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Chiral corrections to baryon properties with composite pions
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A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with
composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark
model. The model is amenable to standard many-body techniques such as the BCS and random phase approxi-
mation formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the
macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective
hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the
pion-nucleon form factor and the calculation of pionic self-energy corrections to the nucleon andD(1232)
masses.
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I. INTRODUCTION

The incorporation of chiral symmetry in quark models
an important issue in hadronic physics. The subject da
back to the early works@1–6# aimed at restoring chiral sym
metry to the MIT bag model@7#. The early attempts were
based on coupling elementary pion fields directly to quar
A great variety of chiral quark-pion models have been c
structed since then and the subject continues to be of inte
in the recent literature@8–10#. Despite the long history, ther
are many important open questions in this field. In t
present paper, we are concerned with one of such quest
namely the coupling of the pion as a quark-antiquark bou
state to the baryons. Starting from a model chiral qu
Hamiltonian, we construct an effective low-energy chi
pion-baryon Hamiltonian appropriate for calculating chi
loop corrections to hadron properties. The composite p
and baryon states are determined by the same under
quark chiral dynamics.

The model we use belongs to a class of quark mod
inspired in the Coulomb gauge QCD Hamiltonian@11# and
generalizes the Nambu–Jona-Lasinio model@12# to include
confinement and asymptotic freedom. This class of mode
amenable to standard many-body techniques such as
BCS formalism of superconductivity. The initial studie
within these models were aimed at studying the interp
between confinement and dynamical chiral symmetry bre
ing (DxSB), and concentrated on critical couplings@13# for
DxSB and light-meson spectroscopy@14#. The model has
been extended to study the pion beyond BCS level and
son resonant decays in the context of a generalized reso
ing group method@15#. Since the model is formulated on th
basis of a Hamiltonian, it provides a natural way to stu
finite temperature and chemical potential quark matter@16#.
The model and the many-body techniques to solve it m
direct contact with first-principle developments such as n
0556-2813/2001/64~2!/025202~11!/$20.00 64 0252
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perturbative renormalization-group treatments of the Q
Hamiltonian@17# and Hamiltonian lattice QCD@18#.

One important development of the model, in the cont
of the present paper, was its extension in Ref.@19# to baryon
structure. In Ref.@19# a variational calculation was imple
mented for the masses of baryons and it was shown th
sizeableD(1232)-N mass difference is obtained from th
same underlying hyperfine interaction that gives a reason
value for thep-r mass difference. This hyperfine interactio
along with other spin-dependent interactions such as te
and spin-orbit, stem from Bogoliubov-Valatin rotated spino
that depend on the ‘‘chiral angle.’’ The chiral angle gives t
extent of the chiral condensation in the vacuum and de
mines the chiral condensate. The very same variational w
function was used later for studyingS-wave kaon-nucleon
@20# scattering and the repulsive core of the nucleon-nucl
force @21#. Both calculations obtainS-wave phase shifts tha
compare reasonably well with experimental data. A rema
able feature of all these results for the low-lying spectrum
mesons and baryons andS-wave scattering phase shifts
that they are obtained with a single free parameter,
strength of the confining potential.

In the present paper we go one step forward in the de
opment of the model and set up a calculational scheme
treat chiral corrections in hadron spectroscopy. In a rec
publication@22#, two of us have calculated the pion-nucleo
coupling constant in this model and obtained reasona
agreement with its experimental value. Here, we are in
ested in developing a scheme for calculating chiral corr
tions to hadron properties. We study the requirements to
tain in the context of the model the correct leadi
nonanalytic behavior~LNA ! of chiral loops. Our scheme fol
lows the standard practice@6,23# of constructing an effective
baryon-pion Hamiltonian by projecting the quark Ham
tonian onto a Fock-space basis of single composite hadr
states. Chiral loop corrections are then calculated with
©2001 The American Physical Society02-1
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effective Hamiltonian in time-ordered perturbation theo
The difference here is that while in the previous works
pion is an elementary particle, in our approach the pions
composites described by a Salpeter amplitude.

A difficulty appears in the implementation of the proje
tion of the microscopic quark Hamiltonian onto the compo
ite hadron states, which is not present when the pion
treated as an elementary particle. The difficulty is related
the two-component nature of the Salpeter amplitude of
pion. The two components correspond to positive and ne
tive energies~forward and backward moving, in the langua
of of time-ordered perturbation theory!, they are 232 matri-
ces in spin space and are called energy-spin (E-spin! wave
functions. For the pion, the negative-energy component i
important as the positive-energy one—in the chiral limit th
are equal—because of the Goldstone-boson nature of
pion. Because of this, the Fock-space representation of
pion state is not simple. We overcome the difficulty by r
phrasing the formalism of the Salpeter equation in terms
the random-phase approximation~RPA! equations of many-
body theory. The single-pion state is obtained in terms o
creation operator acting on the RPA vacuum. The pion c
ation operator is a linear combination of creation and an
hilation operators of pairs of quark-antiquark operators;
positive-energy Salpeter component comes with the crea
operator of the quark-antiquark pair, and the negative-ene
one comes with the annihilation operator of the qua
antiquark pair. In this way, the projection of the microscop
quark Hamiltonian onto the single hadron states beco
feasible and simple.

