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Black hole entropy associated with the supersymmetric sigma model
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By means of an identity that equates the elliptic genus partition function of a supersymmetric sigma model
on theN-fold symmetric productSNX of X (SNX5XN/SN , whereSN is the symmetric group ofN elements! to
the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition
function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion
for the state counting reproduces the logarithmic correction to the black hole entropy.
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I. INTRODUCTION

In the correspondence between a black hole and a hi
excited string the black hole horizon is governed by so
conformal operator algebra on a two-dimensional surfa
This provides a string representation of black hole quan
states. Conversely, it may be possible to give a black h
interpretation of strings@1#. Obtaining the black hole entrop
by counting the number of excited strings states~statistical
interpretation of the black hole entropy! has been subse
quently presented in several papers@2–12#. A comparison of
the asymptotic state density of~twisted! p-branes and mas
level state density of black holes has also been establishe
Refs. @2,13–16#. In this work, we calculate the black hol
entropy for a supersymmetric sigma model. In the remain
of this section, we set the relevant mathematical method u
in this paper. Then, in Secs. II and III, we derive t
asymptotic state density and black hole entropy, respectiv
We end up with some concluding remarks in Sec. IV.

Mathematical notation

We start by considering a supersymmetric sigma mo
on theN-fold symmetric productSNX of a Kähler manifold
X, which is the orbifold spaceSNX5XN/SN . HereSN is the
symmetric group ofN elements. The Hilbert space of a
orbifold field theory can be decomposed into twisted sec
Hg , which are labeled by the conjugacy classes$g% of the
orbifold groupSN @17–19#. For a given twisted sector on
can keep the states invariant under the centralizer subg
Gg related to the elementg. Let H g

Gg be an invariant sub-
space associated withGg ; the total orbifold Hilbert space
takes the formH(SNX)5 % $g%H g

Gg . Taking into account the
group SN one can compute the conjugacy classes$g% by
using a set of partitions$Nn% of N: namely, (nnNn5N,
whereNn is the multiplicity of the cyclic permutation~n! of
n elements in the decomposition ofg:$g%5( j 51

s ( j )Nj . For
this conjugacy class the centralizer subgroup of a perm
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a-

tion g is Gg5SN1
^ j 52

s (SNj
’Zj

Nj) @19#, where each subfac

tor SNn
and Zn permutes theNn cycles ~n! and acts within

one cycle~n! correspondingly. Following the lines of Re
@19# we may decompose each twisted sectorH g

Gg into a
product over the subfactors~n! of Nn-fold symmetric tensor
products,H g

Gg5 ^ n.0SNnH(n)
Zn , whereSNH[( ^

NH)SN.
Let x(;q,y) be the partition function for every~sub! Hil-

bert space of a supersymmetric sigma model. It has b
shown@20–25# that the partition function coincides with th
elliptic genus. If x(H(n)

Zn ;q,y) admits the extension

x(H;q,y)5(m>0,,C(nm,,)qmy,, the following result
holds ~see Refs.@19,26#!:

(
N>0

pNx~SNH(n)
Zn ;q,y!5 )

m>0,,
~12pqmy,!2C(nm,,), ~1!

W~p;q,y!5 (
N>0

pNx~SNX;q,y!

5 )
n.0,m>0,,

~12pnqmy,!2C(nm,,), ~2!

where p5e@r#, q5e@t#, y5e@z#, and e@x#[exp@2pix#.
Here r and t determine the complexified Ka¨hler form and
complex structure modulos ofT2, respectively, andz param-
etrizes theU(1) bundle onT2. The Narain duality group
SO(3,2,Z) is isomorphic to the Siegel modular grou
Sp(4,Z) and it is convenient to combine the parametersr,t
and a Wilson line modulez into a 232 matrix belonging to
the Siegel upper half-plane of genus 2,

J5S r z

z t D ,
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with Ir.0, It.0, detIJ.0. The group Sp(4,Z)
>SO(3,2,Z) acts on the matrixJ by fractional linear trans-
formations: namelyJ→(AJ1B)(CJ1D)21.

Finally we go into some facts related to the orbifoldiz
elliptic genus ofN52 superconformal field theory. The con
tribution of the untwisted sector to the orbifoldized ellipt
genus is the function

x~X;t,z![f~t,z![ 0 n
0

~t,z!,

whereas

fS at1b

ct1d
,

z

ct1dD5 0 n
0

~t,z!eF rcz2

ct1dG ,
S a b

c dD PSL~2,Z!, ~3!

r 5d/2. The contribution of the twistedm sector projected by
n is @25#

n n
m

~t,z!5f~t,z1mt1n!eFd

2
~mn1m2t12mz!G ,

m,nPZ. ~4!

The orbifoldized elliptic genus can be defined by

f~t,z!orb5
de f1

h (
m,n50

h21

~21!P(m1n1mn)
n n

m
~t,z!, ~5!

whereP,h are some integers.

