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First quantized approaches to neutrino oscillations and second quantization
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Neutrino oscillations are treated from the point of view of relativistic first quantized theories and
compared to second quantized treatments. Within first quantized theories, general oscillation probabilities
can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation
formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness
and causality requirements. The left-handed nature of created and detected neutrinos can also be
implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to
the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in
analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino
propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign
of the contributing neutrino energy may have to be chosen explicitly without being automatic in the
formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised.
In this description there is no interference terms between positive and negative components, but it still
gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable
but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-
handed neutrinos to right-handed neutrinos is also presented.
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I. INTRODUCTION

Compelling experimental evidence [1] has shown that
neutrinos undergo flavor oscillations in vacuum.
Consequently, this fact requires massive neutrinos with
mixing. These ingredients are not present in the standard
model of elementary particles. For this reason, on the one
hand, neutrino oscillations can provide a direct window to
probe physics beyond the standard model [2]. On the other
hand, some theoretical studies of mixing in the context of
quantum field theory (QFT) by Blasone and Vitiello (BV)
[3,4] show the mixing problem may be related to more
fundamental issues such as unitarily inequivalent represen-
tations and the vacuum structure, and its study is theoreti-
cally interesting for its own sake.

Nevertheless, the simpler plane-wave quantum me-
chanical descriptions [5,6] seemed to be in accordance,
in certain realistic limits, with more refined descriptions,
including various ingredients, such as localization aspects
[7–9], flavor current densities [10], influence of creation
and detection processes [11,12], time-dependent perturba-
tion theory [13], and intermediate neutrinos with path
integrals [14]. Moreover, many treatments within the
QFT framework were also proposed [15–21], aiming to
solve the various unclear aspects of the quantum mechan-
ics of neutrino oscillations [10,13].

It has been known for a long time that the coherence
necessary for neutrino oscillations depends crucially
on localization aspects of the particles involved in the
production of neutrinos [7]. This point of view can be
address: ccnishi@ift.unesp.br
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supported by QFT arguments [19] as well. It raises then
the question of how the coherent superposition of
mass eigenstate neutrinos, which is called a ‘‘flavor’’
eigenstate, is created [20]. One way that became custom-
ary to avoid the ambiguities involving the question on
how neutrinos are created and detected is to use an external
(E) wave packet (WP) approach [17], in contrast to
an intermediate (I) WP approach. According to Ref. [17],
the IWP treatments are the simpler first quantized
ones treating the propagation of neutrinos as free localized
wave packets. In contrast, EWP approaches consider
localized wave packets for the sources and detection
particles while the neutrinos were considered inter-
mediate virtual particles. The central issue distinguish-
ing the general IWP and EWP approaches is: Despite
its direct unobservability, is the intermediate neutrino a
real (on-shell) particle propagating freely? If the answer
is affirmative, the IWP approaches would be a good
approximation of the oscillation phenomena.

On the other hand, another classification scheme can be
used to classify the various existing treatments considering
a more physical criterion irrespective of the use of WPs.
Consider the descriptions of neutrino oscillations that
(A) include explicitly the interactions responsible for the
mixing and (B) those that only treat the propagation of
neutrinos, i.e., . the mixing is an ad hoc ingredient. A more
subtle aspect in between would be the (explicit or phenom-
enologically modeled) consideration of the production
(and detection) process(es). In general, the IWP ap-
proaches are of type (B). The EWP approaches are of
type (A). The BV approach, although in the QFT formal-
ism, is of type (B) since mixing is introduced without
-1 © 2006 The American Physical Society
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explicitly including the interaction responsible for it. The
type (B) approaches have the virtue that they can be for-
mulated in a way in which total oscillation probability in
time is always conserved and normalized to one [3,9]. This
feature will be present in all first quantized approaches
treated here (Secs. II and III and in a second quantized
version (Sec. IVA). If different observables are considered,
or a modeling of the details of the production and detection
processes is attempted, further normalization is necessary
[4,8,12]. In such cases, the oscillating observable might
differ from the oscillation probability. On the other hand,
type (A) approaches tend to be more realistic and can
account for the production and detection processes giving
experimentally observable oscillation probabilities [21].
Of course, they are essential to the investigation of how
neutrinos are produced and detected [11,20]. We are not
directly interested in these matters here.

Considering first quantized type (B) approaches, some
recent works treating the flavor oscillation for spin one-half
particles [22,23] have already found additional oscillatorial
effects compared to usual oscillation formulas with WPs
[8,9]. These effects are investigated and it is shown in
Sec. II how these additional oscillatorial behaviors, which
have characteristic frequencies much greater than usual
oscillation frequencies, come from the interference be-
tween positive and negative frequency components of the
initial WP. It can be understood as a consequence of the
impossibility to simultaneously exclude all negative en-
ergy contributions of the initial spinorial wave function
with respect to bases characterized by different masses.
Moreover, these rapid oscillations are always present, in-
dependently of the initial WP, if a well-defined flavor is
attributed to the initial WP.

To make clear the origin of the additional oscillatory
contributions, we calculate, in Sec. III, the oscillation for-
mula for a charged spin 0 particle in the Sakata-Taketani
Hamiltonian formalism [24], which is equivalent to the
Klein-Gordon scalar wave equation. (The explicit analysis
with the mixed Klein-Gordon equation is made in
Ref. [25], paying special attention to the relativistic initial
value problem.) The oscillation formula in this case also
possesses the additional interference terms between posi-
tive and negative frequency parts, very similar to the one
obtained in the spin 1=2 case. From this example we will
see that these interference terms are inevitable from a
relativistic classical field theory perspective where covari-
ance and causality is required. It is not specially associated
to the spin degree of freedom.

Another particular ingredient of neutrino oscillations
can be included naturally within Dirac theory: the left-
handedness of neutrinos created and detected through
weak interactions. This fact, for a Dirac neutrino [26],
implies an additional probability loss due to conversion
of left-handed neutrinos into right-handed neutrinos, which
is possible because chirality is no longer a constant of
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motion for massive Dirac particles [27]. Although pre-
vious calculations [23] have shown an approximate con-
tribution to this effect, we calculate in Sec. II A the com-
plete effect.

Concerning type (A) approaches, specifically the EWP
description, we are interested to analyze further the propa-
gation of intermediate virtual neutrinos. The framework
where the investigations on first quantized approaches are
made here is based on the calculation of the evolution
kernels for free theories in presence of mixing. This en-
ables us to deduce general oscillation probabilities in
which there is explicit decoupling from the oscillating
part (where all the oscillation information rests) and the
initial wave packet. Another advantage of doing the calcu-
lations this way is that it resembles the propagator methods
in covariant perturbation theory, which EWP approaches
are based on. The free evolution kernel for fermions have a
close relationship with the Feynman propagator used in
QFT. What is common to both is that both particle and
antiparticle parts contribute to the evolution or propaga-
tion. The necessity of the negative frequency part in the
free evolution kernel is required from completeness and
causality arguments but it also leads to the interference of
positive and negative frequencies in flavor oscillation,
treated in Secs. II and III. Then the question also arises
in EWP approaches: Are there contributions from both
particles and antiparticles in the propagation of virtual neu-
trinos? In a simple microscopic scattering process, this
question is meaningless since virtual particles are usually
off-shell particles and must naturally have both contribu-
tions. However, in EWP approaches the neutrinos propa-
gate through macroscopic distances and, indeed, it can be
shown [19,20] that the virtual neutrinos are on-shell parti-
cles. There is no discussion, though, about the possibility
of neutrino and antineutrino contributions to the process;
both can be on-shell. This investigation is carried on in
Sec. IV calculating explicitly the amplitude of production/
propagation/detection process in an EWP approach.