The paper is organized as follows. In the next section
review the basic equations of the model. We show the r
tionship of the formalisms of the Salpeter equation and of
many-body technique of the RPA. In Sec. III we derive t
pion-baryon vertex function in terms of the bound-state S
peter amplitudes for the pion and the baryon. We obtain
expression that is valid for a general microscopic quark
teraction, not restricted to a specific form of the potent
Given the pion-baryon vertex function, we derive the expr
sion for the baryon self-energy correction in Sec. IV. A
though the derivation of the expression for the self-energ
well-known in the literature, we repeat it here to make t
paper easier to read. In Sec. V we obtain numerical res
for the pion-baryon form factor and coupling constants. N
merical results and the discussion of the LNA contributio
to the baryon masses are presented in Sec. VI. Section
presents our conclusions and future directions.

II. THE MODEL

The Hamiltonian of the model is of the general form

H5H01HI , ~1!

whereH0 is the Dirac Hamiltonian

H05E dx c†~x!~2 i a•“1bmq!c~x!, ~2!
02520
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with c(x) the Dirac field operator, andHI a chirally sym-
metric four-fermion interaction

HI5
1

2E dxE dyc†~x!TaGc~x!VG~x2y!c†~y!TaGc~y!.

~3!

Here,Ta51/2la,a51, . . . ,8 are thegenerators of the colo
SU~3! group,G is one, or a combination of Dirac matrice
and VG contains a confining interaction and other sp
dependent interactions. One example ofVG will be presented
in Sec. V, when we make a numerical application of t
formalism.

Once the model Hamiltonian is specified, the next s
consists in constructing an explicit but approximate vacu
state of the Hamiltonian in the form of a pairing ansatz. T
is most easily implemented in the form of a Bogoliubo
Valatin transformation~BVT!. The transformation depend
on a pairing function, or chiral anglew that determines the
strength of the pairing in the vacuum. The quark field ope
tor is expanded as

c~x!5E dq

~2p!3/2
@us~q!b~q!1vs~q!d†~2q!#eiq•x, ~4!

where the quark and antiquark annihilation operatorsb andd
annihilate the paired vacuum, or BCS stateu0BCS&. Here the
spinorsus(q) andvs(q) depend upon the chiral anglew as

us~q!5
1

A2
$@11sinw~q!#1/21@12sinw~q!#1/2a•q̂%us

0 ,

~5!

vs~q!5
1

A2
$@11sinw~q!#1/22@12sinw~q!#1/2a•q̂%vs

0 ,

~6!

whereus
0 andvs

0 are the spinor eigenvectors of Dirac matr
g05b with eigenvalues61, respectively.

The chiral angle can be determined from the minimizat
of the vacuum energy density

Evac

V
5E dq

~2p!3
Tr@a•qL2~q!#1

1

2E dq

~2p!3

dq8

~2p!3

3Ṽ~q2q8!Tr@TaGL1~q!TaGL2~q8!#, ~7!

where Tr is the trace over color, flavor, and Dirac indice
and

L1~q!5(
s

us~q!us
†~q!, L2~q!5(

s
vs~q!vs

†~q!.

~8!

The minimization of the vacuum energy leads to the g
equation

A~q!cosw~q!2B~q!sinw~q!50, ~9!
2-2
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with

A~q!5m1
1

2E dq8

~2p!3
ṼG~q2q8!Tr@bTaG~L1~q8!

2L2~q!!TaG#, ~10!

B~q!5q1
1

2E dq8

~2p!3
ṼG~q2q8!Tr@a•q̂TaG~L1~q8!

2L2~q!!TaG#, ~11!

whereṼG(q) is the Fourier transform ofVG(x),

ṼG~q!5E dx eiq•xVG~x!. ~12!

The pion bound-state equation is given by the field-theor
Salpeter equation. The wave function has two compone
f1 andf2, the positive- and negative-energy componen
Each of thef ’s is a 232 matrix in spin spacefs1 ,s2

1 and

fs1 ,s2

2 . For this reason, thef ’s are also called energy-spi

(E-spin! wave functions. Thef ’s satisfy the following
coupled integral equations:

@M ~q!2E~q1!2E~q2!#fk
1~q!5u†~q1!Kf~k,q!v~q2!,

~13!

@M ~q!1E~q1!1E~q2!#fk
2T~q!5v†~q1!Kf~k,q!u~q2!,

~14!

whereq65q6k/2, and the kernelKf(k,q) is given by

Kf~k,q!5E dq8

~2p!3
ṼG~q2q8!TaG@u~q18 !fk

1~q8!v†~k28 !

1v~k18 !fk
2T~q8!u†~q28 !#TaG. ~15!

