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Angular momentum and energy-momentum densities as gauge currents

M. Calçada* and J. G. Pereira†

Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo SP, Brazil
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If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent
space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz
group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general
matter field can be obtained from the invariance of the corresponding action integral under transformations
taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
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I. INTRODUCTION

According to the Noether theorems@1#, energy-
momentum conservation is related to the invariance of
action integral under translations of the spacetime coo
nates, and angular-momentum conservation is related to
invariance of the action integral under Lorentz transform
tions. As both translation and Lorentz transformations
perfectly well defined in the Minkowski spacetime, the N
ether theorems can be applied with no restrictions in
spacetime. However, on a curved spacetime, neither tran
tions nor Lorentz transformations can be defined in a nat
way @2#. The problem then arises on how to define ene
momentum and angular momentum in the presence of gr
tation, as in this case spacetime is represented by a cu
~pseudo! Riemannian manifold.

In general relativity, the conservation of the energ
momentum tensor of any matter field is usually obtained a
consequence of the invariance of the action integral in r
tion to the spacetime group of diffeomorphisms~general co-
ordinate transformations!. Although this is usually consid
ered as acceptable for the energy-momentum tensor@3#, it
leads to problems when considering the angular momen
conservation, mainly in the case of spinor fields. In fact,
the angular momentum conservation is related to the inv
ance of the action integral under Lorentz transformatio
and as there is no natural action of the full group of diffe
morphisms on spinor fields@4#, the spin character of thes
fields has necessarily to be taken into account by conside
the action of the Lorentz group on the Minkowski tange
spacetime, where its action is well defined. As a con
quence, the Dirac equation in general relativity must nec
sarily be written in terms of the spin connection, a conn
tion assuming values in the Lie algebra of the Lorentz gro
and can never be written in terms of the spacetime Le
Civita ~or Christoffel! connection.

In order to circumvent the above problems, let us th
consider the following structure. At each point
spacetime—which in the presence of gravitation is a cur
~pseudo! Riemannian manifold—there is always
Minkowski tangent spacetime attached to it. Now, instead
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considering the spacetime group of diffeomorphism as
fundamental group behind gravitation, we consider thelocal
symmetry group of general relativity to be the Lorentz gro
@5#, whose action takes place in the tangent space. Accor
to this construction, general relativity can be reinterpreted
a gauge theory@6# for the Lorentz group@7#, with the indices
related to the Minkowski space considered aslocal Lorentz
indices in relation to spacetime. As a consequence, the
connection is to be considered as the fundamental field
resenting gravitation. This means to use, instead of the Le
Civita covariant derivative, the Fock–Ivanenko operator
covariant derivative that takes into account the spin con
of the field as defined in the Minkowski tangent space. T
approach, mandatory for the case of spinors@8#, can actually
be used for any field, being in this sense more general t
the usual spacetime approach of general relativity.

By adopting the above described point of view, whi
means to reinterpret general relativity as a gauge theory
the Lorentz group, the aim of the present paper will be
show that the angular momentum and the energy-momen
tensors of a general matter field can be defined as the No
er currents associated to the invariance of the action inte
under local transformations taking place not in spacetim
but in the tangent space. We begin in Sec. II with a review
the Lorentz transformation properties. In Sec. III we intr
duce the gauge potentials, define the Lorentz covariant
rivative, and show how a very special tetrad field natura
shows up in this formalism. This tetrad, as we are going
see, depends on the spin connection, and this depend
will be crucial for obtaining the covariant conservation law
In Sec. IV we obtain the gauge transformations of both
spin connection and the tetrad field. The roles played by
spin and the orbital parts of the Lorentz generators in th
transformations will also be analyzed. In Sec. V we sh
how the angular momentum conservation can be obtaine
the Noether current associated to a transformation gener
by the spin generator of the Lorentz group. Then, by cons
ering the Lorentz transformation of the tetrad field, we sh
in Sec. VI how the energy-momentum conservation can
obtained as the Noether current associated to a transfo
tion generated by the orbital generator of the Lorentz gro
Finally, in Sec. VII, we comment on the results obtained.

