expression for the self-energy is The chiral angle can be determined from the minimization
well-known in the literature, we repeat it here to make theof the vacuum energy density
paper easier to read. In Sec. V we obtain numerical results

for the pion-baryon form factor and coupling constants. Nu- g ac Jr dq do’

(2m)® (2m)®

merical results and the discussion of the LNA contributions =
to the baryon masses are presented in Sec. VI. Section VII
presents our conclusions and future directions.

1
g @]+

(2m)®

xV(@—g)T{TTAY(QTTA (@), (D
Il. THE MODEL where Tr is the trace over color, flavor, and Dirac indices,
and
The Hamiltonian of the model is of the general form
+ _ T - _ T
H—Hg+H, . n A (@=2 DU,  AT(D=2 vo(Dui().
®
whereH is the Dirac Hamiltonian The minimization of the vacuum energy leads to the gap
equation
— T —ja-V+ .
o= | xyCor-ia Ve pmpo. 2 A(q)cose(q) ~ B(a)sing(q) =0, ©
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with

A( )—m+lf dg Vr(g—q )T BT (AT (q")
q)= 2(2w)3rqq B q

—A~(q)Tar], (10

B(q)= +1f d—qT/( —) T a-qTeC (A (q)
Q=a+; (Zw)srqq a-q q

—A ()T, (12)
WhereT/F(q) is the Fourier transform o¥/(x),
Vr(q)=f dx €9 Vp(x). (12
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d
mlio= | e CACLICRLALE

— ¢ (@b(a,)d(q-)], (18

where theg. were defined above. In this formulation, Egs.
(13) and(14) above are obtained from the RPA equation of
motion

(m(K)|[H,M1]|Orpay =[E (k) - Eva(‘:|<77(k)|MT|ORPA%i9)

The normalization is such that

(m()|m(K'))=(Ogpal[M 7(k),MT (k") ]|Ogpa) = 8(k—K').
(20

The verification of ySB consists in finding nontrivial solu-
tions to the gap equation, E(), and the existence of solu-

The pion bound-state equation is given by the field-theoreti¢ions for the pion wave function. Referenciisl, 15 show
Salpeter equation. The wave function has two componentéat for a confining force, there is always a nontrivial solu-
" and ¢, the positive- and negative-energy componentstion for the gap and pion Salpeter equations. Moreover, good

Each of theg¢'s is a 2X2 matrix in spin spacegb;;’S2 and

¢§1,sz- For this reason, theé's are also called energy-spin

(E-spin) wave functions. The¢'s satisfy the following
coupled integral equations:

[M(a)— E(Q+)—E(Q—)](ﬁI(Q):UT(Q+)K¢(k,Q)v(Q—()1,3)

[M(g)+E(qy)+ E(Q—)]d)ET(Q)=vT(Q+)K¢(k,Q)U(q—(), )
14

whereq. =q*k/2, and the kerneK 4(k,q) is given by

!

K¢(k,q)=f(ZW)gY/r(q—q')TaF[u<q;>¢;<q'>v*(k')
+ou(kL) o T(q)u'(g)]Tr. (15

Here, the superscrifton ¢~ T means spin transpose of
¢>S’1T52: ¢s, s, - The amplitudes are normalized as

d N B B
| Zioir @siia- o @@= ak-k).
(2m)
(16)

In the language of many-body theory, these equations can
identified with the RPA equatiori24]. In the RPA formula-
tion, one writes for the one-pion statsuppressing isospin

guantum numbeis

| (k) =M (K)[Orp), (17)

numerical values are obtained for the chiral parameters such
as the pion decay constant and the chiral condensate when an
appropriate spin-dependent potential is ugesl].

