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ABSTRACT

In this work, new static output feedback (SOF) controller synthesis conditions for the

stabilization of linear systems are proposed. The cases of uncertain linear time-invariant

(LTI) systems and linear parameter-varying (LPV) systems are addressed in the frame-

works of robust control and gain-scheduling (GS) control, respectively. The SOF con-

troller synthesis is based on the two-stage method, in which a preliminary state feedback

(SF) gain matrix is designed, and then used as input information to the second stage

for obtaining the desired stabilizing SOF controller. The proposed design conditions are

given in terms of sufficient linear matrix inequalities (LMI), and are obtained consider-

ing the enforcement of specific additional constraints for guaranteeing improved transient

performance regarding the establishment of a lower bound on the closed-loop system

decay rate and reduced oscillatory behavior. Such further control requirements are im-

posed through LMI pole placement constraints, designed based on the concept of the

D-stability of continuous-time systems. Furthermore, SOF control design conditions are

also proposed for addressing noise/disturbance rejection by means of the H∞ guaranteed

cost minimization, particularly for discrete-time LPV systems. Additionally, the employ-

ment of the studied SOF control strategy for dealing with uncertain LTI systems with

sensors and/or actuators with non-negligible dynamics and subject to time delay is inves-

tigated. For this purpose, an augmented system model which encompasses plant, sensors,

and actuator dynamics is obtained. The system augmentation procedure also takes into

account the dynamic effect of the time delay. Particularly for this problem, the use

of homogeneous-polynomial parameter-dependent Lyapunov functions (HPPDLF) with

degree higher than 1 is considered. Disturbance rejection is also addressed through exten-

sions to H2 guaranteed cost minimization. Numerical examples are presented to illustrate

the SOF controller synthesis procedure proposed in this work, as well as to highlight its

features and advantages over other strategies available in the literature. Results of prac-

tical implementation of SOF controllers designed using the proposed methods are also

presented, attesting for the potential of the contributions of this work to be employed in

real world control problems.

Keywords: static output feedback; linear systems; gain-scheduling control;

robust control; pole placement; H2/H∞ control; linear matrix inequalities.



RESUMO

Neste trabalho são propostas novas condições para a síntese de controladores via realimen-

tação estática de saída (SOF, sigla do inglês static output feedback) objetivando a estabi-

lização de sistema lineares. Os casos de sistemas incertos lineares invariantes no tempo

(LTI, do inglês linear time-invariant) e de sistemas lineares com parâmetro variante no

tempo (LPV, do inglês linear parameter-varying) são abordados no contexto de controle

robusto e de controle gain-scheduling (GS), respectivamente. A síntese dos controladores

SOF é baseada no método dos dois estágios, no qual uma matriz de ganhos de realimenta-

ção de estado é preliminarmente projetada, e então utilizada como parâmetro de entrada

para o segundo estágio, no qual o controlador estabilizante SOF pode ser obtido. As

condições de projeto propostas são dadas em termos de desigualdades matriciais lineares

(LMI, do inglês linear matrix inequalities) suficientes, as quais são obtidas considerando

a imposição de restrições adicionais para obtenção de garantias para uma performance de

transitório adequada, impondo um limitante inferior para a taxa de decaimento do sis-

tema em malha fechada e também um comportamento oscilatório mais amortecido. Tais

requisitos de controle adicionais são impostos a partir da consideração de restrições LMI

para a alocação de polos, projetadas baseadas no conceito da D-estabilidade de sistemas

contínuos no tempo. Além disso, condições de projeto SOF são também propostas para

abordar a rejeição de ruído/distúrbio por meio da minimização do custo garantido H∞,

particularmente para sistemas LPV discretos no tempo. Adicionalmente, é investigado

o emprego da estratégia de controle SOF em sistemas incertos LTI com atuadores e/ou

sensores com dinâmica não desprezível, e sujeitos a atraso no tempo. Para tal propósito,

um modelo de sistema aumentado é obtido de forma a englobar as dinâmicas da planta,

dos sensores e atuadores. O procedimento de aumento de sistema também leva em con-

sideração o efeito dinâmico do atraso. Particularmente para este problema, considera-se

o uso de funções de Lyapunov polinomiais homogêneas dependentes de parâmetros (HP-

PDLF, do inglês homogeneous-polynomial parameter-dependent Lyapunov functions). A

rejeição de distúrbios também é tratada por meio de extensões para a minimização do

custo garantido H2. Exemplos numéricos são apresentados para ilustrar o procedimento

de síntese de controladores SOF proposto neste trabalho, assim como para destacar suas

características e vantagens comparadas a outros trabalhos na literatura. Resultados de

implementações práticas de controladores SOF projetados utilizando as estratégias pro-

postas também são apresentados, atestando o potencial das contribuições deste trabalho

para serem aplicadas a problemas de controle do mundo real.

Palavras-chave: realimentação estática de saída; sistemas lineares; controle

gain-scheduling; controle robusto; alocação de polos; controle H2/H∞; de-

sigualdades matriciais lineares.
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1 INTRODUCTION

This first chapter begins with the presentation of ideas and concepts that motivated

the exploration of the subjects of interest of this work, which are mainly related to linear

control systems via static output feedback (SOF). Then, by means of a more detailed

literature review, we manage to introduce the scientific development in the control the-

ory fields that are addressed and discussed in the subsequent chapters. The idea is to

give proper context regarding the current research state-of-the-art on the output-feedback

stabilization problem written in the linear matrix inequality (LMI) framework, with em-

phasis in gain-scheduling and robust control, pole placement constraints, and H2/H∞

norm optimization. On top of that, we summarize the technical contributions that are

presented, proposed, and discussed in this work. Finally, the organization of the following

chapters of this text is presented.

1.1 MOTIVATION

A mathematical system model consists of a set of mathematical equations that de-

scribes how the state of a dynamic system changes in time according to its initial condi-

tions and/or the influence of an external stimulus. Regardless of whether we are talking

about an airplane flying in the sky, a robot in an industrial plant, or even the stock market

variations, it is of great practical importance to know how these systems behave. This

knowledge grants us the ability to not only have some insights on how their behavior

will evolve with time but, more importantly, it gives us the possibility of acting on such

systems, in order to enhance its performance, making them to operate according to our

purpose.

With this, we can conduct the system state (such as its position, velocity, or temper-

ature, for instance) to assume a specified reference value within a certain amount of time,

according to some specified characteristics in terms faster and/or smoother responses.

We also might want to guarantee that the system is able to maintain such features even

when some unavoidable perturbation exerts influence over it, as a sudden strong gust of

wind blowing over the wings of a plane during its flight, for example. All these men-

tioned objectives can be achieved by means of the design of an automatic controller for

the considered system, based on its mathematical model, that will control its behavior
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accordingly to the desired specification.

However, in practice, the parameters that compose a system model are not precisely

known, i.e., the mathematical model presents some amount of uncertainty on the actual

values of the parameters associated to the system dynamics. For example, the vertical

displacement of a vehicle while driving exhibits a different behavior depending on the

total mass that is being carried. This means that the suspension has different dynamics

depending whether we have just one person in the vehicle, or if it is the case of a whole

family on a vacation trip, and therefore, the system model is also different for each one

of these situations – or any other between these extreme cases.

These practical challenges steamed the development of the robust control theory. By

means of the design of a robust controller one can guarantee acceptable performance,

even when the considered system model is subject to uncertain parameters. This field

of study attracted a great amount of attention over the past decades, and it is still

being investigated until today through multiple perspectives. Besides robustness to model

uncertainty, robust control is also applied to establish robustness over other practical

conditions that some dynamic systems are subject to experience, such as power failures,

loss of data in communication channels, and digital attacks – which is a matter that gained

a great deal of relevance in the recent years, on the scope of cyber-security systems.

Particularly related to disturbance rejection, the robust control theory evolved around

the so-called H∞ control theory. The design of H∞ robust controllers is based on a

frequency domain approach, and it is concerned with rejecting the effect of disturbance

input signals over the system output. In short, the idea is to identify how each particular

frequency signal is amplified from the input to the output, and then try to minimize

the worst-case, i.e., the frequency in the spectrum for which occurs the highest gain

amplification of the input to the output. In that way, if the H∞ robust controller is able

to minimize the worst case, then the effect of every other possible frequency of disturbance

is consequently attenuated.

By employing robust control techniques, we are also to able enhance the system

performance regarding its transient response. When a system model is given in terms

of a set of matrices, we might associate its corresponding eigenvalues configuration to

the system transient shape. Around this concept, the theory of D-stability evolved with

the objective of strategically adjusting the system’s eigenvalues (or poles, as sometimes

referred to in the literature) configuration, in order to modify its time response, usually

for making it faster and with reduced oscillations.

In addition, there are some particular occasions where the parameters associated to

the system model varies over time. This is the case of a rocket during its flight: the mass

is a parameter that varies along the take-off, as the fuel used for its propulsion is being
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consumed. Clearly, the actual value of the mass of the rocket will dictate its aerodynamic

characteristics. To address such kind of problem, we can employ robust control strategies,

assuming that the time-varying parameter is an uncertainty in the system model.

However, particularly when the time-varying parameter is being measured along with

the system operation, better performance results can be achieved. In such cases, we can

employ the design of a controller that adapts its configuration according to the instant

value of the time-varying parameter: the so-called gain-scheduled controller. The idea of

“scheduled” controller gains comes from its early applications, where the range of variation

of the time-varying parameter is divided into small sections, for which an individual

“static” controller is designed. Then, the controller gains are selected accordingly to the

actual values of the parameters and the system corresponding point of operation.

Over the past decades, gain-scheduling control techniques evolved, and its study has

gained a great amount of attention in the control research community. If fact, one can find

results on gain-scheduling for addressing all the above-mentioned problems and several

others more. However, some controversy exists particularly associated to the applica-

tion of the D-stability concepts on the gain-scheduling framework. The main reason

is that D-stability is formally defined for time-invariant systems, as it is based on the

idea of eigenvalue assignment. Since we cannot properly relate to eigenvalues when ad-

dressing time-varying matrices, a great care must be taken when transient performance

improvement through D-stabilization is a control objective in a gain-scheduling design.

Nevertheless, we have seen a quite few works dealing with D-stability in the context of

time-varying systems, showing that there is some room for exploring this subject when

properly approached.

On top of all that, it is imperative to observe that a control system is almost always

useless if not able to be implemented in practice. One of the main cases in which this

can happen is when we do not dispose of the complete set of measurements of the system

state for composing a feedback loop. In such situations, in addition to the controller one

might need to design a state observer in order to obtain an estimation on the missing

state information. It was over this practical issue that the static output feedback arose in

control theory. This technique – differently from the state feedback – considers utilizing

only the available state information to form the feedback loop, representing a more direct

approach to the problem.

A very popular strategy in the literature for addressing this practical issue is the

dynamic output-feedback (DOF) control, which is based on the design of a controller that

presents its own dynamic behavior, consisting of a separate system itself. In this kind of

control system, the inputs are the measurements of the available state variables of the

plant to be controlled. According to this information, the DOF controller produces a
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control command as output signal.

With a simpler implementation setup, we also have the SOF control. In contrast to

the dynamic controller obtained through the DOF approach, the SOF control is based on

the design of a single static feedback gain that will produce the desired control signal using

only a subset of the plant state variables. Although it represents an elegant and simpler

approach, the SOF is for long known as one of the most challenging problems in control

theory. The reasons can be summarized in two: i) the mathematical manipulation of the

SOF control problem is intrinsically way more involved and difficulty to handle; ii) there

is no closed solution for the problem yet until today, even for the simplest case where no

uncertainties are considered in the system model, in contrast to the state-feedback case.

Additionally, it is worth noting that by performing some system model augmentation,

a DOF controller synthesis can be reduced to an SOF problem, which emphasizes the

relevance of the SOF strategy in control theory.

At last, we must emphasize that regardless of whether we are dealing with uncertain

or time-varying systems, or if we are interested in solving state or output feedback control

problems, the use of the LMI framework contributed for a strong development in control

theory research. One of the main features that make LMI an interesting tool for addressing

control problems is that it makes possible to easily consider multiple design requirements

in a single formulation. The idea behind LMI representation is that we can reduce a

control problem to a convex optimization problem. In this context, after the development

of efficient computational tools, the interest in describing a control problem in terms of the

solution of a set of LMI grew strongly, and until today, we continue to see quite important

results and contributions on control theory that are based on the LMI framework.

It is motivated by the presented scope that the main subject addressed in this work

is defined: the proposition of new LMI-based synthesis conditions for SOF design. The

idea is to bring new contributions in terms of new alternatives for the SOF control design,

motivated by the relevance of the referred topic in the control research community, and by

the fact that it still an open problem in the literature. In the next chapters, the problems

of pole placement constraints and H2 /H∞ norm optimization are investigated consid-

ering the SOF background. Continuous- and discrete-time linear systems are considered

for study, as well as uncertain linear time-invariant (LTI) and linear parameter-varying

(LPV) cases. The goal is to embark relevant control requirements under a single design,

investigating the role of D-stability concepts in SOF designs for uncertain LTI systems,

and also its extension to LPV systems. By means of a broader and more technical back-

ground on the subjects of interest for the development of this work, we intend to clearly

point out how the proposed results are inserted among others already available in the

literature.
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1.2 LITERATURE REVIEW

As briefly introduced in the previous section, the results proposed in the present work

concern the stabilization of linear systems by means of the design of SOF controllers. In

that sense, is rather important to emphasize the role of the output feedback in control

problems.

The state-feedback (SF) control is a very common and widely applied technique. It

consists in the design of a controller that produces a control signal based on complete

system state measurement. Undeniably, SF control can yield an efficient solution to

a myriad of problems, under a vast universe of design requirements and constraints,

with a view to stability and good transient performance. However, despite the technical

guarantees, in the case of incomplete state information, the direct implementation of

standard state feedback would be hindered in practice. The output-feedback control

emerges from this practical issue, enabling control implementation using only the available

state information.

As mentioned before, the output feedback can be addressed from the DOF or the SOF

approaches. In the former, the controller consists of a whole dynamic system itself, and

the problem is based on designing a set of state-space matrices that will form the dynamic

feedback loop, which implies in system order augmentation. The latter is formulated in a

more straightforward strategy, where the feedback loop is formed by a static feedback gain

matrix, yielding a simpler control implementation (DONG; YANG, 2008; SADABADI;

KARIMI, 2015).

We can find, indeed, relevant contributions on DOF control on many different scopes,

as finite-time stabilization (AMATO; ARIOLA; COSENTINO, 2006), switched linear sys-

tems (GEROMEL; COLANERI; BOLZERN, 2008; DEAECTO; GEROMEL; DAAFOUZ,

2011; EGIDIO; DEAECTO, 2021), model predictive control (DING, 2010; DING; HUANG;

XU, 2011), and event-triggered control (SOUZA et al., 2021b; LI et al., 2021), for citing

a few.

On its turn, the SOF control is still considered as a major open problem in the control

theory literature (TROFINO; KUCERA, 1993; SADABADI; PEAUCELLE, 2016). No

closed solution is available, even in the case where the plant model is assumed to be known.

In fact, the SOF stabilization is for long known as an NP-hard problem (BLONDEL;

TSITSIKLIS, 1997), which characterizes its intrinsic difficult mathematical formulation

(SOF control is a non-convex problem even in the stabilization of completely known

systems (CRUSIUS; TROFINO, 1999)). Nevertheless, such challenging nature motivated

the development of studies on this subject over the past decades, addressing several control

problems.
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Due to these facts, most of the available contributions on SOF control are based

on severe restrictions over the problem variables or even on the system matrices. It is

not rare to find sufficient design conditions in the literature that were obtained through

the imposition of restrictions on the system output matrix format (GEROMEL; PERES;

SOUZA, 1996; DONG; YANG, 2013), for instance. Otherwise, the SOF control must be

tackled as a non-convex bilinear matrix inequality (BMI) problem by means of the use

of specialized solvers and algorithms that severely depends on the initialization step, and

yet may often fail to provide a solution (SADABADI; PEAUCELLE, 2016).

On the other hand, the SOF control stills to steam great interest in the research

community, and several new strategies have been proposed recently, specially based on

Lyapunov stability theory, modeled as convex problem stated in terms of LMI. In this

context, SOF control problem have been investigated under many different design re-

quirements and frameworks, as in works based on the cone complementarity algorithm

(GHAOUI; OUSTRY; AITRAMI, 1997), iterative LMI-base (CAO; LAM; SUN, 1998), lin-

ear matrix inequality and equality constraints (CRUSIUS; TROFINO, 1999; TROFINO;

KUCERA, 1993), polytopic uncertain systems (GEROMEL; KOROGUI; BERNUSSOU,

2007; DONG; YANG, 2013; AGULHARI; OLIVEIRA; PERES, 2010b), regarding norm-

bounded uncertainties (QIU; FENG; GAO, 2011; GRITLI; ZEMOUCHE; BELGHITH,

2021), and H2 norm optimization (AL-JIBOORY; ZHU, 2018; SPAGOLLA et al., 2021),

for citing a few.

