PHYSICAL REVIEW A VOLUME 58, NUMBER 3 SEPTEMBER 1998
Aspects of classical and quantum motion on a flux cone
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Motion of a nonrelativistic particle on a cone with a magnetic flux running through the conéaaXikix
cone”) is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action
of a velocity-dependent force. The probability flftquantum flow”) associated with a particular stationary
state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is
shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynami-
cal approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the
way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in
the description of the quantum flow. The connectivity of the configuration space is also discussed.
[S1050-294{@8)03508-3

PACS numbd(s): 03.65.Bz, 04.62-v

[. INTRODUCTION various occasions the AB setup is coupled to a conical ge-
ometry (flux cone, so that a comparison of the correspond-
Usually, when the quantum description of a system igng AB effects is possible. The paper is organized as follows.
nontrivial, so is the classical one. However, this is not alwaydAn account on the conical geometry and classical motion on
the case. There is a number of examples whose intrinsi@ cone is given in Sec. [this section comprises a review of
quantum effects do not have a classical analog. Notabl@arly works by Deser, Gerbert, Jackiw, and 't Hodf8,6—
among these is the Aharonov-BoH#B) effect[1]. In this 8], commenting on points which have been overlooked in
setup, the magnetic field vanishes everywhere except insidethe literature. In Sec. lll, classical motion on a flux cone is
thin flux tube. As there is no Lorentz force, classically par-Studied. Quantization is implemented in Sec. IV, where the
ticles are free, and are not affected by the background. Howssue of boundary conditions at the singularity is considered,
ever, in the quantum scattering problem the backgroun@nd & particular one is chosen, motivated by regularization
leads to a nontrivial scattering, which is confirmed by experi-arguments14,15. Corresponding stationary states are ob-
ment[2]. tained and used to build up a state to probe the singularity.
The AB effect is a consequence of the interaction of quanThis leads, in Sec. V, to a study of quantum flow, showing
tum matter with anearly trivial affine connection, and it is nontrivial effects due to the conical singularity. Such effects
present in every gauge theory, including gravity. The analogifé caused by a nonvanishing quantum potential whose fea-
of the AB setup in gravitation is a conical backgroygd-5).  tures are mentioned. Connectivity of the configuration space
The geometry is flat everywhere apart from a symmetry axisiS discussed by taking into account the behavior of quantum
As in the case of a thin flux tube, the problem of studyingflow at the singularity. Sec. VI is a summary, including pos-
guantum mechanics on cones amounts to solving the usugible extensions of this study. An account on the hydrody-
equations in flat space with nontrivial boundary conditions.namical approach to quantum mechaniegiose elements
Solutions of these equations lead to geometrical Aharonova@re used in Sec. Ms given in the Appendix.
Bohm effectd6-9.
Quantum theory in conical backgrounds has been studied Il. CONE
over two decadefl0], and investigations intensified in the
mid 19805[11] very much due to the importance in cosmol- As mentioned previously this section is essentially a re-
ogy of cosmic strings. More recently, interest in the subjecview of material in Refs.[13,6—8. A cone is a two-
was renewed in the context of quantum mechanics of blackimensional space with &-function curvature singularity
holes, where one encounters conical singularitee®, e.g., [16]. The line element may be written as
Ref. [12], and references therginBesides these and other
practical motivations. to study quantum theory in conical d|2:gijdxidxj
backgrounds, there is another more academic [@€d].
That is, the study of quantum mechanics imearly trivial
gravitational background may shed some light on the pro- =
found problems of combining quantum mechanics and gen-
eral relativity. .
In this work classical and quantum effects caused by avhere the coordinat&' (i=1,2) runs from—o to < , r
conical singularity on the motion of a particle are studied. On = §;x'x) and « is a positive paramet¢f 3]. Imagining the
conical surface embedded in a three-dimensional Euclidean
space{x!,x?} are Cartesian coordinates on a plane perpen-
*Electronic address: moreira@axp.ift.unesp.br dicular to the symmetry axis of the cofEig. 1). From Eq.