The inclusion of RPA correlations beyond BCS pairing
was shown in Refl24] to have a dramatic effect on the mass
spectrum of the pseudoscalar mesofisaid ), while it has
almost no effect on the mass spectrum of vector mespns (
andw). One can trace this effect to the fact that the pseudo
scalar mesons have a sizeable “negative energy” component
wave function, while the vector mesons have a very small
negative energy componeril5]. For baryons(such as
nucleon and\), since they do not have a sizeable negative
energy componenil9], one expects that they can be reliably
obtained from the BCS vacuum. We write therefore for the
one-baryon state

1B©(p))=B(p)|0gcs),

where the baryon creation opera®{'(p) is given by

(21)

B(p)= f da;da;day S(p—d;— G — 0s)
X W (01 0pl3) 6010253Xf1f2f3515253

Xb s ¢ (A)bl s ¢ (G)b]

c28f C383f3

(@). (22

Here €°1°2% is the Levi-Civita tensor, which guarantees that
the baryon is a color singlet angd't2's%1%2% are the spin-

t?gospin coefficients. The wave functidh,(g,0,0s) is deter-

mined variationallyf 19]. The index (0) on the baryon opera-
tors indicates a bare baryon, i.e., a baryon without pion cloud
corrections.

The important fact to notice here is that the baryon wave
function depends on the chiral angée and as such, spin
splittings and other properties are determined by the same

where |Ogpa) is the RPA vacuum, which contains correla- physics that determines vacuum properties. The pion-baryon

tions beyond the BCS pairing vacuu®gcs), andM;(k) is
the pion creation operator

vertex, that we will discuss in the next section, will therefore
depend on the chiral angle not only because of the pion, but
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also because of the baryon wave function. Numerical results 4 p
for the masses of the the nucleon at@1232) have been 0 o
obtained previously19] and are of the right order of mag- @ @ " Y.

nitude as compared with experimental values. Of course,p/2 a0 -p/2 p2 o —p/2
fine-tuning with different spin-dependent interactions can & @

improve the numerical values of the calculated quantities.

Wy Wi
I1l. PION-BARYON VERTEX FUNCTION P P
We obtain an effective baryon-pion Hamiltonian by pro-
jecting the model quark Hamiltonian onto the one-pion and
one-baryon states, Eq&l7) and (21). We use a shorthand ~ P/2 —p/2 %.J_.;p/z
notation. For the bare baryons, i.e., baryons without pionic
corrections, we use the indicesg, . . ., toindicate all the Wi Wy
guantum numbers necessary to specify the baryon state, suc
as spin, flavor, and center-of-mass momentum. For the pion, v P
we usej,k, ..., tospecify all the quantum numbers of the
pion state. With this notation, the effective Hamiltonian can
be obtained as p/2 3 . —p/2 p/2. g . —p/2
H=2ﬁ |a><aIH|B><BI+% [{ITHTK)Y (K] W Ws
FIG. 1. Graphical representation of the functioh®;", i

+,—§§ (|a)i) a,jIH BBl +|BYBIH i, a)al(j]). =1,2.3.

(23 quark exchange, such as baryon-meson or baryon-baryon in-

teractions, a mapping procedure would be useful. In a future

This leads to an effective Hamiltonian that can be written aguPlication, we intend to address such processes in the con-
text of the present model.

the sum of the single-baryon and single-pion contributions, . N .
and the pion-baryon vertex The single-hadron Hamiltoniarts, andH , give

H=Ho+W, (24) HolBO)Y=EQB®), H, |m=EQ|m), (27
: 0)_ 0 0)_ 0) :
whereH,=Hg+H., contains the single-baryon and single- With E®’=ME” andEQ’=m{ in the rest frame. The vertex
pion contributions W gives the coupling of the pion to the baryon and, as we
will show later, leads to loop corrections to the baryon self-
energy.
HB=§ EQBOBY, H, =X EMIM;, (25 The pion-nucleon vertex function can be written generally
. as
andW is the pion-baryon vertex 3
W=, (W +W,), (29
w=> Wi BOBOM,+H.c. (26) =t
jap