II. LORENTZ TRANSFORMATIONS

We use the Greek alphabetm,n,r, . . . 51,2,3,4 to denote
indices related to spacetime, and the Latin alpha
©2002 The American Physical Society01-1
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a,b,c, . . . 51,2,3,4 to denote indices related to each one
the Minkowski tangent spaces. The Cartesian Minkowski
ordinates, therefore, is denoted by$xa%, and its metric tensor
is chosen to be

hab5diag~1,21,21,21!. ~1!

As is well known, the most general form of the generators
infinitesimal Lorentz transformations is@9#

Jab5Lab1Sab , ~2!

where

Lab5 i ~xa]b2xb]a! ~3!

is theorbital part of the generators, andSab is thespin part
of the generators, whose explicit form depends on the fi
under consideration. The generatorsJab satisfy the commu-
tation relation

@Jab ,Jcd#5 i ~hbcJad2hacJbd2hbdJac1hadJbc!, ~4!

which is to be identified with the Lie algebra of the Loren
group. Each one of the generatorsLab and Sab satisfies the
same commutation relation asJab , and commute with each
other.

A position dependent—that is, local—infinitesimal Lo
entz transformation is defined as

dLxa52
i

2
ecdLcdx

a, ~5!

where ecd[ecd(xm) are the transformation parameters. B
using the explicit form ofLcd , it becomes

dLxa52ea
dxd. ~6!

An interesting property of the Lorentz transformation of t
Minkowski space coordinates is that it is formally equivale
to a translation@10#. In fact, by using the explicit form of
Lcd , the transformation~5! can be rewritten in the form

dLxa52 i jcPcx
a, ~7!

which is a translation with

jc5ec
dxd ~8!

as the transformation parameters, and

Pc52 i ]c ~9!

as generators. In other words, an infinitesimal Lorentz tra
formation of the Minkowski coordinates is equivalent to
translation withjc[ec

dxd as the parameters. Actually, this
a property of the Lorentz generatorsLab , whose action can
always be reinterpreted as a translation. The reason for
equivalence is that, because the Minkowski spacetime
transitive under translations, every two points related b
Lorentz transformation can also be related by a translat
Notice that the inverse is not true.
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Let us consider now a general matter fieldC(xm), which
is function of the spacetime coordinates$xm%. Under an in-
finitesimal local Lorentz transformation of the tangent-spa
coordinates, the fieldC will change according to@9#

dJC[C8~x!2C~x!52
i

2
eabJabC~x!. ~10!

The explicit form of the orbital generatorsLab , given by Eq.
~3!, is the same for all fields, whereas the explicit form of t
spin generatorsSab depends on the spin of the fieldC. No-
tice furthermore that the orbital generatorsLab are able to act
in the spacetime argument ofC(xm) due to the relation

]a5~]axm!]m .

By using the explicit form ofLab , the Lorentz transforma-
tion ~10! can be rewritten as

dJC52eabxb]aC2
i

2
eabSabC, ~11!

or equivalently,

dJC52 i jcPcC2
i

2
eabSabC, ~12!

where use has been made of Eq.~8!. In other words, the
orbital part of the transformation can be reduced to a tra
lation, and consequently the Lorentz transformation of a g
eral fieldC can be rewritten as atranslationplus a strictly
spin Lorentz transformation. Notice however that, as

@Pc ,Sab#50, ~13!

the transformation~12! is not a Poincare´, but a Lorentz trans-
formation.

As a final remark, it is important to notice that, instead
four scalar functions, the coordinatesxa of the Minkowski
spacetime can also be interpreted as a vector fieldxa(xm). In
this case, however, the Lorentz generators must be writte
the vector representation

~Scd!
a

b5 i ~dc
ahdb2dd

ahcb!. ~14!