There are, as briefly mentioned, several available approaches for tackling the SOF

control problem. In this work, we are particularly interested in the two-stage method

(PEAUCELLE; ARZELIER, 2001; MEHDI; BOUKAS; BACHELIER, 2004), which has

been showing great potential in addressing SOF synthesis problems from a convex LMI-

based approach. The idea lies in a preliminary design in which a state-feedback gain

matrix is computed. Then, the obtained SF controller is used in the second stage, in the

search for the desired SOF controller.

Several interesting contributions regarding two-stage SOF design have been published

so far, as for time-delay systems (HAO; DUAN, 2015), polytopic systems (AGULHARI;

OLIVEIRA; PERES, 2010b; SERENI et al., 2018; SERENI; ASSUNÇÃO; TEIXEIRA,

2020), distributed SOF control systems (CHEN; XU; WANG, 2021), an heuristic two-

stage approach (HAO et al., 2021), and many others. This crescent interest on the subject

motivates our choice for addressing the SOF control problem from the two-stage method.

When further design requirements rather than stability are on demand, new synthe-

sis constraints need to be considered in the controller design. Here, we give a special

attention to the robust D-stabilization, which refers to a controller design for clustering

the eigenvalues of an uncertain system in a specific region of the complex plane defined
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in terms of LMI (CHILALI; GAHINET; APKARIAN, 1999). This technique enables

the enforcement of a variety of performance specifications such as bounds on decay rate,

damping ratio and undamped natural frequency. Using such tool, the designer can im-

press a more specific time response besides asymptotic stability for a dynamic system

(SANTOS; PELLANDA; SIMÕES, 2018; CHILALI; GAHINET, 1996).

Indeed, the D-stability has received a great deal of attention in the last decades,

having been addressed from different frameworks, such as the non-smooth optimization

and through LMI constraints. Interesting results on the former can be seen in Santos,

Pellanda and Simões (2018), Yaesh and Shaked (2011), and Burke, Lewis and Overton

(2003), for example.

In the present work, we are especially interested in LMI-based strategies. Such interest

stems from the fact that LMI formulations enables an easy grouping of design criteria, e.g.

stability, dynamic performance, and input and/or output bounds, and also that LMI-based

problems can be efficiently solved with semidefinite programming tools (AGULHARI;

OLIVEIRA; PERES, 2010b).

In fact, one can find results for D-stability based on LMI formulation in analysis

problems (EBIHARA; MAEDA; HAGIWARA, 2005; PEAUCELLE et al., 2000), for SF

controller synthesis (YANG; GANI; HENRION, 2007; YANG; ROTONDO; PUIG, 2019),

state derivative feedback case (BETETO et al., 2018), and also in the output feedback

framework (ZHANG; DUAN, 2017; SAHOO et al., 2019; BEHROUZ; MOHAMMADZA-

MAN; MOHAMMADI, 2021), for mentioning a few.

The allocation region can be specified in different manners. In special, the definition of

a circular D-region has demonstrated interesting results for pole placement of uncertain

LTI systems, as shown in reports on state feedback (LEITE; MONTAGNER; PERES,

2002) and state derivative feedback (BETETO et al., 2018). Particularly in the SOF case,

in Sereni, Assunção and Teixeira (2019) the authors bring an SOF controller synthesis

based on the two-stage method.

One recurrent issue in two-step SOF design strategies is that the first stage does not

consider complete information about the design requirements specified in the second stage.

Since the two-stage method – as any other numerically tractable SOF strategy – consists

of sufficient conditions (SADABADI; PEAUCELLE, 2016), one might observe that the

solution obtained in the second stage might be different depending on the SF gain used

as input information. In fact, the second stage may not even be feasible for a particular

choice of first-stage gain matrix. Bearing this in mind, the selection of an appropriate

strategy for the SF stage is of great relevance in the two-stage method.

As seen, many interesting contributions regarding SOF control for LTI systems have
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been proposed in the past decades, but they are not limited to this class of linear systems.

In several practical situations, the system parameters are not constant and do change with

time. This is the case of the LPV systems. LPV systems consist of an important class of

linear dynamic systems in which the state-space matrices are fixed functions of a vector of

time-varying parameters, θ(t) (GAHINET; APKARIAN, 1994; RUGH; SHAMMA, 2000).

The relevance of the LPV framework stems from the fact that it can be used to model

linear time-varying (LTV) systems or represent linear models of nonlinear plants, then

enabling the employment of powerful linear control techniques to address analysis and

stabilization problems of nonlinear systems (APKARIAN; GAHINET; BECKER, 1995).

For decades, the control of LPV systems has received a great deal of attention, and

different approaches have been proposed for dealing with such systems. The main strate-

gies published so far differ depending on the available information about the time-varying

parameters. If θ(t) is treated as a parametric uncertainty, then robust control techniques

can be applied for stabilizing the LPV plant (GAHINET; APKARIAN, 1994). However,

if those parameters are known at all instants of time t > 0 (by online measurement or

estimation), then such information can be used to develop control strategies that might

be able to yield higher performance (RUGH; SHAMMA, 2000), namely, LPV control or,

equivalently, gain-scheduling (GS) control.

The GS is a control design strategy that is being intensively studied in the past decades

(HOFFMANN; WERNER, 2014; WEI et al., 2014). Further from finding a special use

for dealing with nonlinear systems, the GS strategy has demonstrated to be capable of

addressing a handful of control objectives when dealing with LPV systems (APKARIAN;

GAHINET, 1995; CAIGNY et al., 2012). In practical terms, GS control proved its efficacy

in coping with systems that experience rapid changes in operating conditions. Indeed,

applications on guided missiles, airplanes autopilots, robots, and others can be found in

the literature (AL-JIBOORY; ZHU, 2018).

The first GS strategies where based on a problematic “divide and conquer” method,

in which the space of the time-varying parameters were divided into small areas, and

local LTI controllers were designed and switched according to a gain-scheduling rule on

the values of θ(t) (ÅSTRÖM; WITTENMARK, 2013; STILWELL; RUGH, 1999). The

problems of this approach arise from the fact that no guarantees over the global stability or

performance are provided. Also, a fine parameter griding is necessary for achieving good

performance, which implies on a high complexity control structure (RUGH; SHAMMA,

2000).

Such drawbacks were surpassed with the emergence of more modern techniques: the

linear fractional transformation (LTF) and Lyapunov-based approaches for GS control.

In these strategies, the controller is designed in the same parameter-dependent fashion
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as the LPV plant, and then, a “smooth” scheduled controller is derived. In the LFT

framework, the state-space matrices are linear fractional functions of θ(t). Following the

pioneer work Packard et al. (1991), many papers have been published in the literature on

LFT-based GS control (YUAN, 2017; BAN; WU, 2016; ZIN et al., 2008; WU; DONG,

2006; APKARIAN; PELLANDA; TUAN, 2000). However, LFT has the drawback of

considering complex variation values of θ(t) and to be based on a restrictive block diagonal

scaling, which introduces conservatism (APKARIAN; GAHINET; BECKER, 1995; WU;

DONG, 2006).

In contrast, the polytopic approach considers the case of an affine dependence of the

state-space matrices on θ(t), with θ(t) belonging to a polytope (APKARIAN; GAHINET;

BECKER, 1995). The stability and performance certificates are then obtained by employ-

ing Lyapunov’s direct method, which consists in finding an appropriate scalar function

associated to the system dynamics. Works based on the polytopic approach evolved

regarding the design of common quadratic Lyapunov functions (CQLF) and parameter-

dependent Lyapunov functions (PDFL) (CAIGNY et al., 2010). Basically, CQLF guar-

antees the so-called quadratic stability by means of a fixed Lyapunov matrix P , whereas

PDFL incorporates the time-varying parameter in the Lyapunov function, implying on

the search for a parameter-dependent matrix P (θ(t)).

Each strategy has its own advantages. In fact, considering a fixed matrix P leads to

a considerably more simple mathematical and computational problem, since no other in-

formation besides the variation range of θ(t) needs to be known a priori for the controller

design, in contrast to PDLF approach which also needs the information of maximum and

minimum rates of θ̇(t), particularly in the continuous-time case. However, conservatism

reduction can be obtained by considering a time-varying parameter-dependent matrix

P (θ(t)), since it enables the search for multiple Lyapunov matrices that can guarantee

stability and performance for the entire range of parameter variations. Undeniably, re-

search on LPV systems is still a hot-topic in control literature, with quite innovative

contributions, as for descriptor systems (CHEN; HAN; HOU, 2021; RODRIGUES et al.,

2014), on event-triggered control (SOUZA et al., 2021a, 2021b), and also cyber-physical

LPV systems (PESSIM et al., 2021), for instance.

In the present work, we consider utilizing GS control via Lyapunov-based approach,

which has received increasing interest over the past two decades. Particularly in the

continuous-time LPV framework, one can find interesting and relevant results regarding

SOF design. For instance, Al-Jiboory and Zhu Al-Jiboory and Zhu (2018) proposed con-

ditions for the GS-SOF controller with guaranteed H2 performance; and Sereni, Assunção

and Teixeira (2020) developed LMI conditions for GS-SOF controller design with decay

rate bounding.
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We are also interested in investigating the discrete-time case of GS control, as its rel-

evance continues to grow as digital technology becomes more present in the industry and

other areas of application of control theory. For presenting some of the available results on

the subject, we can mention contributions on LPV control for discrete-time state-feedback

controller design considering H∞ performance in a CQLF approach (MONTAGNER et

al., 2005), and on H2/H∞ problem addressed via piecewise Lyapunov functions (AM-

ATO; MATTEI; PIRONTI, 2005). Extensions to LPV systems with multiplicative noises

were also investigated, where GS synthesis conditions can be found in both CQLF and

PDLF frameworks (KU; CHEN, 2015). Recently, a more general proposal of LMI condi-

tions for the synthesis of GS H∞ controller emerged (PANDEY; OLIVEIRA, 2019), along

with a new approach based on the case where the time-varying parameters can be written

as solutions of a linear difference equation (PALMA; MORAIS; OLIVEIRA, 2020).

A particular approach which has been intensively investigated is the use of homo-

geneous polynomial parameter-dependent Lyapunov functions (HPPDLF). Analysis and

control synthesis conditions were presented for state-feedback control, using HPPDLF and

multi-affine Lyapunov functions (OLIVEIRA; PERES, 2009). Gain-scheduling problems

have also been investigated in the output-feedback case. Indeed, works on gain-scheduled

static output feedback (GS–SOF) with H∞ performance problem can also be found in

the literature using the HPPDLF approach (SADEGHZADEH, 2017; ROSA; MORAIS;

OLIVEIRA, 2017), in addition to extensions for dealing with time-delayed LPV systems

(ROSA et al., 2018), and to the use of path-dependent Lyapunov functions (RODRIGUES;

CAMINO; PERES, 2018). The problem of multi-objective H2/H∞ approach via PDLF

was also studied for both state- and static output-feedback cases (CAIGNY et al., 2010),

and also on a DOF framework (CAIGNY et al., 2012). The GS–DOF problem is, indeed,

a topic of great interest (JUNIOR; GALVÃO; ASSUNÇÃO, 2017). Papers on the robust

case considering l2-gain performance (SADEGHZADEH, 2018) and reduced-order mixed

performance objective (ROSA; MORAIS; OLIVEIRA, 2018) applying the HPPDLF ap-

proach can be found in the literature.

Further from guaranteeing closed-loop stability, performance improvement is also a de-

sired control requirement in LPV control. As previously discussed, among other strategies,

this control objective may be achieved by enforcing the closed-loop eigenvalue placement

in a particular region of the complex plane, by means of the use of D-stability constraints,

although D-stabilization is well defined for LTI systems, since it is a concept associated

to closed-loop eigenvalue (or pole) placement. Nevertheless, extensions for LPV systems

have been developed in the literature, based on the idea that for fixed (or “frozen”) val-

ues of the scheduling parameters, the LPV model assumes a specific LTI configuration.

Particularly for polytopic models, pole placement constraints over the polytope vertices

have been shown to be able to induce improved closed-loop transient performance of LPV
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systems (KAJIWARA; APKARIAN; GAHINET, 1999; ROTONDO; NEJJARI; PUIG,

2014; BEHROUZ; MOHAMMADZAMAN; MOHAMMADI, 2021).

Aside from the classic control problems that have been discussed so far, the SOF

control might be an interesting solution to some very important problems that arise

from practical issues that several systems experience. For instance, in some situations,

automatic control systems are composed of sensors and actuators with non-negligible

dynamics as, for instance, in embedded controllers of modern light-weight aircraft (AL-

JIBOORY et al., 2017). Due to the intrinsic aeroelastic nature of such systems, we observe

a strong interaction between the aircraft structure and its control and actuator systems.

Such interconnection is referred in the specialized literature as aeroservoelasticity (YANG;

WANG; XU, 2018). As a consequence, for properly representing the system in order to

achieve desired aeroelastic characteristics, these additional dynamics must be considered

in system modeling (TANG et al., 2021; WANG; WYNN; PALACIOS, 2016).

In face of such practical issue, one may note that the actual plant state variables

are not available for composing the feedback loop, but only the sensors outputs, hence

hindering the implementation of standard state-feedback control techniques. Therefore,

the employment of additional sensors, which may also present non-negligible dynamics,

might be demanded. Moreover, ignoring such parasitic dynamics may incur in perfor-

mance loss and, in the worst case, compromise the closed-loop stability, as been long

known (LEITMANN; RYAN; STEINBERG, 1986; YOUNG; KOKOTOVIC, 1982). This

fact motivated the development of studies for robust control designs that may address the

problem of actuators and sensors dynamics. We may cite, for instance, contributions re-

garding observed-based design (KHALIL, 2005; ANFINSEN; AAMO, 2018), sliding mode

control (SMC) (BANZA; TAN; MAREELS, 2020), and output feedback control (WANG;

WU; LI, 2014). In this work, we particularly discuss the output-feedback control and how

it emerges as a convenient approach, which can be employed by considering an augmented

system representation encompassing the plant, sensors, and actuators dynamics. Then,

only the sensor output signals are used in the feedback loop, as presented in (SERENI et

al., 2020).

However, the problem gets even more involved when the sensor and actuator dynamics

involve time-delay. Due to its relevance, the effects of time delay have been investigated

in several areas of engineering, such as power (WU; NI; HEYDT, 2002), communication

(GUNNARSSON; GUSTAFSSON; BLOM, 2001), and control systems (SHIN; CUI, 1995).

In particular, the research on network communication delay has been flagged as a relevant

issue for advanced aircraft data exchange systems (WANG; PENG; YAN, 2018). Even

more complicated problems arise in the case of uncertain delays. As a matter of fact, the

huge amount of data flow in aircraft network buses implies in the uncertain behavior of
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such systems. Furthermore, the relationship between time delay and actuator dynamics

have also raised interest to the development of research on the stability margin in fighter

aircraft (KIM et al., 2021), for instance.

The practical relevance of the effects of time delay in dynamic systems motivated the

research on modeling and control design strategies that are able to guarantee robustness

over the above mentioned issues (FENG, 2016; BENAMMAR et al., 2017). Many of the

available methods are related to predictor-like techniques (ALBERTOS; GARCÍA, 2009;

TORRICO et al., 2013; RODRIGUES et al., 2021), which are intended to compensate

the delay effect through the transformation of the delayed system into a delay-free model

through finite integrals over past control input values. Predictor-based control results can

be found in the linear time-invariant scenario with (NICULESCU; LOZANO, 2001) and

without considering model uncertainty (FLIESS; MARQUEZ; MOUNIER, 2001). Meth-

ods for nonlinear systems can also be found, such as input delay and additive disturbance

compensation (DENG; YAO; MA, 2018), and dealing with arbitrarily large time delay

(KRSTIC, 2008).

Even though predictor-like techniques are consolidated for addressing input delay

(i.e., delay affecting the control input), they struggle to handle systems affected by state

delay, as the problem gets considerably more complicated to be modeled in this particular

framework. For instance, recent works on this subject (DENG et al., 2021) managed to

consider dynamic actuators via backstepping control with input delay but does not include

state delay nor sensor dynamics in the control design. Also, the dependence on integral

terms might be sensitive to parametric uncertainty and delay mismatches (RICHARD,

2003).

The sliding mode control (KARIMI, 2012; PALRAJ; MATHIYALAGAN; SHI, 2021;

SUN; ZHANG, 2018) is also an example of technique for dealing with time delay in

control systems, being particularly known for its robustness characteristics. However, as

a drawback, the presence of time delay has a severe destabilizing effect in conventional

SMC systems. For a more complete background, we refer the reader to the survey paper

(RICHARD, 2003).