where theW; ’s are of the general fornffor simplicity we
Here, BE,O)T and BEYO) (M]T and M) are the baryor(pion) ~ SUppress the color and spin-flavor wave functions in the fol-
creation and annihilation operators, discussed in the previodgWing)

section. Note that we have assumed that states with different dad

quantum numbers are orthogonal. Note also that in writing « ... (dqdq dq’ e

the statdj,a) we have implicitly assumed that the negative- Wi (p.p 'k)_f (2m)° Vr(a—q )‘Pp’(%%%)

energy component of the baryon is negligible and the baryon

creation operator acting on the RPA vacuum has the same XW?[F,¢k]\pr(qlq2q3), (29
effect as acting on the BCS vacuum.

We note that the projection of the microscopic quarkwhere theV;"’s involve the Dirac spinors and the pion wave
Hamiltonian to an effective hadronic Hamiltonian can be ob-functions. In Fig. 1 we present a pictorial representation of
tained in a systematic and controlled way using a mappinghe different contributions to the vertex function. Explicitly,
procedurd 26]. We do not follow such a procedure here be-the W,’s are given by
cause we are mainly concerned with tree-level pion-baryon
coupling and the projection we are using is enough to obtain W1 =[u'(q;) T2 u(qs)]éy (pa)[v'(—pa) T2 u(ay)],
the desired effective coupling. For processes that involve (30
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W3 =, (pa)v (—py) T2 u(g) [u’(g) T2 u(qp)], (31)  approximation[28,6]. The baryon self-energy is defined as
the difference of bare- and dressed-baryon energies

Wi=W,, 32

o 2 3(Eg)=Eg—Ef. (38)

-—_rntra’ T _ -T T a
Wi =lu (@) TTo(=a) ] (P)Lu(pa) T U(a)], The physical baryon mas¥lg is given by the(in general,

(33 nonlineaj equation
W =[u'(ep) T2 u(dp) J[u(ap) T2 o (—da) Ty T(Pa), _ MO
W5 =W . (35 where My is the bare baryon mass.e., without pionic

corrections and . (Eg) is the self-energy function.

Let |B) denote the physical baryon state, afg}) the
“bare” undressed state. Let5 be the probability of finding
|Bo) in |B). Then one can write

In these formulas, the quark momenta in the initithal)
nucleonq;,d,,0; (0;,05,0;) and the momenta of the quark
and antiquark in the piom, anda,, are expressed in terms

of the loop momentay,q’,q” by momentum conservation
(see Fig. f A B)=1Z5|Bo) + A|B), (40)

Once the effective bgry_on-pmn I-_|am|Iton|an IS Obtame‘.j'where/\ is a projection operator that projects out the com-
one can calculate the pionic corrections to baryon pmpert'eﬁonenﬂB ) from |B)
0 ’

as in the CBM and in the traditional Chew-Low model. This

will be done in the next section. A=1—|By)(By|. (41)
Before leaving this section, we recall that the use of the

Breit frame is essential in calculations of form factorertex  We have that

functions in static modelg27], like the present one. This is

true for composite models for which approximate solutions  (B|W|Bg)=(B|(H—H,)|Bo)=(Eg—EY)(B|Bo)

that maintain relativistic covariance are very difficult to 5 0) o

implement. This was the case for all old, static source, pion- = JZ3(Eg—EY) = JZ53(Ep). (42

nucleon models such as the Chew-Low mo[®&8]. In par-

ticular, as explained in Ref27], electromagnetic gauge in-

variance is respected in this frame. Therefore, in calculatin

loop corrections to baryon properties, we employ the Breit- 1

frame vertex functions. In the Breit frame, we denote the |B)= \/z—g 1— mw |Bo). (43

incoming pion and nucleon momenta pynd —p/2, respec- B~ Mo

tively, and th_e outgoing nucleon momentum 2. In t_h|s On the other hand, since

frame, the internal momenta of quarks and antiquarks

We can now exprestB) in terms of |[By) and the pion-
6)aryon interaction HamiltoniakV as