Consequently, its Lorentz transformation will be written a

dSxa52
i

2
ecd~Scd!

a
bxb, ~15!

which yields

dSxa5ea
dxd. ~16!

Therefore, from Eqs.~6! and ~16! we see that a Lorentz
transformation of the Minkowski coordinates written wi
the complete generatorJcd vanishes identically:

dJx
a[2

i

2
ecdJcdx

a50. ~17!
1-2
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The interpretation of this result is that, under a Lorentz tra
formation generated byJcd , all vector fieldsVa(x) undergo
a transformation at the same point:

dJV
a[Va8~x!2Va~x!52

i

2
ecdJcdV

a.

In the specific case of the coordinate itself, which is als
Lorentz vector field, the transformations generated byScd
andLcd cancel each other, yielding a vanishing net resul

III. LORENTZ COVARIANT DERIVATIVE

In a gauge theory for the Lorentz group, the fundamen

field representing gravitation is the spin connectionA7 m , a
field assuming values in the Lie algebra of the Lore
group,

A7 m5
1

2
A° ab

mJab . ~18!

Equivalently, we can write

A7 m5c22Ba
mPa1

1

2
A° ab

mSab , ~19!

where a new gauge potentialBa
m assuming values in the Lie

algebra of the translation group, has been defined@5#

c22Ba
m5A° a

bmxb, ~20!

with the velocity of lightc introduced for dimensional rea
sons. It is important to remark once more that, despite
existence of a gauge field related to translations, and ano
one related to the Lorentz group, the structure group un
lying this construction is not the Poincare´, but the Lorentz
group.

We consider now the Lorentz covariant derivative of t
matter fieldC, whose general form is@11#

D7 cC5]cC1
1

2
A° ab

c

dJC

deab
. ~21!

Substituting the transformation~11!, it becomes@5#

D7 cC5hm
cD7 mC, ~22!

wherehm
c is the inverse of the tetrad field

hc
m5]mxc1A° c

dmxd[]mxc1c22Bc
m , ~23!

and

D7 m5]m2
i

2
A° ab

mSab ~24!

is the Fock-Ivanenko covariant derivative operator@12#. Ac-
cording to this construction, therefore, theorbital part of the
Lorentz generators is reduced to a translation, which gi
then rise to a tetrad that depends on the spin connec
04400
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Because its action reduces ultimately to a translation,
orbital generatorLab is responsible for the universality o
gravitation. In fact, asLab acts in the fields through thei
arguments, all fields will respond equally to its action. Noti
also that, whereas the tangent space indices are raised
lowered with the metrichab , spacetime indices are raise
and lowered with the Riemannian metric

gmn5ha
mhb

nhab . ~25!

It is important to remark that the Fock-Ivanenko deriv
tive has the definition

D7 cC5]cC1
1

2
A° ab

c

dSC

deab
,

where@9#

dSC[C8~x8!2C~x!52
i

2
eabSabC. ~26!

Accordingly, the Fock-Ivanenko covariant derivative of th
vector fieldxc(xm) is

D7 mxc5]mxc1
1

2
A° ab

m

dSxc

deab
. ~27!

Using the transformation~16!, it becomes

D7 mxc5]mxc1A° c
bmxb[hc

m , ~28!

which shows that the tetrad coincides with the Foc
Ivanenko covariant derivative of the vector fieldxc(xm).

IV. GAUGE TRANSFORMATIONS

Under a local Lorentz transformation generated by

U5expF2
i

2
eabSabG , ~29!

the covariant derivativeD7 aC will change according to

D7 a8C8~x8!5UD7 aC~x!. ~30!

As

D7 aC~x!5hm
aD7 mC~x!, ~31!

and taking into account thath8m
a(x8)5Ua

bhm
b(x), with Ua

b

the usual element of the Lorentz group in the vector rep
sentation, we can rewrite Eq.~30! in the form

h8m
a~x8!D7 m8 C8~x8!5Ua

bhm
b~x!UD7 mC~x!. ~32!

