PHYSICAL REVIEW D 68, 084022 (2003

Interaction of Hawking radiation with static sources in de Sitter
and Schwarzschild-de Sitter
spacetimes

J. Casfiriras* I. P. Costa e Silvd,and G. E. A. Matsds
Instituto de Fsica Téaica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-960Paallo, Sa Paulo, Brazil
(Received 19 July 2003; published 31 October 2003

We study and look for similarities between the response Bt&&,,A) and R5Ya,,A,M) of a static
scalar source with constant proper acceleratigrinteracting with a massless, conformally coupled Klein-
Gordon field(i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation
emanating from the de Sitter cosmological horizon ding in Schwarzschild—de Sitter spacetime, in the
Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the
cosmological horizons, respectively, whetdas the cosmological constant aMlis the black hole mass. After
performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level
in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum
numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is
obtained. In the case of Schwarzschild—de Sitter spacetime such a closed formula could not be obtained, and
a numerical analysis is performed. We conclude, in particular, i&ta,,A) and RS“Yay,A,M) do not
coincide in general, but tend to each other when:0 or ag— . Our results are also contrasted and shown
to agree(in the proper limit$ with related ones in the literature.
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I. INTRODUCTION diation (associated with the Unruh vacuuns exactly the
same as the respon&(ag)=qg%ay/47? (in natural units,

It is well known from classical electrodynamics that ac-Whereq is a small coupling constanof such a source when

celerated electric charges radiate as seen by an inertial oB-is uniformly accelerated with the same proper acceleration

server in Minkowski spacetime. However, according to thell the inertial vacuum of Minkowski spacetime or, equiva-
ntly, when it is static in the FDU thermal bath of the Rin-

equivalence principle, a uniformly accelerated charge is seeﬁ : - oy
. . L -“dler spacetimd6]. This is surprising because structureless
by a comoving observer as being static in a “uniform gravi-

. i o . static scalar sources can only interact with zero-energy field
tatlon_al field,” and thus it is not expected to radiate. In the,modes; such modes probe the global geometry of spacetime
classical context, this apparent paradox was worked out iBnq are accordingly quite different in Schwarzschild and
some detail by Rohrlich, Fultofi], and Boulwarg 2]. Rindler spacetimes. Indeed, this equivalence is not verified,

The same problem has also been analyzed in a quantuglg., when eithefi) the Unruh vacuum is replaced by the
context[3], in terms of photon emission rates, using the factHartle-Hawking vacuunj6], (ii) the black hole is endowed
that an observer comoving with a uniformly acceleratedwith electric chargg7] or (iii) the massless Klein-Gordon
charge views the latter as immersed in a Fulling-Daviesfield is replaced with electromagne{i8] or massiveKlein-
Unruh (FDU) thermal batH4,5]. More specifically, the inter- Gordon[9] ones. It is hitherto unclear whether the equiva-
action of the static chargéas computed by comoving ob- lence found in Ref6] is only a remarkable coincidence or if

servers with the FDU thermal bath results in the absorptiontmhgii(\a/ a'\fezolgﬁtg';% dde\?v%(zrthbeerh(lnrr]dngt. t-kr12|se C:Jri?/l;:gz?;(\j\?oﬂl?js
and stimulated emission aofero-energyRindler photons, y 9

; persist when one includes the presence of a cosmological
which, althoughunobservablgnevertheless exactly account constant, ie. by replacing Schwarzschid with

for the usual photon emission described by an inertial Ob'SchwarzschiId-de SittefSdS spacetime and Minkowski
server. _ _ , _ with de Sitter spacetime.

A particularly interesting arena to study interactions be- " g4s spacetime may be viewed as describing a spherically
tween sources and radiation is the vicinity of black holessymmetric black hole immersed in a universe with a positive
where the presence of nontrivial classical and quantum efeosmological constant >0. It has attracted much attention
fects offers a wealth of conceptual and technical challengesately on account of recent type la supernovae and cosmic
In this setting, it has recently been shown that the responsgicrowave background observatiofi€] indicating that the
RS(a,,M) of a pointlike static scalar source with proper Universe at large scale héapproximately flat spatial geom-
acceleratiora, outside a Schwarzschild black hole of massetry and is in accelerated expansion. These data suggest the
M interacting withmasslesscalar particles of Hawking ra- existence of some background form of eneiggtark en-

ergy”) with negative pressure. The most plausible scenarios
to describe this energy include the existence of a positive