0;,95, - .. are given in terms of the loop momemjaq’, . 1
andq’ as (B|W|Bg)= \/Z—z<Bo|WmW| Bo), (44)
w=p2ra+tq’, q=p2+a+d, we have that the self-energy is given by

L=0=—0+0", gg=0=—20", 1 1
3(Ep)= \/?g<B|W| Bo)—(BolmeIB()).

ps=p2—q—¢q', du=pl2—g—0, (36)
4 4 (45)

for the vertexw* and , ) )
This expression can be further approximated so as to

0=-p2+q +q', o;=p2+q +q’, avoid solving complicated integral equations for the self-
energy. We can manipulate the expressionJoto obtain
B=0=—0q +q, g=05=—20", (for details, see Ref6)])
—_ 1/ - _ AN 1
ps=—p2+a+q’, o4 pl2—gq—q’, (37 S(Eg)=(Bo|W=— = W|By), (46)
, , Eg—Ho—30(Ep)
for the vertex)V ™. In following equations, we also denote
the vertex function a®V(—p/2, p/2;p)=W(p). with
IV. SELF-ENERGY CORRECTION TO BARYON MASSES S o(Eg) = WA E= HOAW' (47)

For completeness we review the derivation of the expres-
sion for the self-energy correction from the effective baryon-The approximation consists in absorbig(Eg) into Hq
pion Hamiltonian of Eq.(24) in the “one-pion-in-the air”  such that
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Ho+3o(Eg)=Ho, (48)

LNA_ 3 2.2
. M N 16’7T2f2 gAmw . (54)
with 71'
In models where the pion is treated as a pointlike particle,
Ho=> E,BOB®+> EWM]TM]- , (49)  this result follows trivially[9] from Eq.(52). In the context
a ] of the present model, where the pion is not treated covari-
antly, such a result does not follow in general for an arbitrary
whereE, andE,, are thephysicalenergies. Therefore, the interaction. The difficulty is related to the fact the the pion
baryon self-energy can be written as dispersion relatiorE .= \k?+mZ is not obtained in general

in a noncovariant model. In the CBM for example, the pion

is point like and the normalization is correct from the very

3(Eg) =(Bo| W——=—W|Bo). (50)  peginning. However, the microscopic quark interaction can
B 170 be chosen such that the pion dispersion relation is correctly
obtained[14,25. These issues will be discussed in Sec. VI.

Finally, insertion of a sum over intermediate baryon-pion
states in Eq(50) leads to
V. THE PION-NUCLEON AND PION- A(1232 FORM
1 FACTORS
EB_En<n|W|BO>' (51)

2<EB>=; (Bo|W|n)

Our aim is to obtain an estimate for the numerical values
of the pionic self-energies. It happens that nature has pro-

The structure vertex-propagator-verts(E—Ho) ~*W in duce_d a sort of Io_w energy filteichiral syr_nmetry for the
Eq. (50) is an effective baryon-pion interaction. The main details of.strong |r_1teract|ons. .Indeed it is remarkable that
difference here with the hybrid approactas-6] is that we although intermediate thgorencal concepts such as gluon
do not have a pointlike pion coupling to pointlike quarks andProPagators, quark effective masses and so on, might vary
antiquarks. The pion-baryon vertex arises through tee * (In fact they are not gauge invariant and hence they are not
graphs” in which the antiquark of the pion is annihilated Physical observablgschiral symmetry contrives for the final
with a quark of the “initial” baryon and the quark of the pion physical resullts, e.g._,.hadronlc masses and scattering Iengths,
appears in the “final” baryon. Therefore, the vertex function to be Iarggly |nsens.|t|ve to the apove menuoped theoretical
incorporates not only the extension of the baryons, but alsyncertainties. The pion mass furnlshe_s the ultlmate example:
the extension of the pion. In the case of massless quarks, the pion mass is _bound to be
We truncate the sum over the intermediate states in EGEEr0: regardiess of the form of the effective quark interaction
(51) to the lowest mass states, namely, the nucleon and t%yowded it supports the mechanism of spontaneous break-
A(1232). In this case, we obtain for the on-shilland own of chiral symmetry. The other example is provided by

