PHYSICAL REVIEW D 66, 044001 (2002

Angular momentum and energy-momentum densities as gauge currents
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If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent
space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz
group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general
matter field can be obtained from the invariance of the corresponding action integral under transformations
taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
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[. INTRODUCTION considering the spacetime group of diffeomorphism as the
fundamental group behind gravi_ta_tion, we consider|tual
According to the Noether theorem$l], energy- Symmetry group of general relativity to be the Lorentz group

momentum conservation is related to the invariance of th&2], whose action takes place in the tangent space. According

action integral under translations of the spacetime coordit0 this construction, general relativity can be reinterpreted as

nates, and angular-momentum conservation is related to tl?e?iugetthtehorp'a]. fﬁr thek_l_orentz grou;_ﬁdﬂ, V‘(’j'lt hleL'nd'C?S
invariance of the action integral under Lorentz transforma+ ¢ arcd 1o th€ MINKOWSKI Space considere orentz
ndices in relation to spacetime. As a consequence, the spin

tions. As both trgnsla_tlon and_ Lorentz transfqrmanns aréc:onnection is to be considered as the fundamental field rep-
perfectly well defined in the Minkowski spacetime, the No-

ther th b lied with ricti 1 thi resenting gravitation. This means to use, instead of the Levi—
ether theorems can be applied with no restricions In Missiita covariant derivative, the Fock—Ivanenko operator, a

spacetime. However, on a curved spacetime, neither translag, ariant derivative that takes into account the spin content
tions nor Lorentz transformatlc_)ns can be defined ina naturgs the field as defined in the Minkowski tangent space. This
way [2]. The problem then arises on how to define energyapproach, mandatory for the case of spir{@is can actually
momentum and angular momentum in the presence of gravie ysed for any field, being in this sense more general than
tation, as in this case spacetime is represented by a curvgle usual spacetime approach of general relativity.
(pseudo Riemannian manifold. By adopting the above described point of view, which
In general relativity, the conservation of the energy-means to reinterpret general relativity as a gauge theory for
momentum tensor of any matter field is usually obtained as ¢he Lorentz group, the aim of the present paper will be to
consequence of the invariance of the action integral in relashow that the angular momentum and the energy-momentum
tion to the spacetime group of diffeomorphisfgeneral co- tensors of a general matter field can be defined as the Noeth-
ordinate transformationsAlthough this is usually consid- er currents associated to the invariance of the action integral
ered as acceptable for the energy-momentum tef&jorit under local transformations taking place not in spacetime,
leads to problems when considering the angular momenturut in the tangent space. We begin in Sec. Il with a review of
conservation, mainly in the case of spinor fields. In fact, aghe Lorentz transformation properties. In Sec. Il we intro-
the angular momentum conservation is related to the invariduce the gauge potentials, define the Lorentz covariant de-
ance of the action integral under Lorentz transformationsivative, and show how a very special tetrad field naturally
and as there is no natural action of the full group of diffeo-SNOWS up in this formalism. This tetrad, as we are going to
morphisms on spinor fieldg4], the spin character of these SE€&: depends on the spin connection, and this dependency

fields has necessarily to be taken into account by considerin ill be crucial for optaining the covariant con_servation laws.
the action of the Lorentz group on the Minkowski tangent™ Se€c. IV we obtain the gauge transformations of both the

spacetime, where its action is well defined. As a Conse§,pin connection and the tetrad field. The roles played by the

quence, the Dirac equation in general relativity must neces§pin and the orbital parts of the Lorentz generators in these

sarily be written in terms of the spin connection, a connec-ransformations will also be analyzed. In Sec. V we show
tion assuming values in the Lie algebra of the Lorentz grouphoW the angular momentum conservation can b? cbtained as
and can never be written in terms of the spacetime Levi-the Noether current associated to a transformation genere_tted
Civita (or Christoffe) connection. by_ the spin generator of the L.orentz group. Th_en, by consid-
In order to circumvent the above problems, let us therf'in9 the Lorentz transformation of the tetrad fleld', we show
consider the following structure. At each point of In S_ec. VI how the energy-momentum conservation can be
spacetime—uwhich in the presence of gravitation is a curve@Ptained as the Noether current associated to a transforma-
(pseudd Riemannian manifold—there is always a tion generated by the orbital generator of the Lorentz group.

Minkowski tangent spacetime attached to it. Now, instead OFmaIIy, in Sec. VII, we comment on the results obtained.