It then follows that

D7 m8 C8~x8!5UD7 mC~x!, ~33!

or equivalently,
1-3



l

a

a-
a

sf
at

o
is

ria

-

ans-
of
due

her
ntial
en-
al-

ns-

t to
nt

e-
der
rdi-

f

e
trad

due

cal

he

at
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D7 m8 5UD7 mU21. ~34!

Using the Fock-Ivanenko derivative~24!, we obtain the usua
gauge transformation

A° m8 5UA° mU211 iU ]mU21. ~35!

The infinitesimal form ofU is

U.12
i

2
ecdScd . ~36!

By using the commutation relation~4! for Sab , we get from
Eq. ~35!

dSA° cd
m52~]mecd1A° c

amead1A° d
ameca![2D7 mecd.

~37!

Notice that, asA° cd
m does not respond to the orbital gener

tors, we have thatdSA° cd
m5dJA

° cd
m .

Let us obtain now the infinitesimal Lorentz transform
tions of the tetrad field. First of all, we have the transform
tion generated bySab , which yields thetotal change in the
tetrad, that is,dSha

m[h m8a (x8)2ha
m(x). From Eq.~23! we

see that

dSha
m5]m~dSxa!1~dSA° a

dm!xd1A° a
dm~dSxd!. ~38!

Using the transformations~16! and ~37!, we get

dSha
m5ea

ch
c
m[2

i

2
ecd~Scd!

a
bhb

m , ~39!

as it should be sinceha
m is a Lorentz vector field in the

tangent-space index. On the other hand, the tetrad tran
mation generated byJab corresponds to a transformation
the samexa, that is,dJh

a
m[ha8

m(x)2ha
m(x). Such a trans-

formation can be obtained from Eq.~23! by keepingxa fixed,

and substitutingdJA
° a

bm[dSA° a
bm as given by Eq.~37!. The

result is

dJh
a

m52xbD7 meab. ~40!

Finally, there is also the transformation generated by the
bital generatorLab . As the spin connection transformation
generated by the spin generatorsSab only—see Eqs.~35! and
~36!—this corresponds to a transformation due to the va

tion of the coordinatexa only, with A° a
dm fixed: dLha

m
[ha

m(x8)2ha
m(x). From Eq.~23!, we see that such a trans

formation is given by

dLha
m5]m~dLxa!1A° a

dm~dLxd!. ~41!

Substituting Eq.~6!, and making use of the definition~8!, we
get

dLha
m52D7 mja. ~42!
04400
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This transformation shows that the tetrad behaves as a tr
lational gauge potential under a Lorentz transformation
the tangent space coordinates, in which only the change
to the variation of the coordinates is considered. In ot
words, the tetrad behaves like a translational gauge pote
under a Lorentz transformation generated by the orbital g
eratorLab , whose action, as we have already seen, can
ways be reinterpreted as a translation.

Notice finally that, by using the above results, the tra
formation ~39! can be rewritten in the form

dSha
m[dJh

a
m2dLha

m52xbD7 meab1D7 mja. ~43!

We remark that this result is easily seen to be equivalen
Eq. ~39! by using the fact that the tetrad is the covaria
derivative of the tangent space coordinatexa.

