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Aspects of classical and quantum motion on a flux cone

E. S. Moreira, Jr.*
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900-Sa˜o Paulo, Sa˜o Paulo, Brazil
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Motion of a nonrelativistic particle on a cone with a magnetic flux running through the cone axis~a ‘‘flux
cone’’! is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action
of a velocity-dependent force. The probability fluid~‘‘quantum flow’’! associated with a particular stationary
state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is
shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynami-
cal approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the
way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in
the description of the quantum flow. The connectivity of the configuration space is also discussed.
@S1050-2947~98!03508-2#
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I. INTRODUCTION

Usually, when the quantum description of a system
nontrivial, so is the classical one. However, this is not alwa
the case. There is a number of examples whose intri
quantum effects do not have a classical analog. Nota
among these is the Aharonov-Bohm~AB! effect @1#. In this
setup, the magnetic field vanishes everywhere except ins
thin flux tube. As there is no Lorentz force, classically p
ticles are free, and are not affected by the background. H
ever, in the quantum scattering problem the backgro
leads to a nontrivial scattering, which is confirmed by expe
ment @2#.

The AB effect is a consequence of the interaction of qu
tum matter with anearly trivial affine connection, and it is
present in every gauge theory, including gravity. The ana
of the AB setup in gravitation is a conical background@3–5#.
The geometry is flat everywhere apart from a symmetry a
As in the case of a thin flux tube, the problem of studyi
quantum mechanics on cones amounts to solving the u
equations in flat space with nontrivial boundary conditio
Solutions of these equations lead to geometrical Aharon
Bohm effects@6–9#.

Quantum theory in conical backgrounds has been stu
over two decades@10#, and investigations intensified in th
mid 1980s@11# very much due to the importance in cosmo
ogy of cosmic strings. More recently, interest in the subj
was renewed in the context of quantum mechanics of bl
holes, where one encounters conical singularities~see, e.g.,
Ref. @12#, and references therein!. Besides these and othe
practical motivations to study quantum theory in conic
backgrounds, there is another more academic one@6–9#.
That is, the study of quantum mechanics in anearly trivial
gravitational background may shed some light on the p
found problems of combining quantum mechanics and g
eral relativity.

In this work classical and quantum effects caused b
conical singularity on the motion of a particle are studied.
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various occasions the AB setup is coupled to a conical
ometry ~flux cone!, so that a comparison of the correspon
ing AB effects is possible. The paper is organized as follo
An account on the conical geometry and classical motion
a cone is given in Sec. II~this section comprises a review o
early works by Deser, Gerbert, Jackiw, and ’t Hooft@13,6–
8#!, commenting on points which have been overlooked
the literature. In Sec. III, classical motion on a flux cone
studied. Quantization is implemented in Sec. IV, where
issue of boundary conditions at the singularity is consider
and a particular one is chosen, motivated by regulariza
arguments@14,15#. Corresponding stationary states are o
tained and used to build up a state to probe the singula
This leads, in Sec. V, to a study of quantum flow, showi
nontrivial effects due to the conical singularity. Such effe
are caused by a nonvanishing quantum potential whose
tures are mentioned. Connectivity of the configuration sp
is discussed by taking into account the behavior of quan
flow at the singularity. Sec. VI is a summary, including po
sible extensions of this study. An account on the hydro
namical approach to quantum mechanics~whose elements
are used in Sec. V! is given in the Appendix.

II. CONE

As mentioned previously this section is essentially a
view of material in Refs.@13,6–8#. A cone is a two-
dimensional space with ad-function curvature singularity
@16#. The line element may be written as

dl25gi j dxidxj

5Fd i j 1~a2221!
xixj

r 2 Gdxidxj , ~1!

where the coordinatexi ( i 51,2) runs from2` to ` , r 2

:5d i j x
ixj anda is a positive parameter@13#. Imagining the

conical surface embedded in a three-dimensional Euclid
space,$x1,x2% are Cartesian coordinates on a plane perp
dicular to the symmetry axis of the cone~Fig. 1!. From Eq.
1678 © 1998 The American Physical Society
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~1!, one sees that the conical singularity is located at
origin, and that, whena51, the cone becomes the Euclide
plane.

Using polar coordinates (x15rcosu, x25rsinu), Eq. ~1!
can be rewritten asdl25a22dr21r 2du2, where the conical
singularity is now hidden by the coordinate singularity at t
origin. Note that the coordinates (r ,u) and (r ,u12p) label
the same point, (r ,u);(r ,u12p). A further simplification
of the line element can be made by rescaling$r ,u% as

r5a21r , w5au, ~2!

resulting in dl25dr21r2dw2, showing the flatness of th
cone. However, as a consequence of the rescaling,

~r,w!;~r,w12pa!. ~3!