Y
5ij+(a_2—1)r—zldx'dxj, (1)
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FIG. 3. Smoothing the cone.
x) figuration space of a quantum particle living on it may be
nonsimply connectetsee Sec. V.
FIG. 1. Cone embedded in a three-dimensional Euclidean space. |t follows from Eq. (3) that the “Cartesian” coordinates
defined byX':=p cosp andX?:=p sine (Fig. 2) are singu-
(1), one sees that the conical singularity is located at thear if D+#0: in terms of{X*,X?} the metric tensor is Euclid-
origin, and that, whea= 1, the cone becomes the Euclidean ean everywhere except on the rays defining the borders of the
plane. wedge, where these coordinates are discontinuous functions
Using polar coordinatesxt=rcosé, x*=rsin6), Eq.(1)  of ¢. (Clearly the borders of the wedge can be arbitrarily
can be rewritten adl®=a~2dr®+r?d¢®, where the conical rotated by redefining the interval of lengthra over which
singularity is now hidden by the coordinate singularity at they, ranges). Accordingly, the Levi-Civita connection vanishes
origin. Note that the coordinates,) and (,6+2m) label  everywhere except on the borders of the wedge, where it is
the same point,r( )~ (r,0+2). A further simplification  singular. The nonvanishing connection “tells” the rest of the

of the line element can be made by rescaffng} as space that there is a curvature singularity at the origin, and

this nontrivial behavior is the very one responsible for the
p=a"'r, e=al, (20 geometrical Aharonov-Bohm-like effects that will be seen in

this work.

resulting ind1?=dp?+ p?d¢?, showing the flatness of the  Classical motion of a free particle with masé on a

cone. However, as a consequence of the rescaling, conical surface may be determined from the Lagrangian,

Coordinateqp, ¢} are polar coodinates on the surface of the

cone. The angle of the missing wed¢gxtra wedge, when 51 %

a>1) is the deficit angle of the conP=2x(1—«a) (Fig. - zMX —(1-a )2M (4)

2).

At this point it should be noted that the Euclidean planeThe line elementdl is given by Eq.(1), the dot denotes
and a cone have the same topology, differing in theirdifferentiation with respect to the time x: = (x*,x?), and
geometry—the former is globally flat whereas the latter is . _ < Mx is the kinematical angular momentumote that
not. To see this, one smooths the cone by replacing its tip b&x b:=e;a ibl). The Euler-Lagrange equations of motion,

a tangential spherical cap of radias(Fig. 3). Clearly the . the geodesw equations on the cone, follow from(Bj.

resulting surface is simply connected, a fact that does not

change whena—0 and the idealized cone is recovered. ) 2

Though the cone is a simply connected background, the con- Mx=—(1— az)M 36 (5)
r

' wheree :=x/r. One can regard Ed5) as the equation of
motion of a particle moving on the Euclidean plane under the
action of an angular-momentum-dependent central force,
which is attractive fora<1 and repulsive fora>1 [17].
Clearly when/=0 the motion is radial and uniform.

The geometrical force in Eq5) ranks somewhere be-
tween an inertial force and a Newtonian fofég18§]. Indeed
by changing from{x*,x2} to {X*,X?}, the force is “gauged
away” everywhere apart from the borders of the wedge.
Therefore, unless=1, trajectories crossing these rays are
broken straight lines, with uniform motio(dashed line in
Fig. 2. Integration of Eq.(5) [7,18] shows that particles
wind

FIG. 2. Singular Cartesian frame. w=[1/2«] (6)



1680 E. S. MOREIRA, JR. PRA 58

i d/ ed
9o 2o a2
The equations of motion following from E7) are given by
| Eq. (5), with the induced electric force-e(d,®)ey/2mcr
ﬁ added on the right-hand side. This electric force prevents the
— = . orbital angular momentura” being a constant of motion,
L - X which is consistent with Eq12). Clearly the above expres-
\_'*_I sions reduce to the familiar ones on the pldh®] when o
DEE—— =1.
The Aharonov-Bohm setup may be combined with the
conical geometry by takingp constant, in which case the
/ electric force vanishes, and E®) still holds. Obviously the

same conclusion may be reached by realizing that the elec-
FIG. 4. Classical motion on a cone. tromagnetic Lagrangian in Eq.7) is a total derivative,