As a last task, we develop a simple, type (B), second
quantized description of flavor oscillation in Sec. IVA
using the free second quantized spin 1=2 fermionic theory
in the presence of mixing. This treatment has some sim-
ilarities with the BV formalism but it does not require the
introduction of flavor Fock spaces and Bogoliubov trans-
formations. It means that the Fock space considered will be
the one spanned by the mass eigenstates. Within this
formalism it will be shown that the additional rapid oscil-
lation contributions calculated through first quantized ap-
proaches do not survive the second quantization since only
superpositions of particles (antiparticles) are used as initial
neutrino (antineutrino) flavor states. Moreover, this prop-
erty is not satisfied in the BV approach because the BV
flavor states are mixtures of particle and antiparticle com-
ponents; this is the ingredient responsible for a different
oscillation probability [3].
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II. FLAVOR OSCILLATION FOR DIRAC
FERMIONS

It is well known that the Dirac equation can give a
significantly good description of a Dirac fermion if its
inherent localization is much bigger than its Compton
wavelength; usually this is associated with weak external
fields. For example, the spectrum for the hydrogen atom
can be obtained with the relativistic corrections included
(fine structure) [28], page 72. One of the terms responsible
for fine structure, the Darwin term, can be interpreted as
coming from the interference between positive and nega-
tive frequency parts (zitterbewegung) of the hydrogen ei-
genfunction in Dirac theory compared to the nonrelativistic
theory [24]. On the other hand, a situation where the theory
fails to give a satisfactory physical description is exempli-
fied by the Klein paradox [28], page 62: The transmission
coefficient for an electron moving towards a step barrier
becomes negative for certain barrier heights, exactly when
the localization of the electron wave function inside the
barrier is comparable with its Compton wavelength.

Bearing in mind that first quantized approaches may fail
under certain conditions, we will treat in this section the
flavor oscillation problem using the free Dirac theory in the
presence of two families mixing. The extension to treat
three families of neutrinos is straightforward. A matricial
notation will be used throughout the article for the first
quantized approaches to express the mixing.

In matricial notation the mixing relation between flavor
wave functions �T

f �x� � � 
T
�e�x�;  

T
���x�� and mass wave

functions �T
m�x� � � T

1 �x�;  
T
2 �x�� is

�f�x� � U�m�x� �
�

cos� sin�
� sin� cos�

�
�m�x�: (1)

Each mass wave function is defined as a four-component
spinorial function  n�x; t�, n � 1, 2 that satisfies the free
Dirac equation
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 n�x; t� � HD

n  n�x; t�; n � 1; 2; (2)

where the free Hamiltonian is the usual

HD
n � �i� � r � �mn; n � 1; 2: (3)

We will work in the flavor diagonal basis. This choice
defines the flavor basis vectors simply as

�̂ T
e � �1; 0�; �̂T� � �0; 1�; (4)

while the flavor projectors are obviously

P �� � �̂��̂T�: (5)

Actually, as an abuse of notation, the equivalenceU�U 	
1D is implicit, as well as P�� � P�� 	 1D; the symbol 1D
refers to the identity matrix in spinorial space.

The total Hamiltonian governing the dynamics of �m is
HD � diag�HD

1 ; H
D
2 �. From the considerations above,

�f�x; t� satisfy the equation

i
@
@t

�f�x; t� � UHDU�1�f�x; t�: (6)

The solution to the equation above can be written in terms
of a flavor evolution operator KD as

�f�x; t� � KD�t��f�x; 0�

�
Z
d3x0KD�x� x0; t��f�x0; 0�; (7)

where

KD�x� x0; t� �
Z d3p
�2��3

KD�p; t�eip��x�x0�: (8)

We can calculate KD�t� in any representation (momentum
or position) as
KD�t� � Ue�iH
DtU�1 �

cos2�e�iH
D
1 t � sin2�e�iH

D
2 t � cos� sin��e�iH

D
1 t � e�iH

D
2 t�

� cos� sin��e�iH
D
1 t � e�iH

D
2 t� sin2�e�iH

D
1 t � cos2�e�iH

D
2 t

 !
: (9)
The conversion probability is then

P��e ! ��; t� �
Z
dx�yf �x; 0�K

Dy�t�P��K
D�t��f�x; 0�

�
Z
dp ~ y�e�p��K

D
�e�
yKD

�e�p; t� ~ �e�p�; (10)

satisfying the initial condition �T
f �x; 0� � � 

T
�e�x; 0�; 0�.

Such an initial condition implies, in terms of mass eigen-
functions,  1�x; 0� �  2�x; 0� �  �e�x�, as a requirement
to obtain an initial wave function with definite flavor [9].
The function ~ �e�p� denotes the inverse Fourier transform
of  �e�x� [see Eqs. (A1) and (A2)].

Before obtaining the conversion probability for Dirac
fermions, let us replace the spinorial functions  n�x� by
spinless one-component wave functions ’n�x� in the flavor
wave function �T

f �x� ! �’�e�x�; ’���x�� and mass wave
function �T

m�x� ! �’1�x�; ’2�x��. We also replace the
Dirac Hamiltonian in momentum space HD

n �p� (3) by the

relativistic energy En�p� �
������������������
p2 �m2

n

p
. Inserting these re-

placements into Eq. (10) we can recover the usual oscil-
lation probability [9,23]

P��e ! ��; t� �
Z
dxj�̂T��f�x; t�j2

�
Z
dpjKS

�e�p; t�~’�e�p�j
2

�
Z
dpP�p; t�j~’�e�p�j

2; (11)
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where �f�x; 0�T � �’�e�x�
T; 0�, KS

�e�p; t� � �KS�21 �

� sin� cos��e�iE1�p�t � e�iE2�p�t� and

P �p; t� � sin22�sin2��E�p�t=2� (12)

is just the standard oscillation formula. The conversion
probability (11) in this case is then the standard oscillation
probability smeared out by the initial momentum distribu-
tion. If the substitution j ~’�e�p�j

2 ! �3�p� p0� is made,
the standard oscillation formula is recovered: It corre-
sponds to the plane-wave limit.

After we have checked the standard oscillation formula
can be recovered for spinless particles restricted to positive
energies in the plane-wave limit, we can return to the case
of Dirac fermions. We can obtain explicitly the terms of the
mixed evolution kernel (9) by using the property of the
Dirac Hamiltonian in momentum space HD2

n � E2
n�p�1D,

which leads

�KD
�e�
yKD

�e�p; t� � P�p; t�
1� f�p��1D

� sin22�f�p�sin2� �Et�1D; (13)

where

f�p� �
1

2

�
1�

p2 �m1m2

E1E2

�
; (14)

and P�p; t� is the standard conversion probability function
(12). A unique implication of Eq. (13), which is propor-
tional to the identity matrix in spinorial space, is that the
conversion probability (10) does not depend on the spino-
rial structure of the initial flavor wave function but only on
its momentum density as

P��e!��;t��
Z
dpfP�p;t�
1�f�p��

�sin22�f�p�sin2� �Et�g ~ y�e�p� ~ �e�p�: (15)

(The tilde will denote the inverse Fourier transformed
function throughout this paper.) Furthermore, the modifi-
cations in Eq. (15) compared to the scalar conversion
probability (11) are exactly the same modifications found
in Refs. [22,23] after smearing out through a specific
Gaussian wave packet.