II. LORENTZ TRANSFORMATIONS

*Electronic address: mcalcada@ift.unesp.br We use the Greek alphabetv,p, ...=1,2,3,4 to denote
"Electronic address: jpereira@ift.unesp.br indices related to spacetime, and the Latin alphabet
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a,b,c, ...=1,2,3,4 to denote indices related to each one of Let us consider now a general matter fididx*), which
the Minkowski tangent spaces. The Cartesian Minkowski cois function of the spacetime coordinatpsg‘}. Under an in-
ordinates, therefore, is denoted 3§/}, and its metric tensor finitesimallocal Lorentz transformation of the tangent-space
is chosen to be coordinates, the fieltd will change according t§9]

=diag1,—1,—-1,—1). 1 !
7ap=diag ) @) 5J\Ifz‘l"(x)—‘I’(X)=—%EabJab‘I’(X)- (10

As is well known, the most general form of the generators of

infinitesimal Lorentz transformations [S] The explicit form of the orbital generatots,,, given by Eq.
(3), is the same for all fields, whereas the explicit form of the
spin generatorS,;, depends on the spin of the fielll. No-
where tice furthermore that the orbital generatarg, are able to act

in the spacetime argument df(x*) due to the relation

Jab=Lapt Sap, 3]

Lap=1(Xadp—Xpda) 3
9a=(0ax")d,, .
is theorbital part of the generators, ar®}, is the spin part
of the generators, whose explicit form depends on the fieldy using the explicit form ofl,,,, the Lorentz transforma-
under consideration. The generatdgg satisfy the commu- tion (10) can be rewritten as
tation relation i
— ab ab

[Ja:Jedl =i ( Mocdad— Tacdoa— 7hadact Tasdoe), (4 O3 == €Mxpda¥ 5 €SV, (@9
which is to be identified with the Lie algebra of the Lorentz o1 equivalently,
group. Each one of the generatdrg, and S,;, satisfies the
same commutation relation dg,, and commute with each

i i
other. SV =—1PV—5 €S,V (12)
A position dependent—that is, local—infinitesimal Lor-
entz transformation is defined as where use has been made of Ef). In other words, the
. orbital part of the transformation can be reduced to a trans-
S x=— I_echcha, (5) lation, and consequently the Lorentz transformation of a gen-

eral field¥ can be rewritten as @anslationplus a strictly

4 cd ) spin Lorentz transformation. Notice however that, as
where €°%=€®%(x*) are the transformation parameters. By

using the explicit form ol .4, it becomes [P¢,Sa]=0, (13

S x=—€e%gx?. (6)  the transformatiori12) is not a Poincargout a Lorentz trans-

. . ) formation.
An interesting property of the Lorentz transformation of the  Aq g final remark, it is important to notice that, instead of

Minkowski space coordinates is that it is formally equivalents, ;; scalar functions. the coordinated of the Minkowski
to a translatio10]. In fact, by using the explicit form of spacetime can also be interpreted as a vector f&&“). In

Lcq, the transformatiortS) can be rewritten in the form this case, however, the Lorentz generators must be written in
S.XA= i E°P @, ) the vector representation
a a _sa

which is a translation with (Sca)“p=1(6c"7ap— 84" 7cp) - (14

£6= €x¢ ®) Consequently, its Lorentz transformation will be written as
as the transformation parameters, and Sxd=— IE €99(S,g)2xX®, (15)

Pc=—1id. 9

which yields

as generators. In other words, an infinitesimal Lorentz trans-
formation of the Minkowski coordinates is equivalent to a Sx@=€3xY, (16)

translation with&°= %4’ as the parameters. Actually, this is

a property of the Lorentz generatdrg,, whose action can Therefore, from Eqgs(6) and (16) we see that a Lorentz
always be reinterpreted as a translation. The reason for sudfansformation of the Minkowski coordinates written with
equivalence is that, because the Minkowski spacetime ithe complete generatdiy vanishes identically:

transitive under translations, every two points related by a )

Lorentz transformation can also be related by a translation. a ' ocdqr va_

Notice that the inverse is not true. 0= € Jea"=0. (17
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The interpretation of this result is that, under a Lorentz transBecause its action reduces ultimately to a translation, the
formation generated by.q4, all vector fieldsvV?(x) undergo orbital generatorl ,, is responsible for the universality of

a transformation at the same point: gravitation. In fact, ad ., acts in the fields through their
_ arguments, all fields will respond equally to its action. Notice
SVA=V2 (x) —VA(X) = — '_ech \va also that, whereas the tangent space indices are raised and
JvV. = - cdV -

lowered with the metricy,,, spacetime indices are raised

» ) ) o and lowered with the Riemannian metric
In the specific case of the coordinate itself, which is also a