. . . e® /2mrc, and consequently does not affect classical motion.
([x] denotes the integral part aj times around the conical However, as is well knowfl], this is not the case in quan-

singularity (Fig. 4). tum theory, which is the subject of the following sections.
[In the following sectionsA is given by Eq.(11) with con-
lll. FLUX CONE stant®.]
A cone may be immersed in a magnetic field pointing
along its axis, and being homogeneous in that direction, by IV. HAMILTONIAN OPERATOR
choosing a vector potenti&(x,t) with a vanishing compo- AND STATIONARY STATES
nent in that direction. The Lagrangian of a particle with  The Hamiltonian operatoH can be obtained from Eq.
chargee moving in this background is given by (10) by the usual substitutiof7], p— —i# V. The invariance
e of the Schrdinger equation under the gauge transformation
L'=L+ EXA. @ AX)—=AX)+Vx(X), p(xt)—exgi(ehic)x(x)}i(xt) al-

lows the choice y(x)=(—®/27)0(x), thereby gauging
away the vector potential everywhere, except on an arbitrary
ray where the polar anglé is a discontinuous function of
) / e [20]. This singular gauge is analogous to the singular Carte-
p=a 3 Mx+(a’®— 16|+ A sian coordinate$X*, X?}. It might have been anticipated that
A cannot vanish everywhere around the origin since
$A-dx=>. Similar reasoning may be applied to the Levi-

Thus the canonical momentum associated witib

=Mx+(a 2— 1)Mfe,+ E/_\_ (8) Civita connection of a conical geometfgee Ref[21] and
¢ references therejn
It follows from Eq. (8) that Defining o: = —e®/ch, the transformed wave function is
e o' (x,t)=explioc b} y(x,t). (13
XXp=/4+ -xXA, 9
c It then follows from Eq.(10), (2), and(3) that
which is the usual expression for the canonical angular mo- 521 9 P L2
mentum on the Euclidean plane. The Hamiltonian is given H=- ———( — |+ —, 14
by 2M p ap\Pap 2Mp? 19
H=p-x— L' Yp,o+2ma)=expli2mat(p, ), (15
_a? eA 2 (1-a? " eA 2 10 where
=>mIP~ ¢ vz P g . (10 ;
Li=—iA— 16
A magnetic fluxd(t) running through the axis of the I de (16)

cone can be introduced by choosing
and the prime iny’ has been dropped. Ad in Eq. (14) is
P just the free Hamiltonian operator on the plane written in
A= o1 S0 (11 polar coordinatewhich is not surprising sincgx!,X?} is a
(singulay Cartesian framp the interaction with the magnetic
wheree, : = (—sinf,cosd). Now there is a new singularity at flux and the conical geometry manifest themselves only
the origin which is as function magnetic field. Due to the through Eq.(15). In fact the twisted boundary conditi¢5)
cylindrical symmetry, the canonical angular momentum asstates that the wave function is not single valued for nonin-
given by Eq.(9) is conserved, teger values of the flux parameter, and therefore is not
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continuous along some ray. This correspond&@tal is com- lim p(py*)=0, (23
patible with the fact thatH, as given by Eq(14), disguises p—0

a singular vector potential which, as mentioned above, is not

defined everywhere. Note also that, according to (&), ¢ as may easily be shown by equatirfgf,°dpp[¢(Pp¢/)*

must either vanish or diverge at the origifor noninteger —¢*(P,¢)] to zero. One sees from EQ3) that Ry y(p)
o), otherwise an inconsistency results when a loop is shrunknay diverge mildly at the origifwhich also applies tg7, in
aroundp=0 [22]. Eq. (17)], and still be compatible with conservation of prob-
Considering Eqs(14) and(15), it follows from the Schre  ability. A mild divergence would not spoil the square inte-
dinger equation grability of the wave function, since a behavigr- 1/p” with

g , , v<1 yields [§dp p|y|?xe>"), which vanishes withe.
afr= e s ”“ Note that in order to satisfy E423) one must haver<3.
dtfo dp pfo de gy = “mf de pJp, (A7) Obviously a logarithmic divergence also passes this test,
since it is weaker than the A7 divergence.
where 7, is the usual expression for the radial component of In the following only wave functions which are finite at
the probability current on the plane, the singularity will be considered. In quantum mechanics on
the flux cone, finiteness is motivated by the fact that it arises
1 LY 1 Loy naturally when the singularities are smoothed by some regu-
‘Z’_MR ¥ iapl ‘7<P_MR 4 ip de| (18 |arization procedurgl4,15. (Divergent wave functions were
considered in Refd.14,15.) Therefore, one takes as solu-
In obtaining Eq.(17), it has been assumed that the wavetions of Eq.(20) Bessel functions of the first kind,
function vanishes at infinity. The right-hand side of Etj7)
is the net probability crossing an infinitesimally small circle Ricm(P) = Jjm+ olra(Kp), (29
around the singularity. Equating E@L.7) to zero amounts to

the statement that the singularity at the origin is neither avhich being finite at the origin satisfy E¢23) and conse-
source nor a sinkprobability is conserved which is auto-  quently Eq.(22). As a check we may verify that E¢24)

p—0

matically guaranteed if indeed satisfies Eq22) by observing that
l fzmd W00 =0 19 400 _1 J J 25
p[no e p ¢ % ap (ZS — V. ( ) dX - E[ V—l(x) V+1(X)]' ( )