V. ANGULAR MOMENTUM CONSERVATION

Let us consider now a general matter fieldC with the
action integral

S5
1

cE Ld4x[
1

cE Lh d4x, ~44!

whereh5det(ha
m)5A2g, with g5det(gmn). We assume a

first-order formalism, according to which the Lagrangian d
pends only on the fields and on their first derivatives. Un
a local Lorentz transformation of the tangent-space coo

nates, bothA° a
bm andha

m will change. The transformation o

the spin connectionA° a
bm is generated by the spin part of th

Lorentz generators, whereas the transformation of the te
ha

m is generated by both the spin and the orbital parts.
Let us consider first the response of the action integral

to the change of the Lorentz gauge potentialA° ab
m . As a

Lorentz scalar, the action integral is invariant under a lo
Lorentz transformation generated bySab . Under such a
transformation, it changes according to

dS5
1

2cE F ]L
]A° ab

m

2]r

]L
]]rA° ab

m
G dSA° ab

md4x, ~45!

where we have not written the variation in relation to t
field C because it gives the associated field equation@13#.
Introducing the notation

F ]L
]A° ab

m

2]r

]L
]]rA° ab

m
G[

dL
dA° ab

m

5h J m
ab , ~46!

whereJ m
ab is the angular momentum tensor, it follows th

dS5
1

2cE J m
abdSA° ab

mhd4x. ~47!

Substituting the transformation~37!, integrating by parts, and
neglecting the surface term, we obtain
1-4
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dS52
1

2cE D7 m~hJ m
ab!e

abd4x. ~48!

Due to the arbitrariness ofeab, it follows from the invariance
of the action integral under local Lorentz transformatio
that

D7 m~hJ m
ab!50. ~49!

Using the identity

]mh5hG° l
lm , ~50!

with G° l
lm5G° l

ml the Levi-Civita connection of the metri
~25!, we get

]mJ m
ab1G° m

lmJ l
ab2A° c

amJ m
cb2A° c

bmJ m
ac50, ~51!

which is the usual covariant conservation law of the angu
momentum tensor in general relativity. According to th
construction, therefore, we see that the angular momen
conservation is related to the response of the action inte
under a Lorentz transformation of the spin connection, wh
is a transformation generated by the spin generatorSab .

VI. ENERGY-MOMENTUM CONSERVATION

The angular momentum tensor can be rewritten in
form

J m
ab52T r

c

dhc
r

dA° ab
m

, ~52!

where

T r
c52

1

h

dL
dhc

r

[
]L

]hc
r

2]l

]L
]]lhc

r

~53!

is the energy-momentum tensor. From Eq.~23!, we see that

dhc
r

dA° ab
m

5dm
r~dc

axb2dc
b xa!.

Therefore, Eq.~52! becomes

J m
ab5xaT m

b2xbT m
a , ~54!

which is the usual expression of thetotal angular momentum
tensor in terms of the symmetric energy-momentum ten
@14#. Reversing the argument, we can say that the usua
lation betweenJ m

ab and T m
a requires a tetrad of the form

~23!.
Substituting now Eq.~52! in the transformation~47!, it

follows that

dS52
1

2cE T r
c

dhc
r

dA° ab
m

dSA° ab
mhd4x, ~55!
04400
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or equivalently,

dS52
1

cE T r
cdShc

rhd4x. ~56!

SubstitutingdShc
r as given by Eq.~43!, integrating both

terms by parts and neglecting the corresponding surf
terms, we obtain

dS5
1

cE @D7 m~hJ m
ab!e

ab2D7 m~hT m
a!ja#d4x. ~57!

Using the fact that the angular momentum is covariantly c
served, we get

dS52
1

cE D7 m~hT m
a!ja d4x. ~58!

Due to the arbitrariness ofja, it follows from the invariance
of the action integral under a local Lorentz transformati
that

D7 m~hT m
a!50. ~59!

Using the identity~50!, this expression can be rewritten i
the form

]mT m
a1G° m

lmT l
a2A° c

amT m
c50, ~60!

which is the usual covariant conservation law of general re
tivity.