Lorentz vector field, the transformations generatedSpy gw=haMhbynab. (25

andL .4 cancel each other, yielding a vanishing net result. o )
It is important to remark that the Fock-lvanenko deriva-

ll. LORENTZ COVARIANT DERIVATIVE tive has the definition
In a gauge theory for the Lorentz group, the fundamental o 1o, , 6sW
119 GEgE AeOy T e oren e 91D, e Dol = 3cW + A,
field representing gravitation is the spin connectidp, a 2 "seb
field assuming values in the Lie algebra of the Lorentz
group, where[9]
o 1, S N _ i b
A=A, 35, (19) S=W'(x)~W(x)=~5eSuy V. (26)
Equivalently, we can write Accordingly, the Fock-lvanenko covariant derivative of the
vector fieldx®(x*) is
° 1,
A, =c72B%, Pt 5AT, Sy, (19 o oo 8eXE
’D'MX :(9MX +§A Mﬁ. (27)
where a new gauge potentif, assuming values in the Lie
algebra of the translation group, has been defigd Using the transformatiofil6), it becomes
c B2, =A%, X, (20) D X=X+ A%y, xP=hC 28)

with the velocity of lightc introduced for dimensional rea- \which shows that the tetrad coincides with the Fock-

sons. It is important to remark once more that, despite th@yanenko covariant derivative of the vector fiede(x*).
existence of a gauge field related to translations, and another

one related to the _Lore.ntz group, th(_a structure group under- V. GAUGE TRANSEORMATIONS
lying this construction is not the Poincareut the Lorentz
group. Under a local Lorentz transformation generated by
We consider now the Lorentz covariant derivative of the .
1 i i
matter field¥, whose general form igl1] U :exp{ _ EEabSab ’ (29
o 1o, 64¥ i
DY =0.¥+ EA C5eab” (1) the covariant derivativé®, ¥ will change according to
Substituting the transformatiofll), it becomegd5] f)é\lf’(x’)=uf)a\lf(x). (30
DV =h*D,, (220 As
whereh*; is the inverse of the tetrad field DWW (x)=h*,D,¥(x), (32
he = x®+ A%, x9=g x°+c 2B°, (23  and taking into account that #,(x") = U,Ph#,(x), with U,°
roos . g g the usual element of the Lorentz group in the vector repre-
and sentation, we can rewrite E@30) in the form
o i h' e (x')D W (x') = U LPhiy(x)UD, W (x). (32
DMIO-,M_EAabMSab (24) a( ) " ( ) a b( ) ” (x) ( )

It then follows that
is the Fock-lvanenko covariant derivative operdtt®]. Ac-
cording to this construction, therefore, thebital part of the ’Zc’)l;\]f’(x’) = U]O)M\If(x), (33
Lorentz generators is reduced to a translation, which gives
then rise to a tetrad that depends on the spin connectiowr equivalently,

044001-3



M. CALCADA AND J. G. PEREIRA PHYSICAL REVIEW D66, 044001 (2002

This transformation shows that the tetrad behaves as a trans-
lational gauge potential under a Lorentz transformation of
the tangent space coordinates, in which only the change due
to the variation of the coordinates is considered. In other
words, the tetrad behaves like a translational gauge potential
under a Lorentz transformation generated by the orbital gen-
eratorL,,, whose action, as we have already seen, can al-
ways be reinterpreted as a translation.

Notice finally that, by using the above results, the trans-
formation (39) can be rewritten in the form

D,=UD,U"". (34)
Using the Fock-Ivanenko derivati&4), we obtain the usual
gauge transformation
o ’ o _1 . _1
A,=UA,U "+iUg,U"". (35
The infinitesimal form ofU is
i
U=1- - €%S,. (36)

2 o o
8h?,=68;h?,— 5 h? = —x"D,e®*+D, £ (43

By using the commutation relatiad) for S,,, we get from

Eq. (35 We remark that this result is easily seen to be equivalent to
Eq. (39 by using the fact that the tetrad is the covariant
5 Sﬁ.‘ch: ~(3, €Sl ’Z\Cau prCn ;daM €)= _f)M ecd derivative of the tangent space coordinafe
(37)
V. ANGULAR MOMENTUM CONSERVATION

: Acd P _
Notice that, asA™®, ?oes notorespond to the orbital genera Let us consider now a general matter field with the
tors, we have thaESACd#Z 5JACdM. action integra|