Coordinates$r,w% are polar coodinates on the surface of t
cone. The angle of the missing wedge~extra wedge, when
a.1) is the deficit angle of the coneD52p(12a) ~Fig.
2!.

At this point it should be noted that the Euclidean pla
and a cone have the same topology, differing in th
geometry—the former is globally flat whereas the latter
not. To see this, one smooths the cone by replacing its tip
a tangential spherical cap of radiusa ~Fig. 3!. Clearly the
resulting surface is simply connected, a fact that does
change whena→0 and the idealized cone is recovere
Though the cone is a simply connected background, the c

FIG. 1. Cone embedded in a three-dimensional Euclidean sp

FIG. 2. Singular Cartesian frame.
e

ir
s
y

ot
.
n-

figuration space of a quantum particle living on it may
nonsimply connected~see Sec. V!.

It follows from Eq. ~3! that the ‘‘Cartesian’’ coordinates
defined byX1:5r cosw andX2:5r sinw ~Fig. 2! are singu-
lar if D5” 0: in terms of$X1,X2% the metric tensor is Euclid-
ean everywhere except on the rays defining the borders o
wedge, where these coordinates are discontinuous funct
of w. ~Clearly the borders of the wedge can be arbitrar
rotated by redefining the interval of length 2pa over which
w ranges.! Accordingly, the Levi-Civita connection vanishe
everywhere except on the borders of the wedge, where
singular. The nonvanishing connection ‘‘tells’’ the rest of th
space that there is a curvature singularity at the origin,
this nontrivial behavior is the very one responsible for t
geometrical Aharonov-Bohm-like effects that will be seen
this work.

Classical motion of a free particle with massM on a
conical surface may be determined from the Lagrangian,

L5
1

2
M ~dl/dt!2

5a22F1

2
M ẋ22~12a2!

l 2

2Mr 2G . ~4!

The line elementdl is given by Eq.~1!, the dot denotes
differentiation with respect to the timet, x:5(x1,x2), and
l :5x3M ẋ is the kinematical angular momentum~note that
a3b:5e i j a

ibj ). The Euler-Lagrange equations of motio
i.e., the geodesic equations on the cone, follow from Eq.~4!,

M ẍ52~12a2!
l 2

Mr 3
er , ~5!

whereer :5x/r . One can regard Eq.~5! as the equation of
motion of a particle moving on the Euclidean plane under
action of an angular-momentum-dependent central fo
which is attractive fora,1 and repulsive fora.1 @17#.
Clearly whenl 50 the motion is radial and uniform.

The geometrical force in Eq.~5! ranks somewhere be
tween an inertial force and a Newtonian force@5,18#. Indeed
by changing from$x1,x2% to $X1,X2%, the force is ‘‘gauged
away’’ everywhere apart from the borders of the wedg
Therefore, unlessa51, trajectories crossing these rays a
broken straight lines, with uniform motion~dashed line in
Fig. 2!. Integration of Eq.~5! @7,18# shows that particles
wind

w5@1/2a# ~6!

e.

FIG. 3. Smoothing the cone.
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1680 PRA 58E. S. MOREIRA, JR.
(@x# denotes the integral part ofx) times around the conica
singularity ~Fig. 4!.

III. FLUX CONE

A cone may be immersed in a magnetic field pointi
along its axis, and being homogeneous in that direction,
choosing a vector potentialA(x,t) with a vanishing compo-
nent in that direction. The Lagrangian of a particle w
chargee moving in this background is given by

L85L1
e

c
ẋ•A. ~7!

Thus the canonical momentum associated withx is

p5a22FM ẋ1~a221!
l

r
euG1

e

c
A

5M ẋ1~a2221!Mṙer1
e

c
A. ~8!

It follows from Eq. ~8! that

x3p5l 1
e

c
x3A, ~9!

which is the usual expression for the canonical angular m
mentum on the Euclidean plane. The Hamiltonian is giv
by

H5p• ẋ2L8

5
a2

2M S p2
e

c
AD 2

1
~12a2!

2Mr 2 Fx3S p2
e

c
AD G2

. ~10!

A magnetic flux F(t) running through the axis of the
cone can be introduced by choosing

A5
F

2pr
eu , ~11!

whereeu :5(2sinu,cosu). Now there is a new singularity a
the origin which is ad function magnetic field. Due to the
cylindrical symmetry, the canonical angular momentum
given by Eq.~9! is conserved,

FIG. 4. Classical motion on a cone.
y

-
n

s

d

dtS l 1
eF

2pcD50. ~12!