*Electronic address: jcastin@ift.unesp.br cosmological constant and quintessence fields. Although in
'Electronic address: ivanpcs@ift.unesp.br the latter case the energy density of the dark energy is al-
*Electronic address: matsas@ift.unesp.br lowed to change in time, in many models this variation can
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be neglected for astrophysically relevant scales. In other
words, when considering objects such as black holes, one
can for most purposes assume the presence of an effective,
positive cosmological constant. In light of these facts, the ;
interest in considering SdS black holes becomes clear. t = const
In this paper we consider a static, pointlike source inter-
acting with a conformally coupled, massless Klein-Gordon
field in both de Sitter and SdS spacetimes. Quantum field
theory in de Sitter spacetime has been much studied in the
literature[11]. In this case, we take the field state to be the
Euclidean vacuuntsee, e.g., Ref.12]) describing a thermal FIG. 1. Embedding of de Sitter spacetime in a flat background
bath as seen by static observers. Our calculations in de Sittenth two dimensions omittedcircular cross sections are to be
closely follow those of Higuchji13], but our presentation is thought of as copies %). The shaded part represents the region
somewhat different. In particular, it is useful for our purposesof de Sitter spacetime covered by the coordinates, ¢, ¢). One
to derive the response rate of our pointlike source at a gesan pick any normal, timelike geodesic as the origin0.
neric position inside the cosmological radius. In the SdS
case, there are two main technical hindrances in consideringe adopt natural unitsc=G=#/=Kkg=1), the abstract in-

geodesic 7 =0

the quantization of the Klein-Gordon field. The first one isdex notation17] and spacetime signature-(———).
the definition of what we shall call th&ibbons-Hawking

vacuum[14]. This state describes a situation in which we Il. THE BACKGROUNDS: de SITTER AND
have thermal fluxes emanating froboth the hole and the SCHWARZSCHILD —de SITTER

cosmological event horizons. As usually, the related tempera-

tures are proportional to the corresponding surface gravities Before starting our central discussion, it will be useful to
kp, and k.. Because in generad,# k., there are technical recall some geometrical features of de Sitter and SdS space-
difficulties in defining such a stafd 4,15 in the whole SdS times. We shall briefly do so here, confining ourselves to the
spacetime. However, for the region between the horizons on@inimum of information necessary to our ends. For more
may devise an heuristic prescription to define it, since indetails, see, e.g., Refsl4,18.

realistic situations where black holes are formed by gravita- de Sitter and SdS spacetimes are vacuum solutions of Ein-
tional collapse in a de Sitter background, it is natural toStein’s field equations with a positive cosmological constant
expect the emission of thermal radiation from both horizons\>0. Their line elements can be written as

(see[14] for an outline and further justification for the men- 5 o o 5

tioned prescription We shall not dwell on these problems in ds*=f(r)dt*—f(r)"*dr®—r?(d¢*+sifod¢®), (1)

this paper but simply assume that radiation emanates from_ ) .

both horizons at definite temperatures. The second technic#fith f(r)—fag(r)=1—Ar?/3 for de Sitter spacetime and
difficulty is related with the quantization of the scalar field in (") fsadr)=1—2M/r—Ar?3 for SdS spacetim¢19],

SdS spacetime. Due to the spherical symmetry of the prog¥hereM denotes the mass of the corresponding black hole.
lem, the corresponding Klein-Gordon equation is easilyHere, the “time coordinatet and the “angular coordinates”
separated, but its radial part, except for the near extremd and ¢ have their usual ranges; °<t<+o, 0< @<,
case[16], does not appear to be amenable to analytical treal0=< ¢<2m, and for our purposes the “radial coordinate”
ment. Accordingly, we shall proceed to its numerical resolu-must be restricted to non-negative values for which)

tion. >0.