It is important to notice that the energy-momentum cov
riant conservation in this case turns out to be related to
response of the action integral under a transformation of
tetrad field generated by the orbital generatorsLab , which as
we have already seen are transformations that can be rei
preted as translations. In fact, after integrating~back! by
parts and neglecting the surface term, Eq.~58! can be rewrit-
ten in the form

dS5
1

cE T m
adLha

m h d4x, ~61!

which holds provided the angular momentumJ m
ab is cova-

riantly conserved. Furthermore, it is easy to see thatdLha
m ,

given by Eq.~42!, induces in the metric tensor~25! the trans-
formation

dLgmn52¹°mjn2¹°njm , ~62!

wherejm5jaha
m , and ¹°m is the Levi-Civita covariant de-

rivative. As is well known, this equation represents the
sponse ofgmn to a general transformation of the spacetim
coordinates, and its use in the Noether theorem yields
covariant conservation law of the matter energy-moment
tensor in the usual context of general relativity@13#.
1-5
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VII. FINAL REMARKS

According to the Noether theorems, energy-moment
conservation is related to the invariance of the action inte
under spacetime translations, and angular momentum co
vation is related to the invariance of the action integral un
spacetime Lorentz transformations. However, as is w
known, in the presence of gravitation spacetime becom
~pseudo! Riemannian manifold. As the above transform
tions cannot be defined on such spacetimes@2#, it is neces-
sary to introduce a local procedure in which the correspo
ing covariant conservation laws can be obtained from
invariance of the action integral under transformations tak
place in the Minkowski tangent space, where they are w
defined.

By considering general relativity as a gauge theory for
Lorentz group, where the spin connection—that is, the L
entz gauge potential—is the fundamental field represen
gravitation, we have shown that it is possible to obtain
angular momentum and the energy-momentum covar
conservation laws from the invariance of the action integ
under transformations taking place in the tangent space.
crucial point of this formalism is the Lorentz covariant d
rivative ~22!, in which the action of the orbital Lorentz gen
erators reduces to a translation, giving then rise to atransla-

tional gauge potentialc22Ba
m5A° a

bmxb that appears as th
nontrivial part of the tetrad field:

ha
m5]mxa1A° a

bmxb. ~63!

We remark that this constraint betweenha
m andA° a

bm yields
naturally the usual relation, given by Eq.~54!, between the
energy-momentum and the angular momentum tens
showing in this way the consistency of the tetrad~63!. In this
approach, the covariant conservation law of the angular
mentum tensor turns out to be related to the response o
action integral under Lorentz transformations of the s

connectionA° a
bm , which is a transformation generated by t

spin part of the Lorentz generators. On the other hand,
-

tio
n

nt
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energy-momentum conservation turns out to be related to
response of the action integral under a Lorentz transfor

tion of the tetrad field. Differently fromA° a
bm , the tetrad field

ha
m responds simultaneously to both the spin and the orb

Lorentz generators. The part related to spin generatorSab
yields again the conservation of the angular momentum
sor, written now in the form~54!. The part related to the
orbital generatorLab yields the conservation of the energ
momentum tensor, a result consistent with the fact that
Lorentz transformation generated byLab can always be re-
duced to a translation. In fact, the tetrad transformation g
erated byLab , given by Eq.~42!, induces in the metric ten
sor gmn the transformation ~62!, which is the usual
transformation ofgmn under a general transformation of th
spacetime coordinates, and which yields the covariant c
servation law of the matter energy-momentum tensor in
usual context of general relativity. We have in this way e
tablished a relation between spacetime diffeomorphisms
tangent space Lorentz transformations generated by the
bital generatorLab . This is a crucial result in the sense th
it is responsible for obtaining the covariant conservation l
for the energy-momentum tensor under transformations
ing place in the tangent space. We notice in passing that e
in the tetrad approach to general relativity, as the tetrad
invariant under atrue translationof the tangent space coor
dinates, no energy-momentum covariant conservation
can be obtained. Summing up, with this construction
have succeeded in obtaining an internal Noether theo
from which the covariant conservation laws for angular m
mentum and energy-momentum tensors are obtained f
the invariance of the action integral under ‘‘internal’’—th
is, tangent space—transformations. Accordingly, the ass
ated densities can be considered as ‘‘gauge’’ currents.
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