The equations of motion following from Eq.~7! are given by
Eq. ~5!, with the induced electric force2e(] tF)eu/2pcr
added on the right-hand side. This electric force prevents
orbital angular momentuml being a constant of motion
which is consistent with Eq.~12!. Clearly the above expres
sions reduce to the familiar ones on the plane@19# whena
51.

The Aharonov-Bohm setup may be combined with t
conical geometry by takingF constant, in which case th
electric force vanishes, and Eq.~5! still holds. Obviously the
same conclusion may be reached by realizing that the e
tromagnetic Lagrangian in Eq.~7! is a total derivative,
eFu̇/2pc, and consequently does not affect classical moti
However, as is well known@1#, this is not the case in quan
tum theory, which is the subject of the following section
@In the following sections,A is given by Eq.~11! with con-
stantF.#

IV. HAMILTONIAN OPERATOR
AND STATIONARY STATES

The Hamiltonian operatorH can be obtained from Eq
~10! by the usual substitution@7#, p→2 i\“. The invariance
of the Schro¨dinger equation under the gauge transformat
A(x)→A(x)1“x(x), c(x,t)→exp$i(e/\c)x(x)%c(x,t) al-
lows the choice x(x)5(2F/2p)u(x), thereby gauging
away the vector potential everywhere, except on an arbitr
ray where the polar angleu is a discontinuous function ofx
@20#. This singular gauge is analogous to the singular Ca
sian coordinates$X1,X2%. It might have been anticipated tha
A cannot vanish everywhere around the origin sin
rA•dx5F. Similar reasoning may be applied to the Lev
Civita connection of a conical geometry~see Ref.@21# and
references therein!.

Definings:52eF/ch, the transformed wave function i

c8~x,t !5exp$ isu%c~x,t !. ~13!

It then follows from Eq.~10!, ~2!, and~3! that

H52
\2

2M

1

r

]

]rS r
]

]r D1
L2

2Mr2
, ~14!

c~r,w12pa!5exp$ i2ps%c~r,w!, ~15!

where

L:52 i\
]

]w
~16!

and the prime inc8 has been dropped. AsH in Eq. ~14! is
just the free Hamiltonian operator on the plane written
polar coordinates@which is not surprising since$X1,X2% is a
~singular! Cartesian frame#, the interaction with the magneti
flux and the conical geometry manifest themselves o
through Eq.~15!. In fact the twisted boundary condition~15!
states that the wave function is not single valued for non
teger values of the flux parameters, and therefore is not
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continuous along some ray. This corresponds to~and is com-
patible with! the fact thatH, as given by Eq.~14!, disguises
a singular vector potential which, as mentioned above, is
defined everywhere. Note also that, according to Eq.~15!, c
must either vanish or diverge at the origin~for noninteger
s), otherwise an inconsistency results when a loop is shr
aroundr50 @22#.

Considering Eqs.~14! and~15!, it follows from the Schro¨-
dinger equation

d

dtE0

`

dr rE
0

2pa

dw cc* 5 lim
r→0

E
0

2pa

dw rJr , ~17!

whereJr is the usual expression for the radial componen
the probability current on the plane,

Jr5
1

M
ReFc*

\

i

]c

]r G , Jw5
1

M
ReFc*

\

ir

]c

]w G . ~18!

In obtaining Eq.~17!, it has been assumed that the wa
function vanishes at infinity. The right-hand side of Eq.~17!
is the net probability crossing an infinitesimally small circ
around the singularity. Equating Eq.~17! to zero amounts to
the statement that the singularity at the origin is neithe
source nor a sink~probability is conserved!, which is auto-
matically guaranteed if

lim
r→0

E
0

2pa

dw rS c*
]f

]r
2

]c*

]r
f D50. ~19!

Expression~19! is the condition for self-adjointness of th
Hamiltonian operator~14!, ^cuHuf&5^fuHuc&* .

If Rk,m(r) are functions such that

Fr ]

]rS r
]

]r D2S m1s

a D 2

1~kr!2GRk,m~r!50, ~20!

then

ck,m~r,w!5
1

A2pa
Rk,m~r!ei ~m1s!w/a, ~21!

where 0<k,` andm is an integer, are simultaneous eige
functions of H and L with eigenvalues\2k2/2M and (m
1s)\/a, respectively. Note that the effect of the magne
flux and of the conical geometry on the eigenvalues ofL is to
shift and to rescale them, respectively. For a particle w
spin there is also a shift due to a coupling between the s
and the deficit angle@8,23#.