The paper is organized as follows. In Sec. I, we briefly ~Let us first consider de Sitter spacetime. We begin by
review some geometrical aspects of SdS and de Sitter spacdefining the de Sitter or cosmological radius &t /3/A,
times which will be useful for establishing the setting for our and by noting that(r)>0 implies O<r <«. The “singular-
analysis and fixing notation. In Sec. lll we present the genity” at r=« is merely due to a bad choice of coordinates,
eral formalism to quantize a massless, conformally couple@nd with an appropriate reparametrizatid®] one can ob-
scalar field in the background of interest. In Sec. IV we applytain the corresponding maximal analytic extension. This
the formalism to de Sitter spacetime with the Euclideanspacetime has topology®x R and can be isometrically em-
vacuum, obtaining a simple, closed, analytical form for thebedded as a one-sheeted hyperboloid in 5-dimensional
response at the tree level of a static source interacting witMinkowski spacetime (see Fig. 1 The coordinates
the radiation from the cosmological horizon. In Sec. V, we(t,r,8,¢) cover only part of de Sitter spacetime. The causal
apply the formalism to SdS spacetime with the Gibbons-structure of de Sitter spacetime can be more readily visual-
Hawking vacuum and express the response of the statiged through the Penrose diagram in Fig. 2. The origin of the
source in terms of a sum over the normal mode angular mapolar coordinatesf =0, and past and future infinitie ™~
menta, which is numerically evaluated. We then compare thand Z* are represented by vertical and horizontal border-
behavior of this response with the one obtained in the ddines, respectively. We note that the region labeled as | in
Sitter casgland with the related one obtained in Schwarzs-Fig. 2 [covered by the coordinates,(, 8, ¢)] on which we
child spacetime with the Unruh vacuum]). Finally, in Sec.  will focus has a global timelike future-directed Killing field
VI we finish with some conclusions. Throughout this paper,£2=(d/dt)®. The Killing field & becomes lightlike atr
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FIG. 3. Penrose Diagram of Schwarzschild-de Sitter spacetime.
The displayed pattern repeats itself infinitely both to the left and to
the right. The shaded region is a static, globally hyperbolic region

by itself.
M ( d ) a @
r2 a2 arl’

r =00

FIG. 2. Penrose diagram of de Sitter spacetime. The shaded
region is the one covered by the coordinates,@, ¢). Horizontal
lines cutting this diagram represent 3 spheres, and the lines labeled
asr=0 represent the worldlines of the “north and south pole” of
these 3 spheres. The solid lines labeled ase correspond to past
and future infinitiesZ ~ andZ ™.

a?=uPv ui=

and proper acceleration

M r
r2 a2

oM 2| Y2
. . . . . 1-—— . (8
=a, which comprises #&ifurcate Killing horizon(see, e.g.,
Ref. [15] for a definition. The observers following integral
curves of the Killing fieldé? in region | will be calledstatic ~ Note that static observers with= (M a?) ¥ follow geodesics
for short. Static observers have 4-velocityu®  (agys=0), due to a balance between the cosmic repulsion

=(£°¢,.) Y22, 4-acceleration and the black hole attraction.
48— LDV U= — r[a)® @ IIl. RESPONSE OF A STATIC SOURCE INTERACTING
b= 2lar) WITH A SCALAR FIELD

Consider now the quantization of a massless, conformally
coupled Klein-Gordon fieldb(x*), in the background de-
fined by Eq.(1), described by the action

and proper acceleration

; . —1/2
ags=V— aaaa:—z( 1-— : 3 1
o o _ 4 a,
S= EJ d*x\—g[ VeV - (1/6)RD], 9)
It is thus clear that a static observeratO follows indeed a
geodesic. whereg=detg,,}, andR=4A =12/a? is the scalar curva-
Let us now turn our attention to SdS spacetime. We shalture for both de Sitter and SdS spacetimes. The associated
assume thaM/a<1/\27. The zeroes ofsdr) are, then, Klein-Gordon equation is

found at
Vav o+ (1/6)R® =0. (10
2a A
rc:ﬁcos( 5), (4) It is well known that quantum field theory takes a rela-
tively simple form in globally hyperbolic, stationary space-
times where, in particular, a well defined notion of particle
—2a A+ can be given(see, e.g., Ref{20], and references thergin
T fco 3/ ) This is the case for the shaded regions in Figs. (0
<a) and 3 (,<r<r.). For each such region, we shall look
fa=—(rotry), ©6) for a set of positive-frequency modes
I
where Azarccoﬁ—(Z?MZ/_az)“z] satisfies m/2<A<. ul o (x) = \/Elm(r)Ylm( 0,4)e 19! (11)
Here,r. andr, are associated with the cosmological and m T

black hole horizons, respectively, and satisfy<Q,<r.