The conservation of total probability

P ��e ! ��; t� �P��e ! �e; t� � 1; (16)

is automatic in virtue of

KDy
ee �p; t�KD

ee�p; t� � K
Dy
�e �p; t�KD

�e�p; t� � 1D; (17)

and the survival and conversion probability for an initial
muon neutrino are identical to the probabilities for an
initial electron neutrino because of the relations

KDy
���p; t�KD

���p; t� � KDy
ee �p; t�KD

ee�p; t�; (18)

KDy
�e �p; t�KD

�e�p; t� � KDy
e� �p; t�KD

e��p; t�: (19)
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To explain the origin of the additional oscillatory terms
in Eq. (15) it is instructive to rewrite the free Dirac time
evolution operator, in momentum space, in the form

e�iH
D
n t � e�iEnt�D

n� � e
iEnt�D

n�; (20)

where

�D
n� �

1

2

�
1D �

HD
n

En

�
(21)

are the projector operators to positive (� ) or negative (�
) energy eigenstates of HD

n . By using the decomposition
above (20), we can analyze KD

�e in Eq. (9), which contains
the terms

eiH
D
1 te�iH

D
2 t � ei�Et�D

1��D
2� � e

�i�Et�D
1��D

2�

� ei2 �Et�D
1��D

2� � e
�i2 �Et�D

1��D
2�; (22)

plus its Hermitian conjugate. Since �D
1��D

2 � 0, it can be
seen that the rapid oscillating terms come from the inter-
ference between, e.g., the positive frequencies of the
Hamiltonian HD

1 and negative energies of the
Hamiltonian HD

2 . One may think that by restricting the
initial wave function to contain only positive energy con-
tributions would eliminate the rapid oscillatory terms, as
zitterbewegung disappears for superpositions of solely
positive energy states in Dirac theory [28], but it does not
happen. The positive energy eigenfunctions with respect to
a basis characterized by a mass m1 necessarily have non-
null components of negative energy with respect to another
basis characterized by m2 (this point is illustrated in
Appendix B). Thus the rapid oscillatory contributions are
an inevitable consequence of this framework and it is
always present independently of the initial WP, if initially
a definite flavor is chosen. However, its influence, quanti-
fied by the function f�p� in Eq. (14), is negligible for
momentum distributions around ultrarelativistic values
[22]. These rapid oscillatory terms will also be found for
charged spin 0 particle oscillations in the next section, with
contributions slightly different from the ones obtained for
spin 1=2 particles.

A. Inclusion of left handedness

Until this point, we have been considering the oscillation
of general flavor ‘‘particle number’’ for general Dirac
neutrinos. However, due to the left-handed nature of
weak interactions only left-handed components are pro-
duced and detected. To incorporate this fact into, for ex-
ample, the conversion probability in Eq. (10), it is
sufficient to use initial left-handed WPs and replace the
kernel of Eq. (13) by the projected counterpart
-4
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LKDy
�e �p; t�LKD

�e�p; t�L � PD�p; t�L�
1

4
sin22�

�

�
m1

E1
sinE1t�

m2

E2
sinE2t

�
2
L;

(23)

where PD�p; t� � KDy
�e �p; t�KD

�e�p; t� is the conversion
kernel of Eq. (13) and L � �1� �5�=2 is the projector to
left chirality. The conservation of total probability (16) no
longer holds because there is a probability loss due to the
undetected right-handed component,

LKDy
�e RKD�e�p;t�L�

1

4
sin22�

�
m1

E1
sinE1t�

m2

E2
sinE2t

�
2
L;

(24)

where R � �1� �5�=2 is the projector to right chirality.
We can see that the probability loss (24) is proportional to
the ratio m2

n=E
2
n which is negligible for ultrarelativistic

neutrinos. The total probability loss for an initial left-
handed electron neutrino turning into right-handed neutri-
nos, irrespective of the final flavor, is given by the kernel

LKDy
�e RKD�e�p; t�L� LK

Dy
ee RKDee�p; t�L

�

�
cos2�

�
m1

E1

�
2
sin2E1t� sin2�

�
m2

E2

�
2
sin2E2t

�
L:

(25)

To obtain the unphysical complementary kernels respon-
sible for the conversion of right-handed component to
right-handed and left-handed components, it is enough to
make the substitution L$ R in all formulas.
III. FLAVOR OSCILLATION FOR SPIN 0

The derivation of the usual conversion probability (11)
takes into account only the positive frequency contribu-
tions. The mass wave function used to obtain Eq. (11)
corresponds to the solutions of the wave equation

i
@
@t
’�x; t� �

�����������������������
�r2 �m2

p
’�x; t�; (26)

which is equivalent to the Dirac equation in the Foldy-
Wouthuysen representation [29], restricted to positive en-
ergies. The evolution kernel for this equation is not sat-
isfactory from the point of view of causality [30], page 18,
i.e., the kernel is not null for spacelike intervals. Moreover,
the eigenfunctions restricted to one sign of energy do not
form a complete set [24].

To recover a causal propagation in the spin 0 case, the
Klein-Gordon wave equation must be considered. In the
first quantized version, the spectrum of the solutions have
positive and negative energy as in the Dirac case. However,
to take advantage of the Hamiltonian formalism used so
far, it is more convenient to work in the Sakata-Taketani
(ST) Hamiltonian formalism [24] where each mass wave
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function is formed by two components,

�n�x; t� �
’n�x; t�
	n�x; t�

� �
; n � 1; 2: (27)

The components ’ and 	 are combinations of the usual
scalar Klein-Gordon wave function 
�x� and its time de-
rivative @0
�x�. This is necessary since the Klein-Gordon
equation is a second order differential equation in time and
the knowledge of the function and its time derivative is
necessary to completely define the time evolution.

The time evolution in this formalism is governed by the
Hamiltonian [24]

HST
n � ���3 � i�2�

r2

2mn
�m2

n; (28)

which satisfies the condition �HST
n �

2 � ��r2 �m2
n�1ST,

like the Dirac Hamiltonian (3). The �k represents the usual
Pauli matrices and 1ST is the identity matrix.

A charge density [31] can be defined as

�� n�n � �yn�3�n � j’nj
2 � j	nj

2; (29)

which is equivalent to the one found in Klein-Gordon
notation i
�@

$
0
. Needless to say, this density (29) is

only non-null for complex (charged) wave functions. The
charge density ��� is the equivalent of fermion probability
density  y in the Dirac case, although the former is not
positive definite as the latter. The adjoint �� � �y�3 were
defined to make explicit the (nonpositive definite) norm
structure of the conserved charge,Z

dx ��n�x; t��n�x; t� � ��n;�n� � time independent:

(30)

Consequently, the adjoint of any operator � can be defined
as �� � �3�y�3, satisfying � ���;�� � ��;���. Within
this notation, the Hamiltonians of Eq. (28) are self-adjoint,
�HST
n � HST

n , and the time invariance of Eq. (30) is assured.
We can assemble, as in the previous section, the mass

wave functions into �T
m � ��

T
1 ;�

T
2 � and the flavor wave

functions into �T
f � ��

T
�e ;�

T
���, satisfying the mixing

relation �f � U�m. The equivalence of U�U 	 1ST

and of P�� � P�� 	 1ST is implicit without modification
in the notations. Then, the time evolution of �f can be
given through a time evolution operator KST acting in the
same form as in Eq. (7). In complete analogy to the
calculations from Eq. (8)–(11), we can define the conver-
sion probability as

P��e ! ��; t� �
Z
dx ��f�x; 0�KST�t�P��K

ST�t��f�x; 0�

�
Z
dp ~�e�p�KST

�e KST
�e�p; t� ~�e�p�; (31)

where �f�x; 0�T � ��e�x�T; 0�. The adjoint operation was
-5
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also extended to ��f � �yf �1� 	 �3�, where 1� is the iden-
tity in mixing space.