In order that the stationary statesck,m span a space o
wave functions in which probability is conserved, they mu
satisfy Eq.~19!,

lim
r→0

rS Rk8,m
*

]Rk,m

]r
2

]Rk8,m
*

]r
Rk,mD 50, ~22!

where the orthonormality relation*0
2padwexp$iw(m2n)/a%

52padmn has been used. Expression~22! is the condition for
self-adjointness of the square of the operatorPr :52 i\(]r

11/2r), and is itself self-adjoint if
ot

k

f

a

-

h
in

t

lim
r→0

r~fc* !50, ~23!

as may easily be shown by equating*0
`drr@f(Prc)*

2c* (Prf)# to zero. One sees from Eq.~23! that Rk,m(r)
may diverge mildly at the origin@which also applies toJr in
Eq. ~17!#, and still be compatible with conservation of pro
ability. A mild divergence would not spoil the square int
grability of the wave function, since a behaviorc;1/rn with
n,1 yields *0

edr rucu2}e2(12n), which vanishes withe.
Note that in order to satisfy Eq.~23! one must haven, 1

2 .
Obviously a logarithmic divergence also passes this t
since it is weaker than the 1/rn divergence.

In the following only wave functions which are finite a
the singularity will be considered. In quantum mechanics
the flux cone, finiteness is motivated by the fact that it ari
naturally when the singularities are smoothed by some re
larization procedure@14,15#. ~Divergent wave functions were
considered in Refs.@14,15#.! Therefore, one takes as solu
tions of Eq.~20! Bessel functions of the first kind,

Rk,m~r!5Jum1su/a~kr!, ~24!

which being finite at the origin satisfy Eq.~23! and conse-
quently Eq.~22!. As a check we may verify that Eq.~24!
indeed satisfies Eq.~22! by observing that

dJn~x!

dx
5

1

2
@Jn21~x!2Jn11~x!#. ~25!

Hence the complete set of stationary statesck,m is given by
Eqs.~21! and ~24!.

A particular state to probe the singularity can be found
follows. The general expression for a stationary state of
ergy \2k2/2M is given by

ck~r,w!5 (
m52`

`

cmck,m~r,w!. ~26!

The coefficientscm are determined by considering the Fo
rier expansion of a plane wave

exp$2 ia cosf%5 (
m52`

`

~2 i ! umuJumu~a!eimf, ~27!

and letting the magnetic flux and the conical geometry act
it. This involves shifting and rescaling the angular mome
tum of the modes, as mentioned previously, leading to

cm
~d,a! :5A2paexpH 2

ip

2a
um2duJ , ~28!

where the flux parameter has been redefined to bed:52s
in order to compare the result with earlier work. The statio
ary state ~26! with cm5cm

(d,a) will be denoted ck
(d,a) .

Clearly,

ck
~0,1!~r,w!5exp$2 ikrcosw%

[exp$2 ikX1%. ~29!



s
it-

re

h
m
vi
th

th
m
i

gu

e
Eq.
for

u-

tate

nt
g
ary
lity

elf

1682 PRA 58E. S. MOREIRA, JR.
~Note that whena51, both$x1,x2% and$X1,X2% are genuine
Cartesian coordinates which coincide.! The stationary state
c (d,1) andc (0,a) have previously been considered in the l
erature~in Refs.@1# and@9,7#, respectively! in the context of
scattering. Section V considers the probability fluid~see the
Appendix! associated withck

(d,a) .

V. QUANTUM FLOW

Consider the symmetries of the stateck
(d,a) . By redefining

the summation index in Eq.~26!, it is straightforward to
show that

ck
~d1n,a!~r,w!5ck

~d,a!~r,w!, ~30!

from which it follows that integer flux parameters a
equivalent to zero. Also,

ck
~2d,a!~r,w!5ck

~d,a!~r,2w! ~31!

implies that for vanishing flux parameterck
(0,a)(r ,u)

[ck
(0,a)(r ,2u). Thus the quantum flow is symmetric wit

respect to thex1 axis and, consequently, no probability fro
the upper half-plane passes to the lower half-plane, and
versa. In other words the current lines associated with
quantum flow must not cross thex1 axis; otherwise, due to
the symmetry, they would intercept on this axis. When
flux parameter is switched on this symmetry is broken, i
plying that the flow corresponding to a charged particle
sensitive to the direction~up or down! in which the magnetic
flux runs. By studying symmetries~30! and ~31!, one sees
that

0<d< 1
2 ~32!

covers all possible behaviors of the flow, and thatd5 1
2 also

yields a flow symmetric with respect to thex1 axis. Expres-
sions~30! and ~31! generalize the known symmetries@24,2#
of the AB setup to include the presence of a conical sin
larity.