Moreover,fsudr)>0 for r,<r<r.. The causal structure of associated with the timelike Killing field®*= (d/dt)?, where

the SdS spacetime is clear in the Penrose diadfathdis- =0, 1eZ" andme[—1,I1NZ are the frequency and the
played in Fig. 3. We will be interested in the region | whereangular momentum quantum numbers, respectively, and
&= (0l at)? is a global timelike future-directed Killing field. Y,,(8,¢) are the spherical harmonics. The factas/ 7 has

In SdS spacetime, static observers have 4-velocity been introduced for later convenience. The radial part of Eq.
=(£°,) Y22, 4-acceleration (10) then reads
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d d . | LU
{—f(r)a(f(r)a +Veﬁ(f)}¢'¢u|(f)=w2%|(f): R= > > doR,im, (19)
(12) i=LIl =0 m=-1 J0O
where the effective scattering potenti&l(r) is given by ~ Where
1df I(1+1) 2 uim=7 AL+ 0 (@) ]+ AT (@)}
Ver(N=1(0| T 57 5 |- (13 (20
r a

and r is the total proper time of the source. Herg, ,°™
=(iwlm|5]0) and A' ,2*=(0|S|iwlm) are the emission
fnd absorption amplitudes, respectively, of Boulware states

Note that Eq(12) admits, in general, two sets of independent
solutions which will be labeled with=1, 1I. The u! ,(x*)
modes are assumed to be orthonormalized with respect to t

Klein-Gordon inner produdtL2]: [lolm), and then' factors depend on the field state chosen in
each case.
) o a v v _— Structureless static sources described by(Ed.can only
|Ld2n (Uyim™ Val gy = Uy Valim™) interact withzero-energymodes{3] and thus the response of
the source in the Boulware vacuum vanishes. However, in
=818 8mm(w—w'), (14) the presence of a background thermal bath, the absorption

and stimulated emission rates lead to a non-zero response. In
) o v v : order to deal with zero-energy modes, we need a “regulator”
I LdEn (UoimValyrrm = Uy rprm ¥ aleim) =0, to avoid the appearance of intermediate indefinite re¢fadts
a more comprehensive discussion on the interaction of static
wheren? is the future-directed unit vector normal to some SOUrces with zero-energy modes, see Ref. For this pur-
fixed Cauchy surfac&. These modes and their respective POS€, We let the coupling constaposcillate with frequency
complex conjugates form a complete orthonormal basis of?o by replacingg with q,, = V2g cosfut) in Eq. (17) and
the space of solutions of E¢LO0) in the regions of interest. take the limit wo—0 at the end of our calculations. The

As a result, we can expand the field operator as factor/2 has been introduced to ensure that the time average
e <|qwo(t)|2)t=q2 since the absorption and emission rates are
N + o0 . ) . 2 . . .
& (xH) = dofu (x")a  +H.cl, func_tlons ofq . Another eqw_valent regularlzatlon_ proce_dure
) i;” |:Eo m;. fo OLUoim(X*)oim ] is discussed in21]. A straightforward calculation using
(15 =i [ Yim(60,00)[?= (21 +1) /47 [22] gives
wherea! |, anda' " are annihilation and creation opera- I SN ey
tors, respectively, and satisfy the usual commutation rela- R(ro)= lim 2 4"wovVf(ro)
tions w0g—0 1 =111 =0 471-2rg
. i i 2 [
[im @i 1= 85t 81 Sy S — ") (16) X @Dy (rol L +2n (o)) (21

The “Boulware” vacuum|0) is defined bya!,,,|0)=0 for
everyi,w,| and m. This is the state of “no particles” as
defined by the static observers following integral curves of We are now ready to consider the response rate of the
& static source in de Sitter spacetime. Takifi@)— fyg(r)

Let us consider now a pointlike static scalar source Iyingz(l—rZ/az), the effective potentiall3) becomes
at (rq,6p,¢0) described by

IV. RESPONSE RATE IN de SITTER SPACETIME

, [(1+1)
j(x*)=(a/=h)&(r —ro) 86— 60) (¢ — o), (17) VeR(r) = =
whereh=—f~!r4sir’g is the determinant of the spatial met-
ric induced on an equattime hypersurface andqis a We define a new coordinate= «/r, and use it to reexpress
small coupling constant. This source is coupled to the KleinEq. (12), with potential(22), in the form
Gordon field(i)(x“) via the interaction action

I.2
1— ;) . (22)

d((l 29 e+ S 23)

. . —| (1-2%)— =0,

S,=j d*x\—gjd. (18 dz dz 1—72 Yo

All the calculations will be carried out at the tree level. which is just the associated Legendre equation. It has two