The information of time evolution, hence oscillation, is
all encoded in

KST
�eKST

�e�p; t� � P�p; t�
1� f��p��1ST

� sin22�f��p�sin2� �Et�1ST; (32)

where the function f�p� was already defined in Eq. (14)
and

� �

���������������������������
1

2

�
m1

m2
�
m2

m1

�s
: (33)

The factor � � 1 determines the difference with the Dirac
case in Eq. (13). The equality� � 1 holds whenm1 � m2,
i.e., when there is no oscillation.
IV. CONNECTION WITH QUANTUM FIELD
THEORY

The main improvement of the covariant approaches
developed in Secs. II and III is that the propagation kernels
governed by Dirac and Sakata-Taketani Hamiltonians are
causal, i.e., are null for spacelike separations [see
Eqs. (A18) and (A19) and Refs. [28,30,32] ]. On the con-
trary, the kernel of spinless particles restricted only to
positive energies is not null for spacelike intervals [30].
From the point of view of relativistic classical field theo-
ries, a causal kernel guarantees, by the Cauchy theorem,
the causal connection between the wave function in two
spacelike surfaces at different times [32].

To compare the IWP and EWP approaches, it is useful to
rewrite the Dirac evolution kernel for a fermion of mass
mn, present in Eq. (7), in the form [28], page 89,

KD
n �x� y� �

X
s

Z d3p
2En

usn�x; p� �usn�y; p�

� vsn�x; p� �vsn�y; p���0

� iS�x� y;mn��0;

n � 1; 2; (34)

where �x� y�0 � t; �x� y�i � �x� x0�i when compared
to the notation of Eq. (7). The spinorial functions u, v, are
the free solutions of the Dirac equation and they are
explicitly defined in Appendix A. (More familiar forms
for the function S are also shown in Appendix A.) Clearly
the function iS�x� y;mn� � h0jf n�x�; � n�y�gj0i satisfies
the homogeneous Dirac equation with massmn (2) and it is
known to be null for spacelike intervals �x� y�2 < 0
[30,32].

In contrast, the Feynman propagator iSF�x� y� appears
in QFT. It is a Green function for the inhomogeneous Dirac
equation obeying particular boundary conditions. The
EWP approaches use this Green function for the propaga-
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tion of virtual neutrinos. To directly compare the Feynman
propagator to the kernel in Eq. (34), we can write iSF in the
form

iSF�x� y;mn� � h0jT� n�x�; � n�y��j0i

�
X
s

Z d3p
2En

usn�x; p� �usn�y; p���x0 � y0�

� vsn�x; p� �vsn�y; p���y0 � x0��: (35)

Although the function SF is called causal propagator, it is
not null for spacelike intervals, and it naturally arises in
QFT when interactions are present and treated in a cova-
riant fashion. Equation (35) shows that the propagator SF
describes positive energy states propagating forward in
time and negative energy states propagating backward in
time [28], page 91. At a first glance, both neutrino and
antineutrino parts of Eq. (35) seem to contribute to the
space-time integrations present in covariant perturbation
theory, as neutrino-antineutrino contributions in Eq. (34)
have led to Eq. (15).

In the following we will show in an EWP approach that
for large separations between production and detection
both neutrino and antineutrino parts may contribute as
intermediate neutrinos for certain situations.

We will follow the calculations made in Ref. [20], using,
instead of the scalar interaction, the effective charged-
current weak Lagrangian

LW � G
XN�3

i;��1


�l��x��
�LU�i�i�x�J��x�

� ��i�x�U��i�
�Ll��x�Jy��x�� (36)

� L1 � Ly1 ; (37)

where G �
���
2
p
GF and J� is the sum of any effective

leptonic or hadronic current. The Lagrangian (36) is writ-
ten only in terms of physical mass eigenstate fields, which
coincides with flavor eigenstate fields only for the charged
leptons: l1�x� � e�x�; l2�x� � ��x�; . . . .

Suppose the process [20,33] where a charged lepton l�
hit a nucleus A turning it into another nucleus A0 with
emission of a neutrino (this process happens around xA).
Subsequently the neutrino travels a long distance and hit a
nucleus B which transforms into B0 emitting a lepton l�
(this process happens around xB). The whole process looks
like l� � A� B! l� � A

0 � B0 with transition amplitude
given by

hA0�p0A�; B
0�p0B�; l��p��jSjA;B; l�i: (38)

The final states are momentum eigenstates while the initial
states are localized [20]. The lowest order nonzero contri-
bution of the scattering matrix S to Eq. (38) is second order
in the Lagrangian (36). More explicitly, the term that
contributes to the amplitude (38) comes from
-6
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S�2� �
i2

2
ThLWi

2 � �
1

2
ThL1 � Ly1 i

2 (39)

�� ThL1ihL
y
1 i (40)

��G2
Z
d4xd4y

X
��

L���x; y�; (41)

where h i stands for space-time integration and

L ���x; y� �
X
i

:J��x��l��x��
�LU�iiSF�x

� y;mi�U��i�
�Ll��y�J

y
� �y�:: (42)

In Eq. (40) we kept only the mixed product and in Eq. (41)
we kept from all possible terms in Wick expansion [28],
page 180, only the term responsible for the transition of
interest.

Then the transition amplitude (38) can be calculated as

�G�2hA0�p0A�; B
0�p0B�; l��p��jS

�2�jA;B; l�i

�
Z
d4yd4xhB0�p0B�jJ��y�jBi

� hA0�p0A�jJ
y
� �x�jAi �u��y;p����L

�
X
i

U�iU
�
�iiSF�y� x;mi��

�Lh0jl��x�jl�i (43)

�
X
i

U�iU��iAi: (44)

The initial states must be chosen in such a way that A, l�
are localized around xA � �tA;xA� and B is localized
around xB � �tB;xB�, since we are ultimately interested
in large separations jxB � xAj. We can implement explic-
itly those localization conditions into the wave packets

hB0�p0B�jJ��y�jBi �
1

�2��3=2

Z ddqBeip
0
B�yJBB

0

� �qB;p0B�

�  B�qB�e�iqB��y�xB� (45)

hA0�p0A�jJ
y
� �x�jAi �

1

�2��3=2

Z ddqAeip
0
A�yJAA

0

� �qA;p0A�

�  A�qA�e�iqA��x�xA� (46)

h0jl��x�jl�i �
1

�2��3=2

Z ddq� ��q��e�iq���x�xA�; (47)

where cdq � dq�2E�q���1=2, JBB
0

� �qB;p0B� �
hB0�p0B�jJ��0�jB�qB�i and JAA

0

� �qA;p0A� �
hA0�p0A�jJ

y
� �0�jA�qA�i.

Following the calculations from Eq. (43) with the local-
ization aspects of Eqs. (45)–(47) included, we arrive at
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Ai�
1

�2��6
Z ddqB

Z ddqA
Z ddq�JBB

0

� �qB;p0B� B�qB�

�JAA
0

� �qA;p0A� A�qA�e
iqB�xBei�qA�q���xA �u��p��

���L
�Z

d4xd4yei���ye�i���xiSi�y�x�
�
��L ��q��

(48)

where �� � ��0
�;���, �� � ��

0
�;���, and

� � � p� � p0B � qB;

�0
� � E��p�� � EB0 �p0B� � EB�qB�;

(49)

� � � p� � p0A � qA;

�0
� � E��q�� � EA0 �p0A� � EA�qA�:

(50)

By using the results of Eqs. (C1) and (C2), the expres-
sion between square brackets in Eq. (48) gives

2����0
� � �

0
��
Z
dxdy

�i
4�r

eik!re�i���y

� ei���x
ui�k!r̂� �ui�k!r̂���!i �mi�

� vi��k!r̂� �vi��k!r̂����!i �mi��; (51)

where r � jy � xj, r̂ � �y � x�=r, !i � �0
� � �0

�, and

k! �
�������������������
!2
i �m

2
i

q
. The crucial point here is that, depending

on the masses and momenta of the incoming particles, both
neutrinos (u �u) and antineutrinos (v �v) can contribute to the
amplitude (48) depending on the sign of its energy !i,
restricted to j!ij>mi; the off-shell contributions for!i 2

�mi;mi� are exponentially decreasing and then negligible
for large distances (see Appendix C). We will see in the
following that antineutrino contributions in this case are
possible and it corresponds to unphysical contributions.