Expression(19) is the condition for self-adjointness of the Hence the complete set of stationary stafgs, is given by
Hamiltonian operatof14), (|H|¢)=(p|H|¥)*. Egs.(21) and(24).
If R, m(p) are functions such that A particular state to probe the singularity can be found as
' follows. The general expression for a stationary state of en-
J J
Pl

2 ergy #2k?/2M is given by
then Ulp @)= 2 Cthem(p,@). (26)

m+o

- +<kp>2}Rk,m<p>=o, (20)

[’

1 ) - . L )
Yl pr@) = Rk’m(p)el(m+0')qo/a1 (21) The coeﬁlc!entsnm are determined by considering the Fou
V2o rier expansion of a plane wave

where 0<k<c andm is an integer, are simultaneous eigen- _ _ ‘
functions of H and L with eigenvaluesi?k?/2M and (m exp{—ia cosp}= 2 (=)™ (@)™, (27)
+o)#hla, respectively. Note that the effect of the magnetic me-
flux and of the conical geometry on the eigenvaluek &f to . . .

: . . ...and letting the magnetic flux and the conical geometry act on
shift and to rescale them, respectively. For a particle with S o ;

. : . : .It. This involves shifting and rescaling the angular momen-
spin there is also a shift due to a coupling between the spi
and the deficit anglg8,23].

In order that the stationary statgg , span a space of i
wave functions in which probability is conserved, they must Cg\f’w f= ‘/Zwaexp{ - —|m-— 5|], (28)
satisfy Eq.(19), 2a

]

tum of the modes, as mentioned previously, leading to

IR, IRY, where the flux parameter has been redefined té:be— o
limp| Ry, |, 3 T 3 ’mRk’m =0, (220 in order to compare the result with earlier work. The station-
p—0 P p ary state (26) with c,=c(>® will be denoted y\>¥ .
_ o , Clearly,
where the orthonormality relatiofig™ deexpie(m—n)/a}
:27Taz‘>?m,.1 has been used. Expressi@®) is the coEdlt!on for ¢f(0'1>(p,¢)=exp{— ik pcosp}
self-adjointness of the square of the operdr=—iz(d,

+1/2p), and is itself self-adjoint if =exp{—ikX1}. (29
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(Note that whenv=1, both{x*,x?} and{X*,X?} are genuine k=
Cartesian coordinates which coincid&he stationary states Jﬁf"">(p,<,o)= M z Siﬂ{@iﬁ’rﬁ?(qo)}\]‘m_,;“a(kp)
H2D and y(©9 have previously been considered in the lit- mm’=—c
erature(in Refs.[1] and[9,7], respectivelyin the context of X[ ko) —Ji Kk
scattering. Section V considers the probability flisee the Ui = afta=2(kp) = Jjm - g1 (kp)]
Appendi® associated withy{>®) . (35
and
V. QUANTUM FLOW
(5.) h m'—4 (5,a)

Consider the symmetries of the statg?"® . By redefining T Y (p@)= Mp 2 s CAI )
the summation index in Eq26), it is straightforward to mm= e
show that X Jim= oK) Ijms — 51a(Kp)- (36)

(8+na) _ (s.a) In deriving Eq.(35), equality(25) has been used.
v (P @) =" (p. ), (30) In the following the quantum flow will be studied when

from which it follows that integer flux parameters are kp<1. (37)

equivalent to zero. Also, ) o )
This amounts to considering the expansion

B p, )= (p,— @) (30) z\”
v Z): E

1 1
[(1+v) [(2+v)

(39

2

2 +0(z%
|2

implies that for vanishing flux parametewf(o'“)(r,e) ) ) )
=y{®)(r,— ). Thus the quantum flow is symmetric with " EdS. (33), (3,’5)’ and (36), keeping only the terms with
respect to thec: axis and, consequently, no probability from SMallm andm’. For simplicity the cone and the flux tube
the upper half-plane passes to the lower half-plane, and vic¥!!l b€ considered separately. It should be remarked that Eq.
versa. In other words the current lines associated with the37) contrasts with the regime on scattering problems for

quantum flow must not cross theé axis; otherwise, due to which kp>1.