The total response, i.e., combined particle emission andets of linearly independent squtiorFé,"“’(z) and Q:‘“’(z)
absorption probabilities per unit proper time of the source, igcf., e.g., Ref.[22]), but only the latter is regular at=0
given by (z=x). Therefore we only consider modes of the form
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iaw / )
Uiim(x*)=Cy, \[ 0y (e, (24

whereC! | are normalization constants to be fixed by requir-
ing that the modes be orthonormal with respect to the Klein-
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"“’”F[(Z-I—I+Iaw)/2]F[(1+|+law)/2]

|
c Jrol (1+1+iao)(iao)

ol =

(30

Next, we assume that the field is in the so-called “Euclid-

Gordon inner produatl4). The physical behavior of the nor- €an” vacuum(also known as “Bunch-Davies” or “Birrell-
mal modes(24) is clear: one may visualize them in the Davies” vacuum, which describes a thermal bath of tem-
shaded region of Fig. 2 as emanating from the past horizorperature

scattering off the lineg =0, and being reflected back to the
future horizon. Alternatively, one may think of the modes

“in spatial terms” as converging from a 2-sphere rat «
onto its center at=0 and then spreading out te= « again.
Of course, the modes “converge isotropically” only fbr
=0, but “swirl around” as they plunge in onto=0 for |
#0.

Let us now evaluate the normalization consta®ls. For
this purpose we substitute the mod&s) into Eq. (14),

where we choos& to be thet=0 hypersurface and we use
the orthonormality of the spherical harmonics. We are ther™

left with

c! |*CL),|(C¥/7T) Voo (o+ o)l ., =o—o),
(29

where

(26)

1
Ilww’Ej
01—

In order to evaluaté, ., we use formula 8.703 of Re22]
to write

[Qi““’(l/y)] Q' (14y).

Val (1+1+iaw)y . (y)

'”“" 1) = 2
= 21T (1 +3/2) e 20
where we have defined
FaulY) =Y (L=y?)
2+1+iaw 1+I+Iaw 3
2 ' 2 T3y
(28)

Here,F(a,b;c;x) denotes a hypergeometric function. By us-

ing f,

|2 :fl dy
low’ 01—

yzyz[fm)]*f'w,(y)

.(¥), Higuchi[13] evaluated the integral

2m T(1+32)T (i aw) 2

a [T[2+1+iaw)RIT[(1+]+iaw)/2]|

XS(w—w'). (29

Tos= (27 a) (31

as measured by the inertial observer &0 (see, e.g., Refs.
[12,15,2Q, and references therein for further properties of
this stat¢. As a consequencen'(w)=(e“’—1)"! with
B =Tgs.

In order to compute the respon&l), we recall that in de
Sitter spacetime the sum will be restricted to the set of regu-
lar modes, i.e., withi=I. Then, we use w'wo,(ro)

CL)O|Q:“‘°°(a/ro), whereC,, | is obtained from Eq(30),
and the identity(cf. Eq. 8.332.1 if22])
IXI"(ix)|2= 7rx/sinh(X).

As a result, we obtain

q af(r )1/2 *

R®S(rg,a)= E 22(21+1)

2

NI

[ef3

whereQ,(2) is the ordinary Legendre function. Now, we use
the doubling formuld22]

r(+1) ]
(32

[(2x) =22 177 Y20 ()T (x+ 1/2),
with x=(1+1)/2 in Eq.(32):

1/2 =
Rds(ro,a)—q:tf& 2 (21+1) ‘Q|( ) (33
Finally, we use the identit}6]
- 1
2 QeI+ 1)= 5= (34

in Eqg. (33) to obtain the final response as a function of the
source’s position:

qz r2 —1/2
d _ 0
Rs(ro,a)—4 5 (1—;) . (35)

m o

For ro=0 we recover the formula for the response of an
inertial source in de Sitter spacetime, given in R&8]. It is

We now use Eq(29) to computel,,, and substitute the convenient to invert Eq.3) to write the response in terms of
result into Eq.(25). Apart from an unimportant global phase, the source’s proper acceleration, which is a coordinate-

we get

independent observable in general relativity:
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§ q® o 21 H,, (hereafter simply referred as hole horiz@md from the
R™ap,a)=——(1+a’ap)" (36)  past cosmological horizofi; , respectively.sr,; and ¢,
amta are Klein-Gordon orthogonal to each other, as can be seen by
We note that whemvay>1, i.e., when either the source ap- choosing the Cauchy surface in Ed14) to be X
proaches the cosmological horizon or the cosmological con=" UH , and then using the fact tht,; and 4, van-