II. ASYMPTOTIC DENSITY OF STATES

If y5e@z#51, then the elliptic genus degenerates to
Euler number or Witten index@27,28#. For the symmetric
product this gives the identity

W~p!5 (
N>0

pNx~SNX!5 )
n.0

~12pn!2x(X). ~6!

Thus this character is almost a modular form of weigh
2x(X)/2. Equation~6! is similar to the denominator for
mula of a ~generalized! Kac-Moody algebra@29,30#. A de-
nominator formula can be written as follows:

(
sPW

@sgn~s!#es(v)5ev)
r .0

~12er !mult(r ), ~7!

wherev is the Weyl vector, the sum on the left hand side
over all elements of the Weyl groupW, the product on the
right side runs over all positive roots~one has the usual no
tation of root spaces, positive roots, simple roots, and W
group, associated with Kac-Moody algebra!, and each term is
weighted by the root multiplicity mult(r ). For the su(2)
level, for example, an affine Lie algebra~7! is just the Jacobi
10401
e
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triple-product identity. For generalized Kac-Moody algebr
there is the following denominator formula:

(
sPW

@sgn~s!#sS ev(
r

«~r !er D 5ev)
r .0

~12er !mult(r ),

~8!

where the correction factor on the left hand side involv
«(r ) which is (21)n if r is the sum ofn distinct pairwise
orthogonal imaginary roots and zero otherwise.

The logarithm of the partition functionW(p;q,y) is the
one-loop free energyF(p;q,y) for a string onT23X:

F~p;q,y!5 logW~p;q,y!

52 (
n.0,m,,

C~nm,, !log~12pnqmy,! ~9!

5 (
n.0,m,,,k.0

1

k
C~nm,, !pknqkmyk,

5 (
N.0

pN (
kn5N

1

k (
m,,

C~nm,, !qkmyk,. ~10!

The free energy can be written as a sum of Hecke opera
TN @31# acting on the elliptic genus ofX @19,29,32#:
F(p;q,y)5(N.0pNTNx(X;q,y).

The goal now is to calculate an asymptotic expansion
the elliptic genusx(SNX;q,y). The degeneracies for th
sigma model are given by the Laurent inversion formula

x~SNX;q,y!5
1

2p i R W~p,q,y!

pN11
dp, ~11!

where the contour integral is taken on a small circle arou
the origin. Let the Dirichlet series

D~s;t,z!5 (
(n,m,,).0

(
k51

` e@tmk1z,k#C~nm,, !

nsks11
~12!

converge for 0,Rs,a. We assume that series~12! can be
analytically continued in the regionRs>2C0 (0,C0,1)
where it is analytic excepting a pole of order 1 ats50 and
s5a, with residue Res@D(0;t,z)# and Res@D(a;t,z)#, re-
spectively. Besides, letD(s;t,z)5O(uIsuC1) uniformly in
Rs>2C0 as uIsu→`, where C1 is a fixed positive real
number. The Mellin-Barnes representation of the funct
F(t;t,z) has the form

M@F#~ t;t,z!5
1

2p i ERs511a
t2sG~s!D~s;t,z!ds. ~13!

The integrand in Eq.~13! has a first-order pole ats5a and a
second-order pole ats50. Shifting the vertical contour from
Rs511a to Rs52C0 ~this procedure is permissible! and
making use of the residues theorem one obtains
1-2
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F~ t;t,z!5t2aG~a!Res@D~a;t,z!#1 lim
s→0

d

ds
@sD~s;t,z!#

2~g1 log t !Res@D~0;t,z!#

1
1

2p i ERs52C0

t2sG~s!D~s;t,z!ds, ~14!

wheret[2p(Ir2 iRr). The absolute value of the integra
in Eq. ~14! can be estimated to behave asO„(2pIr)C0

…. We
are ready now to state the main result.

In the half-planeRt.0 there exists an asymptotic expa
sion for W(t;t,z) uniformly in uRru for uIru
→0, uarg(2p ir)u<p/4, uRru<1/2 and given by

W~ t;t,z!5eF 1

2p i H Res@D~a;t,z!#G~a!t2a

2Res@D~0;t,z!# log t2g Res@D~0;t,z!#

1 lim
s→0

d

ds
@sD~s;t,z!#1O~ u2pItuC0!J G .

~15!

The asymptotic expansion atN→` for the elliptic genus
~see also Refs.@7,33# is given by the formula

x~SNX;t,z!N→`5C~a;t,z!N$2 Res[D(0;t,z)] 222a%/[2(11a)]

3eF 11a

2p ia
$Res@D~a;t,z!#

3G~11a!%1/(11a)Na/(11a)G
3@11O~N2k!#, ~16!