A simpler yet interesting approach is based on the development of an approximation

model of the delayed dynamics. In such method, the infinite-dimension delayed system

is treated as a finite-dimensional one by means of the truncation of an infinite series

given in terms of a rational polynomial (RICHARD, 2003). The main downside of this

approach is that in some cases the rational approximation must be of high order to obtain

a good representation. However, finite-dimension approximation has led to important

contributions, specifically for linear systems (WU; NI; HEYDT, 2002; SUN, 2009; SONI;

DUTT; DAS, 2021; SHAH; PATEL, 2019).
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1.3 MAIN CONTRIBUTIONS

After presenting and discussing the past developments and current state-of-the-art

regarding the SOF control and its extensions to areas of interest to this work, we highlight

the main contributions that are brought to the theme.

Regarding the D-stabilization of LTI systems through SOF control, a novel LMI-

based strategy for robust pole placement in SOF control design, considering the D-region

for pole placement as a circle in the complex left-half plane is proposed. The SOF con-

troller synthesis is based on the two-stage method and described in terms of LMI. The

proposed LMI conditions for the robust SOF controller synthesis is based on the use of

parameter-dependent Lyapunov functions. Further contributions are proposed in terms

of the combined design of D-stabilizing gains in both stages, which might represent a

more consistent approach considering the two-stage method. Furthermore, aiming at ob-

taining less conservative second-stage design LMI conditions, we investigate the use of a

first-stage parameter-dependent state-feedback gain as input information (AGULHARI;

OLIVEIRA; PERES, 2010a), in contrast to a single robust gain. To the best of our

knowledge, a two-stage SOF design method for LTI closed-loop systems pole placement

based on a first-stage design considering both parameter-dependent and D-stabilization

constraints have not yet been proposed in the literature.

On the continuous-time LPV framework, this work proposes new LMI conditions for

the design of GS–SOF controllers, under the constraints of incomplete state measure-

ment and specific eigenvalue placement in a circular LMI-region. For that, we consider

the polytopic LPV approach to propose new GS controller design methods via SOF, us-

ing the two-stage method. By exploiting the polytopic framework, we extend the LTI

D-stability concept to the LPV model vertices, enabling the induced enforcement of addi-

tional performance and control signal requirements, in terms of faster and less oscillatory

transient, and controller norm bounding, differently from previous works on the subject

(SERENI; ASSUNÇÃO; TEIXEIRA, 2020, 2019; BETETO et al., 2021; ASSUNÇÃO et

al., 2019).

Considering the discrete-time case, new contributions regarding gain-scheduled con-

troller synthesis for LPV systems with incomplete state information via static output

feedback are also proposed in this work. In the considered strategy, the synthesis condi-

tions are provided in terms of a finite set of LMI. Differently from most of the works on

the subject at hand, our proposed control design strategy is based on a polytopic PDLF

approach. With such consideration, we are able to employ a multiple matrix search on the

Lyapunov matrix that does not require a priori information other than the range where

the time-varying parameters can vary. Such feature grants our proposal less conservative
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conditions when compared to CQLF, and a more simpler and straightforward control de-

sign, since it is not always possible in practice to obtain a range for the derivatives of the

scheduling parameters, let alone obtain on-line information of θ̇, which is required in other

available approaches in the literature (SCHERER, 1996; WU et al., 1996; OLIVEIRA;

PERES, 2009). The SOF controller design is based on a two-stage method. Addition-

ally, we explore the flexibility of LMI framework for including a performance objective

to improve the closed-loop transient settling time, by means of a minimum decay rate

enforcement. To the best of our knowledge, such control design in a PDLF approach

for discrete-time have not been extensively investigated yet, when compared to H∞ or

H2 problems, which motivates our studies. Nevertheless, an extension to address the

H∞ optimization problem and also enforce robustness in terms of disturbance rejection

is proposed in the present work.

At last, studying the problem of uncertain LTI systems whose state information and

control input signals are obtained and applied by means of sensors and actuators with

non-negligible dynamics, a control strategy based on robust SOF design is proposed. We

assume that the communication channels between sensors, actuators and controller are

susceptible to a delay in time, which is also a novelty, since the literature is usually

concerned with the effects of either input or state delay, and not the joint effect of both

types of delay. Furthermore, investigations on the synthesis of controllers for systems with

time delays and also non-negligible dynamics in sensors and actuators are relatively scarce.

In this work, such practical issues are handled by defining an augmented system, where

the time-delay effect is modeled using the Padé Approximation (NIU et al., 2013; ZHAO

et al., 2021). The resulting overall system encompasses the plant, sensors, actuators,

and time-delay dynamic states. By assuming that only the sensor outputs are available

for feedback, we employ a two-stage-based SOF design method defined in terms of a

homogeneous-polynomial Lyapunov function (HPLF) (AGULHARI; OLIVEIRA; PERES,

2010a; PAULINO; BARA, 2021). Employing the SOF control for addressing time-delayed

systems with actuators and sensors dynamics through an augmented system is a simple

and direct, yet innovative approach that, to the best of the authors’ knowledge, has not

been considered so far. The new proposed controller synthesis strategy is formulated

in the LMI framework for including the specification of a minimal performance index

in terms of a lower bound on the closed-loop system decay rate, with the purpose of

achieving enhanced transient performance. Robustness in terms of disturbance rejection

is also taken into account by means of the closed-loop H2 norm minimization.
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The proposed contributions that are presented in this work culminated in the publi-

cation/submission of the following papers:

• Sereni, B., Assunção, E., and Teixeira, M. C. M. (2022). Stabilization and Dis-

turbance Rejection with Decay Rate Bounding in Discrete-Time LPV Systems via

H∞ Gain-Scheduling Static Output Feedback Control. International Journal of

Robust and Nonlinear Control, 32(14), 7920-7945.;

• Sereni, B., Beteto, M. A. L., Assunção, E., and Teixeira, M. C. M. (2021). Pole

Placement LMI Constraints for Stability and Transient Performance of LPV Systems

with Incomplete State Measurement. Journal of the Franklin Institute, 359(2), 837-

858;

• Sereni, B., Galvão, R. K. H, Assunção, E., and Teixeira, M. C. M. (2020). Synthesis

of Robust Control Systems with Dynamic Actuators and Sensors Using a Static
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1.4 OUTLINE

The continuation of this text is organized as follows:

Chapter 2 - Fundamental Concepts and Definitions: devoted to present and

define some basic yet important control theory concepts that form the foundation for the

development of the contributions presented in the following chapters. Mathematical tools

relevant to the proof of the proposed theorems are also formally enunciated.

Chapter 3 - Static Output Feedback Control with Pole Placement Con-

straints: presents new contribution regarding the design of robust SOF controllers for

the D-stabilization of continuous-time uncertain LTI systems. Results for the extension

continuous-time LPV systems by means of gain-scheduled SOF controller design under

pole placement constraints are also proposed.

Chapter 4 - Discrete-Time GS–SOF Control Design: discuss and present con-

tributions in terms of new LMI-based strategy for discrete-time GS–SOF controller design

through the two-stage method under constraints for ensuring lower bound decay rate and

H∞ guaranteed cost minimization.

Chapter 5 - Non-Negligible Sensors and Actuators Dynamics and Time

Delay: proposes an application of the two-stage robust SOF controller design for guar-

anteeing the robust stabilization of uncertain LTI that are subject to sensors and/or

actuators that present non-negligible dynamics, as well as the presence of time delay in

the information transport between plant, controller and sensors. An extension for coping

with disturbance rejection by means of the minimization of the H2 guaranteed cost is

also proposed.

Chapter 6 - Conclusion: presents the final conclusions of the work and future

perspectives for the conducted research.
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2 FUNDAMENTAL CONCEPTS AND DEFINITIONS

This chapter presents some important concepts and definitions that form the technical

basis of the results that are presented in the next chapters.

We begin by defining basic stability and performance LMI conditions for guaranteeing

stability and performance in polytopic LTI and LPV systems. The chapter ends with

some fundamental mathematical results that are going to be necessary in the proof of the

proposed theorems.

2.1 STABILITY AND TRANSIENT PERFORMANCE IN LINEAR SYSTEMS VIA LMI

The results presented in this work are related to the stabilization and performance

improvement of linear systems by means of LMI-based controller designs. In that sense,

in this section we properly define the polytopic model adopted for representing LTI and

LPV used in the present text. Then, the concepts of pole placement design and H∞

guaranteed cost minimization are given and fundamental LMI constraints for ensuring

such design requirements are defined. In the sequence, we give some details regarding the

design of SOF controllers by means of the two-stage method, and also on the design and

implementation of gain-scheduled controllers, as considered in the results proposed in this

work.

2.1.1 LTI AND LPV SYSTEMS: A POLYTOPIC DESCRIPTION

This work studies the stabilization problem of uncertain LTI systems and also LPV

systems. There are many approaches that may be employed for describing such systems

dynamics in terms of a mathematical model. The strategy adopted in throughout this

text is the polytopic model.

Using the polytopic model we are able to represent uncertainties or time-varying

parameters in terms of a polytopic domain, that defines a convex set for representing

every possible configuration that the system may assume.

In these terms, for what follows the rest of this text, we consider that generic uncertain
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LTI systems are represented according to a state-space representation as

ẋ(t) = A(α)x(t) + B(α)u(t)

y(t) = C(α)x(t) + D(α)u(t),
(2.1)

where α ∈RN is an uncertain vector whose N entries are such that belong to the simplex

unitary set

∧N =







α ∈ R
N :

N
∑

i=1

αi = 1;αi ≥ 0; i = 1, ...,N.







.

This allows for describing the set of matrices (A,B,C,D)(α) as a convex combination

of vertex matrices such as

(A,B,C,D)(α) =
N

∑

i=1

αi(A,B,C,D)i,

which defines a polytope whose vertices are (A,B,C,D)i, for i = 1, ...,N .

The system vertices are defined according to the extreme values that the uncertain

parameters may assume. For example, consider a mechanical system whose mass and

coefficient of friction are uncertain parameters in the system model. Therefore, the vertices

of the corresponding polytope are defined by crossing the extreme cases:

• Vertex 1: minimum mass and minimum coefficient of friction;

• Vertex 2: minimum mass and maximum coefficient of friction;

• Vertex 3: maximum mass and minimum coefficient of friction;

• Vertex 4: maximum mass and maximum coefficient of friction.

As one might observe, the number of polytope vertices is defined by N = 2np, where

np is the number of uncertain parameters affecting the system model. For instance, an

LTI system affected by np = 2 uncertain parameters can be described as belonging to a

polytope with N = 22 = 4 vertices (Figure 2.1).

Figure 2.1 - Graphical representation the uncertainty polytope of an LTI system with
two uncertain parameters in the model (four vertices).

Vertex 2

Vertex 3

Vertex 4

Vertex 1

Uncertain System
Polytope

Source: Own author.



2.1 Stability and Transient Performance in Linear Systems via LMI 33

Following an analogous concept, a generic LPV system in this work is described by a

state-space representation

ẋ(t) = A(α(t))x(t) + B(α(t))u(t)

y(t) = C(α(t))x(t) + D(α(t))u(t),
(2.2)

where α(t) ∈ R
N is an time-varying vector whose N entries are such that

⊼N =







α(t) ∈R
N :

N
∑

i=1

αi(t) = 1;αi(t)≥ 0; i = 1, ...,N,∀t≥ 0







. (2.3)

However, as in this work we address LPV system with the gain-scheduling control

approach, the time-varying parameters in α(t) are assumed to be known. Then, the set

of matrices (A,B,C,D)(α(t)) are defined as a convex combination of constant vertices as

(A,B,C,D)(α(t)) =
N

∑

i=1

αi(t)(A,B,C,D)i,

which in turn define a polytope whose vertices are (A,B,C,D)i, for i = 1, ...,N . At each

time instant t, and corresponding values for α(t), the LPV system is exactly represented

in the defined polytopic domain. Note that the polytope concept in Figure 2.1 can be

equivalently extended to LPV systems.

Regarding the asymptotic stability, as our approach is based on a polytopic domain

definition, we consider the employment of Lyapunov’s stability criterion, which is based

on the existence of a scalar function V (x(t)), such that V (x(t)) > 0, and V̇ (x(t)) < 0, for

all trajectories x(t) 6= 0 (BOYD et al., 1994).

When considering uncertain LTI systems, a stability certificate can be obtained if we

confirm the existence of a symmetric positive definite matrix P , such that

A′
iP + P Ai < 0 (2.4)

holds for i = 1, ..,N .

This approach is referred in the literature as quadratic stabilization, since it is based

on a common-quadratic Lyapunov function (CQLF), in terms of a fixed positive definite

matrix P . Despite of being a simple solution, it is well-known that quadratic stability

yields very conservative constraints when dealing with uncertain systems (OLIVEIRA;

PERES, 2006; GEROMEL; KOROGUI, 2006). In that scope, less conservative conditions

can be obtained by considering a formulation based on parameter-dependent Lyapunov

functions (PDFL). This approach allows the Lyapunov function to be dependent on the
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uncertain parameters. This can be achieved by considering

P (α) =
N

∑

i=1

αiPi, α ∈ ∧N .

In these terms, an stability certificate for the uncertain system (2.1) can be obtain

through the less conservative LMI conditions, based on PDLF, if we confirm the existence

of N symmetric positive definite matrices Pi, such that

A′
iPi + PiAi < 0 (2.5)

holds for i = 1, ...,N , and

A′
iPj + PjAi + A′

jPi + PiAj < 0 (2.6)

holds for i = 1, ...,N −1 and j = i+ 1, ...,N .

Even less conservative conditions can be obtained, by allowing the PDLF to have a

homogeneous polynomial dependence on the uncertain parameters of degree g > 1. For

instance, considering P (α) to be a homogeneous polynomial matrix of degree g = 2 means

that

P (α) = α2
1P1 + α1α2P12 + α2

2P2,

with P1 = P ′
1, P12 = P ′

12, and P2 = P ′
2, in a polytope with N = 2 vertices.

Despite less conservative conditions might be obtained with progressively higher poly-

nomial degrees, obtaining a finite set of LMI conditions as (2.5) and (2.6) may become

a tedious and tricky procedure. For that, specialized computational packages, as the

ROLMIP parser (AGULHARI et al., 2019) can be employed for obtaining the desired set

of LMI by only specifying the problem variables structure.

Remark 2.1. All the aforementioned strategies are going to be investigated in the course

of this work, and its advantages and drawbacks analyzed and emphasized, especially in

the continuous-time LTI and discrete-time LPV case. When dealing with continuous-

time LPV systems, considering PDLF approaches imply in a more involved mathematical

development, and will be subject of future studies.

2.1.2 POLE PLACEMENT CONSTRAINTS

Further from guaranteeing the asymptotic stability, in several practical control prob-

lems, it is also necessary to provide improved dynamic performance to the system closed-

loop response (CHILALI; GAHINET; APKARIAN, 1999). For instance, the settling time

and steady-state signal overshoot are examples of indexes related to the system perfor-
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mance, which can be optimized with a proper controller design (SANTOS; PELLANDA;

SIMÕES, 2018).

A strategy for enhancing the system dynamic characteristics, based on the specifi-

cation of desired values for such transient parameters, is to properly enforce a robust

closed-loop pole placement in a particular region of the complex left-half plane, namely

D-stabilization (CHILALI; GAHINET, 1996). These regions, usually referred to as LMI-

regions, might assume many different shapes, depending on the convex constraints used

to define them.

Stability can be guaranteed by ensuring that all closed-loop system eigenvalues are

allocated in the left-half complex plane. However, by imposing that the eigenvalue place-

ment occurs at the left of a vertical line perpendicular to the real axis (Figure 2.2), we

might induce a faster transient performance.

Figure 2.2 - Geometric interpretation of the minimum decay rate requirement.

γ

Re (λ)

Im (λ)

Source: Adapted from Silva et al. (2012).

When regarding pole placement constraints, this technique is referred to α-stability1.

However, this control design requirement is also known as the enforcement of a minimum

decay rate to the closed-loop system. The decay rate is a basic performance index as-

sociated with the system transient duration. A formal and mathematical definition is

presented in Boyd et al. (1994), which states that the decay rate can be defined as the

highest scalar, γ, such that

lim
t→∞

eγt‖x(t)‖= 0 (2.7)

holds for all the trajectories of the system state, x(t). Analyzing (2.7), we can extract

the practical interpretation that the decay rate denotes the highest possible scalar γ such

1We advise the reader to not associate the pole placement nomenclature “α-stability”, was established
in the control literature, with the uncertainty vector notation α, adopted throughout this text.
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that the convergence of ||x(t)|| to the origin (x(t) = 0)) is more rapid than the growth of

the exponential, eγt, as t→∞. Note that this implies that γ establishes the measurement

based on the rapidity of the occurrence of a system transient.