Let us obtain now the infinitesimal Lorentz transforma-
tions of the tetrad field. First of all, we have the transforma- 1 1
tion generated bys,,, which yields thetotal change in the S= Ef Ld*x= Ef Lhd*, (44)
tetrad, that isgsh®,=h"? (x")—h®,(x). From Eq.(23) we
see that whereh=det(h?,) = /- g, with g=det(g,,). We assume a

a a o 4. %a g first-order formalism, according to which the Lagrangian de-
Osh?,= 3, (8sX%) + (6sA%, )X+ A%, (0sX%).  (38)  pends only on the fields and on their first derivatives. Under
a local Lorentz transformation of the tangent-space coordi-

nates, both&abﬂ andh?,, will change. The transformation of

the spin connectio;kab# is generated by the spin part of the
Lorentz generators, whereas the transformation of the tetrad
h?, is generated by both the spin and the orbital parts.

as it should be sincé?, is a Lorentz vector field in the Let us consider first the response of the action integral due
tangent—space index. On the other hand, the tetrad 'Fransfotré the change of the Lorentz gauge potenﬁé‘P As a
mation generated by, corre/sponds to a transformation at Lorentz scalar, the action integral is invariant ulﬁder a local
the sames®, that is, 6;h?,=h® ,(x) —h®,(x). Such atrans- | orentz transformation generated I8;,. Under such a
formation can be obtained from E@3) by keepingx® fixed,  transformation, it changes according to

and substitutinﬁy&abﬂE 55,5\%# as given by Eq(37). The

result is 1

6S= Z

Using the transformation&l6) and (37), we get

i
dsh®, = €%ch®, = — 5 €°4(Se)h°,. . (39

aL aL

gAZD &po'?é' Aab
3 P

SA d*,  (45)

53h?, = —x,D, €. (40)

o

Finally, there is also the transformation generated by the orvhere we have not written the variation in relation fo the

bital generatot_,;,. As the spin connection transformation is field ¥ because it gives the associated field equalits).

generated by the spin generat8gg only—see Eqs(35) and Introducing the notation

(36)—this corresponds to a transformation due to the varia- e

=——=hJ%, (46
SARP,

aL aL

° ab p ° ab
In®, "9, A,

tion of the coordinatex® only, with f&ad# fixed: 6 h?,
=h?,(x")—h?,(x). From Eq.(23), we see that such a trans-
formation is given by

where 7* ., is the angular momentum tensor, it follows that

5.h%,=3,(5x%) + A%, (5,x9). (41)

7

1 o
- b 1t
Substituting Eq(6), and making use of the definitia8), we 6S= Z_CJ T*ap0sA™ hd X (47)

get
. Substituting the transformatid7), integrating by parts, and
6.h?,=-D, & (420  neglecting the surface term, we obtain
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1( o ) or equivalently,
8S=— 5c f D, (hT*ap) €2Pd?x. (48)
1

Due to the arbitrariness ef®, it follows from the invariance 0S=- Ef Tpcéshcphd“x. (56)
of the action integral under local Lorentz transformations
that Substituting 6sh®, as given by Eq.(43), integrating both

. terms by parts and neglecting the corresponding surface

D,(hJ"4,)=0. (490  terms, we obtain

Using the identity :E o W\ _ab_ 2 o\ pard
5S= < | [Du(hT*ap) ™™= D,(hT#2)&d'x.  (67)
d,h=hr*

Ao (50)

. R Using the fact that the angular momentum is covariantly con-
with I'*, ,=T"* ,, the Levi-Civita connection of the metric served, we get
(25), we get

11,
o ) ) —_ 4
aﬂjﬂab'l' FM)\,uj}\ab_Aca,uj'ucb_ACb,uj'uac: 0, (51) 0S= Cj DM(hT’ua) ga d*x. (58)

which is the usual covariant conservation law of the angula
momentum tensor in general relativity. According to this
construction, therefore, we see that the angular momentu
conservation is related to the response of the action integral
under a Lorentz transformation of the spin connection, which

Due to the arbitrariness @?, it follows from the invariance
of the action integral under a local Lorentz transformation

is a transformation generated by the spin genergjgr D,(hT*,)=0. (59
VI. ENERGY-MOMENTUM CONSERVATION Using the identity(50), this expression can be rewritten in
the form
The angular momentum tensor can be rewritten in the
form 3, Ty + T T = A%, TH =0, (60)
ohe, . . .
T ap=—TP— ' (52) which is the usual covariant conservation law of general rela-
5Aabﬂ tivity.
It is important to notice that the energy-momentum cova-
where riant conservation in this case turns out to be related to the
response of the action integral under a transformation of the
1 6L L oL tetrad field generated by the orbital generatoys, which as