We are interested in large production—detection sepa-
rations. It permits us to approximate, as in Ref. [20], r �
R� R̂ � �y � xB� � R̂ � �x� xA� and r̂ � R̂, where R �
jxB � xAj and R̂ � �xB � xA�=R. Such approximations
inserted in Eq. (51) lead to momentum conservation on
xA and xB vertices:

2����0
���

0
��
�i

4�R
eik!Re�ik!R̂��xB�xA��2��3�3����k!R̂�

��2��3�3����k!R̂�
ui�k!R̂� �ui�k!R̂���!i�mi�

�vi��k!R̂� �vi��k!R̂����!i�mi��: (52)

At this point we have all the information to analyze
whether the antineutrino part of the propagator contributes
to the overall process. Neither of the isolated processes
A� l� ! A0 � ��i and B� ��i ! B0 � l� are allowed if we
calculate the transition amplitude for them separately using
the weak Lagrangian (36). (For Majorana neutrinos they
are strongly suppressed by helicity mismatch.) So far four-
momentum conservation in both xA and xB vertices were
-7
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automatically required from the calculations; among them
the requirement of energy conservation for intermediate
neutrinos with respect to the accompanying particles in
vertex xA (!i � �0

�) and in vertex xB (!i � �0
�), is already

implicit. The remaining are explicit in the delta functions
of Eq. (52). The on-shell condition for neutrinos (j!ij

2 �
k2
! � m2

i ) for long distance propagation was also auto-
matic. What the calculations did not required is a definite
sign for !i, for all possible momenta constrained by the
mentioned energy-momentum conservations. To analyze if
and under what conditions both signs are possible is
equivalent to study the kinematics of two-body to two-
body scattering allowing the sign of one particle energy to
be free. Putting in equations, for vertex xA, assuming the
particle A at rest, we obtain from �pA � pi�

2 �
�pA0 � p��2 the neutrino energy

Ei �
1

2MA

M2

A �M
2
A0 �m

2
i �m

2
�

� 2E�EA0 � 2p� � p0A�: (53)

The minimum value of the right-hand side of Eq. (53)
corresponds to the last two terms equal to 2m�MA0 , which
gives for the minimum

min�Ei� �
1

2MA

M2

A � �MA0 �m��
2 �m2

i �: (54)

The values !i � �0
� are bounded from below by the value

in Eq. (54). Imposing min�Ei�>mi and min�Ei�<�mi is,
respectively, equivalent to

MA �MA0 >��m� �mi� (55)

MA �MA0 <��m� �mi�; (56)

for MA >mi and MA0 >m�. It is clear that, depending on
the value of the masses, condition (56) may be satisfied
leading to antineutrino contributions to Eq. (48) for a range
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of possible incoming momenta. Of course the condition
(55) is sufficient to exclude antineutrino contributions but
it also excludes the cases where a threshold energy is
required for the lepton l� to initiate the production reac-
tion. Thus to prevent antineutrino contributions, it is better
to adopt the weaker condition of restricting the sign of the
energy of intermediate neutrinos!i to be positive, keeping
only the first term in Eq. (51). Analogous analysis leads to
possible momenta and mass values that allow �0

� <�mi

for vertex xB, still compatible with �0
� � �0

�. Notice that
condition �0

� > mi is exactly the kinematical condition to
allow the production of physical neutrinos in xA and �0

� >
mi allow only the contribution of neutrinos with energy
above threshold to trigger the detection reaction. The
violation of these conditions implies in kinematically im-
possible contributions in production or detection.

Restricted to condition !i > 0 we can insert the expres-
sion above into Eq. (48) which yields

Ai �
Z ddq�2����0

� � �
0
����!i �mi�

�
�i

4�R
eik!R�i!i�tB�tA�ei�pk�p

0
B��xBeip

0
A�xAuk�p��

� ��Lui�k!R̂� �ui�k!R̂���L ��q��JBB
0

� �qB;p0B�

�
 B�qB����������������
EB�qB�

p JAA
0

� �qA;p0A�
 A�qA����������������
EA�qA�

p ��������qB�p��p0
B
�k!R̂

qA�p0
A
�q��k!R̂

:

(57)

Notice that the step function ��!i �mi� prevents non-
physical neutrinos to contribute to the process.

Particularly, if we use a unidimensional wave packet for
the incoming lepton l�

 ��q� �  ��qx; qy; qz� � ��qx���qy� �z�qz�; (58)

we obtain an amplitude analogous to Ref. [20]:
X
i

U�iU��iAi �
X
i

�i
4�R

eik!R�i!i�tB�tA�2�
��������2p�

@

@q2
�
��0

� � �
0
��

���������1

q��p�ẑ
ei�pk�p

0
B��xBeip

0
A�xAU�iu��p��

� ��Lui�k!R̂�U��i �ui�k!R̂���L �z�p��JBB
0

� �qB;p0B�
 B�qB����������������
EB�qB�

p JAA
0

� �qA;p0A�
 A�qA����������������
EA�qA�

p ��������qB�p��p0
B
�k!R̂

qA�p0
A
�p�ẑ�k!R̂

(59)
where p� is the root of f�jq�j � p�� � �0
� � �

0
� � 0,

which comes from energy conservation from the whole
process; if there is no root the process is kinematically
forbidden. The detection probability is proportional to the
square of the amplitude (59) integrated over the final phase
space dp0Adp0Bdp�
2EA0 �p0A�2EB0 �p

0
B�2E��p���

�1. In par-
ticular, since p�;p0A;p

0
B are fixed, the phases that differ for

different intermediate neutrinos �i are only k!R�
!i�tA � tB� which is the same result obtained in
Ref. [20] (except for terms which depend on the mean
velocity of particles A and B).

So far we have shown in an EWP approach both pro-
cesses in xA and xB should be considered real scattering
processes with real neutrinos involved. The off-shell con-
tributions are negligible to large distances and antineutrino
contributions were explicitly excluded by eliminating the
second term of Eq. (51). This information permits us to
rewrite Eq. (57) in a slightly different form:
-8
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�G2
X
i

U�iU
�
�iAi �

X
i

Z dp
2Ei�p�

Z
d4yhB0�p0B�; l��p��j

� L1�y�ei�P�pi��xB jB; �i�p�i

�
Z
d4x��y� x�hA0�p0A�; �i�p�j

� Ly1 �x�e
iP�xA jA; l�i; (60)

where P � �H;P� is the energy-momentum operator. A
change of notation were made here: in Eq. (59) the states
jBi and jA; l�i are centered around the origin while in
Eqs. (38)–(47) they are, respectively, centered around xB
and xA; the translation is explicitly performed by the trans-
lation operator eiP�x. Additionally, the step function ��y�
x� is necessary to ensure that the contributions of points y
around xB should always be after the contributions of
points x around xA. By following the same steps from
Eq. (43) to Eq. (58) we can arrive from Eq. (60) to (59).

