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Interaction of Hawking radiation with static sources in de Sitter
and Schwarzschild–de Sitter

spacetimes

J. Castin˜eiras,* I. P. Costa e Silva,† and G. E. A. Matsas‡

Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil
~Received 19 July 2003; published 31 October 2003!

We study and look for similarities between the response ratesRdS(a0 ,L) and RSdS(a0 ,L,M ) of a static
scalar source with constant proper accelerationa0 interacting with a massless, conformally coupled Klein-
Gordon field~i! in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation
emanating from the de Sitter cosmological horizon and~ii ! in Schwarzschild–de Sitter spacetime, in the
Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the
cosmological horizons, respectively, whereL is the cosmological constant andM is the black hole mass. After
performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level
in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum
numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is
obtained. In the case of Schwarzschild–de Sitter spacetime such a closed formula could not be obtained, and
a numerical analysis is performed. We conclude, in particular, thatRdS(a0 ,L) and RSdS(a0 ,L,M ) do not
coincide in general, but tend to each other whenL→0 or a0→`. Our results are also contrasted and shown
to agree~in the proper limits! with related ones in the literature.

DOI: 10.1103/PhysRevD.68.084022 PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

It is well known from classical electrodynamics that a
celerated electric charges radiate as seen by an inertia
server in Minkowski spacetime. However, according to
equivalence principle, a uniformly accelerated charge is s
by a comoving observer as being static in a ‘‘uniform gra
tational field,’’ and thus it is not expected to radiate. In t
classical context, this apparent paradox was worked ou
some detail by Rohrlich, Fulton@1#, and Boulware@2#.

The same problem has also been analyzed in a quan
context@3#, in terms of photon emission rates, using the f
that an observer comoving with a uniformly accelera
charge views the latter as immersed in a Fulling-Davi
Unruh ~FDU! thermal bath@4,5#. More specifically, the inter-
action of the static charge~as computed by comoving ob
servers! with the FDU thermal bath results in the absorpti
and stimulated emission ofzero-energyRindler photons,
which, althoughunobservable, nevertheless exactly accou
for the usual photon emission described by an inertial
server.

A particularly interesting arena to study interactions b
tween sources and radiation is the vicinity of black hol
where the presence of nontrivial classical and quantum
fects offers a wealth of conceptual and technical challeng
In this setting, it has recently been shown that the respo
RSch(a0 ,M ) of a pointlike static scalar source with prop
accelerationa0 outside a Schwarzschild black hole of ma
M interacting withmasslessscalar particles of Hawking ra
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diation ~associated with the Unruh vacuum! is exactly the
same as the responseRM(a0)[q2a0/4p2 ~in natural units,
whereq is a small coupling constant! of such a source when
it is uniformly accelerated with the same proper accelerat
in the inertial vacuum of Minkowski spacetime or, equiv
lently, when it is static in the FDU thermal bath of the Ri
dler spacetime@6#. This is surprising because structurele
static scalar sources can only interact with zero-energy fi
modes; such modes probe the global geometry of space
and are accordingly quite different in Schwarzschild a
Rindler spacetimes. Indeed, this equivalence is not verifi
e.g., when either~i! the Unruh vacuum is replaced by th
Hartle-Hawking vacuum@6#, ~ii ! the black hole is endowed
with electric charge@7# or ~iii ! the massless Klein-Gordo
field is replaced with electromagnetic@8# or massiveKlein-
Gordon @9# ones. It is hitherto unclear whether the equiv
lence found in Ref.@6# is only a remarkable coincidence or
there is something deeper behind it. This circumstance
motivated us to study whether or not the equivalence wo
persist when one includes the presence of a cosmolog
constant, i.e., by replacing Schwarzschild wi
Schwarzschild-de Sitter~SdS! spacetime and Minkowsk
with de Sitter spacetime.

SdS spacetime may be viewed as describing a spheric
symmetric black hole immersed in a universe with a posit
cosmological constantL.0. It has attracted much attentio
lately on account of recent type Ia supernovae and cos
microwave background observations@10# indicating that the
Universe at large scale has~approximately! flat spatial geom-
etry and is in accelerated expansion. These data sugges
existence of some background form of energy~‘‘dark en-
ergy’’! with negative pressure. The most plausible scena
to describe this energy include the existence of a posi
cosmological constant and quintessence fields. Although
the latter case the energy density of the dark energy is
lowed to change in time, in many models this variation c
©2003 The American Physical Society22-1
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be neglected for astrophysically relevant scales. In ot
words, when considering objects such as black holes,
can for most purposes assume the presence of an effec
positive cosmological constant. In light of these facts,
interest in considering SdS black holes becomes clear.