stant is small enougha( being accordingly large we have ish at, andH, , respectively.
For the Gibbons-Hawking vacuufi4], the appropriate

g q%a, thermal factors appearing in Eq20) are n'(w)=(e“#n
R S(ao,a)wﬂr—wz. (37) —1) "t andn"(w)=(e*Pc—1)"1, where
The right-hand side of Eq(37) is independent ofx and -1_ %h —1_Ke
X : . Bn and B (42
acquires the same form as the response of a static source in 2 2

the Rindler wedgéi.e., uniformly accelerated in Minkowski o
spacetimginteracting with a massless Klein-Gordon field in @ the temperatures of the radiation from the hole and the

the usual inertial vacuum. To see why this occurs, let us firsEoSmological horizons, respectively, with
write from Eq.(3) the source’s radial position as

~ ldfggs 1 —
ro(ag,a)=a[1+(aag) 2] 2 (39 Kh—g-Ey—hah—izzz(u—rM(m+¢) (43
Thus, foraag>1, we obtairr o~ «. Now, in this region, the
de Sitter line elementl) reduces(apart from the angular 1 dfgys 1 —
piece to the Rindler form Ke=% dr lr=r,= P (re=rp)(retr) (49
Cc
dsig~e?”*dt?—e?7*d »?, (39)

being the surface gravities of the corresponding horizons,

where 7=aIn(1-r¥a?)Y? (—o<y=<0). Indeed, the wherer=r,+r.. Inthis case, the responézl) can be writ-
proper distancebetweenr and the cosmological horizon is ten as

aaoﬂoc

a arctal/(aay) ] —— 1/ay, which is precisely the qz\/f(T) *
proper distance between a static source in the Rindler wedge ~ RSIr,,M,a)= —20 lim >, > (21+1)
with proper acceleration, and its horizon. This observation TG wp—0i =il 1=0

combined with the fact that the local temperature at the
source(obtained by multiplying temperatuf81) by the Tol-
man factor[23]) corresponds to the temperature of the
Fulling-Davies-Unruh thermal bath,

X o ¢L0|(ro)|2ni(wo)- (45)

Equation(45) allows one to compute the response provided
one has obtained thénormalized modes. For numerical

| Tas ao convenience, let us introduce a new coordinate
Tis=F—=~5_ (40
fadro) 27 1 r r 1 r
clarifies Eq.(37). In particular, the decrease in the tempera- x(r)= Z_Kcln< ! E +2_Kh|n E 1)+ z_fln(frl)’
ture Tys=1/(2ma) [cf. Eq. (31)]; when « grows large is (46)
perfectly compensated by the source’s approach to the hori- . . o .
zon[cf. Eq. (39)]. where k=(2a°r) " Y(r+r)(ry+r). In terms of the new

variablex, Eq. (12) is recast in the “Schidinger-like” form
V. RESPONSE RATE IN SCHWARZSCHILD —de SITTER
SPACETIME 2

d . )
— —+VETr 01| (0= 0P, (x). (@7
dx?

We now turn to the field quantization in SdS spacetime
and compare the response rate calculated in this case with thg,;; he horizon§and assuming the realistic cadé<a
one obtained in the previous secti@®ee Eq(36)]. Similarly, (i.e.,r <r.)], we have
we shall select Klein-Gordon orthonormalized modes of the ' " ¢’

form (11). Equation(12) with the effective scattering poten- e 2rX<1 forx>a
tial for SAdS spacetime VSEx) ~ ( <l for x<Ox|>2M (48)
2M - r2\(2M  1(1+1
Vﬁ‘f‘f’ r)=<1— — ==l ( 5 ) (41)  Thus, in these regions the potential becomes exponentially
r a r r suppressed, and we can approximate @@) by

admits, now, two sets of linearly independeegular solu- d2¢i

tions ¢, . We shall associate! =y, and ¢! =y, with - ;‘" ~ w2y (). (49)
purely ingoing modes emanating from the white hole horizon dx
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0.0025 ; ‘ ‘ ‘ ‘ ‘ source’s proper acceleratiay for various values otx. As

| st i originally defined,a, is not a one-to-one function of the

| P source’s radial coordinate, [cf. Eq. (8)]. In particular, note
000 AR aso| from Eq. (8) thata,— either whenr—r,, or r—r.. For

| e e q,zgsd?“ 1 the sake of clarity in the result presentation, we circumvent
o001 - :'ZRSU‘G:MO | this feature by dropping|*.|" s in Eq. (8). This is “com-

pensated” by plotting thebsolute valueof RS%S After this
procedure, the response rate is kept unchangedpuc-
quires negative sign between the “equilibrium” poing
=(Ma?)*® (whereay,=0) andr,, becoming then a one-to-
one function ofry. In special,ag—© whenry—ry, butag
— —o whenry—r.. Moreover, we have “compactified”
the range of the proper acceleration from, +«) to (0,1)
by introducing the variable