Here, the superscriptT on f2T means spin transpose off2,
fs1 ,s2

2T 5fs2 ,s1

2 . The amplitudes are normalized as

E dq

~2p!3
@fk

1* ~q!fk8
1

~q!2fk
2* ~q!fk8

2
~q!#5d~k2k8!.

~16!

In the language of many-body theory, these equations ca
identified with the RPA equations@24#. In the RPA formula-
tion, one writes for the one-pion state~suppressing isospin
quantum numbers!

up~k!&5Mp
† ~k!u0RPA&, ~17!

where u0RPA& is the RPA vacuum, which contains correl
tions beyond the BCS pairing vacuumu0BCS&, andMp

† (k) is
the pion creation operator
02520
ic
ts
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Mp
† ~k!5E dq

~2p!3/2
@fk

1~q!b†~q1!d†~q2!

2fk
2~q!b~q1!d~q2!#, ~18!

where theq6 were defined above. In this formulation, Eq
~13! and ~14! above are obtained from the RPA equation
motion

^p~k!u@H,Mp
† #u0RPA&5@Ep~k!2Evac#^p~k!uM†u0RPA&.

~19!

The normalization is such that

^p~k!up~k8!&5^0RPAu@Mp~k!,Mp
† ~k8!#u0RPA&5d~k2k8!.

~20!

The verification of DxSB consists in finding nontrivial solu
tions to the gap equation, Eq.~9!, and the existence of solu
tions for the pion wave function. References@11,15# show
that for a confining force, there is always a nontrivial so
tion for the gap and pion Salpeter equations. Moreover, g
numerical values are obtained for the chiral parameters s
as the pion decay constant and the chiral condensate whe
appropriate spin-dependent potential is used@25#.

The inclusion of RPA correlations beyond BCS pairin
was shown in Ref.@24# to have a dramatic effect on the ma
spectrum of the pseudoscalar mesons (p andh), while it has
almost no effect on the mass spectrum of vector mesonr
andv). One can trace this effect to the fact that the pseu
scalar mesons have a sizeable ‘‘negative energy’’ compon
wave function, while the vector mesons have a very sm
negative energy component@15#. For baryons ~such as
nucleon andD), since they do not have a sizeable negat
energy component@19#, one expects that they can be reliab
obtained from the BCS vacuum. We write therefore for t
one-baryon state

uB(0)~p!&5B(0)†~p!u0BCS&, ~21!

where the baryon creation operatorB(0)†(p) is given by

B(0)†~p!5E dq1dq1dq1d~p2q12q22q3!

3Cp~q1q2q3!ec1c2c3x f 1f 2f 3s1s2s3

3bc1s1f 1

† ~q1!bc2s2f 2

† ~q2!bc3s3f 3

† ~q3!. ~22!

Hereec1c2c3 is the Levi-Civita tensor, which guarantees th
the baryon is a color singlet andx f 1f 2f 3s1s2s3 are the spin-
isospin coefficients. The wave functionCp(q1q2q3) is deter-
mined variationally@19#. The index (0) on the baryon opera
tors indicates a bare baryon, i.e., a baryon without pion clo
corrections.

The important fact to notice here is that the baryon wa
function depends on the chiral anglew and as such, spin
splittings and other properties are determined by the sa
physics that determines vacuum properties. The pion-bar
vertex, that we will discuss in the next section, will therefo
depend on the chiral angle not only because of the pion,
2-3
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also because of the baryon wave function. Numerical res
for the masses of the the nucleon andD(1232) have been
obtained previously@19# and are of the right order of mag
nitude as compared with experimental values. Of cou
fine-tuning with different spin-dependent interactions c
improve the numerical values of the calculated quantities

III. PION-BARYON VERTEX FUNCTION

We obtain an effective baryon-pion Hamiltonian by pr
jecting the model quark Hamiltonian onto the one-pion a
one-baryon states, Eqs.~17! and ~21!. We use a shorthand
notation. For the bare baryons, i.e., baryons without pio
corrections, we use the indicesa,b, . . . , to indicate all the
quantum numbers necessary to specify the baryon state,
as spin, flavor, and center-of-mass momentum. For the p
we usej ,k, . . . , to specify all the quantum numbers of th
pion state. With this notation, the effective Hamiltonian c
be obtained as

H5(
ab

ua&^auHub&^bu1(
jk

u j &^ j uHuk&^ku

1(
j ab

~ ua&u j &^a, j uHI ub&^bu1ub&^buHI u j ,a&^au^ j u!.

~23!

This leads to an effective Hamiltonian that can be written
the sum of the single-baryon and single-pion contributio
and the pion-baryon vertex

H5H01W, ~24!

whereH05HB1Hp contains the single-baryon and singl
pion contributions

HB5(
a

Ea
(0)Ba

(0)†Ba
(0) , Hp5(

j
EjM j

†M j , ~25!

andW is the pion-baryon vertex

W5(
j ab

Wab
j Bb

(0)†Ba
(0)M j1H.c. ~26!