In this paper we consider a static, pointlike source int
acting with a conformally coupled, massless Klein-Gord
field in both de Sitter and SdS spacetimes. Quantum fi
theory in de Sitter spacetime has been much studied in
literature@11#. In this case, we take the field state to be t
Euclidean vacuum~see, e.g., Ref.@12#! describing a therma
bath as seen by static observers. Our calculations in de S
closely follow those of Higuchi@13#, but our presentation is
somewhat different. In particular, it is useful for our purpos
to derive the response rate of our pointlike source at a
neric position inside the cosmological radius. In the S
case, there are two main technical hindrances in conside
the quantization of the Klein-Gordon field. The first one
the definition of what we shall call theGibbons-Hawking
vacuum@14#. This state describes a situation in which w
have thermal fluxes emanating fromboth the hole and the
cosmological event horizons. As usually, the related temp
tures are proportional to the corresponding surface grav
kh and kc . Because in generalkhÞkc , there are technica
difficulties in defining such a state@14,15# in the whole SdS
spacetime. However, for the region between the horizons
may devise an heuristic prescription to define it, since
realistic situations where black holes are formed by grav
tional collapse in a de Sitter background, it is natural
expect the emission of thermal radiation from both horizo
~see@14# for an outline and further justification for the men
tioned prescription!. We shall not dwell on these problems
this paper but simply assume that radiation emanates f
both horizons at definite temperatures. The second techn
difficulty is related with the quantization of the scalar field
SdS spacetime. Due to the spherical symmetry of the p
lem, the corresponding Klein-Gordon equation is eas
separated, but its radial part, except for the near extre
case@16#, does not appear to be amenable to analytical tr
ment. Accordingly, we shall proceed to its numerical reso
tion.

The paper is organized as follows. In Sec. II, we brie
review some geometrical aspects of SdS and de Sitter sp
times which will be useful for establishing the setting for o
analysis and fixing notation. In Sec. III we present the g
eral formalism to quantize a massless, conformally coup
scalar field in the background of interest. In Sec. IV we ap
the formalism to de Sitter spacetime with the Euclide
vacuum, obtaining a simple, closed, analytical form for t
response at the tree level of a static source interacting
the radiation from the cosmological horizon. In Sec. V, w
apply the formalism to SdS spacetime with the Gibbo
Hawking vacuum and express the response of the s
source in terms of a sum over the normal mode angular
menta, which is numerically evaluated. We then compare
behavior of this response with the one obtained in the
Sitter case~and with the related one obtained in Schwar
child spacetime with the Unruh vacuum@6#!. Finally, in Sec.
VI we finish with some conclusions. Throughout this pap
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we adopt natural units (c5G5\5kB51), the abstract in-
dex notation@17# and spacetime signature (1222).

II. THE BACKGROUNDS: de SITTER AND
SCHWARZSCHILD –de SITTER

Before starting our central discussion, it will be useful
recall some geometrical features of de Sitter and SdS sp
times. We shall briefly do so here, confining ourselves to
minimum of information necessary to our ends. For mo
details, see, e.g., Refs.@14,18#.

de Sitter and SdS spacetimes are vacuum solutions of
stein’s field equations with a positive cosmological const
L.0. Their line elements can be written as

ds25 f ~r !dt22 f ~r !21dr22r 2~du21sin2udf2!, ~1!

with f (r )° f dS(r )512Lr 2/3 for de Sitter spacetime an
f (r )° f SdS(r )5122M /r 2Lr 2/3 for SdS spacetime@19#,
whereM denotes the mass of the corresponding black h
Here, the ‘‘time coordinate’’t and the ‘‘angular coordinates’
u and f have their usual ranges,2`,t,1`, 0<u,p,
0<f,2p, and for our purposes the ‘‘radial coordinate’’r
must be restricted to non-negative values for whichf (r )
.0.

Let us first consider de Sitter spacetime. We begin
defining the de Sitter or cosmological radius ata[A3/L,
and by noting thatf (r ).0 implies 0<r ,a. The ‘‘singular-
ity’’ at r 5a is merely due to a bad choice of coordinate
and with an appropriate reparametrization@18# one can ob-
tain the corresponding maximal analytic extension. T
spacetime has topologyS33R and can be isometrically em
bedded as a one-sheeted hyperboloid in 5-dimensio
Minkowski spacetime ~see Fig. 1!. The coordinates
(t,r ,u,f) cover only part of de Sitter spacetime. The cau
structure of de Sitter spacetime can be more readily vis
ized through the Penrose diagram in Fig. 2. The origin of
polar coordinates,r 50, and past and future infinitiesI 2

and I 1 are represented by vertical and horizontal bord
lines, respectively. We note that the region labeled as
Fig. 2 @covered by the coordinates (t,r ,u,f)] on which we
will focus has a global timelike future-directed Killing fiel
ja[(]/]t)a. The Killing field ja becomes lightlike atr