As well-known, the system stability and a lower bound of the decay rate can be ensured

if we consider the existence of a quadratic Lyapunov’s function, V (x(t)) = x(t)′P x(t) > 0,

for x(t) 6= 0, such that

V̇ (x(t))≤−2γV (x(t)) (2.8)

holds for all the trajectories of the system state, x(t), with γ > 0 (BOYD et al., 1994).

Note that even though the decay rate definition given by (2.7) does not impose con-

straints on the signal of the scalar γ, the system stability corresponds to a positive de-

cay rate. Indeed, according to Lyapunov’s stability concept, for x(t) 6= 0, the function

V (x(t)) > 0 must be such that V̇ (x(t)) < 0 ensures asymptotic stability (BOYD et al.,

1994). Note that if γ < 0, then (2.8) will not hold.

For enabling a more specific transient shaping, we might consider a circle centered in

the real axis, as the one in Figure 2.3. By enforcing the eigenvalue placement in a circular

region, the designer is able to adjust the distance that the closed-loop eigenvalues are going

to be set away from the real and imaginary axis. With such control, it is possible to provide

faster transient response, and yet maintaining reasonable control signal amplitudes.

Figure 2.3 - Circular LMI region D(q,r) for pole placement.

Im(λ)

Re(λ)

r

q

γ

Source: Adapted from Leite, Montagner and Peres (2002).

Indeed, a system with eigenvalues of high absolute value real parts can present a short

transient settling time. However, eigenvalues with high absolute value real parts tend to

produce controllers with high gains, which ultimately leads to high amplitude control

signals that naturally must be avoided due to practical reasons. At the same time, by

enforcing an eigenvalue clustering with reduced imaginary part absolute values enables to

impress less oscillatory behavior.
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Remark 2.2. The relation between pole placement and performance indexes such as

overshoot-percent and settling time are well established for first and second order sys-

tems. For higher-order cases, the transient response can be expressed as a sum of first

and second-order responses. However, the dependence between pole location and transient

shaping is more involved (OGATA et al., 2010). Therefore, by considering an additional

restriction to the pole placement of higher-order systems we are only indirectly inducing

performance criteria over the distance of the poles from the real and imaginary axis.

In Lemma 2.1, a classic sufficient condition for ensuring circular eigenvalue assignment

is presented. This result is used as a reference for the contributions proposed in Chapter

3.

Lemma 2.1. (HADDAD; BERNSTEIN, 1992) Let A(α)∈Rn×n and D(q,r) be a circular

disk in the complex plane with center (−q,0), radius r > 0 and minimum distance from

the imaginary axis γ > 0, with q = γ + r. Then, the eigenvalues of A(α) are contained in

D(q,r) if, and only if, there exists a positive definite symmetric matrix P ∈ R
n×n such

that

P > 0, (2.9)

A(α)′P + P A(α) + 2γP +
1
r

(A(α) + γI)′P (A(α) + γI) < 0, (2.10)

for every α ∈ ∧N .

Based on this preliminary result, Leite, Montagner and Peres (2002), developed an

LMI-based strategy for verifying the eigenvalue configuration of an uncertain LTI system

ẋ(t) = A(α)x(t), considering a circular D-region of Figure 2.3. The referred strategy

consists in checking if there exists a symmetric positive definite matrix P such that




A′
iP + P Ai + 2γP (Ai + γI)′P

P (Ai + γI) −rP



 < 0 (2.11)

holds for i = 1, ...,N .

This result consist the basis for the development of the contribution presented in this

work regarding the D-stabilization via SOF, as detailed in Chapter 3.

2.1.3 H∞ GUARANTEED COST

Besides transient shaping, another important design requirement in control problems

is that the closed-loop system should posses some desired level of disturbance rejection.

For instance, in land vehicles, it is important to minimize the impact of an irregular road

profile on the dynamics for ensuring better handling and comfortable driving.
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Such practical problem might be addressed by means of the so-called H∞ control

(CHILALI; GAHINET, 1996). This control strategy is based on identifying the system’s

characteristics in the frequency domain. In particular, the goal is to minimize the system

H∞-norm, which corresponds to a measure of the impact of exogenous signals (such as

bumps and holes in a road) on the system output (the vertical vehicle displacement, for

instance). This idea is based on the fact that the H∞-norm is directly associated to the

system transfer function from the input to its output (Figure 2.4).

Figure 2.4 - A linear system representation in both time and frequency domains: the
later enables the H∞ control approach.

ẋ(t) =Ax(t)+Bw(t)
z(t) = Cx(t)+Dw(t)

w(t) z(t)

W (s) Z(s)

Z(s) = H(s)W (s)

H∞ Norm

H(s)
System Transfer Function

Time-Domain

Frequency

Source: Own author.

For understanding this concept, consider a generic state-space representation of a

linear system






ẋ(t) =Ax(t) +Bw(t)

z(t) = Cx(t) +Dw(t)
. (2.12)

As well-known, we can certify the asymptotic stability of (2.12) through the existence of

a scalar function V (x(t)) such that V (x(t)) > 0 and V̇ (x(t)) < 0, for all x(t) 6= 0 and all

t≥ 0.

Now, as mentioned earlier, the dynamic behavior of (2.12) can be investigated in

the frequency domain in terms of its transfer function matrix H(s), which establishes a

relation between the Laplace’s Transform of the system output and input, Z(s) and W (s),

with zero initial condition, respectively, as Z(s) = H(s)W (s). By considering (2.12), it is

trivial to derive that H(s) = C(sI−A)−1B+D.

Clearly, H(s) dictates the effect of an exogenous signal w(t) over the system output

z(t). However, note that for different frequencies s = jω, ∀ω ∈ R
+ the system response

to the exogenous signal might be different, as the transfer matrix is a function of s. In

these terms, we can evaluate the magnitude the disturbance effect by analyzing the H∞-

norm of H(s) (represented by ||H(s)||∞), which according to Scherer, Gahinet and Chilali

(1997), characterizes the largest gain, for all frequencies s = jω, ∀ω ∈R+, for the singular
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values norm. In other words, ||H(s)||∞ represents the maximum gain from w(t) to z(t),

for every real frequency ω.

In the time-domain, we can associate the H∞ norm of (2.12) to the minimum scalar

µ such that ||z(t)||2 < µ||w(t)||2, for every possible frequency of the signal w(t). Note

that this relation indicates that the H∞ norm is associated to the worst-case, i.e. the

minimum scalar µ is obtained at the condition of the maximum input amplification, or

equivalently, highest ||z(t)||2/||w(t)||2 ratio. Moreover, the smaller the value of µ assumes,

the less the output z(t) will be affected by the presence w(t) on the system dynamics.

Upon this discussion, we can establish a joint relation between the asymptotic stability

and the robust H∞ performance by means of the Bounded-Real Lemma (BRL), stated

in Lemma 2.2.

Lemma 2.2 (Bounded-Real Lemma). A dynamic system described as in (2.12) is asymp-

totic stable with ||H(s)||∞ < µ if there exists symmetric matrix P such that

ẋ(t)′P x(t) + ẋ(t)P x(t)′ + z(t)′z(t)−µ2w(t)′w(t) < 0. (2.13)

Proof: See Boyd et al. (1994).

The H∞-control has the purpose of minimizing the H∞ norm, promoting the atten-

uation of the input to output amplification gain to every other possible frequency input

signal. This idea is illustrated in Figure 2.5 for the case of a single-input single-output

(SISO) system.

Figure 2.5 - The H∞ norm representation for SISO systems: the worst case in the sys-
tem frequency response.
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||H(s)||∞
ω

ω

H∞ Control

Source: Own author.

In the case of uncertain LTI systems, the H∞ norm optimization problem becomes

more involved. For each possible value that the uncertain parameter α affecting the plant
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may assume, we have a different frequency response, and therefore, a different associated

H∞ norm. Then, we have that the H∞ norm of an uncertain LTI is the “worst of all

worst cases”, meaning the lower possible value for µ among each case defined by α.

However, α can assume an infinite number of possible values. Thus, for finding the

H∞ norm of an uncertain system we might need to test each and possible frequency

domain behavior, as a function of α. Naturally, this becomes impossible, especially in

the case of robust controller synthesis. In this context, the H∞ guaranteed cost concept

takes place for defining the system behavior in reaction to exogenous input signals. When

dealing with uncertain LTI systems, instead of minimizing the actual H∞ norm, we try

to minimize a guaranteed cost, that is, a upper bound on the real uncertain system

H∞ norm. By minimizing such bound, the actual H∞ norm is consequently minimized.

We have this concept illustrate in Figure 2.6.

Figure 2.6 - The H∞ guaranteed cost representation for an uncertain SISO system: a
upper bound for the uncertain LTI system H∞ norm.
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Source: Own author.

One important observation is that the BRL is well-defined for LTI systems, since it

is based on the idea of transfer matrices. There are, however, extensions for dealing with

the H∞ problem in the LPV framework. These extensions consider the definition of the

l2-induced norm. When we have an LPV system as

ẋ(t) =A(α(t))x(t) +B(α(t))w(t)

z(t) = C(α(t))x(t) +D(α(t))w(t)
(2.14)

the H∞ guaranteed cost µ, can be established in terms of ||Hzw||∞ < µ, where

||Hzw||∞ := sup
||w(t)||2 6=0

||z(t)||2
||w(t)||2

,

holds for every possible trajectory of the time-varying parameter α(t). Following previous

works on this subject (SADEGHZADEH, 2017), ||Hzw||∞ denotes the induced-l2 gain
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performance of the closed-loop system (2.14). However, with a slight abuse of language,

we consider the use of the term H∞ guaranteed cost for referring to the bound µ.

2.1.4 H2 GUARANTEED COST

Another strategy for dealing with disturbance rejection is the H2 norm minimization.

Differently from the H∞ norm approach, which intends to reduce the peak gain of the

frequency response, the H2 strategy seeks to minimize the whole area under the frequency

response curve, as it will be explained in the sequence.

For the matter considered in this work, the H2 guaranteed cost is defined as a positive

scalar µ such that µ≥ ||H(α,s)||2 where ||H(α,s)||2 is the system (2.12) H2 norm, defined

as

||H(α,s)||22 = sup
α∈∧N

1
2π

∫ +∞

−∞
Tr(H(α,jω)∗H(α,jω))dω (2.15)

and H(α,s) = C(α)(sI−A(α)−1)B(α), is the closed-loop system transfer matrix, defined

over the complex variable s, here considered as the complex frequency variable s = jω. It

is important to observe that when considering the H2 problem, it is mandatory to impose

the following constraint over the direct transfer matrix in (2.12): D(α) = 0.

In these terms, note that definition given in (2.15) relates to the area under the

frequency response curve, as illustrated in Figure 2.7 for the particular single-input/single-

output (SISO) LTI system case.

Figure 2.7 - The H2 norm representation for two distinct SISO LTI systems with trans-
fer functions H1(jω) and H2(jω), respectively.

ωω

||H2(s)||

⇒ smaller H2 norm

⇒ larger H2 norm

||H1(s)||

Source: Own author.

Note that the transfer defined up above incorporates the uncertainty in the system

model, being a function of α. Therefore, we need to discuss the concept of the H2

guaranteed cost. Observe that for each α ∈ ∧N the system frequency response presents a

different area under its corresponding curve (see Figure 2.8 for a simple illustration). In

this perspective, the H2 guaranteed cost establishes a upper bound for the largest among

all possible areas associated to each ||H(α,s)||.
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Figure 2.8 - The H2 guaranteed cost representation: frequency response for three differ-
ent values of α of a generic SISO LTI system.
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To give basis to our next proposed results, we consider the following lemma, which

represents a condition for minimizing the closed-loop H2 guaranteed cost as defined in

this section.

Lemma 2.3. (LACERDA; OLIVEIRA; PERES, 2011) For a Hurwitz matrix A(α),

||H(α,s)||22 < µ if and only if there exists parameter-dependent symmetric matrices P (α) >

0 and Y (α) > 0 such that

trace(Y (α)) < µ2 (2.16)

Y (α)−B(α)′P (α)B(α) > 0 (2.17)

A(α)′P (α) + P (α)A(α) +C(α)′C(α) < 0. (2.18)

2.1.5 TWO-STAGE SOF DESIGN

The SOF control synthesis strategy proposed in this work is fundamentally based on

the two-stage method, initially proposed in Peaucelle and Arzelier (2001). For describing

its core idea, assume that we want to design an SOF controller such that ẋ(t) = Ax(t) +

Bu(t) is asymptotically stabilized considering a control law u(t) = Ly(t), with y(t) =

Cx(t). For completing this task by means of the two-stage method, we perform a two-

step design:

• Stage 1: State-feedback design Initially, we consider the design of a control

law u(t) = Kx(t), given in terms of a state-feedback gain matrix K, such that the

system of ẋ(t) = Ax(t) + Bu(t) = (A+ BK)x(t) is asymptotically stabilized.

• Stage 2: Static output-feedback design In the second stage, we use the designed

SF matrix K as input information, in a second design problem, which returns, if

possible, the desired SOF gain matrix L.

The two-stage method has first appeared in the work Peaucelle and Arzelier (2001).
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This result comes from the observation that the SOF Lyapunov stability condition, given

in terms of the existence of a symmetric matrix P > 0 such that

(A+ BLC)′P + P (A+ BLC) < 0 (2.19)

holds, can be equivalently represented by the following inequality:

[

I C ′L′
]





A′P + P A P B

B′P 0









I

LC



 < 0. (2.20)

One can observe that (2.20) is in the form of one of the inequalities of the Finsler’s

Lemma (see the formal definition of this well-known linear algebra result at the end of

this chapter), and thus can be rewritten as




A′P + P A P B

B′P 0



 +





Hs

−H





[

LC −I
]

+





C ′L′

−I





[

H ′
s −H ′

]

< 0, (2.21)

where Hs and H are slack variables, introduced by the application of Finsler’s Lemma.

Summing the block matrices in (2.21) we have




A′P + P A+ HsLC + C ′L′H ′
s P B−Hs−C ′L′H ′

B′P −H ′
s−HLC H + H ′



 < 0. (2.22)

From the bottom right block of (2.22), we have that H + H ′ < 0, which ensures the

existence of H−1 (BOYD et al., 1994). Thus, by regarding that I = HH−1 = H−1′
H ′,

(2.22) can be rewritten as




A′P + P A+ HsH
−1HLC + C ′L′H ′H−1′

H ′
s P B−HsH

−1H−C ′L′H ′

B′P −H ′H−1′
H ′

s−HLC H + H ′



 < 0. (2.23)

Now, defining K ′ = HsH
−1 and J = HL, we have





A′P + P A+ K ′JC + C ′J ′K P B−K ′H−C ′J ′

B′P −H ′K ′−JC H + H ′



 < 0, (2.24)

or, as presented in Peaucelle and Arzelier (2001):




A′P + P A P B

B′P 0



 +





K ′

−I





[

JC −H
]

+





C ′J ′

−H ′





[

K −I
]

< 0. (2.25)

Therefore, the original BMI problem (2.19) stated in terms of P and L is equivalently

represented as the BMI (2.25) in terms of P , and now, with additional variables K, H ,

and J . Note that both BMI are related through J = HL, with det(H) 6= 0.
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Now a very important observation: by pre multiplying (2.25) by
[

I K ′
]

and post

multiplying by its transpose we have

A′P + P A+ P BK + K ′B′P < 0. (2.26)

This result shows that K is a stabilizing state-feedback gain matrix, considering the

existence of a function V (x) = x′P x > 0. Moreover, the Lyapunov matrix P that attests

the stability of A+BK is the same that guarantees the stability of A+BLC, since (2.19)

is also satisfied for the same P , considering J = HL in (2.25), as already demonstrated.

Concluding, we see that if a stabilizing SF gain K is found for A+ BK, we can seek for

a stabilizing SOF gain L to A+ BLC by solving the LMI problem given in (2.25).

Any available method in the literature for the synthesis of state-feedback stabilizing

controllers can be adopted. However, the feasibility of the SOF problem in the second

stage depends on the matrix K provided a priori. Such feature implies on the fact that

the LMI-based two-stage method consists of sufficient SOF control synthesis conditions.

Even so, if the method fails for some particular K, the designer can employ a different

SF synthesis procedure, and then the two-stage method can be applied once again.

In these terms, one may conclude that the search for a stabilizing state-feedback gain

matrix K is a pivot element in the SOF problem. In fact, the existence of a stabilizing

SOF controller L is conditioned to the existence of stabilizing SF controller K. This is

true since that in the output-feedback case, the closed-loop system has the form

ẋ(t) = (A+ BLC)x(t). (2.27)

Therefore, an L gain matrix such that (2.27) is asymptotic stable exists if the same

system is asymptotically stable via state-feedback, since K = LC in (2.27) leads to

ẋ(t) = (A+ BK)x(t).

However, note that the existence of a stabilizing SF gain matrix K does not necessarily

implies in the existence of a stabilizing SOF gain matrix L.