X@) x(ag)=[1—tanhpay)]/2,

FIG. 4. R®®is plotted vsy(ao) (which is a monotonic function  \which is a monotonic function of the source’s proper accel-
of ap) for various values ofr [with M=2, wo=10"% p=80 and  erationa, (and where is a free parameter fixed by numeri-
the sum ovel is performed up td=8 (inclusive]. In particular, 5 conveniende The graph reveals thQSds(aO) tends to
x(ag)=0, X(a0)=:.L/2, and y(ag)=1 .correspond 2t?/3the cases RSCh(aO):q2|ao|/4ﬂ_2 as a—, i.e., the response for a
where the source is dp=ry, geo&gs'c at0=(MaS)Ch cand at oo reein SdS spacetime approaches the one in Schwarzs-
fo=le. res_pecnve'y' Note thaR™" approachesR™" (bottom child spacetimein the Unruh vacuumwhen the cosmologi-
graph) as « increases. cal constant goes to zefprovided the source keeps the same
proper acceleration This result would be quite expected if
we assumed that, (rather tham,) was kept constant in the
A (B +R e 190 (x<0|x|>2M) process. This is so because when the cosmol_ogical radiu_s

A —o, the geometry approaches Schwarzschild’s spacetime
AuT, e (x>a) and the contribution from the cosmological horizon in Eq.
(50 (45) becomes negligible both because—0 and because the

low-energy modes emanating from the cosmological horizon

have to “travel a longer distance” through the potential bar-

rier to reach the source. As a result, these modes are mostly
_ _ scattered back, and contribute very little to the total response.
Bo(e '+ R e (x>a). However, the explanation is much more subtle when we con-

(57 sidera— o0 with a, fixed. For 0< x(ag) <1/2, the larger the
. a the more the influence of the black hole overcomes that of

Here, |R i|% |R,|? and|7T;[? |T,,|* are reflection and  the cosmic expansion. Thus, as-=, the “left half” of the
transmission coefficients, respectively, for the “scatteringcurves in Fig. 4 should indeed converge to Schwarzschild for
problem” defined by Eq(47). They satisfy usual “conserva- the same reasons pointed out above. Nevertheless, for 1/2
tion of probability” laws: |R ;|*+|7,1°=1 and |[R|>  <y(a,)<1 the convergence was not expeceegriori be-
+|7,,/?=1. The normalization constants,; andB,, can  cause in this regionr,>(2Ma?)¥3>2M~r, ie., the
be obtained by imposing Klein-Gordon orthonormality of the larger thea the more the influence of the cosmic expansion
modesy,, and ¢, with respect to the Klein-Gordon inner overcomes that of the black hole. Indeed, by neglecting the
product(14), where Eq.(47) is used to transform the result- termsM/r and M/r? in Egs. (1), (8) and (41), we obtain
ing integrals into surface ternfsee[7] for detail9. Then, by fou{r)~fuq(r), |ased~ags and Vig{r)=V3i(r) (where
using Eqgs(50) and(51), we obtainA,, =B, =(2w) . “].|"is used here to comply with our convention according

The modesy,; and ¢, can be obtained numerically for to which agys<0 in this region. Now, in this region, the
small  and differentl values by evolving Eq47) with the  zero-energy modes ingoing from the black hole are unable to
effective potential(41) and the asymptotic form&0) and  interact with the sourcés confirmed by an explicit numeri-
(51). The corresponding total resporR&?can be obtained, cal calculation omitted heyeand thus the modes ingoing
then, from Eq(45). We note that the larger the valuelpthe  from the cosmological horizon dominate in E@5). This
higher the barrier of the scattering potenNali{r) [24] and indicates, at first sight, thaRS!Ya,) approacheR™(a,)
therefore the main contributions come from modes with[see Eq.(36)] rather than R5(a,). The reason why
smalll. How far we must sum ovdrin Eq. (45) to obtain a  RS%{a,) also approacheRS(a,) in this region can be un-
satisfactory numerical result will depend on how close to thederstood by recalling that for large enough R%(a,) ap-
black hole horizon the source lies. The closer to the horizoproaches the response for a uniformly accelerated source in
the further ovel we must sum. Minkowski spacetimé&’™= ga,/47? (see Sec. I), which is