Equation (60) shows us the amplitude of the entire
process from production to detection in ‘‘decomposed’’
form (apart from the step function in time): the amplitude
of production process multiplied by the amplitude of de-
tection process summed over all possible intermediate real
neutrinos of different masses mi and momentum p. (The
sum over spins are implicit.)

A. A simple second quantized formulation

Considering that only real neutrinos or antineutrinos
(one of them exclusively) should travel from production
to detection, the possibility to use the free second quan-
tized theory for spin 1=2 fermions to describe flavor oscil-
lations is investigated in this section. This simple, type B
and QFT description of flavor oscillation phenomena guar-
antees only particle or antiparticle propagation, keeping
the nice property of giving normalized oscillation proba-
bilities, like the first quantized examples treated in Secs. II
and III.

To accomplish the task of calculating oscillation proba-
bilities in QFT, we have to define the neutrino states that
are produced and detected through weak interactions. First,
we define the shorthand for the combination of fields
appearing in the weak effective charged-current
Lagrangian (36)

���x� � U�i�i�x�; � � e;�: (61)

We will restrict the problem to two flavor families and use
the matrix U as the same in Eq. (1). The mass eigenfields
�i�x�, i � 1, 2, are the physical fields for which the mass
eigenstates j�i�p�i are well-defined asymptotic states. The
free fields �i�x� can be expanded in terms of creation and
annihilation operators (see Appendix A) and the projection
to the one-particle space defines the mass wave function,
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 �i�x; gi� � h0j�i�x�j�i:gii �
X
s

Z
dp
gsi �p���������

2Ei
p usi �x; p�;

i � 1; 2; (62)

where

j�i:gii �
X
s

Z
dpgsi �p�j�i�p; s�i: (63)

Since the creation operators for neutrinos (antineutrinos)
can be written in terms of the free fields ��i�x� [�i�x�], we
can define the flavor states as the superpositions of mass
eigenstates

j��:fggi � U��ij�i:gii j ���:fggi � U�ij ��i:gii: (64)

The details of creation are encoded in the functions gi.
We can also define

 ���e�x; fgg� � h0j�e�x�j��:fggi � UeiU
�
�i �i�x; gi�;

(65)

where  �i�x� are then mass wave functions defined in
Eq. (62). We can see from Eq. (65) that if  �1

�x; t� �
 �2
�x; t� �  �x�, for a given time t,  �e�e�x; t� �  �x�

and  ���e�x; t� � 0 due to the unitarity of the mixing
matrix.

Although this approach does not rely on flavor Fock
spaces and Bogoliubov transformations, we can use the
same observables used by Blasone and Vitiello to quantify
flavor oscillation [34]: the flavor charges, which are de-
fined as

Q��t� �
Z
dx:�y��x; t����x; t�: ; � � e;�; (66)

where : : denotes normal ordering. Note that the Qe�t� �
Q��t� � Q is conserved [3], the two flavor charges are
compatible for equal times, i.e., 
Qe�t�; Q��t�� � 0, and
h�:fggjQj�:fggi � �h�:fggj�:fggi for any particle state (�
) or antiparticle state (� ). Notice that in the second
quantized version the charges can acquire negative values,
despite the fermion probability density in first quantization
is a positive definite quantity. The conservation of total
charge guarantees the conservation of total probability
(16).

We can further split the flavor charges into left-handed
(� ) and right-handed (� ) parts,

Q���� �t� �
Z
dx:�y��x; t�

1

2
�1� �5����x; t�: ;

� � e;�;
(67)

where Q���� �Q���� � Q�. These components will be used
to calculate the left-handed to right-handed transition.

With the flavor charges defined, we can calculate, for
example, the conversion probability
-9
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P ��e ! ��; t� � h�e:fggjQ��t�j�e:fggi (68)

� U�iU
�
�jUejU

�
ei

Z
dpe�i�Ei�Ej�t ~ y�j�p; gj� ~ �i�p; gi�;

(69)

where the neutrino wave functions  �i are defined in terms
of the function gi�p� in Eq. (62). If we could equate the two
mass wave functions in momentum space ~ �1

�p; g1� �
~ �2
�p; g2� � ~ �e�p� we would obtain, from Eq. (69), the

standard two family conversion probability (11)

P ��e ! ��; t� �
Z
dpP�p; t� ~ y�e�p� ~ �e�p�; (70)

where P was defined in Eq. (12). However, the equality
cannot hold as proved in Appendix B: Two wave functions
with only positive energy components with respect to two
bases characterized by different masses cannot be equal.
Then, it is not possible to impose a flavor definite condi-
tion. Instead, we can write

gi�p; s� �
usyi �p���������������
2Ei�p�

p ~ i�p�; (71)

where ~ i�p� is the initial wave function associated to the
neutrino of massmi at creation, taking care to maintain the
normalization

R
dpjgi�p�j2 � 1; any transition amplitude

can be written in the form Eq. (71). In general ~ i�p� �
~ �p; mi�, and then, for small mass differences,

~ i�p� � ~ �p; �m� �
�m

2

@
@ �m

~ �p; �m�; (72)

where �m � �m1 �m2�=2 and �m � m2 �m1. Keeping
only the first term, ~ �p; �m� � ~ �p�, we obtain from
Eq. (69),

P��e! ��; t� �
Z
dpP�p; t� ~ y�p�

�
1�

1

2
�1��p�

�
1

2
�2��p�

�
~ �p� �

1

4
sin22�

Z
dp ~ y�p�

�

�
f�p� cos��Et� � i

�m
2E1E2

�

� p sin��Et�
�

~ �p�: (73)

Notice that, in this case, the conversion probability is non-
null for t � 0,

P ��e ! ��; 0� �
1

4
sin22�

Z
dpf�p� ~ y�p� ~ �p�; (74)

which implies a direct lepton flavor violation in creation.
However, since f�p� � ��m�2=�4p2� for ultrarelativistic
momenta, the violation is hopelessly feeble for direct
measurement. Among the deviations of the conversion
probability (73) compared to the standard one (70), only
053013
the last term is of order �m= �E, the rest is of order ��m= �E�2

[the contributions of �i� can be estimated by

vy2 ��p; s�u1�p; s0��2 � p2
�m� �E�2=
�m1 � E1��m1�
E1�� ]. Even so, �m= �E� 10�9 for �m2 � 10�3 eV2, �m�
1=2 eV, and �E� 1 MeV, which cannot be seen in actual
oscillation experiments. Nevertheless, it is important to
note that the knowledge of �m in conjunction with �m2

gives information about the absolute mass scale because of
�m2 � 2 �m�m.

Using Q���� of Eq. (67) instead of Q� in Eq. (69) and
~ �p� � L ~ �p� in Eq. (70) we obtain

P��eL ! ��R; t� �
Z
dp
�
m1m2

4E1E2
P�p; t�

�
1

4
sin22�

�
m1

2E1
�
m2

2E2

�
2
�

~ y�p� ~ �p�:

(75)

The total probability loss from the conversion of initial
left-handed electron neutrino to right-handed neutrinos
yields

P��eL ! �eR; t� �P��eL ! ��R; t�

�
Z
dp
�

cos2�
�
m1

2E1

�
2

� sin2�
�
m2

2E2

�
2
�

~ y�p� ~ �p�: (76)

Notice Eq. (76) does not depend on time in contrast to its
first quantized analog in Eq. (25). Other conversion and
survival probabilities can be obtained from Eq. (17) and

P ��eL ! ��R; t� �P��eL ! ��L; t� � P��e ! ��; t�:

(77)

The exchange of L$ R does not modify the formulas,
provided we also change the chirality of the initial wave
function.