FIG. 1. Embedding of de Sitter spacetime in a flat backgrou
with two dimensions omitted~circular cross sections are to b
thought of as copies ofS3). The shaded part represents the regi
of de Sitter spacetime covered by the coordinates (t,r ,u,f). One
can pick any normal, timelike geodesic as the originr 50.
2-2
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5a, which comprises abifurcate Killing horizon~see, e.g.,
Ref. @15# for a definition!. The observers following integra
curves of the Killing fieldja in region I will be calledstatic
for short. Static observers have 4-velocityua

5(jcjc)
21/2ja, 4-acceleration

aa5ub¹bua[2
r

a2 S ]

]r D
a

, ~2!

and proper acceleration

adS5A2aaaa5
r

a2 S 12
r 2

a2D 21/2

. ~3!

It is thus clear that a static observer atr 50 follows indeed a
geodesic.

Let us now turn our attention to SdS spacetime. We s
assume thatM /a,1/A27. The zeroes off SdS(r ) are, then,
found at

r c5
2a

A3
cosS A

3 D , ~4!

r h5
22a

A3
cosS A1p

3 D , ~5!

r 352~r c1r h!, ~6!

where A[arccos@2(27M2/a2)1/2# satisfies p/2,A,p.
Here, r c and r h are associated with the cosmological a
black hole horizons, respectively, and satisfy 0,r h,r c .
Moreover,f SdS(r ).0 for r h,r ,r c . The causal structure o
the SdS spacetime is clear in the Penrose diagram@14# dis-
played in Fig. 3. We will be interested in the region I whe
ja5(]/]t)a is a global timelike future-directed Killing field
In SdS spacetime, static observers have 4-velocityua

5(jcjc)
21/2ja, 4-acceleration

FIG. 2. Penrose diagram of de Sitter spacetime. The sha
region is the one covered by the coordinates (t,r ,u,f). Horizontal
lines cutting this diagram represent 3 spheres, and the lines lab
as r 50 represent the worldlines of the ‘‘north and south pole’’
these 3 spheres. The solid lines labeled asr 5` correspond to pas
and future infinitiesI 2 andI 1.
08402
ll

aa5ub
“bua[S M

r 2
2

r

a2D S ]

]r D
a

, ~7!

and proper acceleration

aSdS5A2aaaa5UM
r 2

2
r

a2US 12
2M

r
2

r 2

a2D 21/2

. ~8!

Note that static observers withr 5(Ma2)1/3 follow geodesics
(aSdS50), due to a balance between the cosmic repuls
and the black hole attraction.

III. RESPONSE OF A STATIC SOURCE INTERACTING
WITH A SCALAR FIELD

Consider now the quantization of a massless, conform
coupled Klein-Gordon fieldF(xm), in the background de-
fined by Eq.~1!, described by the action

S5
1

2E d4xA2g@“aF“aF2~1/6!RF#, ~9!

whereg[det$gab%, andR54L512/a2 is the scalar curva-
ture for both de Sitter and SdS spacetimes. The associ
Klein-Gordon equation is

“

a
“aF1~1/6!RF50. ~10!

It is well known that quantum field theory takes a rel
tively simple form in globally hyperbolic, stationary spac
times where, in particular, a well defined notion of partic
can be given~see, e.g., Ref.@20#, and references therein!.
This is the case for the shaded regions in Figs. 2 (0<r
,a) and 3 (r h,r ,r c). For each such region, we shall loo
for a set of positive-frequency modes

uv lm
i ~xm!5Av

p

cv l
i ~r !

r
Ylm~u,f!e2 ivt ~11!

associated with the timelike Killing fieldja5(]/]t)a, where
v>0, l PZ1 and mP@2 l ,l #ùZ are the frequency and th
angular momentum quantum numbers, respectively,
Ylm(u,f) are the spherical harmonics. The factorAv/p has
been introduced for later convenience. The radial part of
~10! then reads

ed

led

FIG. 3. Penrose Diagram of Schwarzschild-de Sitter spaceti
The displayed pattern repeats itself infinitely both to the left and
the right. The shaded region is a static, globally hyperbolic reg
by itself.
2-3
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F2 f ~r !
d

dr S f ~r !
d

dr D1Veff~r !Gcv l
i ~r !5v2cv l

i ~r !,

~12!

where the effective scattering potentialVeff(r ) is given by

Veff~r !5 f ~r !S 1

r

d f

dr
1

l ~ l 11!

r 2
1

2

a2D . ~13!

Note that Eq.~12! admits, in general, two sets of independe
solutions which will be labeled withi 5I, II. The uv lm

i (xm)
modes are assumed to be orthonormalized with respect to
Klein-Gordon inner product@12#:

i E
S
dSna~uv lm

i *“auv8 l 8m8
i 8 2uv8 l 8m8

i 8
“auv lm

i * !