C~a;t,z!5$Res@D~a;t,z!#

3G~11a!%$122 Res[D(0;q,y)] %/(212a)

3eF 1

2p i S lim
s→0

d

ds
@sD~0;t,z!#

2g Res@D~0;t,z!# D G @2p~11a!#1/2,
~17!

wherek,a/(11a) is a positive constant. In the above fo
mulas the complete form of the prefactorC(a;t,z) appears.
The results~16!, ~17! have a universal character for all ellip
tic genera associated with Calabi-Yau manifolds.

III. BLACK HOLE ENTROPY

In the context of string dynamics the asymptotic st
density gives a precise computation of the free energy
entropy of a black hole. The corresponding black hole
tropy S(N) takes the form
10401
e
d
-

S~N!5 logx~SNX;t,z!.S01A~a!log~S0!1~const!,
~18!

A~a!5~2a!21$2 Res@D~0;t,z!#222a%. ~19!

The leading term in Eq.~18! is S05B(a)Nd(a), where

B~a!5
1

d~a!
$Res@D~a;t,z!#G~11a!%d(a)/a,

d~a!5
a

11a
, ~20!

while A(a) is the coefficient of the logarithmic correction t
the entropy.

The asymptotic state density at levelN(N@1) for funda-
mental p-branes compactified on manifold with topolog
Tp3Rd2p can be calculate within the semiclassical quan
zation scheme~see for details Refs.@2,33#!. The coefficient
A(p) in this case takes the form

A~p!5~2p!21@Zp~0!222p#, ~21!

where Zp(s) is the p-dimensional Epstein zeta function
Since Zp(s50)521, we haveA(p)52(d11)/(2p). In
string theory, in the case of zero modes, the dependenc
embedding spacetime can be eliminate@12#. In fact, the co-
efficient logarithmic correctionA(p) becomes23/2, which
agrees with the results obtained in the spin network form
ism. The coefficient of the logarithmic correction to the s
persymmetric string entropy,A(a), depends on the comple
dimensiond of a Kähler manifoldX.

Using the transformation properties~4! in Eqs.~16!, ~17!
one can obtain the asymptotic expansion for the orbifoldiz
state density. Thus starting with the expansion of the s
density of the untwisted sector we can compute the asy
totics of the state density of the twisted sector.

IV. CONCLUDING REMARKS

Our results can be used in the context of the brane m
od’s calculation of the ground-state degeneracy of syste
with quantum numbers of certain Bogomol’nyi-Prasa
Sommerfield~BPS! extreme black holes@34–36,4#. We note
here the BPS black hole in toroidally compactified (M5T5

3X5) type II string theory. One can construct a brane co
figuration such that the corresponding supergravity soluti
describe five-dimensional black holes. Five-branes and o
brane are wrapped onT5 and the system is given by th
Kaluza-Klein momentumN in one of the directions. Thus
black holes in these theories can carry both an electric ch
QF and an axion chargeQH . The brane picture gives th
entropy in terms of partition functionW(t) for a gas of
QFQH species of massless quanta:W(t)5)nPZm/$0%$1
2exp@2tvn(a,g)#%2(dim M2m21), where t5y12p ix, Rt
.0, vn(a,g)5@( jaj (nj1gj )

2#1/2, and gj and aj are some
real numbers. For unitary conformal theories of fixed cen
chargec, Eq. ~16! represents the degeneracy of the st
x(N) with momentumN and forN→` one has@14#
1-3
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logx~N!.2ALzR~2!cN2
Lc13

4
log~N!, ~22!

whereL5(dim M2m21)/4 andzR(s) is the Riemann zeta
function. The entropy takes the form

S~N!5 logx~N!.S01A log~S0!, ~23!

where forL51 we have

S052pAcN/6, A52
c13

2
. ~24!

Following Ref. @36#, we can putc53QF
216, N5QH , and

get the growth of the elliptic genus~or the degeneracy o
BPS solitons! for N5QH@1. However, this result is incor
rect when the black hole becomes massive enough fo
Schwarzschild radius to exceed any microscopic scale s
as the compactification radii@4,35#. Such models, stemmin
ys

tt

.

r.

A

t.

.

10401
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from string theory, would therefore be incompatible; in vie
of the present result, this might be presented as a us
constraint for the underlying microscopic field theory.

Finally, note that for a Calabi-Yau space thexy genus@37#
is a weak Jacobi form of weight 0 and indexd/2 and it
transforms asxy(TX)5(21)r 2dyrxy21(TX). This relation
can also be derived from the Serre dualityH j (X;`sTX)
>Hd2 j (X;` r 2sTX). For q50 the elliptic genus reduces t
a weighted sum over the Hodge numbers: name
x(X;0,y)5( j ,k(21) j 1kyj 2d/2hj ,k(X). For the trivial line
bundle the symmetric product~6! can be associated with th
simple partition function of a second-quantized string theo
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