2.1.6 GAIN-SCHEDULING CONTROL

Gain-scheduling control is based on using available information about the time-varying

behavior of the considered LPV system to instantly updated the controller gains, in order

to achieve enhanced performance and robustness. As mentioned in Chapter 1, the classic

gain-scheduling technique is based on the construction of a family of LTI subsystems to

cover the range of operation of the nonlinear or/and time-varying plant. Then, for each



2.1 Stability and Transient Performance in Linear Systems via LMI 45

of the portioned sections of the range of variation that the time-varying parameter α(t)

may assume, we design a single static feedback gain, as illustrated in Figure 2.9.

Figure 2.9 - Illustration of the gain-scheduled classic control for a parameter grid of four
sections and its corresponding static controllers.

α(t)

t

K1

K2

K3

K4

Source: Own author.

Then, based on the online measurement of the time-varying parameters, the scheduled

controller gains a priori designed are selected. As already mentioned, this strategy has

some clear shortcomings: i) for better performance, a refinement on the parametric grid

is required, which leads to higher complexity and computational cost for implementation;

ii) serious questioning about stability guarantee in the switching zones, which might

compromise global stability.

In this work, we consider the design of GS controllers via LMI formulation and a

polytopic representation of LPV systems. In this approach, by having knowledge of the

extreme values that the time-varying parameters might assume, we design a single static

gain for each one of the polytope vertices (Figure 2.10). With that, we implement the GS

controller as a convex combination of the static controller vertices, as

K(α(t)) = α1(t)K1 + α2(t)K2 + · · ·+ αN (t)KN

providing a smooth time-varying controller, without having to worry about parameter

griding or stability issues due to gain switching.

As discussed before in this section, we consider the polytopic model for LPV systems,

which is based on assuming a polytopic dependence of the model matrices with the time-

varying parameters, i.e. (A,B,C)(α(t)), where α(t) belongs to the unitary simplex set

(2.3).
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Figure 2.10 - Illustration of the gain-scheduled controller generated by the convex com-
bination of four vertex matrices, parameterized in terms of the time-
varying parameters.

α(t)

t

K(α(t)) = α1(t)K1 + α2(t)K2 + α3(t)K3 + α4(t)K4

Source: Own author.

In general, the practical set of time-varying parameters that affects the model ma-

trices, θ(t)2, does not fall within the domain of the unitary simplex. Therefore, in such

cases, the elements αi(t) must be obtained through a parametrization of each time-varying

parameter θl(t), with l = 1, ...,np and np being the number of time-varying parameters

affecting the model.

The set α(t) can be determined by defining a convex combination of minimum and

maximum values that each θl(t) may assume. For exemplifying, the model of an LPV

system which is affected by a single time-varying parameter θ1(t) (which is measured or

estimated online by assumption) can be obtained by defining

α1(t) =
θ1(t)−θ1min

θ1max−θ1min
and α2(t) = 1−α1(t),

where θ1min and θ1max are the lower and upper limits of the range of values that θ1(t)

can assume, also known by hypothesis.

A more complex parametrization is needed when the system is affected by two or

more time-varying parameters. For exemplifying, lets assume an arbitrary LPV under

the influence of two time-varying parameters, θ1(t) and θ2(t). First, we can rewrite θ1(t)

and θ2(t) as a convex combination of their extreme values,

θ1(σ(t)) = σ1(t)θ1min + σ2(t)θ1max, (2.28)

θ2(σ(t)) = ξ1(t)θ2min + ξ2(t)θ2max, (2.29)

with σ1(t) + σ2(t) = 1 and ξ1(t) + ξ2(t) = 1, σ1,2(t)≥ 0, and ξ1,2(t)≥ 0.

2We are considering the continuous-time case, but the same discussion and conclusion can be carried
out for the discrete-time time-varying parameter case.
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Considering these definitions, and we can perform the following transformation:

θ1(σ(t), ξ(t)) = (ξ1(t) + ξ2(t))(σ1(t)θ1min + σ2(t)θ1max),

θ1(σ(t), ξ(t)) = (ξ1(t)σ1(t) + ξ2(t)σ1(t))θ1min + (ξ1(t)σ2(t) + ξ2(t)σ2(t))θ1max,
(2.30)

θ2(σ(t), ξ(t)) = (σ1(t) + σ2(t))(ξ1(t)θ2min + ξ2(t)θ2max),

θ2(σ(t), ξ(t)) = (σ1(t)ξ1(t) + σ2(t)ξ1(t))θ2min + (σ1(t)ξ2(t) + σ2(t)ξ2(t))θ2max.
(2.31)

Now, defining α1(t) = ξ1(t)σ1(t), α2(t) = ξ1(t)σ2(t), α3(t) = ξ2(t)σ1(t), and α4(t) =

ξ2(t)σ2(t), we have

θ1(α(t)) = α1(t)θ1min + α2(t)θ1max + α3(t)θ1min + α4(t)θ1max, (2.32)

θ2(α(t)) = α1(t)θ2min + α2(t)θ2min + α3(t)θ2max + α4(t)θ2max. (2.33)

Note that every system configuration, which is defined by the instant values assumed

by the two time-varying parameters, θ1,2(t), is now expressed in as a convex combination

parameterized in terms of the vector α(t) = (α1(t) α2(t) α3(t) α4(t)), with α(t) ∈ ⊼.

2.2 MATHEMATICAL TOOLS

Before properly discussing the contributions proposed in this work, we present the

following lemmas and properties, which are essential for the development of this thesis.

Lemma 2.4 (Finsler’s Lemma). Consider w ∈ R
n, S ∈ R

n×n, and R ∈ R
m×n with rank

(R) < n, where R⊥ is a basis for the null space of R (i.e. RR⊥ = 0).

Then, the following conditions are equivalent:

(i) w′Sw < 0, ∀ w 6= 0, Rw = 0,

(ii) R⊥′

SR⊥ < 0,

(iii) ∃η ∈ R : S−ηR′R < 0,

(iv) ∃X ∈R
m×n : S + XR + R′X ′ < 0,

where η and X are additional variables (or multipliers).

Proof. See Skelton, Iwasaki and Grigoriadis (1997) and Oliveira and Skelton (2007).

Property 2.1. (BOYD et al., 1994) If M + M ′ > 0, where M is a square matrix, then

M is invertible.

The employment of Lemma 2.4 in this work is based on deriving an equivalent stability

and performance certificate for the investigated systems. Such alternative representation
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allows for circumventing non-convex constraints, and then leading to tractable convex

conditions. For further reference in the text, Lemma 2.5, which is obtained as a direct

extension of the results proposed in Oliveira and Skelton (2007), presents stability and

performance certificate regarding the minimum system decay rate.

Lemma 2.5. A sufficient condition for the robust stability of A(α) is that there exist

a parameter-dependent positive definite matrix P (α) and parameter-dependent matrices

F (α) and G(α) such that





A(α)′F (α)′ + (•)′+2γP (α) ∗
P (α)−F (α)′ + G(α)A(α) −G(α)−G(α)′



 < 0, (2.34)

holds for every α ∈ ∧N . Additionally, the system decay rate has a lower bound γ > 0.

Proof: Note that (2.34) can be rewritten as




F (α)

G(α)





[

A(α) −I
]

+ (•)′ +





2γP (α) ∗
P (α) 0



 < 0, (2.35)

which corresponds to condition (iv) of Lemma 2.4 with

X =





F (α)

G(α)



 , S =





2γP (α) ∗
P (α) 0



 , R′=





A(α)′

−I



 . (2.36)

Hence, by defining w =
[

x(t)′ ẋ(t)′
]′

in condition (i) of Lemma 2.4, we have that (2.34)

implies3

w′Sw =
[

x′ ẋ′
]





2γP (α) ∗
P (α) 0









x

ẋ



 = ẋ′P (α)x+ x′P (α)ẋ+ 2γx′P (α)x < 0, (2.37)

with Rw = 0, since ẋ(t) = A(α)x(t). By defining V (x) = x′P (α)x, (2.37) becomes V̇ (x) <

−2γV (x), i.e., the Lyapunov’s constraint for stability and minimum decay rate γ > 0

(BOYD et al., 1994).

3Note that in (2.37) the time dependence (t) was omitted for shortening the notation.
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3 STATIC OUTPUT FEEDBACK CONTROL WITH POLE PLACEMENT
CONSTRAINTS

This chapter is devoted to present new contributions on the theory of static output

feedback (SOF) control design with additional linear matrix inequality (LMI) constraints

for pole placement.

The goal is to guarantee the asymptotic stability of linear systems while some transient

performance improvement is also enforced by promoting closed-loop pole assignment to

a particular region of the complex plane – namely, the D-stability. The pole allocation

region considered in the following developments is a disk, whose radius and center position

may be set by the designer in terms of two scalar parameters.

Two main studies are presented in the sequence: first, we address the case of uncer-

tain linear time-invariant (LTI) systems. In this scenario, the goal is to design a robust

SOF controller that meets the control objective at hand; second, the extension of the con-

cepts of D-stability to the case of linear parameter-varying (LPV) systems is explored.

In this second framework, the idea is to design gain-scheduled (GS) controllers under ad-

ditional pole placement constraints applied over the system polytope vertex and evaluate

its impact on the closed-loop system performance.

3.1 ROBUSTD-STABILIZATION VIA SOF CONTROL

In this section, the robust D-stabilization of uncertain LTI systems via SOF control

is addressed.

At first, the investigated problem is properly stated and defined. In the sequence,

a solution in terms of a design procedure based on the two-stage method considering

sufficient LMI conditions for controller synthesis is proposed. Moreover, the impacts of the

design constraints considered in the first stage over the obtained robust SOF controller are

also investigated. Feasibility analysis results, comparing three strategies for implementing

the two-stage design procedure are presented and discussed.
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3.1.1 PROBLEM STATEMENT AND PROPOSED APPROACH

Consider an uncertain LTI system described in a state-space representation such as

ẋ(t) = A(α)x(t) + B(α)u(t)

y(t) = C(α)x(t),
(3.1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input vector, and y(t) ∈ R
p

is the measured output vector. The matrices associated to the system dynamics, A(α) ∈
R

n×n, B(α) ∈ R
n×m, and the output matrix C(α) ∈ R

p×n, respectively, are considered

uncertain and belong to the polytopic domain P defined as

P =







(A,B,C)(α) : (A,B,C)(α) =
N

∑

i=1

αi(A,B,C)i, α ∈ ∧N







(3.2)

where (A,B,C)i denotes the i-th of the N polytope vertices. Moreover, P is parameterized

in terms of the vector α = (α1, ...,αN ), whose entries αi are unknown constants that belong

to the unitary simplex set ∧N , defined as

∧N =







α ∈R
N :

N
∑

i=1

αi = 1;αi ≥ 0; i = 1, ...,N







. (3.3)

Assume that only a subset of the system state variables is measured. Therefore,

consider a control law u(t) = Ly(t) and design a robust SOF gain matrix L ∈R
m×p such

that the closed-loop system

ẋ(t) = (A(α)+ B(α)LC(α))x(t) (3.4)

is asymptotically stable for all α ∈ ∧N (i.e. robustly stable).

Moreover, L must ensure that the eigenvalues of the closed-loop system (3.4) are all

placed inside the circular D-region represented in Figure 2.3. Observe that this region

is defined in terms of its radius r, its distance γ from the imaginary axis, and its center

(−q,0), with q = γ + r. When these requirements are met, (3.4) is said to be robustly

D-stable.

For addressing the considered control problem, the design of the robust SOF con-

troller is performed by means of a two-stage procedure (PEAUCELLE; ARZELIER, 2001;

MEHDI; BOUKAS; BACHELIER, 2004) (for an initial insight, see Subsection 2.1.5). In

this strategy, one must first obtain a gain matrix such that the system of interest is stabi-

lized via state feedback (SF). Then, the obtained SF controller is used as input information

for the second stage, in which the desired SOF gain matrix is computed.
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In these terms, we first consider a control law u(t) = Kx(t), which when applied to

(3.1) yields the closed-loop system

ẋ(t) = (A(α)+ B(α)K)x(t). (3.5)

Then, we design a gain matrix K such that (3.5) is robustly stable. This matrix is then

fed the second stage, where the compute of L is performed.

Now, based on the results presented in Leite, Montagner and Peres (2002), by defining

AN (α) = A(α) + B(α)LC(α) one can verify that L ensures the robust eigenvalue place-

ment in the circular D-region of Figure 2.3 by checking if there exists a symmetric definite

positive matrix P such that




A′
N (α)P + P AN(α) + 2γP (AN (α) + γI)′P

P (AN (α) + γI) −rP



 < 0 (3.6)

holds for all α ∈ ∧N .

On that scope, the proposed solution consists in designing the robust SOF controller

L in order to satisfy (3.6). In the next section, further details on how each design stage

is performed are given.

3.1.2 TWO-STAGE SOF DESIGN FORD -STABILIZATION

In this section, a new two-stage design method for the robust pole placement of

closed-loop uncertain LTI systems via SOF is proposed. Considering the sufficient nature

associated to the two-stage method, the state-feedback controller synthesis performed

in the first stage may be accomplished using different design strategies. Consequently,

the second stage design might yield different outcomes, regarding the constraints and

strategies imposed and adopted in the first step. Due to this reason, it is relevant to

inquire about how the chosen SF design strategy impacts on the second-stage synthesis

success.

Having said that, three different first-stage SF control design methods are considered

and investigated, as listed below.

• Strategy 1: consists in designing a stabilizing robust SF controller K considering α-

stability constraints (see Section 2.1.2), which restrains the closed-loop eigenvalue

allocation to a partition of the left-half complex plane defined by a vertical line

parallel to the imaginary axis, in contrast to the more restrictive circular allocation

region considered in second stage;

• Strategy 2: considers the employment of D-stability control design constraints for

closed-loop eigenvalue placement in a circular region in the first stage.
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• Strategy 3: characterized by considering the design of a parameter-dependent

D-stabilizing SF gain K(α) in the first stage that ensures closed-loop eigenvalue

placement in a circular region.

As one may observe, by defining these three strategies it is possible to investigate how

the region considered for pole placement in the first stage impacts on the overall two-stage

procedure, regarding that in the second step the design considers a circle for enclosing

the closed-loop poles. Additionally, the influence of the structure of the SF gain matrix

may also be observed, comparing first-stage robust and parameter-dependent controller

designs. In the sequence, the details of each one of the proposed strategies are presented

and discussed.

Strategy 1: Robust State-Feedback First-Stage Design

The implementation of Strategy 1 consists in the design of a robust SF α-stabilizing

gain for the first stage, based on the classic common-quadratic Lyapunov function (CQLF)

formulation enunciated in Theorem 3.1.

Theorem 3.1. (BOYD et al., 1994) If there exist a matrix Z ∈ R
m×n and a symmetric

positive definite matrix W ∈ R
n×n, for a given scalar γ1 > 0, such that

AiW + WA′
i + BiZ + Z ′B′

i + 2γ1W < 0 (3.7)

holds for i = 1, ...,N , then K = ZW −1 robustly stabilizes A(α) + B(α)K, considering a

minimum decay rate γ1 (i.e., the closed-loop system (3.5) is α-stable).

After the design of the first-stage gain matrix K solving the LMI problem presented

in Theorem 3.1, the obtained gain is used for computing the desired SOF gain L in the

second-stage design. The proposed solution for the problem is given in terms of new

LMI synthesis conditions for the robust SOF D-stabilization of system (3.4), obtained

considering the existence of parameter-dependent Lyapunov functions (PDLF), as stated

in Theorem 3.2.

Theorem 3.2. (SERENI; ASSUNÇÃO; TEIXEIRA, 2019) Assuming that there exists

a state feedback gain K such that A(α) + B(α)K is robustly stable, then there exists a

static output feedback gain L such that A(α) + B(α)LC(α) is robustly D-stable, ensuring

the closed-loop pole placement inside a circle with radius r2 and with center in (−q2,0),

where q2 = r2 + γ2, if there exist symmetric matrices Pi > 0 and matrices Fi, Gi, H and

J such that (3.8) and (3.9) are satisfied.
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









A′
iF

′
i + FiAi + K ′B′

iF
′
i + FiBiK+γ2Pi(2r2 + γ2) ∗ ∗

(r2 + γ2)Pi−F ′
i + GiAi + GiBiK Pi−Gi−G′

i ∗
B′

iF
′
i + JCi−HK B′

iG
′
i −H−H ′











< 0 (3.8)

for i = 1,2, ...,N .










Θ11 ∗ ∗
Θ21 Pi + Pj−G′

i−Gi−G′
j−Gj ∗

B′
iF

′
j + B′

jF
′
i + JCi + JCj−2HK B′

iG
′
j + B′

jG
′
i −2H−2H ′











< 0 (3.9)

for i = 1,2, ...,N −1 and j = i+ 1, i+ 2, ...,N , where

Θ11 =A′
iF

′
j+FiAj+K ′B′

iF
′
j+FiBjK + γ2Pi(2r2 + γ2)

+A′
jF

′
i +FjAi+K ′B′

jF
′
i +FjBiK + γ2Pj(2r2 + γ2)

and

Θ21 = (r2 + γ2)Pi−F ′
i + GiAj + GiBjK + (r2 + γ2)Pj−F ′

j + GjAi + GjBiK.