5d i i 8d l l 8dmm8d~v2v8!, ~14!

i E
S
dSna~uv lm

i
“auv8 l 8m8

i 8 2uv8 l 8m8
i 8

“auv lm
i !50,

wherena is the future-directed unit vector normal to som
fixed Cauchy surfaceS. These modes and their respecti
complex conjugates form a complete orthonormal basis
the space of solutions of Eq.~10! in the regions of interest
As a result, we can expand the field operator as

F̂~xm!5 (
i 5I,II

(
l 50

`

(
m52 l

l E
0

1`

dv@uv lm
i ~xm!av lm

i 1H.c.#,

~15!

whereav lm
i and av lm

i † are annihilation and creation oper
tors, respectively, and satisfy the usual commutation r
tions

@av lm
i ,av8 l 8m8

i 8 †#5d i i 8d l l 8dmm8d~v2v8!. ~16!

The ‘‘Boulware’’ vacuumu0& is defined byav lm
i u0&50 for

every i ,v,l and m. This is the state of ‘‘no particles’’ as
defined by the static observers following integral curves
ja.

Let us consider now a pointlike static scalar source ly
at (r 0 ,u0 ,w0) described by

j ~xm!5~q/A2h!d~r 2r 0!d~u2u0!d~w2w0!, ~17!

whereh52 f 21r 4sin2u is the determinant of the spatial me
ric induced on an equalt-time hypersurfaceS and q is a
small coupling constant. This source is coupled to the Kle
Gordon fieldF̂(xm) via the interaction action

ŜI5E d4xA2g jF̂. ~18!

All the calculations will be carried out at the tree level.
The total response, i.e., combined particle emission

absorption probabilities per unit proper time of the source
given by
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(
l 50

`

(
m52 l

l E
0

1`

dvRv lm
i , ~19!

where

Rv lm
i [t21$uA v lm

i emu2@11ni~v!#1uA v lm
i absu2ni~v!%

~20!

and t is the total proper time of the source. HereA v lm
i em

[^ iv lmuŜIu0& and A v lm
i abs[^0uŜIu iv lm& are the emission

and absorption amplitudes, respectively, of Boulware sta
u iv lm&, and theni factors depend on the field state chosen
each case.

Structureless static sources described by Eq.~17! can only
interact withzero-energymodes@3# and thus the response o
the source in the Boulware vacuum vanishes. However
the presence of a background thermal bath, the absorp
and stimulated emission rates lead to a non-zero respons
order to deal with zero-energy modes, we need a ‘‘regulat
to avoid the appearance of intermediate indefinite results~for
a more comprehensive discussion on the interaction of s
sources with zero-energy modes, see Ref.@3#!. For this pur-
pose, we let the coupling constantq oscillate with frequency
v0 by replacingq with qv0

[A2q cos(v0t) in Eq. ~17! and

take the limit v0→0 at the end of our calculations. Th
factorA2 has been introduced to ensure that the time aver
^uqv0

(t)u2& t5q2 since the absorption and emission rates

functions ofq2. Another equivalent regularization procedu
is discussed in@21#. A straightforward calculation using
(m52 l

l uYlm(u0 ,w0)u25(2l 11)/4p @22# gives

R~r 0!5 lim
v0→0

(
i 5I,II

(
l 50

`
q2v0Af ~r 0!

4p2r 0
2

3~2l 11!ucv0l
i ~r 0!u2@112ni~v0!#. ~21!

IV. RESPONSE RATE IN de SITTER SPACETIME

We are now ready to consider the response rate of
static source in de Sitter spacetime. Takingf (r )° f dS(r )
[(12r 2/a2), the effective potential~13! becomes

Veff
dS~r !5

l ~ l 11!

r 2 S 12
r 2

a2D . ~22!

We define a new coordinatez5a/r , and use it to reexpres
Eq. ~12!, with potential~22!, in the form

F d

dzS ~12z2!
d

dzD1 l ~ l 11!1
a2v2

12z2Gcv l
i 50, ~23!

which is just the associated Legendre equation. It has
sets of linearly independent solutions,Pl

iav(z) andQl
iav(z)

~cf., e.g., Ref.@22#!, but only the latter is regular atr 50
(z5`). Therefore we only consider modes of the form
2-4
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uv lm
IdS ~xm!5Cv l

I Av

p

Ql
iav~a/r !

r
Ylm~u,f!e2 ivt, ~24!

whereCv l
I are normalization constants to be fixed by requ

ing that the modes be orthonormal with respect to the Kle
Gordon inner product~14!. The physical behavior of the nor
mal modes~24! is clear: one may visualize them in th
shaded region of Fig. 2 as emanating from the past horiz
scattering off the liner 50, and being reflected back to th
future horizon. Alternatively, one may think of the mod
‘‘in spatial terms’’ as converging from a 2-sphere atr 5a
onto its center atr 50 and then spreading out tor 5a again.
Of course, the modes ‘‘converge isotropically’’ only forl
50, but ‘‘swirl around’’ as they plunge in ontor 50 for l
Þ0.