the symmetry, they would intercept on this axis. When the _ _ _

flux parameter is switched on this symmetry is broken, im- A. Conical singularity

plying that the flow corresponding to a charged particle is  Using Eqs(34) and(39), it follows from Eq.(33) that the

sensitive to the directiotup or down in which the magnetic  first terms of the probability density around a conical singu-
flux runs. By studying symmetrie€0) and (31), one sees |arity are

that
N coq m/2atcoq ¢l a} 1
(0,0) 1 (0,0)™ _ Yo _ — 2
0$5$% (32) ¢k ¢k =1+ 21/&721"'(1_’_1/&) (kp) 2(kp)
covers all possible behaviors of the flow, and that; also N a? [1+COS{2<P/6¥}
yields a flow symmetric with respect to thé axis. Expres- 22/a71{ I'2(1a)
sions(30) and (31) generalize the known symmetrig24,2]
of the AB setup to include the presence of a conical singu- coq 7/ a}cod2¢/ a}
larity. + (kp)?, (39
al’ (2/a)

Considering Eqs(26) and (28), the probability density

where all terms of the order okp)*, with A\<2 and;<a«a
o a)* (b <2, have been considered. When=1 the corresponding
YEOPS e = /2 exp(i® ) (¢)} (nonzeroth powers ofkp in Eq. (39) cancel out, as they
mm =T should, since in the absence of the conical singuldand of
XJm-sia(Kp)Im —s1a(Kp)  (33)  magnetic flux the probing state becomes a plane wgsee
Eqg. (29)].
follows, where In studying the probability densit{89), one may be led to
conclude that the configuration space of a particle in the state
e 1 , - , _zﬂ(ko'“) is simply connected, _sinc#fﬁo’“) ¢ff’“)_* does not van-
O (@) =—|(Im=é|—[m'— 5|)E—(m—m Yo, ish at the conical singularitgi.e., in the limitkp—0). How-
@ (34) ever, the following considerations may lead to a different
interpretation. A way of preventing a particle from getting
inside a disc centered at the origin is to impose boundary
satisfying ("2} =— (%% . The probability current, when conditions such that the radial component of the probability
expressed with respect oX!,X?}, has the familiar polar current vanishes on the border of the diaad this may be
components on the Euclidean plafis), from which it fol-  implemented without requiring that the wave function itself
lows that vanishes at the borderThus no probability leaks into the

]
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hole, and the current lines surround the disc without crossing 1ik( kp\ Yo~ sinf{ m/2a}sin{ ¢/ a}
it. This is a nonsimply connected configuration space. When  7%%(p,¢)= V(?) (e
the disc degenerates to a point at the origin, this picture does @

not change. At the origin, which is now the border of the sin{/ a}sin{2/ a}
disc, the radial probability current vanishes. It is reasonable +
to say that the configuration space of this particleRs 2V°T (2/ar)
—{0}, although the probability density may be nonvanishing
at the origin. If this interpretation is adopted, it follows that where termsO[ (kp)?] and O[ (kp)?*] have been omitted
before making any statement about the connectivity of thdor a<1 or a>1, respectively. When &/is even, one sees
configuration space of a particle on the cone, one should alsat expressiong41) and (42) vanish, which is consistent
study the probability current at the singularity. with the fact that the stationary stagg*™ is a real func-
Before determining the behavior of the probability currenttion [7]. This effect becomes more intuitive by recalling that
at the conical singularity, consider its corresponding quanfor even 1k classical particles are scattered backwards, and
tum potential(A2). The term containingkp)Y® in Eq. (39) then Fhe _scattered' clgssmal flow cancels the incident one,
satisfies the Laplace equation and, consequently, does ngsulting in a vanishinget classical flow. Clearly when
give any information about the quantum potenftabt is the @=1, Egs. (41) and (42) imply that J0Y(p,¢)
reason why higher order corrections in E89) were consid- = —(fik/M)cosp and JEDO’l)(p,qo)= (fik/M)sing, which are
ered. Fori<a<32, it follows from Eqgs.(A2) and(39) that  the polar components of the plane-wave probability current,
the quantum potential near the conical singularity is approxi-
mately given by