In the affirmative case, the robust static output feedback gain is given by L = H−1J .

Proof. Assume that (3.8) and (3.9) hold. Then, immediately, we see that (3.8) implies in

H + H > 0, which guarantees the existence of the inverse of H (BOYD et al., 1994).

Now, remembering that
∑N

i=1 αi = 1, by multiplying (3.8) by α2
i and summing for

i = 1, ...,N , and by multiplying (3.9) by αiαj and summing for i = 1, ...,N − 1 and j =

i+ 1, ...,N , we have that











A′(α)F (α)′ + F (α)A(α) + K ′B(α)′F (α)′ + F (α)B(α)K+γ2P (α)(2r2 + γ2)

(r2 + γ2)P (α)−F (α)′ + G(α)A(α) + G(α)B(α)K

B(α)′F (α)′ + JC(α)−HK

∗ ∗
P (α)−G(α)−G(α)′ ∗

B(α)′G(α)′ −H−H ′











< 0, (3.10)

also holds.

Pre and post multiplying (3.10) by T (α) and T (α)′, where T (α) is defined as

T (α) =





I 0 S(α)′

0 I 0



 , (3.11)
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with S(α) = H−1JC(α)−K, it follows that




Ψ(α) Φ(α)

∗ P (α)−G(α)−G(α)′



 < 0, (3.12)

where

Ψ(α) = (A(α) + B(α)H−1JC(α))′F (α)′

+ F (α)(A(α) + B(α)H−1JC(α))+γ2P (α)(2r2 + γ2). (3.13)

and,

Φ(α) = (r2 + γ2)P (α)−F (α) + A(α)′G(α)′ + K ′B(α)′G(α)′ + S(α)′B(α)′G(α)′. (3.14)

Defining L = H−1J in (3.13) and (3.14), yields




γ2P (α)(2r2 + γ2) (r2 + γ2)P (α)

(r2 + γ2)P (α) 0



+









(A(α) + B(α)LC(α))′

−I





[

F (α)′ G(α)′
]



+(•)′ < 0.

(3.15)

According to Finsler’s Lemma (Lemma 2.4), by defining w =
[

x(t)′ ẋ(t)′
]′

, we have

that (3.15) leads the following equiavalent inequality:

[

x(t)′ ẋ(t)′
]





γ2(2r2 + γ2)P (α) (r2 + γ2)P (α)

(r2 + γ2)P (α) P (α)









x(t)

ẋ(t)



 < 0, (3.16)

with w under the constraint

[

A(α) + B(α)LC(α) −I
]





x(t)

ẋ(t)



 = 0. (3.17)

Initially, observe that (3.17) yields

ẋ(t) =
[

A(α) + B(α)LC(α)
]

x(t), (3.18)

which corresponds to the considered closed-loop system (3.4).

Additionally, omitting the time dependency of the state vectors for notation simplifi-

cation, note that (3.16) yields

x′γ2P (α)(2r2 + γ2)x+ ẋ′(r2 + γ2)P (α)x+ x′(r2 + γ2)P (α)ẋ+ ẋ′P (α)ẋ < 0 (3.19)

Now, by defining AN (α) = A(α) + B(α)LC(α), and rearranging terms in (3.19) we
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have

x′
(

(r2 + γ2)(AN (α)′P (α)+ P (α)AN(α)) + (2r2γ2 + γ2
2)P (α)+ AN (α)′P (α)AN(α)

)

x < 0,

or, equivalently,

AN (α)′P (α)+ P (α)AN (α)+ 2γ2P (α)+ (AN (α)+ γ2I)′ P (α)
r2

(AN (α)+ γ2I) < 0.

At this point, by means of the Schur’s complement, we can obtain from (3.19) the

following equivalent inequality:




AN (α)′P (α) + P (α)AN(α)+ 2γ2P (α) ∗
P (α)(AN (α)+ γ2I) r2P (α)



 < 0, (3.20)

which is a sufficient condition (LEITE; MONTAGNER; PERES, 2002) for the robust

D-stabilization of the SOF closed-loop system (3.4).

Strategy 2: D-Stabilizing State-Feedback First-Stage Design

Strategy 2 consists in designing a first-stage gain matrix K under D-stabilizing con-

straints, considering a circular region for pole placement. Then, the obtained gain is fed

to the second stage, which is performed using the LMI conditions enunciated in Theorem

3.2. The details and benefits if this new SOF D-stabilizing two-stage design configuration

are discussed in the sequence.

Firstly, we emphasize that designing K by means of Theorem 3.1 does not enable a

precise robust closed-loop eigenvalue placement, except that they all will be settled at the

left of the vertical line passing through the point (−γ1,0), in the left complex semi-plane

(BOYD et al., 1994).

Since in the second stage a more specific pole placement region is imposed, it seems

imperative to investigate how the method is affected, in terms of feasibility success, when

the first stage is also performed considering D-stabilizing constraints. With this purpose,

when performing the first stage, we propose considering the employment of the results

presented in Leite, Montagner and Peres (2002), which enables the synthesis of a robust

D-stabilizing state feedback controller considering a circular region for pole placement,

by solving the LMI problem enunciated in Theorem 3.3.

Theorem 3.3. (LEITE; MONTAGNER; PERES, 2002) If there exist a matrix Z ∈Rm×n

and a symmetric positive definite matrix W ∈R
n×n such that





AiW + WAi
′ + BiZ + Z ′B′

i + 2γ1W ∗
WA′

i + Z ′B′
i + γ1W −r1W



 < 0 (3.21)
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holds for i = 1, ...,N , then K = ZW −1 ensures the robust closed-loop pole placement of

A(α) + B(α)K inside the circular region with radius r1 and center in (−q1,0), where

q1 = r1 + γ1.

If Theorem 3.3 provides a feasible solution, then the designer may use the obtained

robust D-stabilizing gain K as input parameter to Theorem 3.2 LMIs, to seek for the

desired SOF D-stabilizing gain L.

Although first and second stages are not explicitly dependent, the pole placement

region specified in the state feedback step might impact on the SOF design success in the

second stage, as it will be demonstrated in the examples presented in Section 3.1.3.

Strategy 3: Parameter-dependent D-Stabilizing State-Feedback First-Stage

Design

Further from also imposing specific pole-placement constraints on both design stages,

this third SOF D-stabilizing controller synthesis strategy considers the design of a first-

stage parameter-dependent SF controller, which is then fed to the second stage as a known

parameter.

The conception of this strategy emerges from the observation that the gain designed

in the first stage is not implemented in practice, being used only as input data for the

the second stage (AGULHARI; OLIVEIRA; PERES, 2010a). Therefore, we can employ a

parameter-dependent state-feedback design for obtaining a gain matrix K(α) in the first

stage. As we are considering a polytopic approach, this means that a parameter-dependent

first-stage design will provide a gain matrix

K(α) =
N

∑

i=1

αiKi,
N

∑

i=1

αi = 1; αi ≥ 0; i = 1, ...,N. (3.22)

With this, we might reduce conservatism in the second stage, since instead of feeding

a single gain matrix K, we can use a set of matrices Ki, one for each polytope vertex,

serving as a sort of “slack variables”.

For that intent, we extend the results of Leite, Montagner and Peres (2002), presented

in Theorem 3.3, to obtain synthesis conditions for the design of a D-stabilizing parameter-

dependent controller, as enunciated in Theorem 3.4.

Theorem 3.4. If there exist a symmetric positive definite matrix W ∈Rn×n and matrices

Zi ∈ R
m×n such that





AiW + WAi
′ + BiZi + Z ′

iB
′
i + 2γ1W ∗

WA′
i + Z ′

iB
′
i + γ1W −r1W



 < 0, (3.23)
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holds for i = 1, ...,N , and




(AiW + BiZj + AjW + BjZi) + (•)′ + γ1W ∗
WA′

i + WA′
j + Z ′

iB
′
j + Z ′

jB
′
i + 2γ1W −2r1W



 < 0 (3.24)

holds for i = 1, ...,N − 1 and j = i + 1, i + 2, ...,N , then K(α), as defined in (3.22) with

Ki = ZiW
−1, ensures the robust closed-loop pole placement of A(α) + B(α)K(α) inside

the circular region with radius r1 and center in (−q1,0), where q1 = r1 + γ1.

Proof. Assume that that (3.23) and (3.24) hold. Then, by multiplying (3.23) by α2
i and

summing for i = 1, ...,N , and by multiplying (3.24) by αiαj and summing for i = 1, ...,N−1

and for j = i+ 1, ...,N , and remembering that
∑N

i=1 αi = 1, we have that




A(α)W +WA(α)′+B(α)Z(α)+Z(α)′B(α)′+2γ1W ∗
WA(α)′ + Z(α)′B(α)′ + γ1W −r1W



 < 0, (3.25)

also holds, which is equivalent to (3.21), with Z = Z(α).

Now, it is important to note that Theorem 3.2 cannot be used for completing the sec-

ond stage using a parameter-dependent state feedback gain as input information. This is

due to the fact that the referred theorem considers the existence of a robust matrix K. For

making use of a parameter-dependent gain matrix K(α) obtained through Theorem 3.4,

appropriate synthesis conditions have to be considered in the second stage. To that end,

a new and less conservative second-stage SOF control design for robust D-stabilization is

proposed, as enunciated in Theorem 3.5.

Theorem 3.5. Assuming that there exists a state feedback gain matrix K(α), defined

in terms of its vertices Ki as in (3.22), such that A(α) + B(α)K(α) is robustly stable,

then there exists a static output feedback gain L such that A(α) + B(α)LC(α) is robustly

D-stable, ensuring the closed-loop pole placement inside a circle with radius r2 and with

center in (−q2,0), where q2 = r2 +γ2, if there exist symmetric matrices Pi > 0 and matrices

Fi, Gi, H and J such that (3.26), (3.27), and (3.28) are satisfied.











A′
iF

′
i + FiAi + K ′

iB
′
iF

′
i + FiBiKi+γ2Pi(2r2 + γ2) ∗ ∗

(r2 + γ2)Pi−F ′
i + GiAi + GiBiKi Pi−Gi−G′

i ∗
B′

iF
′
i + JCi−HKi B′

iG
′
i −H−H ′











< 0 (3.26)

for i = 1,2, ...,N .











Ω11

Ω21

(B′
i + B′

j)F
′
i + B′

iF
′
j + J(2Ci + Cj)−H(2Ki + Kj)
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∗ ∗
2Pi + Pj−2(Gi+G′

i)−G′
j−Gj ∗

(B′
i + B′

j)G
′
i + B′

iG
′
j −3H−3H ′











< 0 (3.27)

for i = 1, ...,N , j = 1, ...,N , with i 6= j, where

Ω11 =
[

(A′
i + A′

j)F
′
i + A′

iF
′
j + (K ′

iB
′
i + K ′

iBj)F ′
i

+K ′
jBiF

′
i

]

+ (•)′ + γ2(2Pi + Pj)(2r2 + γ2)

and

Ω21 = (r2 + γ2)(2Pi + Pj)−2F ′
i −F ′

j + Gi(Ai + Aj)

+GjAi + Gi(BiKj + BjKi) + GjBiKi.











Λ11 ∗ ∗
Λ21 Λ22 ∗
Λ31 Λ32 −6H−6H ′











< 0 (3.28)

for i = 1, ...,N −2, j = i+ 1, ...,N −1, and k = j + 1, ...,N where

Λ11 =
[

(A′
i + A′

j)F
′
k + (A′

i + A′
k)F ′

j + (A′
j + A′

k)F ′
i

+ (K ′
iB

′
j + K ′

jB
′
i)F

′
k + (K ′

iB
′
k + K ′

kB′
i)F

′
j + (K ′

jB
′
k + K ′

kB′
j)F

′
i

]

+ (•)′ + γ22(Pi + Pj + Pk)(2r2 + γ2),

Λ21 = 2(r2 + γ2)(Pi + Pj + Pk)−2(F ′
i + F ′

j + F ′
k)

+ Gi(Aj + Ak) + Gj(Ai + Ak) + Gk(Ai + Aj)

+ Gi(BjKk + BkKj) + Gj(BiKk + BkKi) + Gk(BiKj + BjKi),

Λ31 = (B′
i + B′

j)F
′
k + (B′

i + B′
k)F ′

j + (B′
j + B′

k)F ′
i

+ 2J(Ci + Cj + Ck)−2H(Ki + Kj + Kk),

Λ22 = 2(Pi + Pj + Pk) + 2(−Gi−Gj−Gk) + (•)′,

and

Λ32 = (B′
i + B′

j)G
′
k + (B′

i + B′
k)G′

j + (B′
j + B′

k)G′
i.

In the affirmative case, the robust static output-feedback gain is given by L = H−1J .

Proof. Assume that (3.26)-(3.28) hold. Then, immediately, we see that (3.26) implies in
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H + H ′ > 0, which guarantees the existence of the inverse of H (BOYD et al., 1994).

Now, remembering that
∑N

i=1 αi = 1, and by multiplying (3.26) by α3
i and summing

for i = 1, ...,N , by multiplying (3.27) by α2
i αj and summing for i = 1, ...,N , j = 1, ...,N ,

with i 6= j, and by multiplying (3.28) by αiαjαk, and summing for i = 1, ...,N − 2, j =

i+ 1, ...,N −1, and k = j + 1, ...,N , we have that











A′(α)F (α)′ + F (α)A(α) + K(α)′B′(α)F (α)′ + F (α)K(α)+γ2P (α)(2r2 + γ2)

(r2 + γ2)P (α)−F (α)′ + G(α)A(α) + G(α)B(α)K(α)

B(α)′F (α)′ + JC(α)−HK(α)

∗ ∗
P (α)−G(α)−G(α)′ ∗

B′(α)G(α)′ −H−H ′











< 0, (3.29)

also holds.

The rest of the proof follows similarly as for Theorem 3.2, and it is therefore omitted.

In Theorem 3.5, by considering a parameter-dependent first-stage design, we allow for

the use of different matrices Ki for each polytope vertex. Despite the fact that they are

not direct optimization variables in the second stage, they introduce an artificial degree

of freedom, as each one of them are intrinsically associated to its respective polytope

vertex. In fact, whenever a solution using Theorem 3.2 exists, Theorem 3.5 will also have

a solution. This result is stated in Theorem 3.6.

Theorem 3.6. Suppose that there exist symmetric matrices Pi and matrices Fi, Gi, H,

J , and K such that LMI conditions (3.8) and (3.9) in Theorem 3.2 hold for i = 1, ...,N ,

and for i = 1, ...,N −1 and j = i+ 1, ...,N , respectively. Then, the LMI conditions (3.26)

- (3.28) in Theorem 3.5 also hold.

Proof. Assume that Ki = K. Then, we have that (3.26) becomes (3.8), which holds for

i = 1, ...,N as our initial hypothesis.

Additionally, one can see that (3.27) becomes











∆11

∆21

(B′
i + B′

j)F
′
i + B′

iF
′
j + J(2Ci + Cj)−3HK)

∗ ∗
2Pi + Pj−2(Gi + G′

i)−G′
j−Gj ∗

(B′
i + B′

j)G
′
i + B′

iG
′
j −3H−3H ′











< 0 (3.30)
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for i = 1, ...,N , j = 1, ...,N , with i 6= j, where

∆11 =
[

(A′
i + A′

j)F
′
i +A′

iF
′
j+(K ′B′

i + K ′Bj)F ′
i +K ′BiF

′
i

]

+ (•)′ + γ2(2Pi + Pj)(2r2 + γ2)

and

∆21 = (r2 + γ2)(2Pi + Pj)−2F ′
i −F ′

j + Gi(Ai + Aj)

+GjAi + Gi(BiK + BjK) + GjBiK.

Observe that (3.30) can be decomposed as a sum of two matrix blocks











A′
iF

′
i + FiAi + K ′B′

iF
′
j + FiBiK+γ2Pi(2r2 + γ2) ∗ ∗

(r2 + γ2)Pi−F ′
i + GiAi + GiBiK Pi−Gi−G′

i ∗
B′

iF
′
i + JCi−HK B′

iG
′
i −H−H ′











+











Σij

(r2 + γ2)(Pi + Pj)−F ′
i + GiAj + GiBjK−F ′

j + GjAi + GjBiK

B′
iF

′
j + JCi + JCj + B′

jF
′
i −2HK

∗ ∗
Pi + Pj−G′

i−Gi−G′
j−Gj ∗

B′
iG

′
j + B′

jG
′
i −2H−2H ′











< 0, (3.31)

for i = 1, ...,N , j = 1, ...,N , with i 6= j, where

Σ11 = A′
iF

′
j + FiAj + K ′B′

iF
′
j + FiBjK + γ2Pi(2r2 + γ2)

+A′
jF

′
i + FjAi + K ′B′

jF
′
i + FjBiK+γ2Pj(2r2 + γ2).