Let us now evaluate the normalization constantsCv l
I . For

this purpose we substitute the modes~24! into Eq. ~14!,
where we chooseS to be thet50 hypersurface and we us
the orthonormality of the spherical harmonics. We are th
left with

Cv l
I * Cv8 l

I
~a/p!Avv8~v1v8!I lvv85d~v2v8!,

~25!

where

I lvv8[E
0

1 dy

12y2
@Ql

iav~1/y!#* Ql
iav8~1/y!. ~26!

In order to evaluateI lvv8 , we use formula 8.703 of Ref.@22#
to write

Ql
iav~1/y!5

ApG~11 l 1 iav!y fav
l ~y!

2l 11G~ l 13/2!eavp
, ~27!

where we have defined

f av
l ~y![yl~12y2! iav/2

3FS 21 l 1 iav

2
,
11 l 1 iav

2
; l 1

3

2
;y2D .

~28!

Here,F(a,b;c;x) denotes a hypergeometric function. By u
ing f av

l (y), Higuchi @13# evaluated the integral

I lvv8
(2)

5E
0

1 dy

12y2
y2@ f av

l ~y!#* f av8
l

~y!

5
2p

a U G~ l 13/2!G~ iav!

G@~21 l 1 iav!/2#G@~11 l 1 iav!/2#
U2

3d~v2v8!. ~29!

We now use Eq.~29! to computeI lvv8 and substitute the
result into Eq.~25!. Apart from an unimportant global phas
we get
08402
-
-

n,

n

Cv l
I 5

2leavpG@~21 l 1 iav!/2#G@~11 l 1 iav!/2#

ApvG~11 l 1 iav!G~ iav!
.

~30!

Next, we assume that the field is in the so-called ‘‘Eucl
ean’’ vacuum~also known as ‘‘Bunch-Davies’’ or ‘‘Birrell-
Davies’’ vacuum!, which describes a thermal bath of tem
perature

TdS51/~2pa! ~31!

as measured by the inertial observer atr 50 ~see, e.g., Refs
@12,15,20#, and references therein for further properties
this state!. As a consequence,nI(v)[(evb21)21 with
b21[TdS.

In order to compute the response~21!, we recall that in de
Sitter spacetime the sum will be restricted to the set of re
lar modes, i.e., with i 5I. Then, we use cv0l

I (r 0)

[Cv0l
I Ql

iav0(a/r 0), whereCv0l
I is obtained from Eq.~30!,

and the identity~cf. Eq. 8.332.1 in@22#!

uxG~ ix !u25px/sinh~px!.

As a result, we obtain

RdS~r 0 ,a!5
q2a f ~r 0!1/2

4p3r 0
2 (

l 50

`

22l~2l 11!

3UG@~ l 12!/2#G@~ l 11!/2#

G~ l 11!
U2UQl S a

r 0
D U2

,

~32!

whereQl(z) is the ordinary Legendre function. Now, we us
the doubling formula@22#

G~2x!522x21p21/2G~x!G~x11/2!,

with x[( l 11)/2 in Eq.~32!:

RdS~r 0 ,a!5
q2a f ~r 0!1/2

4p2r 0
2 (

l 50

`

~2l 11!UQl S a

r 0
D U2

. ~33!

Finally, we use the identity@6#

(
l 50

`

uQl~s!u2~2l 11!5
1

s221
~34!

in Eq. ~33! to obtain the final response as a function of t
source’s position:

RdS~r 0 ,a!5
q2

4p2a
S 12

r 0
2

a2D 21/2

. ~35!

For r 050 we recover the formula for the response of
inertial source in de Sitter spacetime, given in Ref.@13#. It is
convenient to invert Eq.~3! to write the response in terms o
the source’s proper acceleration, which is a coordina
independent observable in general relativity:
2-5
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RdS~a0 ,a!5
q2

4p2a
~11a2a0

2!1/2. ~36!

We note that whenaa0@1, i.e., when either the source a
proaches the cosmological horizon or the cosmological c
stant is small enough (a being accordingly large!, we have

RdS~a0 ,a!'
q2a0

4p2
. ~37!

The right-hand side of Eq.~37! is independent ofa and
acquires the same form as the response of a static sour
the Rindler wedge~i.e., uniformly accelerated in Minkowsk
spacetime! interacting with a massless Klein-Gordon field
the usual inertial vacuum. To see why this occurs, let us
write from Eq.~3! the source’s radial position as

r 0~a0 ,a!5a@11~aa0!22#21/2. ~38!