(kp)Y], (42

hk
TONpg) =11 @3

(p)=~— (hk)? (kpl2)2~2 (40) [e;:=(1,0)], as expected. From Eqggll) and(42), one sees
@ 2M 1 1/a] that in the limitp— 0 the probability current either vanishes
or diverges fore<1l and a>1, respectively. Note that al-
though7 %~ diverges ap—0, the right-hand side of Eq.
where an unimportant constant has been dropped. The fatt7) vanishes, which is not surprising since this was the cri-
that Eq.(40) is not a constant when the conical singularity is terion for choosing the stationary states. The fact thatafor
present f¢#1) constitutes a genuine quantum-mechanicak<1 the quantum flow avoids the conical singularity suggests
effect(a geometrical Aharonov-Bohm effecFar away from  that the corresponding configuration space is nonsimply con-
the conical singularity, for positivé&*, the statey(®*=<2  nectedand vice versa fow=1), as discussed previously. At
behaves approximately as the plane wé@ [9,7]. Conse- this point it should be remarked that according to the authors
quently, in terms of X*,X?}, the current lines of the quan- of Ref.[15], if +0 at the conical singularity, the configu-
tum flow are approximately straight lines parallel to &  ration space is simply connected and, consequently, two
axis, running to the left. At this stage, the quantum flowidentical particles on the planerE 3) in the statey “col-
coincides with a flow of classical particlésee Sec. )l As  lide.” The analysis of the quantum flow above seems to
the singularity is approached, the two flows depart from eaclsuggest that this may be not the case.
other. Near the conical singularity they differ radically—by Due to the presence of the wedge in the singular Cartesian
differentiating the quantum potentiéd0), it follows that the ~ coordinates{X*,X?}, for some purposes it is more conve-
current lines are scattered away from the conical singularityient to describe the flow in terms of the embedded Cartesian
whena<1 and bent toward it whea>1, whereas the clas- coordinates{x*,x?}. By performing the coordinate transfor-
sical particles experience no for¢m the {X*,X?} framg.  mation X'—Xx' it is straightforward to show that, in the
When a=1, the quantum potentidé0) becomes constant {x',x?} frame, the probability current is given by=,,&
and the classical and quantum flows coincide everywhere, as/4€y, With /,=aJ, and y=J,. (Note that the wave
they must. function andj satisfy the usual Cartesian form of the conti-
After this rather qualitative analysis, the probability cur- nuity equation. Then, keeping only the leading contribution
rent will now be determined near the conical singularity. Byin Egs.(41) and(42), one finds
proceeding as one did to obtain E§9), from Egs.(35) and

(36) it follows that ) hk
jOr.0=— 31

kr\Ye~lsin{m/2a}
2a T'(la)

Va=1 sin{ 7r/2a}cod o/ a} X[e+(a—1)cose], (44)

T (1)

1ik( kp
JE)O’M(P,(P): - V(?

where the features mentioned above may easily be verified.
For example settinge=1 in Eq. (44) reproduces Eqg43).

)M] (41) Figures 5, 6, and 7 show the current lines associated with
j© for <1, a=1, anda>1. They have been obtained
by plotting the numerical integration of the equations result-
ing by equatingdx/dx to the term between brackets in Eq.

and (44),

. sin{ 7/ a}cod2¢/ a} K
2VeT (2/a)
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FIG. 5. Quantum flow whemx<<1.

FIG. 6. Quantum flow whema=1.

one in which a low velocity fluid negotiates a cylinder. This

dxd 1.2 analogy may be taken as an evidence that the configuration
> 1+ (a—1) _ T space is not simply connected wher1, as was suggested
dx (x1)2+(x3)? above. Note that there are no vortices present anywhere since

the magnetic flux is switched ofbbserve Eq(A5)].
dx® x1x?
K—(a—l)m, B. Flux tube

Now consider nonvanishing magnetic flux in the absence

where is an arbitrary parameter. of a conical singularity. The analog of E(9) is

At =0, = /2, andr, the flow runs parallel to the! .
axis, as may be seen from Eg4). As the direction of (% POD B* = 1 (kp) 2+ sin{¢+ &} p
in Eq. (44) for a givena is determined by only, the current ko Tk 2212(1+ 6) I'(1+46)I'(2-9)
lines are parallel to each oth¢a feature shared with the
classical flow. However, this is true only very close to the sing (kp)L+25
singularity, where the subleading contributions in E(qlsi)_ 220 (14 5)T'(2+ 6) P
and(42) are not relevant. Apart from diverging at the conical
singularity fora> 1, the probability current is smooth every-
where. (kp)?~2°, (45)