Here, Ba
(0)† and Ba

(0) (M j
† and M j ) are the baryon~pion!

creation and annihilation operators, discussed in the prev
section. Note that we have assumed that states with diffe
quantum numbers are orthogonal. Note also that in writ
the stateu j ,a& we have implicitly assumed that the negativ
energy component of the baryon is negligible and the bar
creation operator acting on the RPA vacuum has the s
effect as acting on the BCS vacuum.

We note that the projection of the microscopic qua
Hamiltonian to an effective hadronic Hamiltonian can be o
tained in a systematic and controlled way using a mapp
procedure@26#. We do not follow such a procedure here b
cause we are mainly concerned with tree-level pion-bar
coupling and the projection we are using is enough to ob
the desired effective coupling. For processes that invo
02520
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quark exchange, such as baryon-meson or baryon-baryo
teractions, a mapping procedure would be useful. In a fut
publication, we intend to address such processes in the
text of the present model.

The single-hadron HamiltoniansH0 andHp give

H0uBa
(0)&5EB

(0)uB(0)&, Hpup&5Ep
(0)up&, ~27!

with EB
(0)5MB

(0) andEp
(0)5mp

(0) in the rest frame. The vertex
W gives the coupling of the pion to the baryon and, as
will show later, leads to loop corrections to the baryon se
energy.

The pion-nucleon vertex function can be written genera
as

W5(
i 51

3

~Wi
11Wi

2!, ~28!

where theWi
6’s are of the general form~for simplicity we

suppress the color and spin-flavor wave functions in the
lowing!

Wi
6~p,p8;k!5E dqdq8 dq9

~2p!9
VG~q2q8!Cp8

* ~q18q28q38!

3W i
6@G,fk#Cp~q1q2q3!, ~29!

where theW i
6’s involve the Dirac spinors and the pion wav

functions. In Fig. 1 we present a pictorial representation
the different contributions to the vertex function. Explicitl
the W i

6’s are given by

W 1
15@u†~q18!TaGu~q4!#fk

1~p4!@v†~2p4!TaGu~q1!#,
~30!

FIG. 1. Graphical representation of the functionsW i
6 , i

51,2,3.
2-4
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W 2
15fk

1~p4!@v†~2p4!TaGu~q1!#@u†~q28!TaGu~q2!#, ~31!

W 3
15W 2

1 , ~32!

W 1
25@u†~q18!TaGv~2q4!#fk

2T~p4!@u†~p4!TaGu~q1!#,
~33!

W 2
25@u†~q28!TaGu~q2!#@u†~q18!TaGv~2q4!#fk

2T~p4!,
~34!

W 3
25W 2

2 . ~35!

In these formulas, the quark momenta in the initial~final!
nucleonq1 ,q2 ,q3 (q18 ,q28 ,q38) and the momenta of the quar
and antiquark in the pion,p4 andq4, are expressed in term
of the loop momentaq,q8,q9 by momentum conservatio
~see Fig. 1!.

Once the effective baryon-pion Hamiltonian is obtaine
one can calculate the pionic corrections to baryon proper
as in the CBM and in the traditional Chew-Low model. Th
will be done in the next section.

Before leaving this section, we recall that the use of
Breit frame is essential in calculations of form factors~vertex
functions! in static models@27#, like the present one. This i
true for composite models for which approximate solutio
that maintain relativistic covariance are very difficult
implement. This was the case for all old, static source, pi
nucleon models such as the Chew-Low model@28#. In par-
ticular, as explained in Ref.@27#, electromagnetic gauge in
variance is respected in this frame. Therefore, in calcula
loop corrections to baryon properties, we employ the Br
frame vertex functions. In the Breit frame, we denote
incoming pion and nucleon momenta byp and2p/2, respec-
tively, and the outgoing nucleon momentum byp/2. In this
frame, the internal momenta of quarks and antiqua
q18 ,q28 , . . . are given in terms of the loop momentaq, q8,
andq9 as

q15p/21q1q9, q185p/21q81q9,

q25q2852q81q9, q35q38522q9,

p45p/22q2q9, q45p/22q2q9, ~36!

for the vertexW 1 and

q152p/21q81q9, q185p/21q81q9,

q25q2852q81q9, q35q38522q9,

p452p/21q1q9, q452p/22q2q9, ~37!

for the vertexW 2. In following equations, we also denot
the vertex function asW(2p/2, p/2;p)[W(p).

IV. SELF-ENERGY CORRECTION TO BARYON MASSES

For completeness we review the derivation of the expr
sion for the self-energy correction from the effective baryo
pion Hamiltonian of Eq.~24! in the ‘‘one-pion-in-the air’’
02520
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approximation@28,6#. The baryon self-energy is defined a
the difference of bare- and dressed-baryon energies

S~EB!5EB2EB
(0) . ~38!