TPe=— = —=——g, (53)
h'she, anc, "aa,hc,

we have already seen are transformations that can be reinter-
preted as translations. In fact, after integratifick by
is the energy-momentum tensor. From E2@), we see that ~Parts and neglecting the surface term, &) can be rewrit-

ten in the form
C

p
= 5 (84X — 8 Xa). 1
phev, T N %575 f T#a5.h%, hd'x, 61

Therefore, Eq(52) becomes ) ) )
which holds provided the angular momentyr,,, is cova-

T a0=XaT o —XpT 5, (54) riantly conserved. Furthermore, it is easy to see thaf',,,
given by Eq.(42), induces in the metric tens¢25) the trans-
which is the usual expression of thetal angular momentum formation
tensor in terms of the symmetric energy-momentum tensor
[14]. Reversing the argument, we can say that the usual re-
lation between7#,, and 7#, requires a tetrad of the form
(23). o
Substituting now Eq(52) in the transformatior(47), it ~ Where £, =&h?,, andV, is the Levi-Civita covariant de-
follows that rivative. As is well known, this equation represents the re-
sponse ofg,, to a general transformation of the spacetime
1 She . coordinates, and its use in the Noether theorem yields the
0S=— 2—f T”Co—p 55Aath d*x, (55) covariant conservation law of the matter energy-momentum
¢ SA%P, tensor in the usual context of general relatiViy].

6Lg/.w: _%,u.gv_%yglu, ) (62)
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VII. FINAL REMARKS energy-momentum conservation turns out to be related to the

According to the Noether theorems, energy-momentun] response of the action integral under a Lorentz transforma-

conservation is related to the invariance of the action mtegrall'On of the tetrad field. Differently fron&?,, , the tetrad field
under spacetime translations, and angular momentum consdl, responds simultaneously to both the spin and the orbital
vation is related to the invariance of the action integral undekorentz generators. The part related to spin generafgr
spacetime Lorentz transformations. However, as is welyields again the conservation of the angular momentum ten-
known, in the presence of gravitation spacetime becomes $or, written now in the form54). The part related to the
(pseudd Riemannian manifold. As the above transforma-oOrbital generatot ,;, yields the conservation of the energy-
tions cannot be defined on such spacetifidsit is neces- momentum tensor, a result consistent with the fact that the
sary to introduce a local procedure in which the correspondLorentz transformation generated hy, can always be re-
ing covariant conservation laws can be obtained from thgluced to a translation. In fact, the tetrad transformation gen-
invariance of the action integral under transformations takingerated byl ,,, given by Eq.(42), induces in the metric ten-
place in the Minkowski tangent space, where they are welsor g,, the transformation(62), which is the usual
defined. transformation ofg,,, under a general transformation of the

By considering general relativity as a gauge theory for thespacetime coordinates, and which yields the covariant con-
Lorentz group, where the spin connection—that is, the Lorservation law of the matter energy-momentum tensor in the
entz gauge potential—is the fundamental field representingsual context of general relativity. We have in this way es-
gravitation, we have shown that it is possible to obtain thetablished a relation between spacetime diffeomorphisms and
angular momentum and the energy-momentum covariartingent space Lorentz transformations generated by the or-
conservation laws from the invariance of the action integrabital generatol,,. This is a crucial result in the sense that
under transformations taking place in the tangent space. Thigis responsible for obtaining the covariant conservation law
crucial point of this formalism is the Lorentz covariant de- for the energy-momentum tensor under transformations tak-
rivative (22), in which the action of the orbital Lorentz gen- ing place in the tangent space. We notice in passing that even
erators reduces to a translation, giving then rise taasla-  in the tetrad approach to general relativity, as the tetrad is
invariant under atrue translationof the tangent space coor-
dinates, no energy-momentum covariant conservation law
can be obtained. Summing up, with this construction we
have succeeded in obtaining an internal Noether theorem
from which the covariant conservation laws for angular mo-
mentum and energy-momentum tensors are obtained from
the invariance of the action integral under “internal’—that
is, tangent space—transformations. Accordingly, the associ-
%ted densities can be considered as “gauge” currents.

tionall gauge potentiat‘zBaM_= ,&abﬂxb that appears as the
nontrivial part of the tetrad field:

h?,=a,x%+ A%, (63

We remark that this constraint betwekfy, and,&abﬂ yields
naturally the usual relation, given by E4), between the
energy-momentum and the angular momentum tensor
showing in this way the consistency of the tett&8). In this
approach, the covariant conservation law of the angular mo-

mentum tensor turns out to be related to the response of the ACKNOWLEDGMENTS
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