Thus, foraa0@1, we obtainr 0'a. Now, in this region, the
de Sitter line element~1! reduces~apart from the angula
piece! to the Rindler form

dsdS
2 'e2h/adt22e2h/adh2, ~39!

where h[a ln(12r2/a2)1/2 (2`,h<0). Indeed, the
proper distancebetweenr 0 and the cosmological horizon i

a arctan@1/(aa0)# ——→
aa0→`

1/a0, which is precisely the
proper distance between a static source in the Rindler we
with proper accelerationa0 and its horizon. This observatio
combined with the fact that the local temperature at
source~obtained by multiplying temperature~31! by the Tol-
man factor @23#! corresponds to the temperature of t
Fulling-Davies-Unruh thermal bath,

TdS
loc5

TdS

Af dS~r 0!
'

a0

2p
, ~40!

clarifies Eq.~37!. In particular, the decrease in the tempe
ture TdS51/(2pa) @cf. Eq. ~31!#; when a grows large is
perfectly compensated by the source’s approach to the h
zon @cf. Eq. ~38!#.

V. RESPONSE RATE IN SCHWARZSCHILD –de SITTER
SPACETIME

We now turn to the field quantization in SdS spaceti
and compare the response rate calculated in this case wit
one obtained in the previous section@see Eq.~36!#. Similarly,
we shall select Klein-Gordon orthonormalized modes of
form ~11!. Equation~12! with the effective scattering poten
tial for SdS spacetime

Veff
SdS~r !5S 12

2M

r
2

r 2

a2D S 2M

r 3
1

l ~ l 11!

r 2 D ~41!

admits, now, two sets of linearly independentregular solu-
tions cv l

i . We shall associatecv l
I [cv l

→ and cv l
II [cv l

← with
purely ingoing modes emanating from the white hole horiz
08402
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H h
2 ~hereafter simply referred as hole horizon! and from the

past cosmological horizonH c
2 , respectively.cv l

→ and cv l
←

are Klein-Gordon orthogonal to each other, as can be see
choosing the Cauchy surface in Eq.~14! to be S
5H h

2øH c
2 , and then using the fact thatcv l

→ andcv l
← van-

ish atH c
2 andH h

2 , respectively.
For the Gibbons-Hawking vacuum@14#, the appropriate

thermal factors appearing in Eq.~20! are nI(v)[(evbh

21)21 andnII(v)[(evbc21)21, where

bh
215

kh

2p
and bc

215
kc

2p
~42!

are the temperatures of the radiation from the hole and
cosmological horizons, respectively, with

kh5
1

2

d fSdS

dr
ur 5r h

5
1

2a2r h

~r c2r h!~r h1 r̄ ! ~43!

kc5
1

2

d fSdS

dr
ur 5r c

5
1

2a2r c

~r c2r h!~r c1 r̄ ! ~44!

being the surface gravities of the corresponding horizo
wherer̄[r h1r c . In this case, the response~21! can be writ-
ten as

RSdS~r 0 ,M ,a!5
q2Af ~r 0!

2pr 0
2

lim
v0→0

(
i 5I,II

(
l 50

`

~2l 11!

3v0ucv0l
i ~r 0!u2ni~v0!. ~45!

Equation~45! allows one to compute the response provid
one has obtained the~normalized! modes. For numerica
convenience, let us introduce a new coordinate

x~r !52
1

2kc
lnS 12

r

r c
D1

1

2kh
lnS r

r h
21D1

1

2k̄
lnS r

r̄
11D ,

~46!

where k̄[(2a2r̄ )21(r c1 r̄ )(r h1 r̄ ). In terms of the new
variablex, Eq. ~12! is recast in the ‘‘Schro¨dinger-like’’ form

F2
d2

dx2
1Veff

SdS@r ~x!#Gcv l
i ~x!5v2cv l

i ~x!. ~47!

Near the horizons@and assuming the realistic caseM!a
~i.e., r h!r c)], we have

Veff
SdS~x!;H e22kcx!1 for x@a

e2khx!1 for x,0,uxu@2M .
~48!

Thus, in these regions the potential becomes exponent
suppressed, and we can approximate Eq.~47! by

2
d2cv l

i

dx2
'v2cv l

i ~x!. ~49!
2-6
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This leads to the asymptotic behavior of the modes

cv l
→~x!'H Av l~eivx1R v l

→e2 ivx! ~x,0,uxu@2M !

Av lT v l
→eivx ~x@a!

~50!

and

cv l
←~x!'H Bv lT v l

←e2 ivx ~x,0,uxu@2M !

Bv l~e2 ivx1R v l
←eivx! ~x@a!.

~51!