; ; the 7-7 scattering length§30] which are equally indepen-
A(1232) self- th led set of t
( ) self-energies the coupled set of equations dent of the form of the quark kerng31]. Furthermore it has

become more and more evident through the accumulation of

2
S (M ):f dk [Wiin(K)| theoretical calculations on low-energy hadronic phenomena,
NN (2m) 3 Mn—[My+EL(K)] ranging from calculations on Euclidean space to instanta-
neous approximations and from harmonic kernels to linear
Wia () Wian(k) 52 confinement, that low-energy hadronic phenomenology only
My—[Ma+EL(K)]]) seems to depend mildly on the details of the quark kernels
used. To this extent, we will use for the quark-quark interac-
tion a kernel of the form
S\ (M ):f dk Wn(K)Wya(k)
ST 2mp My IMy+EL(K)] o0 55
[Waa(k)|? 53 2
Ma—[My+EL(K)] V(k)ZZ(ZW)BKSAk5(k)1 (56)

This is the final result for the pion loop correction for the
nucleon andA (1232). whereKj is a free parameter. This potential has been widely
One important consequence of projecting the microscopicised in the context of chiral symmetry breaking because it
quark interaction onto hadronic states is that the leadingllows a great deal of simple analytic calculatigmich is
nonanalytic(LNA) contributions in the pion mass as pre- not the case for the linear potenjialhe harmonic potential
dicted by chiral perturbation theory are correctly obtainedbasically differs from the linear potential in domains of the
[9]. In particular, as we discuss in the next section, 6) baryon-pion-baryon overlap kernel which contribute little to
leads to an LNA contribution to the nucleon mass as prethe total geometrical overlap so that, at least for results pro-
dicted by QCD[29], namely, portional to these overlaps, they should not differ too much.
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The momentum-dependent part of the Salpeter amplitude .
for the baryonV ,(0,0,03) in Eq. (22), is taken to be of a J [dg](a™ +a~+b"+b™)
Gaussian form Oi(p)=0, O(p)=-— ,
*
e*(p2+>\2)/2aé P1— P> f (AT ou 63
p(Q1qZQ3) NB(p) p \/E

where[dq] means integration ovey, q', andq’ [see Eq.

P1+Po—2ps (29)] and the set of functiona™,a”,b™,b~ is given by
A=

5

whereaé is the variational parameter arid;(p) is the nor-
malization. Notice that since the integrations of the quark
momenta in the functionwii in Eqg. (29) are made through

a Monte Carlo integration, the Gaussian ansatz is not essen-

(57)
a+:¢+(¢'(Q1)U'V‘I’out
cose(qy)

@' (qy)+ T}U'E{lX(alXV‘lfom)si]\Ifin,

+

tial and does not simplify our calculations, but we still use it (64)
to make contact with previous calculations.
As in our previous calculatiofi22] for the pion-nucleon a =¥ AoV
coupling constant, the Salpeter amplituds(q) up to first ouf ¢ (A1) @ n
order ink are given by
,,oocose(ay)| ., . B
b ()=NK) [ +sing(q)+E1 (k) fy(q) Q)+ ——— o X (X Vi) 1 ¢,
1
+192(DK(GX 0) ] X 7Scolor (58) (65
i (Q=MK) Y —sine(q)+E1(k)f(q) b gt 1—singo(qi)[zcos<p(p1)a .
. - - / !
—~ig1(QK(GX 0) X 7Scolors (59 20 P1
where is the chiral angle an&, (k) is the first-order cor- + o (qp+ COSQ"(%)}U. alx(alxai)]q,outq,m,
rection to the pion energy. The normalizatidf{k) is pro-
portional toE,(k) and is given as
(66)
dq . i ’
N2(k)=4E;(K) f 2 )gsmso(qm(q)EElaz. (60) p- 17 Sine(dy) | ,coseldy) -
m 20 as
The energyE (k) is given in terms of the second derivatives cose(q))
of the diagonal components of the Salpeter kernel with re- +| @' (gy)+ Bk P a
spect tok and its explicit form is given in Eq(24) of Ref. 1
[22]. Note that the truncation up to first order knof the
Salpeter amplitude constitutes a reasonable approximation o .
due to the fact that c.m. momenta-dependent distortions of X (X )  Wou¥ind 67