_|._ e —
2-2672
Consider more carefully the factétr,D): = (kr)¥* 1 in 27 7°T%(2-9)

Eqg. (44). For an infinitesimale>0, f(0,0+¢€)=0, f(0,0) \ ) .
=1, andf(0,0— €) =. This discontinuity makes the behav- where all terms of orderkjp) were taken into _account, with
ior of the quantum flow on the Euclidean plane changet=1. and Eq.(32) was considered. Expressi¢45) agrees
abruptly in the presence of a tiny deficit angle. No suchWith the one in Ref[2], where a slightly different methzod
effect exists at the classical level, where the velocity of thevas used. Fop=0, Eq.(45) reduces to unity up to akp)
particles varies smoothly with the deficit angle. This effect istem., which would be canceled if higher powerskpfin Eq.
less surprising when recalling that even a tiny deficit argle (45 had been kept. For a nonvanishing flux parameter, the
corresponds to @-function curvature which “pierces” the Probability density vanishes at the flux tube<0) and the
configuration space. correspondm.g configuration space is n(_)nS|mpIy conngcted.
An unsuspected relationship between the winding numbef he expression for the quantum potential corresponding to
of classical orbits and the quantum flow arises when studyin§d- (45 will not be given here. Instead a study of the prob-
the direction of the lattefleft or right, with the flow (43) ability _current itself is carried _out in the f0_||OW|ng.
running to the left Such direction is determined by the fac- _ AS in the case of the conical singularity, Eq85) and
tor sin{/2a} in Eq. (44). For a>}, the quantum flow al- (36) may be used to obtaiy,(p,¢) and J,(p.¢). Expres-
ways runs to the left, and the classical particles are scatteredons which correspond to Eqetl) and (42) were previ-
without winding around the conical singularity. Far=2 ~ ously found in Ref[2] (see also Ref|24]). Study will be
(classical backward scatteringhe quantum flow stops and Ilmlted to the case where the flux parameter is very small,
reverses its direction for<3, with the classical particles Viz- d<1.In so doingJ=J,e,+ J.€, reads approximately
winding once around the conical singularity. It continues to
run to the right until one decreasesto ; when another x
classical backward scattering takes place with another inter.

ruption of the flow. By further decreasing, the quantum \N-.\//"—/
flow starts to run to the left, while the classical particles wind —-:\/““' .

twice around the conical singularity. Generically, the direc- x

tion of the quantum flow is controlled by the winding num- e
berw defined in Eq.(6)—the quantum flow runs to the left ~—= /\__
for evenw and to the right for oddv. ;/\__:

From Fig. 5, one sees that fer<1 the quantum flow
negotiates the conical singularity in a manner similar to the FIG. 7. Quantum flow whem>1.
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(6#0), whereas the former affects all particles indifferently.
This fact may be seen as a manifestation of the equivalence
principle—geometrical Aharonov-Bohm effects due to a
conical singularity do not depend on any particle attribute.

]
|

'
W

VI. SUMMARY

Summarizing, it was shown that the motion of a particle
on a flux cone can be regarded as a motion under the action
of an angular-momentum-dependent central force. Due to lo-
cal flatness, quantization was implemented along usual pro-
cedures in flat space. By studying the probability fluid cor-
responding to a particular stationary stétplane wave” on
a flux cone, interesting effects were found. For example, it
was shown that the winding number of classical orbits con-
trols the direction of the quantum flow on a cone. Classical
flow (which is nearly trivial and quantum flow were shown
to depart from each other near the singularity due to the
presence of a nonvanishing quantum force. For the case of a
conical singularity, the corresponding quantum potential was
FIG. 8. Quantum flow around a flux tube. determined and analyzed. The issue of connectivity of the

configuration space was treated and some interpretations
were proposed.
) (46) Other boundary conditions at the singularithose con-
sidered in Refs[14,15) may lead to interesting effects. An-
wheree; is the unit vectore, evaluated atp= (1 5/2). othe_r i_nt_erestin_g extension of this _work would pe to consider
When 6=0, Eq. (46) reduces to Eq(43), as should be. relativistic part_lcles. The use of this approach_ln the study of
Clearly J vanishes where, = e; andkp= 4, so that q_uantum flow in the con.text of qther geqmetnes an.d topplo—
gies would be worthwhile, particularly in geometries with