Here, uR v l
→u2, uR v l

←u2 and uT v l
→u2, uT v l

←u2 are reflection and
transmission coefficients, respectively, for the ‘‘scatter
problem’’ defined by Eq.~47!. They satisfy usual ‘‘conserva
tion of probability’’ laws: uR v l

→u21uT v l
→u251 and uR v l

←u2

1uT v l
←u251. The normalization constantsAv l and Bv l can

be obtained by imposing Klein-Gordon orthonormality of t
modescv l

→ and cv l
← with respect to the Klein-Gordon inne

product~14!, where Eq.~47! is used to transform the resul
ing integrals into surface terms~see@7# for details!. Then, by
using Eqs.~50! and ~51!, we obtainAv l5Bv l5(2v)21.

The modescv l
→ andcv l

← can be obtained numerically fo
small v and differentl values by evolving Eq.~47! with the
effective potential~41! and the asymptotic forms~50! and
~51!. The corresponding total responseRSdScan be obtained
then, from Eq.~45!. We note that the larger the value ofl, the
higher the barrier of the scattering potentialVeff

SdS(r ) @24# and
therefore the main contributions come from modes w
small l. How far we must sum overl in Eq. ~45! to obtain a
satisfactory numerical result will depend on how close to
black hole horizon the source lies. The closer to the hori
the further overl we must sum.

In Fig. 4, we plot the responseRSdS as a function of the

0 0.2 0.4 0.6 0.8 1

χ(a
0
)

0

0.0005

0.001

0.0015

0.002

0.0025

q
-2

R
SdS

α = 20

q
-2

R
SdS

α = 40

q
-2

R
SdS

α = 80

q
-2

R
SdS

α = 160

q
-2

R
Sch

FIG. 4. RSdSis plotted vsx(a0) ~which is a monotonic function
of a0) for various values ofa @with M52, v051024, r580 and
the sum overl is performed up tol 58 ~inclusive!#. In particular,
x(a0)50, x(a0)51/2, and x(a0)51 correspond to the case
where the source is atr 05r h , geodesic atr 05(Ma2)1/3, and at
r 05r c , respectively. Note thatRSdS approachesRSch ~bottom
graph! asa increases.
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source’s proper accelerationa0 for various values ofa. As
originally defined,a0 is not a one-to-one function of th
source’s radial coordinater 0 @cf. Eq. ~8!#. In particular, note
from Eq. ~8! that a0→` either whenr→r h or r→r c . For
the sake of clarity in the result presentation, we circumv
this feature by dropping ‘‘u . u ’’ ’s in Eq. ~8!. This is ‘‘com-
pensated’’ by plotting theabsolute valueof RSdS. After this
procedure, the response rate is kept unchanged buta0 ac-
quires negative sign between the ‘‘equilibrium’’ pointr e
5(Ma2)1/3 ~wherea050) andr c , becoming then a one-to
one function ofr 0. In special,a0→` when r 0→r h , but a0
→2` when r 0→r c . Moreover, we have ‘‘compactified’
the range of the proper acceleration from (2`,1`) to (0,1)
by introducing the variable

x~a0!5@12tanh~ra0!#/2,

which is a monotonic function of the source’s proper acc
erationa0 ~and wherer is a free parameter fixed by numer
cal convenience!. The graph reveals thatRSdS(a0) tends to
RSch(a0)5q2ua0u/4p2 as a→`, i.e., the response for a
source in SdS spacetime approaches the one in Schw
child spacetime~in the Unruh vacuum! when the cosmologi-
cal constant goes to zero~provided the source keeps the sam
proper acceleration!. This result would be quite expected
we assumed thatr 0 ~rather thana0) was kept constant in the
process. This is so because when the cosmological radiua
→`, the geometry approaches Schwarzschild’s spacet
and the contribution from the cosmological horizon in E
~45! becomes negligible both becausekc→0 and because the
low-energy modes emanating from the cosmological horiz
have to ‘‘travel a longer distance’’ through the potential ba
rier to reach the source. As a result, these modes are m
scattered back, and contribute very little to the total respon
However, the explanation is much more subtle when we c
sidera→` with a0 fixed. For 0,x(a0),1/2, the larger the
a the more the influence of the black hole overcomes tha
the cosmic expansion. Thus, asa→`, the ‘‘left half’’ of the
curves in Fig. 4 should indeed converge to Schwarzschild
the same reasons pointed out above. Nevertheless, for
,x(a0),1 the convergence was not expecteda priori be-
cause in this regionr 0.(2Ma2)1/3@2M'r h , i.e., the
larger thea the more the influence of the cosmic expansi
overcomes that of the black hole. Indeed, by neglecting
terms M /r and M /r 2 in Eqs. ~1!, ~8! and ~41!, we obtain
f SdS(r )' f dS(r ), uaSdSu'adS and Veff