Also, note that the first term in (3.31) is negative definite, since (3.8) holds for i =

1, ...,N . Moreover, note that the second term in (3.31) is also negative definite, since

(3.9) holds for i = 1,2, ...,N−1 and j = i+1, ...,N , as our initial hypothesis. Thus, (3.30)

holds.

Following the same argument, we can prove that (3.28) also holds for i = 1, ...,N −2,

j = i+1, ...,N −1, and k = j +1, ...,N when (3.8) holds for i = 1, ...,N , by splitting it into

a sum of three matrix blocks.

Therefore, if Theorem 3.2 LMI are feasible, then LMI (3.26) - (3.28) in Theorem 3.5

will also be feasible for at least one set of matrices Ki.

At this point, it is important to highlight that the choice of design parameters that

define the clustering region should be made considering the performance requirements of

each particular problem. Note that with smaller values for the circle radius, r2, we have a
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more specific eigenvalue assignment, with the addition of smaller imaginary components

for complex conjugate eigenvalues, implying on oscillation modes with reduced ampli-

tude1. Moreover, by adjusting the parameter γ2 we set a lower bound on the magnitude

of real part of the system eigenvalues. For higher values of γ2, the closed-loop system

tends to present a fast transient response, with a trade-off in higher demands of control

signal, since the controller matrix entries tends to increase proportionally with the mag-

nitude of the real part of the system eigenvalues. This becomes clear by observing that

γ2 is associated to the closed-loop system decay rate (BOYD et al., 1994).

At last, it should be clear that only the second-stage design setting (γ2 and r2) will

effectively impact on closed-loop response, as they are intrinsically related to the SOF

controller, which will be indeed implemented in practice. Of course, the final transient

response depends on the actual eigenvalue clustering, being γ2 and r2 only established

bounds for the assignment region. In their turn, the first-stage parameters will only impact

in the feasibility of the SF design stage. For different choices of γ1 and r1, a different SF

robust controller can be computed. As the second stage depends on the given matrix K

designed in the first stage, a search on the parameters γ1 and r1 can be employed in order

to achieved feasibility in the SOF design stage, if synthesis fails for a particular K.

3.1.3 ILLUSTRATIVE EXAMPLES

In this section, we present a series of examples to illustrate the controller synthesis

procedure, as well as to demonstrate the advantages of the new proposed strategies. In

Section 3.1.4, a practical control design for an active suspension system is also presented,

demonstrating the practical applicability of the proposed method. In all presented ex-

amples, the LMIs were programmed with MATLAB software, and solved via YALMIP

interface (LOFBERG, 2004), using the SeDuMi solver (STURM, 1999).

Example 3.1 Consider an hypothetical uncertain system, described in terms of a polytope

with two vertices as

A1 =





2.439 0.683

0.933 −2.787



 B1 =





0.607

0.629





and,

A2 =





0.102 1.223

−9.614 2.027



 B2 =





0.370

0.575



 .

For applying the SOF control, we assume that only the state variable x1 is available

for measurement. Therefore, the output matrices for each vertex are defined as C1 = C2 =

[ 1 0 ].

1It is important to acknowledge the statement given in Remark 2.2.
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With the intent of comparing the conservativeness associated with each strategy de-

picted in last section, we performed a feasibility analysis. This study consisted in at-

tempting to design a robust SOF controller, L, via two-stage strategy for the considered

uncertain system. The gain matrix L should guarantee a closed-loop pole placement in-

side a D-region with specifications defined within the ranges 0 < r ≤ 40 and 0 ≤ γ ≤ 3,

respectively. More clearly, the LMI conditions associated to each two-stage strategy:

• Strategy 1: Theorem 3.1 (SF α-stabilization), and then Theorem 3.2

• Strategy 2: Theorem 3.3 (SF D-stabilization), and then Theorem 3.2

• Strategy 3: Theorem 3.4 (PDSF2 D-stabilization), and then Theorem 3.5

were tested on 400 different control problems in terms of different pairs of parameters

(r,γ), obtained by griding the aforementioned ranges for r and γ into a 20-element grid

space. Note that each pair (r,γ) defines a different D-region for pole placement, which

represents a whole different control problem.

Remark 3.1. Naturally, as Theorem 3.1, used in Strategy 1, does not regard the specifica-

tion of the value of r1, only the circle distance parameter γ1 is considered. Moreover, when

testing Strategies 2 and 3, for simplicity only, the desired circular region was identically

specified in both design stages, i.e. γ1 = γ2 = γ and r1 = r2 = r. The specification of γ1 = γ

when using Theorem 3.1 in Strategy 1 is set to provide the best possible condition for a

fair comparison. Remind that in Theorems 3.3 and 3.4, γ1 is associated to the minimum

distance that the closed-loop eigenvalues should be placed away from the imaginary axis in

the left half-plane.

The feasibility results obtained with each strategy, for each pair of design parameters

(r,γ), are presented in Figure 3.1. The symbols (�,©, and△) in the chart indicates that a

particular strategy has succeeded in obtaining a D-stabilizing gain L for the corresponding

pair (r,γ). Conversely, when no strategy was able to find a solution, no mark is plotted.

Individually, the mark � indicates success of Strategy 1, while Strategy 2 feasible points

are represented by both � and © marks, and the set of all three symbols are associated

to the triumphs of Strategy 3 in yielding the desired SOF controller.

As one can observe, the feasibility success rate is considerably enhanced by also im-

posing D-stability constraints in the first stage (Strategies 2 and 3). This can be inferred

since an SOF feasible solution was able to be obtained for a significant greater number

of cases when compared to Strategy 1 results, which are based on a simpler SF design in

the first stage, regarding α-stabilization constraints.

In fact, as shown in Figure 3.1, while employing Strategy 1 (Theorem 3.1 in the

first stage and Theorem 3.2 in the second stage), feasibility was not able to be achieved

2parameter-dependent state-feedback
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Figure 3.1 - Feasibility region obtained in Example 3.1 using: Strategy 1 (�); Strategy
2 (� and ©); and Strategy 3 (�, ©, and △).
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Source: Author’s own results.

when specifying a radius r smaller than about 20 for pole placement in the second-stage

design. Furthermore, the highest value for γ with feasibility success in the second stage

was about 0.5, which shows that when D-stability is not considered in the first stage

the enforcement of a lower bound on the system decay rate, associated to the value of

γ, is also restrained. In practice, this implies that a more precise pole placement region

– or, equivalently, transient performance requirements – can be specified when applying

Strategy 2 or 3 (both stages executed considering D-stabilization constraints).

The presented observation empirically indicates that considering D-stability con-

straints also in the first stage might yield better feasibility performance in the SOF

two-stage context. This, in fact, represents an important feature of the contributions

presented in this work. Often, in previous papers on the two-stage SOF design frame-

work, the first-stage SF design is not performed considering the same constraints as in

the second-stage (AGULHARI; OLIVEIRA; PERES, 2012, 2010a). Even when similar

design requirements are imposed on both stages, no further observation on the necessity

of this coupled setting is presented (AGULHARI; OLIVEIRA; PERES, 2010b). However,

as shown in the present study, despite that an stabilizing SF gain suffices for implementing

the two-stage method for SOF control design, there might be a more suitable choice for

the first-stage SF design method.

Additionally, it is possible to observe that Strategy 3, which consists in designing

a parameter-dependent D-stabilizing first-stage gain via Theorem 3.4 and using the ob-

tained set of matrices Ki as input information to Theorem 3.5 second-stage LMIs led to

the best performance of all three evaluated strategies, in terms of feasibility. This indicates

that Theorem 3.5 LMI indeed consists of less conservative SOF design conditions. In fact,

the observed results are a reflex of the relaxation certificate provided through Theorem

3.6, which states that whenever Theorem 3.2 (which makes use of a robust state-feedback
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gain matrix K as input data) have a solution, Theorem 3.5 (which in turn considers a

parameter-dependent D-stabilizing state-feedback gain matrix K(α) as input matrix) will

also yield a feasible solution for some set of matrices Ki, i = 1, ..,N .

As seen, both proposed methods (Strategies 2 and 3) are able to outperform the

results achieved with Strategy 1. The common factor in our proposed methods is the

enforcement of D-stabilizing design constraints, as considered in the final design stage.

This observation reinforces the idea that the two-stage method may indeed yield a better

feasibility performance when both stages are executed accordingly.

Finally, it is important to stress the contrast between Strategies 2 and 3. Despite that

both of them seem to be interesting solutions for the D-stabilization problem in the SOF

framework, Strategy 2 has the advantage of being presented in terms of a lesser number

of LMI rows when compared to Strategy 3 (especially in the second-stage design). As

well-known, the complexity associated to LMI solvers are directly linked to the numbers of

variables and LMI rows (STURM, 1999), indicating that Strategy 2 leads to a lighter com-

putational burden. However, the designer might consider employing Strategy 3 whenever

the control requirements exerts more severe constraints (e.g. higher minimum decay rate,

as illustrated in the feasibility test results in Figure 3.1), and additional flexibilization

is required for obtaining a feasible solution for the problem, justifying the more complex

LMI constraints of Theorem 3.5 in Strategy 3.

Example 3.2 This second example has the purpose of illustrating the details of the

controller synthesis procedure associated to the proposed strategies, as well as pointing

out its the effects of the considered pole placement constraints. To this end, consider an

uncertain model of the row axis dynamics of a missile, adapted from Santos, Pellanda and

Simões (2018). Such dynamics are modeled as

ẋ(t) = (A+ 0.75δ1Aδ)x(t) + (B + δ2Bδ)u(t)

y(t) = Cx(t),
(3.32)

where

A =

















−180 0 0 0 0

0 −180 0 0 0

−21.23 0 −0.6888 −14.7 0

256.7 0 122.6 −1.793 0

−52.33 304.7 0 36.7 −9.661

















, Aδ =

















27 0 0 0 0

0 27 0 0 0

21.2 0 0.6888 14.96 0

38.6 0 122.6 0 0

52.4 304.8 0 36.8 9.66

















,

B =

















180 0

0 180

0 0

256.7 0

0 0

















, Bδ =

















40.5 0

0 40.5

0 0

57.9 0

0 0

















, C =







0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





 ,
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and δ1,2 ∈ [−1,1] represent the uncertain parameters. The state vector is defined as

x =
[

δr δp r ny p
]′

, whose entries are the yaw and roll control surface deflection, the

yaw rate, the yaw acceleration and the roll rate, respectively. The control input vector is

u =
[

δrc δrc

]′
, where δrc and δpc are the yaw and roll control commands, respectively.

Given the presented model, the missile uncertain row axis dynamics can be put into

a polytopic representation in terms of four vertices, defined by the combination of the

maximum and minimum values that δ1,2 can assume. For the control design, we assume

the requirement of a circular pole placement region with radius r = 100 and γ = 10.

One can verify that Strategy 1 fails in providing a solution for the problem at hand.

Unfortunately, Strategy 2 also does not yield a feasible solution. However, by considering

Strategy 3, one can obtain in the first stage (via Theorem 3.4 with r1 = 100 and γ1 = 10),

parameter-dependent gain matrix K(α) with vertices

K1 =





−0.2755 0.0038 0.5345 −0.3238 −0.0019

−0.0681 0.5071 −0.1403 −0.0462 −0.0839



 ,

K2 =





−0.3241 0.0004 0.1458 −0.2073 0.0019

−0.1594 −0.0778 −0.1806 −0.1128 −0.0999



 ,

K3 =





−0.1593 −0.0029 0.3609 −0.2159 −0.0005

−0.0424 0.3935 −0.0848 −0.0234 −0.0502



 ,

and

K4 =





−0.2154 0.0030 0.0516 −0.1225 0.0018

−0.1126 −0.0864 −0.1207 −0.0771 −0.0613



 .

Then, by feeding these gains to the second stage, and solving Theorem 3.5 LMI conditions

with r2 = 100 and γ2 = 10, it is possible to obtain a robust SOF gain matrix

L =





0.2547 −0.1599 0.0072

−0.1641 −0.0487 −0.0874



 . (3.33)

Firstly, we see the benefits of Strategy 3 over the other two strategies. The less

conservative nature of the combined first and second stages LMIs proposed in this work

(Theorems 3.4 and 3.5) is highlighted, as they made possible obtaining a feasible solution

when the other two strategies have failed.

We now evaluate the practical impact of the designed robust SOF controller (3.33).

The eigenvalues of the closed-loop system with the designed robust SOF gain are allo-

cated as presented in Figure 3.2, obtained from 1000 randomly generated samples of the

closed-loop system associated to different values that the uncertain parameters δ1,2 may

assume, according to the specified range (see the black marks ∗ in Figure 3.2). As one
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can observe, all eigenvalues are placed inside the specified region, attesting for the effi-

cacy of the proposed method. The open-loop (u(t) = 0) eigenvalue configuration (see the

red marks + in Figure 3.2) is also presented with illustration purposes, showing that the

designed controller is indeed able to promote a drastic relocation of the system eigenvalue

assignment.

Figure 3.2 - Cloud of open (+) and closed-loop (∗) eigenvalues of the uncertain row axis
dynamics for arbitrary values of uncertain parameters within the specified
range.

Source: Author’s own results.

Example 3.3 This third example is dedicated to show the benefits of performing a robust

SOF control design considering D-stability conditions, using the same missile row axis

dynamics presented in Example 3.2. With such intent, we present the time response of

the row rate p and the correspondent row control command δpc in Figures 3.3 and 3.4,

respectively, starting from the initial condition x(0) =
[

0 0 0 1 0
]′

, for 30 different

randomly defined values of δ1 and δ2 in (3.32). Note that by presenting simulation results

for distinct values of δ1 and δ2, we are able to observe the dynamic response of the

closed-loop system for different possible models among the uncertainty polytope.

The solid lines refer to the dynamic behavior of the system and its control signal when

the robust SOF controller (3.33) is used for composing the feedback loop. For comparison,

we obtained a second gain matrix L, using the same strategy as in Example 3.2, but with

a pole placement region with radius r = 250 and distance γ = 10. In those terms, using
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Theorem 3.4 and Theorem 3.5, the obtained gain matrix is

L =





0.9128 −0.3476 −0.0130

0.4497 −0.2307 −0.1030



 . (3.34)

The dynamic response associated to SOF controller (3.34) is represented by the dash-dot

lines.

Figure 3.3 - Row rate time response with controllers (3.33) (solid) and (3.34) (dash-dot)
for 30 different random values of δ1 and δ2 in (3.32).
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Source: Author’s own results.

One may observe that with a less restrictive placement region (bigger value for the

circle radius), the row rate time response with controller (3.34) (dash-dot) has a slight

shorter settling time when compared to the dynamic shown with controller (3.33) (solid).

This happens due to the larger value of r in the second design, which allows for the

closed-loop eigenvalues to be placed farther from the imaginary axis, and then, implying

in a faster response. However, as one can see in Figure 3.4, this comes at the price of

a significant higher amplitude in the row control command signal for controller (3.34)

(solid) when compared to controller (3.33) case (dash-dot).

Indeed, although improving performance is a desired aspect in control design, it is also

important to avoid excessively high amplitudes in control signal for practical applications.

In sum, it is of great interest to be able to require a specific pole placement region. In

fact, with a smaller radius specification, controller (3.33) is able to provide good dynamic

response (when comparable to the second studied case), but also limiting the eigenval-

ues distance from the imaginary axis, which in turn, impacts on smaller control signal

amplitude.
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Figure 3.4 - Row control command with controllers (3.33) (solid) and (3.34) (dash-dot)
for 30 different random values of δ1 and δ2 in (3.32).
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Source: Author’s own results.

3.1.4 PRACTICAL IMPLEMENTATION: ACTIVE SUSPENSION SYSTEM

In this section, we present the design and the practical implementation results of a

robust SOF controller for D-stabilization of a bench scale active suspension manufactured

by QUANSER®.

System Description

The QUANSER® Active Suspension system (Figure 3.5a) emulates a 1/4 model of

a vehicle. In Figure 3.5b schematic diagram, Ms is the sprung mass, representing 1/4

of vehicle body (load) mass, Mus is the unsprung mass that represents the tire of the

quarter-car model, and ks, bs, kus, and bus, are the springs and dampers in the model

assembly. zus(t) and zs(t) are the unsprung and sprung mass positions related to each

shown reference level.

The control objective is to mitigate the effects caused by the road surface (zr(t))

on the suspension travel and road handling of the car. In the considered model, these

performance parameters are related to the relative movement between the vehicle body

and tire (zs–zus), and to the displacement between the tire and the road surface (zus–zr),

respectively. This goal may be achieved by properly applying a control command to drive

a DC motor that acts as the active element in the suspension system (i.e. actuator),

which in turn exerts a force Fc(t) to control the plates displacements, through a set of

capstan cables attached to the plates and to the DC motor axis.