The physical baryon massMB is given by the~in general,
nonlinear! equation

MB5MB
(0)1S~MB!, ~39!

where MB
(0) is the bare baryon mass~i.e., without pionic

corrections! andS(EB) is the self-energy function.
Let uB& denote the physical baryon state, anduB0& the

‘‘bare’’ undressed state. LetZ2
B be the probability of finding

uB0& in uB&. Then one can write

uB&5AZ2
BuB0&1LuB&, ~40!

whereL is a projection operator that projects out the co
ponentuB0& from uB&,

L512uB0&^B0u. ~41!

We have that

^BuWuB0&5^Bu~H2H0!uB0&5~EB2EB
(0)!^BuB0&

5AZ2
B~EB2EB

(0)!5AZ2
BS~EB!. ~42!

We can now expressuB& in terms of uB0& and the pion-
baryon interaction HamiltonianW as

uB&5AZ2
BF12

1

EB2H02LWL
WG uB0&. ~43!

On the other hand, since

^BuWuB0&5AZ2
B^B0uW

1

EB2H02LWL
WuB0&, ~44!

we have that the self-energy is given by

S~EB!5
1

AZ2
B ^BuWuB0&5^B0uW

1

EB2H02LWL
WuB0&.

~45!

This expression can be further approximated so as
avoid solving complicated integral equations for the se
energy. We can manipulate the expression forS to obtain
~for details, see Ref.@6#!

S~EB!5^B0uW
1

EB2H02S0~EB!
WuB0&, ~46!

with

S0~EB!5WL
1

EB2H0
LW. ~47!

The approximation consists in absorbingS0(EB) into H0
such that
2-5
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H01S0~EB![H̃0 , ~48!

with

H̃05(
a

EaBa
(0)†Ba

(0)1(
j

EpM j
†M j , ~49!

whereEa and Ep are thephysicalenergies. Therefore, th
baryon self-energy can be written as

S~EB!5^B0uW
1

EB2H̃0

WuB0&. ~50!

Finally, insertion of a sum over intermediate baryon-pi
states in Eq.~50! leads to

S~EB!5(
n

^B0uWun&
1

EB2En
^nuWuB0&. ~51!

The structure vertex-propagator-vertexW(E2H̃0)21W in
Eq. ~50! is an effective baryon-pion interaction. The ma
difference here with the hybrid approaches@1–6# is that we
do not have a pointlike pion coupling to pointlike quarks a
antiquarks. The pion-baryon vertex arises through theZ
graphs’’ in which the antiquark of the pion is annihilate
with a quark of the ‘‘initial’’ baryon and the quark of the pio
appears in the ‘‘final’’ baryon. Therefore, the vertex functi
incorporates not only the extension of the baryons, but a
the extension of the pion.

We truncate the sum over the intermediate states in
~51! to the lowest mass states, namely, the nucleon and
D(1232). In this case, we obtain for the on-shellN and
D(1232) self-energies the coupled set of equations

SN~MN!5E dk

~2p!3 F uWNN~k!u2

MN2@MN1Ep~k!#

1
WND~q!WDN~k!

MN2@MD1Ep~k!#G , ~52!

SD~MD!5E dk

~2p!3 F WDN~k!WND~k!

MD2@MN1Ep~k!#

1
uWDD~k!u2

MD2@MD1Ep~k!#G . ~53!

This is the final result for the pion loop correction for th
nucleon andD(1232).

One important consequence of projecting the microsco
quark interaction onto hadronic states is that the lead
nonanalytic~LNA ! contributions in the pion mass as pr
dicted by chiral perturbation theory are correctly obtain
@9#. In particular, as we discuss in the next section, Eq.~52!
leads to an LNA contribution to the nucleon mass as p
dicted by QCD@29#, namely,
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MN
LNA52

3

16p2f p
2

gA
2mp

2 . ~54!

In models where the pion is treated as a pointlike partic
this result follows trivially@9# from Eq. ~52!. In the context
of the present model, where the pion is not treated cov
antly, such a result does not follow in general for an arbitra
interaction. The difficulty is related to the fact the the pio
dispersion relationEp5Ak21mp

2 is not obtained in genera
in a noncovariant model. In the CBM for example, the pi
is point like and the normalization is correct from the ve
beginning. However, the microscopic quark interaction c
be chosen such that the pion dispersion relation is corre
obtained@14,25#. These issues will be discussed in Sec. V

V. THE PION-NUCLEON AND PION- D„1232… FORM
FACTORS

Our aim is to obtain an estimate for the numerical valu
of the pionic self-energies. It happens that nature has p
duced a sort of low energy filter~chiral symmetry! for the
details of strong interactions. Indeed it is remarkable t
although intermediate theoretical concepts such as gl
propagators, quark effective masses and so on, might
~in fact they are not gauge invariant and hence they are
physical observables!, chiral symmetry contrives for the fina
physical results, e.g., hadronic masses and scattering len
to be largely insensitive to the above mentioned theoret
uncertainties. The pion mass furnishes the ultimate exam
In the case of massless quarks, the pion mass is bound
zero, regardless of the form of the effective quark interact
provided it supports the mechanism of spontaneous bre
down of chiral symmetry. The other example is provided
the p-p scattering lengths@30# which are equally indepen
dent of the form of the quark kernel@31#. Furthermore it has
become more and more evident through the accumulatio
theoretical calculations on low-energy hadronic phenome
ranging from calculations on Euclidean space to instan
neous approximations and from harmonic kernels to lin
confinement, that low-energy hadronic phenomenology o
seems to depend mildly on the details of the quark kern
used. To this extent, we will use for the quark-quark inter
tion a kernel of the form

G5g0, ~55!