the pion and nucleon wave functions are geometrically
damped because of the geometric overlap kernel integrationtgere, ¥, ., stand for the baryon in and out Salpeter ampli-
for the functionsW;" in Eq. (29—see Ref[32]. Explicit  tudes andp* ~ represent the pion Salpeter amplitudes.
numerical solutions were obtained in RE22] for the func- The baryon-pion coupling constants are obtained as the
tions f1(q) andg4(q). zero limit of the nucleon(or A) momentump—0 of the

For completeness, we initially repeat the results of Refabove overlap functions. For simplicity, we are defining the
[22] for the coupling constants,yy andf s . In Ref.[22],  couplings at zero momentum, and not at the physical pion

they were obtained as mass. In order to facilitate the integration, in RE22] a
Gaussian parametrization for thgcose(k)]/k and [1
f NN 5 Oi(p) . —sine(k)]/k?* was used. Here, since we need the vertex func-
m, O-N'p:3\/§ 2a N P, (61 tion for p#0, we use a Monte Carlo integration to perform

the multidimensional integral that gives the overlap function
, and use the full numerical solution for the gap functioot
waAS _ 212 Oy(p) 2 Ors(P) Sp (62) the Gaussian parametrizatjoWVe first checked the correct-

=P 3 2a

m 2a ness of our Monte Carlo integration with the result of Ref.
[22] for the special case gi=0 using the same Gaussian
where the isospin matrix is omitted and parametrization as was used there. This was done by calcu-
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ST —T 71717 T T T 1 wherej, is the spherical Bessel function aRds the radius

X . of the underlying MIT bag. The solid line is our result and
the dashed one is the CBM result flB=1 fm. The faster
fall-off of our result is clearly a consequence of our Gaussian
ansatz. As we will discuss soon, this rapid falloff will have
the consequence of giving a smaller value of the self-energy
correction to the nucleon mass, as compared to the correc-
tions obtained with the CBM.

- . VI. SELF-ENERGY CORRECTIONS TO THE NUCLEON
AND A(1232 MASSES

In this section we present numerical results for the pionic
p [fm'J] self-energy corrections to the nucleon ak(l1232) masses
and discuss the LNA contribution to the masses. We start by
FIG. 2. The functionu(p). The solid line is the form factor rewriting the vertex function in a manner to make clear the

obtained with the baryon amplitude of EG7) and pion Salpeter problem with the pion dispersion relation. The pion energy is
amplitudes of Eqs(58) and(59). The dashed line is the CBM form given, for lowk, as[14,25

factor of Eq.(71) for R=1 fm.

(s)
lating Os¢(p) for p=(0,0p,) and finding the limit of ® E2(k)=m3+ kZ\/f(lt), (72
= Os/p, Whenp,—0 to obtainf . fo

As in Ref. [22] we have useKy=247 MeV for the
strength of the potential. The variational determinationeof Where
of the baryon amplitude, Eq57), leads toay=1.2K,. For

A(1232), the result is not much different and therefore we 2my(yyy  — dg .
us(ea Z)a 7=~ q(t) 2 <¢¢>:_6f 3Sine(a).
N A (f3) (27)
Introducing the quantities (73