For completeness we calculate the additional conversion
probabilities including the second term of Eq. (72)

�P��e ! ��; t� �
1

4
sin22�

�m
2

Z
dp ~ y�p�

�
H2

2E2
�
H1

2E1

�
�m

2E1E2
� � p� ��1� ��2�

� f�p��i sin�Et
�
@
@ �m

~ �p� � H:c:;

(78)
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�P��eL ! ��R; t� �
1

4
sin22�

�m
2

Z
dp ~ y�p�

��
m2

2E2

�
2

�

�
m1

2E1

�
2
�
m1m2

2E1E2
i sin�Et

�
�

@
@ �m

~ �p� � H:c:; (79)

which have terms of order �m and ��m�2.
To calculate the conversion probability for antineutrinos

��e ! ���, it is enough to use

gs�i �p� � ~ yi �p�
vsi �p���������������
2Ei�p�

p ; (80)

instead of Eq. (71), replace t! �t and ~ �p� ! ��p
jpj

~ �p� in
the expressions corresponding to neutrinos (69)–(79), or
apply charge conjugation ~ �p� ! ��0C ~ ��p�. These pre-
scriptions can be inferred from direct comparison to the
calculations and beware that the definition of antineutrino
states are defined with gs�i �p� (A29).

The formulas obtained in this second quantized version
do not have the interference terms between positive and
negative energies like in Eq. (15). Such interference terms
are absent because the possible mixed terms like
b2�p�a

y
1 �p�j0i are null for an initial flavor state superposi-

tion that contains only particle states (or only antiparticles
states). Notice that the irrelevance of the initial spinorial
structure no longer holds in this second quantized version,
which can be seen, for example, in Eq. (73).

V. DISCUSSION AND CONCLUSIONS

Using the Dirac equation which is a relativistic covariant
equation we obtained oscillation probabilities respecting
causal propagation. The oscillation formulas obtained had
additional rapid oscillating terms depending on the fre-
quency E1 � E2, with respect to the usual oscillation for-
mulas with wave packets. Such additional oscillatorial
character seemed to have its origin in the intrinsic spinorial
character used. However, we have seen that such terms also
appear in the charged spin 0 particle oscillations. In fact,
the rapid oscillatorial terms arise from the interference of
positive and negative frequency parts of the initial WP and
they are always present independently of the initial wave
packet if initially a flavor definite condition were imposed.
In addition, within Dirac theory, we have shown the de-
tailed spinorial character of the initial wave function was
irrelevant for flavor oscillation, independently of the mo-
menta involved. The inclusion of the left-handed nature of
the created and detected neutrinos could also be simply
achieved. It is important to stress that the modifications
found in this context would have tiny observable effects to
the flavor oscillation of ultrarelativistic neutrinos.

Regarding second quantized approaches (Sec. IV), in
particular, EWP approaches, we can compare the propa-
gators used in the latter to the evolution kernels in IWP
053013
approaches. Both the free evolution kernel and the
Feynman propagator for fermions contain the contribution
from particles and antiparticles. From this perspective,
EWP approaches could also contain both contributions
from neutrinos and antineutrinos, as in the first quantized
approaches presented in Secs. II and III. To analyze this
point, an EWP calculation was carried out explicitly in
Sec. IV following Ref. [20]. Restricted to a case where only
neutrinos would be present, the calculation showed that the
antineutrino contribution was not excluded automatically
in the formalism but a subsidiary condition could be nec-
essary: The sign of the frequency of the intermediate
neutrinos should be restricted to be positive. In such a
case, there can be interference terms between positive
and negative frequencies, possibly yielding rapid oscilla-
tion terms similar to the ones obtained in Dirac theory of
Sec. II. However, it should be stressed that the origin of the
interference between positive and negative terms is differ-
ent in the first quantized Dirac theory treated in Sec. II and
in the EWP (second quantized) treated in this Sec. IV. The
former comes from causality and completeness arguments
in a classical field theory perspective, while the latter has
its origin in the consideration of nonphysical contributions.
The restriction implied by the subsidiary condition auto-
matically guarantees that: (i) only real neutrinos that are
kinematically allowed in production contributes and (ii) in
detection, only neutrinos with energies above threshold to
trigger the detection reaction contribute. Otherwise, kine-
matically forbidden reactions in production or detection
could be possible through exchange of virtual antineutrinos
carrying negative energy. The overall energy-momentum
conservation, though, is always respected (smeared out
through finite momentum distributions) through produc-
tion/propagation/detection processes. Since the presence
of both neutrino—antineutrino contributions is common
to all EWP approaches, the subsidiary condition necessary
in the EWP approach analyzed is possibly necessary in any
approach with virtual neutrino propagation. [Unless a
stronger condition like Eq. (55) is already implicit.] For
example, in Eq. (14) of Ref. [19], the subsidiary condition
(for antineutrinos) is satisfied because the detection reac-
tion is an elastic scattering. [Although the detection elec-
trons are off-shell (bound state), the subsidiary condition is
valid.] An important remark in this respect is that the
calculations of the production and detection amplitudes
as separate processes take automatically into account the
physical kinematical conditions (i) and (ii) through the
energy-momentum delta functions. It is also important to
stress that the results obtained here depended neither on
particular WPs nor on the particular interaction used. The
interesting point is that by imposing such subsidiary con-
ditions beforehand enables us to write the transition am-
plitude for the entire production/propagation/detection
process in a decomposed form, with simple physical inter-
pretation. A more detailed discussion about the decompo-
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sition of the process in separate production, propagation,
and detection processes can be found in Ref. [21]. Similar
conclusions can be drawn for the case where only antineu-
trinos should propagate: The sign to be chosen should be
negative. A realistic EWP approach for antineutrino propa-
gation is given in Ref. [19]. To conclude this part, EWP
approaches for neutrino oscillations require for consis-
tency, but do not automatically imply, real intermediate
neutrinos or antineutrinos exclusively.

All the properties discussed above about EWP ap-
proaches suggest that the description of two macroscopi-
cally distant scattering processes (production and
detection) as a single scattering process described by a
single scattering matrix has to be treated with care. We
can be confident about the use of the S matrix to describe
any microscopic event through perturbation theory to any
order of expansion (if the theory is renormalizable), but the
extension to macroscopically distant reactions is not auto-
matic. Actually, if the two processes are indeed not caus-
ally connected it can be proved that the S matrix
decomposes as the product of the two S matrices for the
two distant and independent processes [35].

From the considerations above, the positive and negative
interference terms in the first quantized approaches con-
sidered seem unphysical. To support this idea, it was shown
in Sec. IVA that a simple second quantized, type B, and
IWP-like, approach could be devised using the second
quantized free theory maintaining the simple properties
of IWP approaches but eliminating the undesirable inter-
ference of positive and negative frequencies that was in-
evitable in the relativistic quantum mechanical context. On
the other hand, new ingredients such as the direct flavor
violation in creation and deviations from the standard
oscillation formula were found. The deviations include
the probability loss due to the conversion of left-handed
neutrinos to right-handed neutrinos. Unfortunately, those
new effects are tiny either because of the small mass
difference or the ultrarelativistic nature of neutrinos and
they are not feasible for direct observation in actual oscil-
lation experiments.
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APPENDIX A: NOTATION AND DEFINITIONS

The (scalar, spinorial, or ST) wave functions related by
Fourier transforms are denoted as
’�x� �
1

�2��3=2

Z
dp ~’�p�eip�x; (A1)
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~’�p� �
1

�2��3=2

Z
dx’�x�e�ip�x: (A2)

The tilde denotes the inverse Fourier transformed function.
Using the property of the Dirac or ST Hamiltonian,

H2
n � �p2 �mn�

21, we can write the evolution operator
in the form

e�iHnt � cos�Ent� � i
Hn

En
sin�Ent�; (A3)

where the momentum dependence have to be replaced by
�ir in coordinate space.