V~k!5
3

4
~2p!3K0

3Dkd~k!, ~56!

whereK0 is a free parameter. This potential has been wid
used in the context of chiral symmetry breaking becaus
allows a great deal of simple analytic calculations~which is
not the case for the linear potential!. The harmonic potentia
basically differs from the linear potential in domains of th
baryon-pion-baryon overlap kernel which contribute little
the total geometrical overlap so that, at least for results p
portional to these overlaps, they should not differ too mu
2-6
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The momentum-dependent part of the Salpeter amplit
for the baryonCp(q1q2q3) in Eq. ~22!, is taken to be of a
Gaussian form

Cp~q1q2q3!5
e2(r21l2)/2aB

2

NB~p!
; r5

p12p2

A2
;

l5
p11p222p3

A6
, ~57!

whereaB
2 is the variational parameter andNB(p) is the nor-

malization. Notice that since the integrations of the qu
momenta in the functionsWi

6 in Eq. ~29! are made through
a Monte Carlo integration, the Gaussian ansatz is not es
tial and does not simplify our calculations, but we still use
to make contact with previous calculations.

As in our previous calculation@22# for the pion-nucleon
coupling constant, the Salpeter amplitudesfk

6(q) up to first
order ink are given by

fk
1~q!.N~k!21@1sinw~q!1E1~k! f 1~q!

1 ig1~q!k~ q̂3s!#xpScolor, ~58!

fk
2~q!.N~k!21@2sinw~q!1E1~k! f 1~q!

2 ig1~q!k~ q̂3s!#xpScolor, ~59!

wherew is the chiral angle andE1(k) is the first-order cor-
rection to the pion energy. The normalizationN(k) is pro-
portional toE1(k) and is given as

N 2~k!54E1~k!E dq

~2p!3
sinw~q! f 1~q![E1a2. ~60!

The energyE1(k) is given in terms of the second derivative
of the diagonal components of the Salpeter kernel with
spect tok and its explicit form is given in Eq.~24! of Ref.
@22#. Note that the truncation up to first order ink of the
Salpeter amplitude constitutes a reasonable approxima
due to the fact that c.m. momenta-dependent distortion
the pion and nucleon wave functions are geometrica
damped because of the geometric overlap kernel integrat
for the functionsWi

6 in Eq. ~29!—see Ref.@32#. Explicit
numerical solutions were obtained in Ref.@22# for the func-
tions f 1(q) andg1(q).

For completeness, we initially repeat the results of R
@22# for the coupling constantsf pNN and f pND . In Ref. @22#,
they were obtained as

f pNN

mp
sN•p5

5

3A3

Of s~p!

2a
sN•p̂, ~61!

f pND

mp
S•p5F2A2

A3

Of s~p!

2a
1A2

Of s8 ~p!

2a GS•p̂, ~62!

where the isospin matrix is omitted and
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Of s8 ~p!.0, Of s~p!52

E @dq#~a11a21b11b2!

E @dq#C in* Cout

,

~63!

where @dq# means integration overq, q8, and q9 @see Eq.
~29!# and the set of functionsa1,a2,b1,b2 is given by

a15f1H w8~q1!s•“Cout

1Fw8~q1!1
cosw~q1!

q1
Gs•q̂13~ q̂13“Cout!siJ C in ,

~64!

a25CoutH w8~q18!s•“C in

1Fw8~q18!1
cosw~q18!

q18
Gs•q̂183~ q̂183“C in!J f2,

~65!

b15f1
12sinw~q18!

2q18
H 2

cosw~p1!

p1
s•q̂18

1Fw8~q1!1
cosw~q1!

q1
Gs•q̂13~ q̂13q̂18!J CoutC in ,

~66!

b25
12sinw~q1!

2q1
H 2

cosw~q18!

q18
s•q̂1

1Fw8~q1!1
cosw~q18!

q18
Gs•q̂18

3~ q̂183q̂1!J CoutC inf
2. ~67!

Here,C in,out stand for the baryon in and out Salpeter amp
tudes andf1,2 represent the pion Salpeter amplitudes.

The baryon-pion coupling constants are obtained as
zero limit of the nucleon~or D) momentump→0 of the
above overlap functions. For simplicity, we are defining t
couplings at zero momentum, and not at the physical p
mass. In order to facilitate the integration, in Ref.@22# a
Gaussian parametrization for the@cosw(k)#/k and @1
2sinw(k)#/k2 was used. Here, since we need the vertex fu
tion for pÞ0, we use a Monte Carlo integration to perfor
the multidimensional integral that gives the overlap functi
and use the full numerical solution for the gap function~not
the Gaussian parametrization!. We first checked the correct
ness of our Monte Carlo integration with the result of R
@22# for the special case ofp50 using the same Gaussia
parametrization as was used there. This was done by ca
2-7
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lating Of s(p) for p5(0,0,pz) and finding the limit ofO
5Of s /pz whenpz→0 to obtainf pNN .