5 2 The point is that for an arbitrary quark-quark interaction one
Fi="7=. F2\3 Fe= 7=, (68)  obtains in general two different values for the pion decay
constantf’’ andf}” (the explicit calculations can be found
we can summarize the couplings of the pion to the nucleor’ Refs.[14,25), dependmg_on how one defines the _decay
. constant. When using the time component of the axial cur-
andA(1232) as follows: (D .
rent, one obtaing’’, and when using the space component
m.. one obtainsf(® . However, as suggested in RéL4], and
fWNNzFl(O(O)?, explicitly demonstrated in Refl25], this problem can be
cured by adding a transverse gluon interaction. Therefore, to
illustrate the point of obtaining the correct LNA term from

m7r mﬂ_ . . . . . _
foa=F0(0)—=, f_ya=Fs0(0)—. (69) Eq. (_52) with c_:omposne pions, \é\t/)e us(gihe correct pion dis
a a persion relation and assumé,’=f>=f_ and denote
. E1(k)=w(k).
For the value oK, given above, we haven,/a=3.47. The The normalization of the pion Salpeter amplitude, Eq.
numerical values for the couplings are then (60), can be rewritten as

fﬂ'NN: 119, f,n.NAZZ.OZ, fwAA:0'24- (70) dk
, o Nz(p)=4w(p)f

The effect of the Gaussian parametrization can be assessed (2m)
by comparing with the corresponding numbers of R2g£]. (74)
For examplef ,yy=1.0 andf .yo=1.8 in Ref.[22]; the ef- -, . )
fect of the parametrization is therefore of the order of 20%.1hat is,a” from Eq.(60) is 2/3f7.. We next extract from the

Next, we calculated the full overlap function fpr=0. In  Vertex function(we concentrate on thN form factoy this
Fig. 2 we plot the functiom(p) = O(p)/O(0) for the param- Normalization in the following way:
eters given above. It is instructive to compare the momentum

: 2 2
3Sine(q)f1(a) =z w(p)f7.

dependence of this form factor with the one given by the i (D)= Ga(p) (75
CBM [6,23: NP ) 2f, NIVP
( ):31 1(PR) (71  The relation of the functiorG 5(k?) to the overlap function

pR ' O(p) can be trivially obtained by comparing with E@1).
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RASRAN RSN for the variational size parameter the valug=1.2K,. We
':' \‘ '/' \\‘ also use here:y= a, . This leads to the following values for
1 1 1 ) the bareN and A masses:
N N N N A N
@ (b) MP=1174 Mev, M{?=1373 MeV. (80
Lo PO The difference between the masses, of the order of 200 MeV,
. s, . . comes from the hyperfine splitting induced by the confining
:' ! ;' ) interaction. Given these values, we solve the two self-
A N A A A A consistent equations given in Eq¥6) and (77). They are
(© (d) solved by iteration. We obtain for the masses
FIG. 3. Schematic representation of the pion self-energy correc- My=1125 MeV, M,=1342 MeV. (81)

tions to the nucleoriN) and delta A) masses.
Comparing with the values above, we see that the pionic
Inserting Eq.(75) in the expression for thBl andA self-  effect is relatively small, as it should be, and of the order of
energies, Egs(52) and (53), and after performing rather 50 MeV for theN and 30 MeV for theA. The pionic effect is

straightforward spin-isospin algebra one obtains smaller for theA, as one expects from spin-isospin consid-
erations[9]. The results obtained with the CBM for R
o a2 (7, PP =1 fm are a bit largef23]. The difference can be traced to
Mn=My"—To 0 d w2(p) the rapid falloff of the form factor in our model.