Considering Eqs.~26! and ~28!, the probability density

ck
~d,a!ck

~d,a!* 5 (
m,m852`

`

exp$ iQm,m8
~d,a!

~w!%

3Jum2du/a~kr!Jum82du/a~kr! ~33!

follows, where

Qm,m8
~d,a!

~w!:5
1

aF ~ um2du2um82du!
p

2
2~m2m8!w G ,

~34!

satisfying Qm,m8
(d,a)

52Qm8,m
(d,a) . The probability current, when

expressed with respect to$X1,X2%, has the familiar polar
components on the Euclidean plane~18!, from which it fol-
lows that
ce
e

e
-
s

-

J r
~d,a!~r,w!5

\k

2M (
m,m852`

`

sin$Qm,m8
~d,a!

~w!%Jum2du/a~kr!

3@Jum82du/a21~kr!2Jum82du/a11~kr!#

~35!

and

J w
~d,a!~r,w!5

\

Mr (
m,m852`

`
m82d

a
cos$Qm,m8

~d,a!
~w!%

3Jum2du/a~kr!Jum82du/a~kr!. ~36!

In deriving Eq.~35!, equality~25! has been used.
In the following the quantum flow will be studied when

kr!1. ~37!

This amounts to considering the expansion

Jn~z!5S z

2D nF 1

G~11n!
2

1

G~21n!S z

2D 2

1O~z4!G ~38!

in Eqs. ~33!, ~35!, and ~36!, keeping only the terms with
small m and m8. For simplicity the cone and the flux tub
will be considered separately. It should be remarked that
~37! contrasts with the regime on scattering problems
which kr@1.

A. Conical singularity

Using Eqs.~34! and~38!, it follows from Eq.~33! that the
first terms of the probability density around a conical sing
larity are

ck
~0,a!ck

~0,a!* 511
cos$p/2a%cos$w/a%

21/a22G~111/a!
~kr!1/a2

1

2
~kr!2

1
a2

22/a21F11cos$2w/a%

G2~1/a!

1
cos$p/a%cos$2w/a%

aG~2/a! G ~kr!2/a, ~39!

where all terms of the order of (kr)l, with l<2 and 1
2 ,a

, 3
2 , have been considered. Whena51 the corresponding

~nonzeroth! powers ofkr in Eq. ~39! cancel out, as they
should, since in the absence of the conical singularity~and of
magnetic flux! the probing state becomes a plane wave@see
Eq. ~29!#.

In studying the probability density~39!, one may be led to
conclude that the configuration space of a particle in the s

ck
(0,a) is simply connected, sinceck

(0,a)ck
(0,a)* does not van-

ish at the conical singularity~i.e., in the limitkr→0). How-
ever, the following considerations may lead to a differe
interpretation. A way of preventing a particle from gettin
inside a disc centered at the origin is to impose bound
conditions such that the radial component of the probabi
current vanishes on the border of the disc~and this may be
implemented without requiring that the wave function its
vanishes at the border!. Thus no probability leaks into the
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hole, and the current lines surround the disc without cross
it. This is a nonsimply connected configuration space. W
the disc degenerates to a point at the origin, this picture d
not change. At the origin, which is now the border of t
disc, the radial probability current vanishes. It is reasona
to say that the configuration space of this particle isR2

2$0%, although the probability density may be nonvanishi
at the origin. If this interpretation is adopted, it follows th
before making any statement about the connectivity of
configuration space of a particle on the cone, one should
study the probability current at the singularity.

Before determining the behavior of the probability curre
at the conical singularity, consider its corresponding qu
tum potential~A2!. The term containing (kr)1/a in Eq. ~39!
satisfies the Laplace equation and, consequently, does
give any information about the quantum potential@that is the
reason why higher order corrections in Eq.~39! were consid-
ered#. For 1

2 ,a, 3
2 , it follows from Eqs.~A2! and~39! that

the quantum potential near the conical singularity is appro
mately given by

Va~r!52
~\k!2

2M

~kr/2!2/a22

G2@1/a#
, ~40!

where an unimportant constant has been dropped. The
that Eq.~40! is not a constant when the conical singularity
present (aÞ1) constitutes a genuine quantum-mechani
effect~a geometrical Aharonov-Bohm effect!. Far away from
the conical singularity, for positiveX1, the statec (0,a,1/2)

behaves approximately as the plane wave~29! @9,7#. Conse-
quently, in terms of$X1,X2%, the current lines of the quan
tum flow are approximately straight lines parallel to theX1

axis, running to the left. At this stage, the quantum flo
coincides with a flow of classical particles~see Sec. II!. As
the singularity is approached, the two flows depart from e
other. Near the conical singularity they differ radically—b
differentiating the quantum potential~40!, it follows that the
current lines are scattered away from the conical singula
whena,1 and bent toward it whena.1, whereas the clas
sical particles experience no force~in the $X1,X2% frame!.
When a51, the quantum potential~40! becomes constan
and the classical and quantum flows coincide everywhere
they must.