As in Ref. @22# we have usedK05247 MeV for the
strength of the potential. The variational determination oa
of the baryon amplitude, Eq.~57!, leads toaN51.2K0. For
D(1232), the result is not much different and therefore
useaN5aD .

Introducing the quantities

F15
5

3A12
, F2A2

3
, F35

1

3A12
, ~68!

we can summarize the couplings of the pion to the nucl
andD(1232) as follows:

f pNN5F1O~0!
mp

a
,

f pND5F2O~0!
mp

a
, f pDD5F3O~0!

mp

a
. ~69!

For the value ofK0 given above, we havemp /a53.47. The
numerical values for the couplings are then

f pNN51.19, f pND52.02, f pDD50.24. ~70!

The effect of the Gaussian parametrization can be asse
by comparing with the corresponding numbers of Ref.@22#.
For example,f pNN.1.0 andf pND51.8 in Ref.@22#; the ef-
fect of the parametrization is therefore of the order of 20

Next, we calculated the full overlap function forpÞ0. In
Fig. 2 we plot the functionu(p)5O(p)/O(0) for the param-
eters given above. It is instructive to compare the momen
dependence of this form factor with the one given by
CBM @6,23#:

u~p!53
j 1~pR!

pR
, ~71!

FIG. 2. The functionu(p). The solid line is the form factor
obtained with the baryon amplitude of Eq.~57! and pion Salpeter
amplitudes of Eqs.~58! and~59!. The dashed line is the CBM form
factor of Eq.~71! for R51 fm.
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where j 1 is the spherical Bessel function andR is the radius
of the underlying MIT bag. The solid line is our result an
the dashed one is the CBM result forR51 fm. The faster
fall-off of our result is clearly a consequence of our Gauss
ansatz. As we will discuss soon, this rapid falloff will hav
the consequence of giving a smaller value of the self-ene
correction to the nucleon mass, as compared to the cor
tions obtained with the CBM.

VI. SELF-ENERGY CORRECTIONS TO THE NUCLEON
AND D„1232… MASSES

In this section we present numerical results for the pio
self-energy corrections to the nucleon andD(1232) masses
and discuss the LNA contribution to the masses. We star
rewriting the vertex function in a manner to make clear t
problem with the pion dispersion relation. The pion energy
given, for lowk, as@14,25#

E1
2~k!5mp

2 1k2Af p
(s)

f p
(t)

, ~72!

where

mp
2 52

2mq^c̄c&

~ f p
(t)!2

, ^c̄c&526E dq

~2p!3
sinw~q!.

~73!

The point is that for an arbitrary quark-quark interaction o
obtains in general two different values for the pion dec
constantf p

(t) and f p
(s) ~the explicit calculations can be foun

in Refs. @14,25#!, depending on how one defines the dec
constant. When using the time component of the axial c
rent, one obtainsf p

(t) , and when using the space compone
one obtainsf p

(s) . However, as suggested in Ref.@14#, and
explicitly demonstrated in Ref.@25#, this problem can be
cured by adding a transverse gluon interaction. Therefore
illustrate the point of obtaining the correct LNA term from
Eq. ~52! with composite pions, we use the correct pion d
persion relation and assumef p

(t)5 f p
(s)[ f p and denote

E1(k)5v(k).
The normalization of the pion Salpeter amplitude, E

~60!, can be rewritten as

N 2~p!54v~p!E dk

~2p!3
sinw~q! f 1~q!5

2

3
v~p! f p

2 .

~74!

That is,a2 from Eq. ~60! is 2/3f p
2 . We next extract from the

vertex function~we concentrate on theNN form factor! this
normalization in the following way:

WNN
i ~p!5

1

A2v~p!

GA~p!

2 f p
tN

i sN•p. ~75!

The relation of the functionGA(k2) to the overlap function
O(p) can be trivially obtained by comparing with Eq.~61!.
2-8
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Inserting Eq.~75! in the expression for theN andD self-
energies, Eqs.~52! and ~53!, and after performing rathe
straightforward spin-isospin algebra one obtains

MN5MN
(0)2 f 0

2E
0

`

dp
p4u2~p!

v2~p!

2
32

25
f 0

2E
0

`

dp
p4u2~p!

v~p!@DM1v~p!#
, ~76!

MD5MD
(0)1

8

25
f 0

2E
0

`

dp
p4u2~p!

v~p!@DM2v~p!#

2 f 0
2E

0

`

dp
p4u2~p!

v2~p!
, ~77!

where

DM5MD2MN , v~p!5Ap21mp
2 ~78!

and

u~p!5
O~p!