SdS(r )'Veff
dS(r ) ~where

‘‘ u. u ’’ is used here to comply with our convention accordin
to which aSdS,0 in this region!. Now, in this region, the
zero-energy modes ingoing from the black hole are unabl
interact with the source~as confirmed by an explicit numeri
cal calculation omitted here!, and thus the modes ingoin
from the cosmological horizon dominate in Eq.~45!. This
indicates, at first sight, thatRSdS(a0) approachesRdS(a0)
@see Eq. ~36!# rather than RSch(a0). The reason why
RSdS(a0) also approachesRSch(a0) in this region can be un-
derstood by recalling that for large enougha, RdS(a0) ap-
proaches the response for a uniformly accelerated sourc
Minkowski spacetimeRM5q2a0/4p2 ~see Sec. III!, which is
in turn equivalent toRSch(a0) @6#. We conclude, thus, thatthe
2-7
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fact that RSdS(a0) → RSch(a0) everywherewhena→` is a
consequence of the~nontrivial! equivalence between the re
sponses in Rindler and Schwarzschild spacetimes.

In Fig. 5 we compareRSdS with RdS @cf. Eq. ~36!#, as a
function ofa0. We use the same convention as in Fig. 4, b
now, it is convenient to introduce another compactificat
variable @25#: z(a0)5(r 02r h)/(r c2r h), where r 05r 0(a0)
is the source’s radial position as a function of the pro
acceleration obtained by inverting Eq.~8! ~without ‘‘ u . u’’ !.
Note that, unlikex, the variablez depends on bothM anda,
which are fixed in Fig. 5. In this figure, the various grap
correspond to the various lmax values of the maximuml used
to do the sum~45!. Note that the sum converges very fa
away from the horizons, but less so for the regions n
them. Figure 5 clearly suggests thatRSdS coincides withRdS

nearboth horizons. That they should coincide near the c
mological horizon could be inferred from our discussion
Fig. 4, but that they coincide in both horizons can be broa
understood from the fact that the SdS spacetime is isom
to Rindler spacetime near them. This becomes manifest a
the change of coordinatesr °hh[(2kh)21ln@fSdS(r )# and
r °hc[(2kc)

21ln@fSdS(r )#, which allows one to recast th
SdS line element near the black hole and cosmological h
zons~apart from the angular piece! as

0 0.2 0.4 0.6 0.8 1

ζ(a
0
)

-1

-0.5

0

0.5

1
Ln

(R
S

dS
/R

dS
)

l
max

 = 0

l
max

 = 2

l
max

 = 4

l
max

 = 6

l
max

 = 8

FIG. 5. ln(RSdS/RdS) is plotted as a function ofz(a0) ~with M
52, a520 andv051024). Here lmax denotes the largestl used in
performing the sum~45!. z(a0)50 andz(a0)51 correspond to the
cases where the source is atr 05r h and atr 05r c , respectively.
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dsSdS
2 'e2khhhdt22e2khhhdhh

2 ~52!

and

dsSdS
2 'e2kchcdt22e2kchcdhc

2 , ~53!

respectively. Now, we recall that the same happens for
Sitter spacetime close to its horizon@cf. Eq. ~39!#. As a re-
sult, RSdS(a0) turns out to approachRdS(a0) and both ap-
proachRM(a0)5q2a0 /(4p2) @cf. Eqs.~36! and ~37!# at the
horizons.

VI. CONCLUSIONS

We have quantized here a massless, conformally cou
scalar field in de Sitter and Schwarzschild–de Sitter spa
times. In both cases, the field interacts with a static sc
source. We have computed the response rates of this so
interacting with the Hawking radiation described by the E
clidean vacuum~in the de Sitter case! and by the Gibbons-
Hawking vacuum~in Schwarzschild–de Sitter spacetime!.
The comparison of the responses~as functions of the prope
acceleration of the source! shows, in particular, that the
equivalence obtained in@6# between the responses of a sta
source outside a Schwarzschild black hole~with the Unruh
vacuum! and of a uniformly accelerated source
Minkowski spacetime~with the inertial vacuum! was not re-
produced here, i.e., the introduction of a cosmological c
stant breaks the original equivalence.

Although the responses in de Sitter and SdS spaceti
~with the respective vacua! do not coincide, in general, ver
near the black hole and cosmological horizons theyare in-
deed equivalent. It is so because in both these regions
source is expected to behave as if it were uniformly acce
ated in Minkowski spacetime, in the inertial vacuum. W
have also recoveredeverywherethe response of a stati
source in Schwarzschild spacetime~with the Unruh vacuum!
from our response in SdS spacetime as the cosmological
stant vanishes. We have shown that this is a direct con
quence of the nontrivial equivalence found in@6#.
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