After this rather qualitative analysis, the probability cu
rent will now be determined near the conical singularity.
proceeding as one did to obtain Eq.~39!, from Eqs.~35! and
~36! it follows that

J r
~0,a!~r,w!52

\k

M S kr

2 D 1/a21Fsin$p/2a%cos$w/a%

G~1/a!

1
sin$p/a%cos$2w/a%

21/aG~2/a!
~kr!1/aG ~41!

and
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ct
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ty
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J w
~0,a!~r,w!5

\k

M S kr

2 D 1/a21Fsin$p/2a%sin$w/a%

G~1/a!

1
sin$p/a%sin$2w/a%

21/aG~2/a!
~kr!1/aG , ~42!

where termsO@(kr)2# and O@(kr)2/a# have been omitted
for a<1 or a.1, respectively. When 1/a is even, one sees
that expressions~41! and ~42! vanish, which is consisten
with the fact that the stationary stateck

(0,1/2n) is a real func-
tion @7#. This effect becomes more intuitive by recalling th
for even 1/a classical particles are scattered backwards,
then the scattered classical flow cancels the incident o
resulting in a vanishingnet classical flow. Clearly when
a51, Eqs. ~41! and ~42! imply that J r

(0,1)(r,w)
52(\k/M )cosw andJ w

(0,1)(r,w)5(\k/M )sinw, which are
the polar components of the plane-wave probability curre

J ~0,1!~r,w!52
\k

M
e1 ~43!

@e1 :5(1,0)#, as expected. From Eqs.~41! and~42!, one sees
that in the limitr→0 the probability current either vanishe
or diverges fora,1 anda.1, respectively. Note that al
thoughJ r

(0,a.1) diverges asr→0, the right-hand side of Eq
~17! vanishes, which is not surprising since this was the c
terion for choosing the stationary states. The fact that foa
,1 the quantum flow avoids the conical singularity sugge
that the corresponding configuration space is nonsimply c
nected~and vice versa fora>1), as discussed previously. A
this point it should be remarked that according to the auth
of Ref. @15#, if cÞ0 at the conical singularity, the configu
ration space is simply connected and, consequently,
identical particles on the plane (a5 1

2 ) in the statec ‘‘col-
lide.’’ The analysis of the quantum flow above seems
suggest that this may be not the case.

Due to the presence of the wedge in the singular Carte
coordinates$X1,X2%, for some purposes it is more conve
nient to describe the flow in terms of the embedded Carte
coordinates$x1,x2%. By performing the coordinate transfor
mation Xi→xi it is straightforward to show that, in the
$x1,x2% frame, the probability current is given byj5j rer
1j ueu , with j r5aJr and j u5Jw . ~Note that the wave
function andj satisfy the usual Cartesian form of the con
nuity equation.! Then, keeping only the leading contributio
in Eqs.~41! and ~42!, one finds

j ~0,a!~r ,u!52
\k

M S kr

2a D 1/a21 sin$p/2a%

G~1/a!

3@e11~a21!cosuer #, ~44!

where the features mentioned above may easily be verifi
For example settinga51 in Eq. ~44! reproduces Eq.~43!.

Figures 5, 6, and 7 show the current lines associated w
j (0,a) for a,1, a51, anda.1. They have been obtaine
by plotting the numerical integration of the equations resu
ing by equatingdx/dl to the term between brackets in E
~44!,
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dx1

dl
511~a21!

~x1!2

~x1!21~x2!2
,

dx2

dl
5~a21!

x1x2

~x1!21~x2!2
,

wherel is an arbitrary parameter.
At u50, 6p/2, andp, the flow runs parallel to thex1

axis, as may be seen from Eq.~44!. As the direction ofj (0,a)

in Eq. ~44! for a givena is determined byu only, the current
lines are parallel to each other~a feature shared with th
classical flow!. However, this is true only very close to th
singularity, where the subleading contributions in Eqs.~41!
and~42! are not relevant. Apart from diverging at the conic
singularity fora.1, the probability current is smooth every
where.

Consider more carefully the factorf (r ,D):5(kr)1/a21 in
Eq. ~44!. For an infinitesimale.0, f (0,01e)50, f (0,0)
51, andf (0,02e)5`. This discontinuity makes the behav
ior of the quantum flow on the Euclidean plane chan
abruptly in the presence of a tiny deficit angle. No su
effect exists at the classical level, where the velocity of
particles varies smoothly with the deficit angle. This effec
less surprising when recalling that even a tiny deficit angle
corresponds to ad-function curvature which ‘‘pierces’’ the
configuration space.