O~0!
, f 0

25
108

mp
2

f pNN
2

4p
. ~79!

Note that in principle we have different spatial dependenc
for the NN, ND, . . . , vertices, but for simplicity we have
written them here as being equal. A schematic representa
of Eqs.~76! and~77! is presented in Fig. 3. It is important t
note that these equations are not the ones one would o
by simple perturbation theory; they are actually nonpertur
tive, because of the dependence onDM5MD2MN on the
right-hand side.

It is easy now to obtain the LNA contributions to th
masses@9#. For the nucleon, the LNA contribution come
from the first term in Eq.~76! by performing the integral.
The integral can be done by transforming it into a conto
integral and making use of Cauchy’s theorem. The resu
Eq. ~54!. For theD, the LNA contribution follows in a simi-
lar way from the last term in Eq.~77!.

To conclude, we discuss numerical results for the pio
corrections. Initially we solve variationally the bare nucle
case. As discussed above, usingK05247 MeV, we obtain

FIG. 3. Schematic representation of the pion self-energy cor
tions to the nucleon~N! and delta (D) masses.
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for the variational size parameter the valueaN51.2K0. We
also use hereaN5aD . This leads to the following values fo
the bareN andD masses:

MN
(0)51174 MeV, MD

(0)51373 MeV. ~80!

The difference between the masses, of the order of 200 M
comes from the hyperfine splitting induced by the confini
interaction. Given these values, we solve the two s
consistent equations given in Eqs.~76! and ~77!. They are
solved by iteration. We obtain for the masses

MN51125 MeV, MD51342 MeV. ~81!

Comparing with the values above, we see that the pio
effect is relatively small, as it should be, and of the order
50 MeV for theN and 30 MeV for theD. The pionic effect is
smaller for theD, as one expects from spin-isospin cons
erations@9#. The results obtained with the CBM for aR
51 fm are a bit larger@23#. The difference can be traced t
the rapid falloff of the form factor in our model.

We certainly do not expect these numbers to be definit
Once more realistic microscopic quark interactions and
satze for the baryon wave function are used, they might
improved. However, independently of the microscop
model, our scheme is general and able to incorporate s
interactions and new baryon amplitudes. It would be of p
ticular interest to have the numbers for a linear confin
interaction with short range gluonic interactions that resp
asymptotic freedom.

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

We developed a calculational scheme to calculate ch
loop corrections to properties of composite baryons w
composite pions. The composite baryons and pions
bound states derived from a microscopic chiral quark mo
inspired in Coulomb gauge QCD and provides a general
tion of the Nambu–Jona-Lasinio model to include confin
ment and asymptotic freedom. An effective chiral hadro
model is constructed by projecting the microscopic qu
Hamiltonian onto a Fock-space basis of single compo
hadronic states. The composite pions and baryons are
tained from the same microscopic Hamiltonian that descri
the chiral vacuum condensate. The projection of the qu
Hamiltonian onto the pion states is nontrivial because of
two-component nature of the Salpeter amplitude of the pi
As explained before, the two components correspond to p
tive and negative energies which complicates the Fock-sp
representation of the pion state. The projection is made p
sible by rephrasing the formalism of the Salpeter equation
terms of the RPA equations.

The development of models and calculational methods
the sort described in the present paper are relevant in
context of a phenomenological understanding of nonper
bative phenomena of strong QCD-like confinement and
namical chiral symmetry breaking. Eventually full lattic
QCD simulations aimed at studying hadronic structure w
be available and phenomenological models will play a c
tral role in the interpretation of the data generated. The

c-
2-9
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velopments of the present paper are of particular interes
the first-principle developments based on the QCD Ham
tonian, such as the nonperturbative renormalization prog
for the QCD Hamiltonian@17# and Hamiltonian lattice QCD
@18#. We intend to implement the technique developed h
to such first-principle QCD calculations.

We illustrated the applicability of the formalism with
numerical calculation using a simple microscopic interacti
namely a confining harmonic potential, and a simple Gau
ian ansatz for the baryon amplitude. This very sameS-wave
interaction has been used in a variety of earlier calculatio
such as meson and baryon spectroscopy andS-wave
nucleon-nucleon interaction. Numerical results were
tained here for the pion-nucleon form factor and for the
onic self-energy corrections to the nucleon andD(1232)
masses in the nonperturbative one-loop approximation.
spite the simplicity of the interaction, the results obtained
very reasonable.

For the future, the most pressing development would b
nt

F

la,
l.

tt.

.
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use a microscopic interaction that is consistent w
asymptotic freedom and describes confinement by a lin
potential. The calculation of the pion wave function beyo
lowest order in momentum must be implemented and
variational ansatz for the baryon amplitude must be i
proved. A more ambitious development would be to inclu
explicit gluonic degrees of freedom. In this case renorm
ization issues will show up and the new techniques such
discussed in Ref.@17# will certainly be useful. Another very
interesting direction would be to employ the techniques
veloped here in Hamiltonian lattice QCD.
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