\\
i -

L

(&
W\

o
€s5— Ee(p

h
3%, 0)= 11

(p,@)=[ Ik, (1~ 8)/2]. (47)  horizons.
It is als_o clear from Eq(46) _that the quantum fl_(_)vﬁunder ACKNOWLEDGMENTS
the action of the corresponding quantum poteptatulates
around the origin when it is close to the oridi24]. It turns The author is grateful to George Matsas for reviewing the

out that Eq.(47) is a stagnation point, and that there is amanuscript and for clarifying discussions. The work was
vortex around the flux tube, which was expected by observsupported by FAPESP Grant No. 96/12259-1.
ing Eqg. (A5). In Fig. 8, the numerical solution of

APPENDIX: HYDRODYNAMICAL APPROACH

dx* X TO QUANTUM MECHANICS
an - k) e o
dA
(X3)+(x%) Analogies between quantum mechanics and fluid dynam-
5 1 ics do not stop at a continuity equation which expresses local

= (slk) conservation of probability. The Scliimger equation can be
d\ (x1)2+ (x?)2 rephrased as a set of hydrodynamical equatisae Ref[2],
and references therginin order to derive them, consider a
is plotted, showing the main features of the quantum flowparticle with chargee moving in the Euclidean spadghe
near the flux tube. This is in agreement with R&fl, where  generalization to arbitrary backgrounds is straightforward
the analytical expression for the current lines was given. under the action of an electromagnetic fiellB) with cor-
One sees from Ed46) that, as with the conical singular- responding potentials¢,A). The Hamiltonian operator is
ity, the & function magnetic field at the origin imparts a then given by
discontinuous change in the quantum flow of a charged par-
ticle. Any tiny amount of magnetic flux changes the topology _ e
of the current linegopen lines become loopsear the ori- H= m( —ihV— EA
gin. From Fig. 8 one sees that, as previously mentioned, the
presence of the magnetic flux breaks the symmetry with re- . . .
spect to theX! axis. Notice that, as the distance from the Now one rewr|te§ the solutiony for the corresponding
origin increases(still for kp<1), the flow gradually Schralinger equation as
aproaches that of a plane waMeq. (43)], unlike the effect .
caused by the conical singularity. An important distinction y(t,r=e(t,rextr,
between the effects caused by the conical singularity and the
magnetic flux is that the latter only affects charged particlesThe real part of the Schdinger equation reads

2
+egp.
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N S N PV Al
o VX" & ep+V=0, (A1)
where

v _ h? VP

L="om o

hZ VZ( lﬂlﬁ* )1/2

T (g "2
The imaginary part reads
J 2
a—Qt+V-(sz)=0, (A3)

with v:=[AV y—eA/c]/M, leading to the constraint

e
VXVZ—WB. (A4)

Now one sees that?v is the probability current, and there-

r7V+ \"
r (v-V)v

M d =M
av(t,r)=

e
=eE+ _VXB-VV. (A6)

Thus the wavelike Schdinger equatiofiwhere the function

to be determined igs for a given configuration of potentials
(¢,A)] has been replaced by the hydrodynamical equations
(A3) and(A6) with the constraintA4) [where the functions

to be determined arep(Vv) for a given configuration of elec-
tromagnetic field E,B)]. These equations govern the behav-
ior of the quantum flow.

Whereas the Schdinger equation is more appropriate to
study wavelike features of quantum mechanics, the hydrody-
namical equations are more appropriate to study particlelike
features. To see this, assume that the quantum fol€& in
Eq. (A6) is negligible when compared with the Lorentz force
(and other forces that one might have consideréd this
“classical limit,” Eq. (A6) reduces to the equations of mo-
tion for a flow of noninteracting classical particles. Note that
Eqg. (A1) is the corresponding Hamilton-Jacobi equation,
where the action is identified withy. It is clear that the

fore Eq.(A3) is just the continuity equation. Note that by quantum potentiaV/ represents the departure from the clas-

integrating Eq.(A4) along a closed loop, it follows that

é di= e A5

where® is the magnetic flux enclosed by the loop.

The last step is to apply in Eq. (A1), after which one is
left with a set of equations of motion for a fluid of density
and velocityv,

sical motion. In regions where the quantum potential is rel-
evant, the classical and quantum flows may differ consider-
ably from each other. For example, in a region of vanishing
field strengths the motion of the classical flow is trivial, since
the Lorentz force vanishes there. The motion of the quantum
flow, on the other hand, may be quite elaborate due to the
presence of the quantum foreeVV in Eq. (A6). A nonva-
nishing quantum force is the essence of Aharonov-Bohm-
like effects.
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