An unsuspected relationship between the winding num
of classical orbits and the quantum flow arises when study
the direction of the latter@left or right, with the flow ~43!
running to the left#. Such direction is determined by the fa
tor sin$p/2a% in Eq. ~44!. For a. 1

2 , the quantum flow al-
ways runs to the left, and the classical particles are scatt
without winding around the conical singularity. Fora5 1

2

~classical backward scattering! the quantum flow stops an
reverses its direction fora, 1

2 , with the classical particles
winding once around the conical singularity. It continues
run to the right until one decreasesa to 1

4 when another
classical backward scattering takes place with another in
ruption of the flow. By further decreasinga, the quantum
flow starts to run to the left, while the classical particles wi
twice around the conical singularity. Generically, the dire
tion of the quantum flow is controlled by the winding num
ber w defined in Eq.~6!—the quantum flow runs to the lef
for evenw and to the right for oddw.

From Fig. 5, one sees that fora,1 the quantum flow
negotiates the conical singularity in a manner similar to

FIG. 5. Quantum flow whena,1.
l

e
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e

one in which a low velocity fluid negotiates a cylinder. Th
analogy may be taken as an evidence that the configura
space is not simply connected whena,1, as was suggeste
above. Note that there are no vortices present anywhere s
the magnetic flux is switched off@observe Eq.~A5!#.

B. Flux tube

Now consider nonvanishing magnetic flux in the absen
of a conical singularity. The analog of Eq.~39! is

ck
~d,1!ck

~d,1!* 5
1

22dG2~11d!
~kr!2d1

sin$w1dp%

G~11d!G~22d!
kr

2
sinw

22dG~11d!G~21d!
~kr!112d

1
1

2222dG2~22d!
~kr!222d, ~45!

where all terms of order (kr)l were taken into account, with
l<1, and Eq.~32! was considered. Expression~45! agrees
with the one in Ref.@2#, where a slightly different method
was used. Ford50, Eq.~45! reduces to unity up to a (kr)2

term, which would be canceled if higher powers ofkr in Eq.
~45! had been kept. For a nonvanishing flux parameter,
probability density vanishes at the flux tube (r50) and the
corresponding configuration space is nonsimply connec
The expression for the quantum potential corresponding
Eq. ~45! will not be given here. Instead a study of the pro
ability current itself is carried out in the following.

As in the case of the conical singularity, Eqs.~35! and
~36! may be used to obtainJr(r,w) andJw(r,w). Expres-
sions which correspond to Eqs.~41! and ~42! were previ-
ously found in Ref.@2# ~see also Ref.@24#!. Study will be
limited to the case where the flux parameter is very sm
viz. d!1. In so doing,J5Jrer1Jwew reads approximately

FIG. 6. Quantum flow whena51.

FIG. 7. Quantum flow whena.1.
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J~d,1!~r,w!5
\k

M Fed2
d

kr
ewG , ~46!

whereed is the unit vectorer evaluated atw5p(12d/2).
When d50, Eq. ~46! reduces to Eq.~43!, as should be.
Clearly J vanishes whenew5ed andkr5d, so that

~r,w!5@d/k,p~12d!/2#. ~47!

It is also clear from Eq.~46! that the quantum flow~under
the action of the corresponding quantum potential! circulates
around the origin when it is close to the origin@24#. It turns
out that Eq.~47! is a stagnation point, and that there is
vortex around the flux tube, which was expected by obse
ing Eq. ~A5!. In Fig. 8, the numerical solution of

dx1

dl
5211~d/k!

x2

~x1!21~x2!2
,

dx2

dl
52~d/k!

x1

~x1!21~x2!2

is plotted, showing the main features of the quantum fl
near the flux tube. This is in agreement with Ref.@2#, where
the analytical expression for the current lines was given.