In Fig. 4, we plot the responge®®S as a function of the in turn equivalent td&R>(a,) [6]. We conclude, thus, thite

This leads to the asymptotic behavior of the modes

P (X)=

and

B, 7,e ' (Xx<0]x|>2M)
Pa(x)~

084022-7
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! w d s34~ €2 n7hd 12— @2<nnd 72 (52

and

d 2 o~ e2<ced 2 — e2*eed 72 , (53)

respectively. Now, we recall that the same happens for de
Sitter spacetime close to its horizfef. Eq. (39)]. As a re-
sult, R%Ya,) turns out to approacR%a,) and both ap-
proachRM(ay) =q2%a,/(47?) [cf. Egs.(36) and(37)] at the
horizons.

Ln(R**IR™

VI. CONCLUSIONS

Al ‘ L ‘ ‘ We have quantized here a massless, conformally coupled
' @ ' ' scalar field in de Sitter and Schwarzschild—de Sitter space-
times. In both cases, the field interacts with a static scalar
FIG. 5. INRSYRY) is plotted as a function of(a,) (with M §ource._We have computt_ed the response rgtes of this source
=2, a=20 andwy=10"%). Here |, denotes the largestused in m_teractmg with t_he Hawkmg radiation described b_y the Eu-
performing the sunt45). £(a,)=0 andZ(ag) =1 correspond to the ~clidean vacuuntin the de Sitter cageand by the Gibbons-

cases where the source isrgt=r, and atro=r, respectively. Hawking vacuum(in Schwarzschild—de Sitter spacetime
The comparison of the responges functions of the proper

acceleration of the sourteshows, in particular, that the
equivalence obtained ir6] between the responses of a static
source outside a Schwarzschild black holeth the Unruh
vacuum and of a uniformly accelerated source in
Minkowski spacetimdwith the inertial vacuumwas not re-
tproduced here, i.e., the introduction of a cosmological con-
stant breaks the original equivalence.

Although the responses in de Sitter and SdS spacetimes
I(with the respective vacyiao not coincide, in general, very
near the black hole and cosmological horizons thesin-
deed equivalent. It is so because in both these regions the
source is expected to behave as if it were uniformly acceler-
ated in Minkowski spacetime, in the inertial vacuum. We
have also recovere@verywherethe response of a static

ource in Schwarzschild spacetirtveith the Unruh vacuum

fact that FF9S(g)) — R a,) everywherevhena— is a
consequence of th@ontrivial) equivalence between the re-
sponses in Rindler and Schwarzschild spacetimes.

In Fig. 5 we compardRS®S with RYS [cf. Eq. (36)], as a
function ofa,. We use the same convention as in Fig. 4, bu
now, it is convenient to introduce another compactification
variable[25]: {(ag)=(ro—rn)/(re—ryn), whererg=rq(ag)
is the source’s radial position as a function of the prope
acceleration obtained by inverting E@) (without | .|").
Note that, unlikey, the variablel depends on both and «,
which are fixed in Fig. 5. In this figure, the various graphs
correspond to the varioug/, values of the maximurhused
to do the sum(45). Note that the sum converges very fast

away from the horizons, but less so for the regions nea X ) .
them. Figure 5 clearly suggests tha®S coincides withR®S rom our response in SdS spacetime as the cosmological con-
) stant vanishes. We have shown that this is a direct conse-

nearboth horizons. That they should coincide near the cos- uence of the nontrivial equivalence found[Bi
mological horizon could be inferred from our discussion in9 q '
Fig. 4, but that they coincide in both horizons can be broadly
understood from the fact that the SdS spacetime is isometric
to Rindler spacetime near them. This becomes manifest after J.C. and I.S. would like to acknowledge full support from
the change of coordinatas— 7,=(2«p,) In[fsq{r)] and  Funda@ de Amparo aPesquisa do Estado déB®aulo
r—n.=(2k.) tIn[fsqdr)], which allows one to recast the (FAPESB. G.M. is thankful to FAPESP and Conselho Na-
SdS line element near the black hole and cosmological horieional de Desenvolvimento Ciéfitio e Tecnolgico for par-
zons(apart from the angular piecas tial support.
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