We certainly do not expect these numbers to be definitive.
32 ,(~ p*u?(p) Once more realistic microscopic quark interactions and an-
- 2—5fof dp AM ; (76)  satze for the baryon wave function are used, they might be
0 w(P[AMFw(p)] . . . .
improved. However, independently of the microscopic
“2(p) model, our scheme is general and able to incorporate such
P P interactions and new baryon amplitudes. It would be of par-
o(P)[AM—w(p)] ticular interest to have the numbers for a linear confining
interaction with short range gluonic interactions that respect
s 4,2 .
_fzf A (p) 77 asymptotic freedom.
0 2 ’
o  o(p)

8 0
My=M©+ Z_ngfo dp

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

where . .
We developed a calculational scheme to calculate chiral

M. — Ry " loop corrections to properties of composite baryons with
AM=My=My,  w(p)=yp +ms; (78 congposite pions. Tr?e composite baryons and pions are
bound states derived from a microscopic chiral quark model
inspired in Coulomb gauge QCD and provides a generaliza-
O(p) 108 f2 tion of the Nambu—_Jona—Lasinio model to inclgde confing-
(p)=—re, f2="" _mNN (799  ment and asymptotic freedom. An effective chiral hadronic
O(0) m2 4w model is constructed by projecting the microscopic quark
Hamiltonian onto a Fock-space basis of single composite
Note that in principle we have different spatial dependenciesadronic states. The composite pions and baryons are ob-
for the NN, NA, ..., vertices, but for simplicity we have tained from the same microscopic Hamiltonian that describes
written them here as being equal. A schematic representatiahe chiral vacuum condensate. The projection of the quark
of Egs.(76) and(77) is presented in Fig. 3. It is important to Hamiltonian onto the pion states is nontrivial because of the
note that these equations are not the ones one would obtaiwo-component nature of the Salpeter amplitude of the pion.
by simple perturbation theory; they are actually nonperturbaAs explained before, the two components correspond to posi-
tive, because of the dependence bkl =M,—My on the tive and negative energies which complicates the Fock-space
right-hand side. representation of the pion state. The projection is made pos-
It is easy now to obtain the LNA contributions to the sible by rephrasing the formalism of the Salpeter equation in
masseq9]. For the nucleon, the LNA contribution comes terms of the RPA equations.
from the first term in Eq(76) by performing the integral. The development of models and calculational methods of
The integral can be done by transforming it into a contourthe sort described in the present paper are relevant in the
integral and making use of Cauchy’s theorem. The result igontext of a phenomenological understanding of nonpertur-
Eq. (54). For theA, the LNA contribution follows in a simi- bative phenomena of strong QCD-like confinement and dy-
lar way from the last term in Eq77). namical chiral symmetry breaking. Eventually full lattice
To conclude, we discuss numerical results for the pionicdQCD simulations aimed at studying hadronic structure will
corrections. Initially we solve variationally the bare nucleonbe available and phenomenological models will play a cen-
case. As discussed above, usiig=247 MeV, we obtain tral role in the interpretation of the data generated. The de-

and
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velopments of the present paper are of particular interest fonuse a microscopic interaction that is consistent with
the first-principle developments based on the QCD Hamilasymptotic freedom and describes confinement by a linear
tonian, such as the nonperturbative renormalization prograrpotential. The calculation of the pion wave function beyond
for the QCD Hamiltoniarj17] and Hamiltonian lattice QCD  |owest order in momentum must be implemented and the
[18]. We intend to implement the technique developed hergariational ansatz for the baryon amplitude must be im-
to such first-principle QCD calculations. proved. A more ambitious development would be to include
We illustrated the applicability of the formalism with a explicit gluonic degrees of freedom. In this case renormal-
numerical calculation using a simple microscopic interactionjzation issues will show up and the new techniques such as
namely a confining harmonic potential, and a simple Gaussgiscussed in Ref.17] will certainly be useful. Another very

ian ansatz for the baryon amplitude. This very seBweave  nteresting direction would be to employ the techniques de-
interaction has been used in a variety of earlier calculationsyeloped here in Hamiltonian lattice QCD.

such as meson and baryon spectroscopy &dave

nucleon-nucleon interaction. Numerical results were ob-

tamed here for the plon—_nucleon form factor and for the pi- ACKNOWLEDGMENTS

onic self-energy corrections to the nucleon af¢1232)
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