One sees from Eq.~46! that, as with the conical singular
ity, the d function magnetic field at the origin imparts
discontinuous change in the quantum flow of a charged
ticle. Any tiny amount of magnetic flux changes the topolo
of the current lines~open lines become loops! near the ori-
gin. From Fig. 8 one sees that, as previously mentioned,
presence of the magnetic flux breaks the symmetry with
spect to theX1 axis. Notice that, as the distance from t
origin increases ~still for kr!1), the flow gradually
aproaches that of a plane wave@Eq. ~43!#, unlike the effect
caused by the conical singularity. An important distincti
between the effects caused by the conical singularity and
magnetic flux is that the latter only affects charged partic

FIG. 8. Quantum flow around a flux tube.
v-

r-

e
-

he
s

(dÞ0), whereas the former affects all particles indifferent
This fact may be seen as a manifestation of the equivale
principle—geometrical Aharonov-Bohm effects due to
conical singularity do not depend on any particle attribute

VI. SUMMARY

Summarizing, it was shown that the motion of a partic
on a flux cone can be regarded as a motion under the ac
of an angular-momentum-dependent central force. Due to
cal flatness, quantization was implemented along usual
cedures in flat space. By studying the probability fluid co
responding to a particular stationary state~‘‘plane wave’’ on
a flux cone!, interesting effects were found. For example,
was shown that the winding number of classical orbits c
trols the direction of the quantum flow on a cone. Classi
flow ~which is nearly trivial! and quantum flow were show
to depart from each other near the singularity due to
presence of a nonvanishing quantum force. For the case
conical singularity, the corresponding quantum potential w
determined and analyzed. The issue of connectivity of
configuration space was treated and some interpretat
were proposed.

Other boundary conditions at the singularity~those con-
sidered in Refs.@14,15#! may lead to interesting effects. An
other interesting extension of this work would be to consid
relativistic particles. The use of this approach in the study
quantum flow in the context of other geometries and topo
gies would be worthwhile, particularly in geometries wi
horizons.
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APPENDIX: HYDRODYNAMICAL APPROACH
TO QUANTUM MECHANICS

Analogies between quantum mechanics and fluid dyna
ics do not stop at a continuity equation which expresses lo
conservation of probability. The Schro¨dinger equation can be
rephrased as a set of hydrodynamical equations~see Ref.@2#,
and references therein!. In order to derive them, consider
particle with chargee moving in the Euclidean space~the
generalization to arbitrary backgrounds is straightforwa!
under the action of an electromagnetic field (E,B) with cor-
responding potentials (f,A). The Hamiltonian operator is
then given by

H5
1

2M S 2 i\“2
e

c
AD 2

1ef.

Now one rewrites the solutionc for the corresponding
Schrödinger equation as

c~ t,r !5%~ t,r !eix~ t,r !.

The real part of the Schro¨dinger equation reads
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\
]x

]t
1

\2

2M F“x2
e

c\
AG2

1ef1V50, ~A1!

where

V~ t,r !:52
\2

2M

¹2%

%

[2
\2

2M

¹2~cc* !1/2

~cc* !1/2
. ~A2!

The imaginary part reads

]%2

]t
1“•~%2v!50, ~A3!

with v:5@\“x2eA/c#/M , leading to the constraint

“3v52
e

Mc
B. ~A4!

Now one sees that%2v is the probability current, and there
fore Eq. ~A3! is just the continuity equation. Note that b
integrating Eq.~A4! along a closed loop, it follows that

R v•dl52
eF

Mc
, ~A5!

whereF is the magnetic flux enclosed by the loop.
The last step is to apply“ in Eq. ~A1!, after which one is

left with a set of equations of motion for a fluid of density%2

and velocityv,
c
T.
0

M
d

dt
v~ t,r ![M F]v

]t
1~v•“ !vG

5eE1
e

c
v3B2“V. ~A6!

Thus the wavelike Schro¨dinger equation@where the function
to be determined isc for a given configuration of potential
(f,A)# has been replaced by the hydrodynamical equati
~A3! and~A6! with the constraint~A4! @where the functions
to be determined are (%,v) for a given configuration of elec
tromagnetic field (E,B)#. These equations govern the beha
ior of the quantum flow.

Whereas the Schro¨dinger equation is more appropriate
study wavelike features of quantum mechanics, the hydro
namical equations are more appropriate to study particle
features. To see this, assume that the quantum force2“V in
Eq. ~A6! is negligible when compared with the Lorentz forc
~and other forces that one might have considered!. In this
‘‘classical limit,’’ Eq. ~A6! reduces to the equations of mo
tion for a flow of noninteracting classical particles. Note th
Eq. ~A1! is the corresponding Hamilton-Jacobi equatio
where the action is identified with\x. It is clear that the
quantum potentialV represents the departure from the cla
sical motion. In regions where the quantum potential is r
evant, the classical and quantum flows may differ consid
ably from each other. For example, in a region of vanish
field strengths the motion of the classical flow is trivial, sin
the Lorentz force vanishes there. The motion of the quan
flow, on the other hand, may be quite elaborate due to
presence of the quantum force2“V in Eq. ~A6!. A nonva-
nishing quantum force is the essence of Aharonov-Boh
like effects.
.
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