The free neutrino field expansion used is (i � 1; 2)

�i�x� �
X
s

Z dp
2Ep

usi �x; p�ai�p; s� � vsi �x; p�byi �p; s��;

(A4)

where the creation and annihilation operators satisfy the
canonical anticommutation relations

fai�p; r�; a
y
j �p

0; s�g � �ij�rs2Ei�p��3�p� p0�; (A5)

fbi�p; r�; b
y
j �p

0; s�g � �ij�rs2Ei�p��3�p� p0�; (A6)

all other anticommutation relations are null. The functions
u, v are defined as

usi �x; p� � usi �p�
e�ipi�x

�2��3=2
; (A7)

usi �p� �
mi � Ei�

0 � p � ������������������
Ei �mi
p us0; (A8)

vsi �x; p� � vsi �p�
eipi�x

�2��3=2
; (A9)

vsi �p� �
mi � Ei�0 � p � ������������������

Ei �mi
p vs0; (A10)

where pi � x � Ei�p�t� p � x and they satisfy the proper-
ties

�u r0u
s
0 � ury0 u

s
0 � � �vr0v

s
0 � vry0 v

s
0 � �rs; (A11)

vry0 u
s
0 � ury0 v

s
0 � 0 8 r; s; (A12)

X
s

usi �p� �ui
s�p� � p6 �mi � 2Ei�p��D

i��p��
0; (A13)

X
s

vsi �p� �vis�p� � p6 �mi � 2Ei�p��D
i���p��0: (A14)

The Feynman propagator for fermions is

iSF�x� y� � h0jT� �x� � �y��j0i (A15)
-12
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�
Z d4p

�2��4
i

p6 �m� i
e�ip��x�y� (A16)

� �i@6 �m�i�F�x� y;m�: (A17)

The function S in Eq. (34) and its equivalent for the
Sakata-Taketani Hamiltonian can be written as

iS�x;m� � �i@6 �m�i��x;m�; (A18)

KST�x;m� �
�
i@t �

r2

2m
��3 � i�2� �m2

�
i��x;m�;

(A19)

i��x;m� �
1

�2��3
Z
d4p��p2 �m2��p0�e

�ip�x

�
1

�2��3
Z dp

2Ep

e�ip�x � e�ip�x�: (A20)

The free neutrino eigenstates are defined as

j�i�p; s�i �
ayi �p; s���������

2Ei
p j0i (A21)

�
Z
dx�yi �x�j0i

ui�x; p���������
2Ei
p ; (A22)

j ��i�p; s�i �
byi �p; s���������

2Ei
p j0i (A23)

�
Z
dx
vyi �x; p���������

2Ei
p �i�x�j0i; (A24)

whose normalization is h�j�p; r�j�i�p0; s�i � �ij�rs�3�p�
p0�. The same normalization is valid for the antiparticle
states. The states with finite momentum distributions are
defined as

j�i:gi �
X
s

Z
dpgs�p�j�i�p; s�i (A25)

�
Z
dx�yi �x�j0i �i�x�; (A26)

 �i�x� �
X
s

Z
dpgs�p�

usi �x; p���������
2Ei
p ; (A27)

e�iHtj�i:gi �
Z
dx�yi �x; 0�j0i �i�x; t�; (A28)

j ��i:gi �
X
s

Z
dpgs��p�j ��i�p; s�i (A29)

�
Z
dx y��i�x��i�x�j0i; (A30)
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 ��i�x� �
X
s

Z
dpgs�p�

vsi �x; p���������
2Ei
p ; (A31)

e�iHtj ��i:gi �
Z
dx y��i�x; t��i�x; 0�j0i: (A32)
APPENDIX B: DECOMPOSITION WITH RESPECT
TO TWO BASES

It is possible to decompose a given spinorial function
 �x� in terms of bases depending on different masses m1

and m2. Equating

 �x� �
Z dp

2Ei

usi �x; p�g���i �p; s� � v

s
i �x; p�g���i �p; s��;

i � 1; 2; (B1)

the expansion coefficients can be obtained:

g���i �p; s� �
Z
dxusyi �x; p� �x�; (B2)

g���i �p; s� �
Z
dxvsyi �x; p� �x�: (B3)

From Eq. (B3) we see that imposing the conditions

g���1 �p; s� � vsy1 �p� ~ ��p� � 0; (B4)

g���2 �p; s� � vsy2 �p� ~ ��p� � 0; (B5)

for all p, leads to the equivalent conditions


�m1 � E2� � �m2 � E2��v
sy
0

~ ��p� � 0; s � 1; 2;

(B6)�
1

m1 � E2
�

1

m2 � E2

�
vsy0 � � p ~ ��p� � 0; s � 1; 2;

(B7)

where the properties of Eq. (A10) and �0v
s
0 � �v

s
0 were

used. In case m1 � m2, we can use the decomposition
~ �p� � ~ ��p� � ~ ��p�, where ~ ��p� � �1�
�0� ~ �p�=2, and obtain from Eqs. (B6) and (B7) the con-
ditions

vsy0 ~ ���p� � 0; s � 1; 2; (B8)

usy0 � � p ~ ���p� � 0; s � 1; 2; (B9)

where the properties � � �0�5� and us0 � �5v
s
0 were

used in Eq. (B9). Equations (B8) and (B9) are only satisfied
if ~ ��p� � ~ ��p� � 0, since � � p has only non-null ei-
genvalues and it commutes with �0. It is easier to reach this
conclusion in the helicity basis fu���0 ; v���0 g characterized
by � � pu���0 � �jpju���0 , but the result is basis
independent.
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APPENDIX C: INTEGRALS

Splitting the Feynman propagator into positive and
negative frequency parts iSF�x� � iS����x� � iS����x�, the
following integrals give usZ
dtei!tiS����r; t;m� � ��i�

eik!r

4�r

�!�0 � k!�r̂ � ��

�m���!�m� (C1)

Z
dtei!tiS����r; t;m� � ��i�

eik!r

4�r

�!�0 � k!�r̂ � ��

�m����!�m�; (C2)

where k! �
�������������������
!2 �m2
p

, r � rr̂, the conditionsmr, k!r�
1 were assumed, and terms behaving as 1=r2 were
neglected.

To illustrate the calculations, Eq. (C1) is obtained byZ
dtei!tiS����r; t;m� �

1

�2��3
Z dp

2E�p�

�
i�E�p��0 � p � ��m�

!� E�p� � i
eip�r

(C3)
053013
�
1

�2��2
�i
2r

Z 1
�1

dp
p

E�p�

�
sinpr

E�p��0 �m
E�p� �!� i

�

�
cospr�

sinpr
pr

�
ip�r̂ � ��

E�p� �!� i

�
: (C4)
In Eq. (C3) the following identity is used:
Z 1
0
dte�iEt �

�i
E� i

: (C5)
To get to the result of Eq. (C1) it is necessary to split the
functions sinpr and cospr in Eq. (C4) into exponentials
and, for the eipr part, integrate along a closed path formed
by a half semicircle in the upper-half complex plane going
round the branching line 
im; i1� (for the e�ipr part take
the path reflected by the line defined by Rez � 0). The
contribution from the paths beside the branching line yields
a function which decreases more rapidly than e�mr and it is
negligible for mr� 1. The contributions for �m<!<
m give a function with dependence e�jk!jr which is also
negligible for large separations r.
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