We assume that the sprung mass is an uncertain parameter lying within the interval

1.455 kg ≤ Ms ≤ 2.45 kg. Moreover, we take into account that the actuator, which
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Figure 3.5 - Active suspension system experimental module and model diagram.

(a) QUANSER® Active Suspension System
installed at FEIS–UNESP Control Re-
search Laboratory.

(b) Schematic diagram of the
QUANSER® Active Suspension
System.

bsks

Ms →
1

4
of the vehicle mass

zr(t)

(road)

kus bus

zs(t)

zus(t)

Active Suspension

Tire

Fc

Mus → Tire assembly mass

Sources: (a) Own author; (b) Adapted from Silva et al. (2012).

applies the control signal u(t), is susceptible to present a fault in power delivery to the

DC motor, implying in the attenuation of the control signal. In this example, we assume

that a maximum power fault of 30% in attenuation of the control signal is possible to

occur.

This scenario was mathematically modeled by considering a second uncertain param-

eter ρ, such that 0.7 ≤ ρ ≤ 1, which affects all entries of the input matrix, impressing

the control signal attenuation due to the power failure on the system dynamics, similar

as presented in Llins et al. (2017). Furthermore, it is assumed that only two of the four

system state variables are available for measurement (x2 and x4).

In (3.35), we have a state space model for modeling the described dynamics of the

active suspension system.

ẋ(t)=















0 1 0 −1
−ks

Ms

−bs

Ms
0 bs

Ms

0 0 0 1
ks

Mus

bs

Mus

−kus

Mus

−(bs+bus)
Mus















x(t) +















0
ρ

Ms

0
−ρ

Mus















u(t),

y(t) =





0 1 0 0

0 0 0 1



x(t), (3.35)
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where state and input vectors are defined as

x(t) =

















zs(t)−zus(t)

żs(t)

zus(t)−zr(t)

żus(t)

















and u(t) = Fc(t). (3.36)

The chosen state variables allows for directly describing the dynamics that are related

to the practical performance parameters of interest (i.e road handling and suspension

travel).

Based on data presented in Table 3.1, and considering two uncertain parameters, the

active suspension system may be represented as a convex combination of four vertices,

defined according to the matrices

A1 = A3 =















0 1 0 −1

−618.56 −5.1546 0 5.1546

0 0 0 1

900 7.5 −2500 −12.5















,

A2 = A4 =















0 1 0 −1

−367.35 −3.0612 0 3.0612

0 0 0 1

900 7.5 −2500 −12.5















,

B1 =















0

0.6873

0

−1















, B2 =















0

0.4082

0

−1















, B3 =















0

0.4811

0

−0.7















, B4 =















0

0.2857

0

−0.7















, and

C1 =C2 =C3 =C4 =





0 1 0 0

0 0 0 1



.

Table 3.1 - Active Suspension Parameters.

Parameter Value Parameter Value

Ms 2.45 kg kus 2500 N/m

Mus 1.0 kg bs 7.5 Ns/m

ks 900 N/m bus 5.0 Ns/m

Source: Quanser (2009).
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SOF Controller Design

For the control design, we consider that the closed-loop eigenvalues should be placed

inside a circle with radius r = 75, at a minimum distance γ = 1 from the imaginary axis.

Employing the two-stage Strategy 3 proposed in this work, we start by designing an

parameter-dependent SF controller using Theorem 3.4 with r1 = 75 and γ1 = 1. At the

synthesis condition, the obtained SF controller gains are

K1 =
[

770.2326 −19.1608 −207.5085 38.3978
]

,

K2 =
[

780.8686 −19.2797 −378.2697 39.4382
]

,

K3 =
[

1.1271 −0.0203 −0.5364 0.0528
]

×103,

and

K4 =
[

1.0220 −0.0423 0.0335 0.0679
]

×103.

Then, using these SF gain matrices in Theorem (3.5), with r2 = 75 and γ2 = 1, it is

possible to compute the robust SOF gain matrix

L =
[

−64.5847 44.9564
]

. (3.37)

As showed in Figure 3.6, which is generated in the same fashion as Figure 3.2, the

designed SOF controller (3.37) is able to reallocate all system polytope eigenvalues in the

required region. Additionally, note that all open-loop eigenvalues are originally positioned

outside the specified region, which reaffirms the method’s efficacy.

Figure 3.6 - Cloud of open (+) and closed-loop (∗) of the uncertain active suspension
system dynamics for arbitrary values of uncertain parameters within the
specified range.

Source: Author’s own results.
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Practical Dynamic Performance

The designed robust SOF controller was implemented in practice, on a physical ac-

tive suspension system available at our laboratory, to evaluate the closed-loop dynamic

performance. In the performed tests, the road profile (zr(t)) was set to a square wave

with 0.02 m of amplitude and frequency of 0.25 Hz. Additionally, a fault of 30% power

loss was programmed to occur at t = 16 s.

Two tests were performed. In the first one, the sprung mass in the system, Ms(α),

was set to its minimum value, whereas in the second test Ms(α) was configured to its

maximum value. The observed dynamic behavior is presented in Figures 3.7 and 3.8.

Figure 3.7 - Active suspension dynamic response (upper chart) and control signal (bot-
tom chart) with Ms(α)=1.455 kg in: open-loop (0-8s); closed-loop (8-16s);
fault: 30% power loss in the actuator (16-24s).
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Source: Author’s own results.

The active suspension shows its stable open-loop dynamics in the first 8 seconds of

experiment. Clearly, the results show that the system response is improved in the closed-

loop scenario, after the SOF control is switched on (after 8 seconds), for both studies cases

(minimum and maximum load weigh), as the oscillations experienced in both sprung and

unsprung levels (red and blue lines) achieved lower peaks and are extinguished almost

immediately. Even in the occurrence of actuator fault (after 16 seconds – 30% in power

loss), the system preserves stability and good performance. One may notice the effect

of actuator fault in the lower values provided by the actuators when compared to the

no-fault case (bottom chart in Figures 3.7 and 3.8).
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Figure 3.8 - Active suspension dynamic response (upper chart) and control signal (bot-
tom chart) with Ms(α) = 2.45 kg in: open-loop (0-8s); closed-loop (8-16s);
fault: 30 % power loss in the actuator (16-24s).
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Source: Author’s own results.

Remark 3.2. It is important to mention that the control design strategy proposed in

this work is devoted to continuous-time LTI systems. However, the control system of the

physical active suspension system used in the practical implementation described in this

section is performed by a computer, via MATLAB® and Simulink® interface. Therefore,

in practice, the control signal is generated in a discrete-time fashion. However, by setting a

sufficiently high sampling rate in the Simulink® control interface, the discrete-time signals

provided by the computer can properly emulate the continuous-time signals considered in

our control framework.

3.2 GAIN-SCHEDULING CONTROL VIA SOF WITH POLE PLACEMENT CONSTRAINTS

The main subject of this section is related to the extension of the concepts of the D-

stabilization to the case of linear parameter-varying (LPV) systems. First, the problem to

be addressed is properly stated. A discussion is introduced in the sequence, regarding the

issues of considering pole placement constraints in LPV control design. Then, new contri-

butions are proposed for the design of gain-scheduled (GS) controllers via SOF considering

additional constraints for pole placement in terms of new sufficient LMI conditions. As

in the previous section, the GS–SOF controller design is based on the two-stage method.

At the end, some examples are presented to illustrate the employment of the proposed

strategy.
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3.2.1 PROBLEM STATEMENT

Consider an LPV system

ẋ(t) = A(α(t))x(t) + B(α(t))u(t)

y(t) = C(α(t))x(t),
(3.38)

where x(t) ∈Rn, u(t) ∈Rm, and y(t)∈Rq are the state vector, control and measured out-

put vectors, respectively. (A,B,C)(α(t)) are parameter-varying matrices which describes

the time-varying nature of the system, and that can be represented in a polytopic domain

Q such as

Q=







(A,B,C)(α(t)) : (A,B,C)(α(t)) =
N

∑

i=1

αi(t)(A,B,C)i, α(t) ∈ ⊼N ,∀t≥ 0







(3.39)

where (A,B,C)i denotes the i-th of the N polytope vertices. Moreover, Q is parameterized

in terms of the vector α(t) = (α1(t), ...,αN (t)), whose entries αi(t) are known time-varying

parameters that belong to the unitary simplex set ⊼N , defined as

⊼N =







α(t) ∈R
N :

N
∑

i=1

αi(t) = 1;αi(t)≥ 0; i = 1, ...,N,∀t≥ 0







. (3.40)

Assume that only the measured output, y(t), is available for feedback. Then, design a

control law u(t) = L(α(t))y(t), where L(α(t)) ∈R
m×q is a gain-scheduled SOF controller

matrix such that the consequent closed-loop system

ẋ(t) = [A(α(t)) + B(α(t))L(α(t))C(α(t))]x(t), (3.41)

is asymptotic stable and the eigenvalues λ(ASOF (α(t))), for a fixed value of α(t) ∈ ⊼N ,

are placed inside the circular region represented in Figure 2.3, for all (A,B,C)(α(t)) ∈Q,

where

ASOF (α(t)) = A(α(t)) + B(α(t))L(α(t))C(α(t)). (3.42)

In sum, the problem addressed in this section is related to the stabilization of the

LPV system (3.38) under particular constraints of incomplete state measurement and

eigenvalue assignment, by means of the design of gain-scheduled controllers.

Remark 3.3. In the GS control framework, the time-varying parameters α(t) ∈ ⊼N

are assumed to be available for measurement. Therefore, we will have a parameter-

dependent control law driven by a gain-scheduled gain matrix L(α(t)). With that, the

entries of the feedback gain matrix will vary accordingly to the instant format of the ma-

trices (A,B,C)(α(t)), possibly yielding less conservative control synthesis conditions and

enhanced transient performance, when compared to a standard robust gain matrix.
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Remark 3.4. In this work, we consider that the designed GS controllers are implemented

by means of the convex combination of N static matrices parameterized according to the

time-varying parameters that affect the plant (which are assumed to be measured online).

This means that the GS–SOF controller L(α(t)) is implemented in practice as

L(α(t)) = L1α1(t) + · · ·+ LN αN (t),

where α(t) ∈ ⊼N and Li, i = 1, ...,N are vertex matrices (computed offline, as products of

the control design).

3.2.2 D -STABILITY: AN EXTENSION TO LPV SYSTEMS

As mentioned before, the D-stability is a concept defined for LTI systems. Therefore,

since that in this section we are considering LPV systems, and the addressed problems

considers eigenvalue placement constraints in the control design, it is important to prop-

erly define some associated concepts.

For that, let us first consider a non-forced version of system (3.38),

ẋ(t) = A(α(t))x(t). (3.43)

It is well-known (BOYD et al., 1994) that the quadratic stability of (3.43) can be

analysed by means of the search for a positive definite symmetric matrix P ∈ R
n×n such

that

A(α(t))′P + PA(α(t)) < 0, (3.44)

for all α(t) ∈ ∧̄N .

In the particular case of α(t) = α, we have that (3.43) becomes an uncertain linear

time-invariant (LTI) system, and then, it is possible to investigate the system transient

performance by verifying if A(α) has its eigenvalues contained in a specific region of the

complex plane (in particular, an LMI region), which is a concept commonly referred as D-

stability (CHILALI; GAHINET, 1996). Specifically, results for performing such analysis

related to the concept of D-stability in terms of a circular LMI region have been published

in Haddad and Bernstein (1992).

By taking special care, we can directly extend this analysis to LPV systems by ob-

serving that for every possible fixed (or “frozen”) values of α(t) ∈ ∧N , the system (3.43)

will have an equivalent LTI model. In that sense, for each specific value that α(t) may

assume in ∧N , the matrix A(α(t)) will have a well-defined frozen eigenvalue configuration.

Regarding this discussion, we enunciate in Lemma 3.1 an LPV counter part of the LTI

circular eigenvalue assignment concept, based on Haddad and Bernstein (1992).
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Lemma 3.1. Let A(α(t)) ∈ R
n×n and D(q,r) be a circular disk in the complex plane

with center (−q,0), radius r > 0 and minimum distance from the imaginary axis γ > 0,

with q = γ + r. Then, the frozen eigenvalues of A(α(t)), obtained for each fixed value

of α(t) ∈ ∧̄N , are contained in D(q,r) if, and only if, there exists a positive definite

symmetric matrix P ∈ R
n×n such that

A(α(t))′P + PA(α(t)) + 2γP +
1
r

(A(α(t)) + γI)′P (A(α(t)) + γI) < 0, (3.45)

for every α(t) ∈ ∧̄N .

At this point, it is important to discuss the implications of Lemma 3.1. Firstly, we

need stress once again that the idea of eigenvalues in LPV systems has to be taken with

great care. It its well-known that we cannot infer on an LPV stability properties by only

evaluating its eigenvalue configuration (WU, 1974). However, one must observe that the

last two terms in (3.45) are necessarily positive definite. Therefore, when (3.45) is satisfied

for a symmetric positive definite matrix, note that

A(α(t))′P + P A(α(t)) <−2γP − 1
r

(A(α(t)) + γI)′P (A(α(t)) + γI) < 0

is also satisfied, which implies on the quadratic stability of (3.43).

Moreover, at fixed values of the time-varying parameter, α(t) = α, (3.45) guarantees

that the eigenvalues of (3.43) are contained in D(q,r) (HADDAD; BERNSTEIN, 1992).

Considering this discussion, in a control synthesis case, we may seek for inducing

better transient response relaying on Lemma 3.1, by enforcing a specific fixed-parameter

eigenvalue assignment, without compromising stability, with the design of D-stabilizing3

gain-scheduled controllers.

3.2.3 GAIN-SCHEDULING STATIC OUTPUT FEEDBACK

To carry out the GS–SOF controller L(α(t)) design, the two-stage-based method is

once again considered and applied. Following the same concept addressed in the previous

section, for completing the first stage we must employ a state-feedback synthesis design.

In that sense, by considering the control law u(t) = K(α(t))x(t), we extend to the LPV

case the LTI conditions presented in Leite, Montagner and Peres (2002), enabling the

compute of a GS-SF controller with eigenvalue assignment in a circular LMI region, as

proposed in Theorem 3.7.

3Note that we consider the use of a small abuse of language, regarding the LTI nature of D-stability
concept.
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Theorem 3.7. If there exist a symmetric positive definite matrix W ∈Rn×n and matrices

Zi ∈ R
m×n such that





AiW + WA′
i + BiZi + Z ′

iB
′
i + 2γ1W ∗

WA′
i + Z ′

iB
′
i + γ1W −r1W



 < 0, (3.46)

holds for i = 1, ..., r, and





(AiW + BiZj + AjW + BjZi) + (•)′ + 4γ1W ∗
WA′

i + Z ′
iB

′
j + WA′

j + Z ′
jB

′
i + 2γ1W −2r1W



 < 0, (3.47)

holds for i < j ≤ r, then Ki = ZiW
−1 are the vertices of the GS–SF controller K(α(t))

that ensures the asymptotic stabilization of A(α(t))+B(α(t))K(α(t)) and the closed-loop

eigenvalues placement, for fixed values of α(t), inside the circular region with radius r1

and center in (−q,0), where q = r1 + γ1.

Proof. Assume that (3.46) and (3.47) hold. Then, by considering previous well-known

results on the multiplication of two parameter-dependent matrices (TANAKA; IKEDA;

WANG, 1998), we have that




[A(α(t))W + B(α(t))Z(α(t))]+ (•)′ + 2γ1W ∗
WA(α(t))′ + Z(α(t))′B(α(t))′ + γ1W −r1W



 < 0, (3.48)

also holds.

In the sequence, by defining ASF (α(t)) = A(α(t)) + B(α(t))K(α(t)), with K(α(t)) =

Z(α(t))W −1, and applying the Schur complement leads to

ASF (α(t))W + WASF (α(t))′ + 2γ1W +
1
r1

ASF (α(t))WASF (α(t))′ < 0, (3.49)

which consists in a dual version of (3.45).

Now, we extend the synthesis strategy for the LTI case, given in Theorem 3.5, for

completing the second stage and computing the GS–SOF controller L(α(t)) that asymp-

totic stabilizes (3.41) under closed-loop eigenvalue assignment constraints, to propose new

sufficient LMI constraints as stated in Theorem 3.8, which make use of the vertex matri-

ces Ki derived in the first stage. In the synthesis conditions, the proposed LMIs make

possible to retrieve the N vertices Li of the gain matrix L(α(t)).

Theorem 3.8. Assume that there exists a gain-scheduled state feedback gain matrix

K(α(t)) such that ASF (α(t)) is asymptotic stable. If there exist a symmetric matrix
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P > 0 and matrices Fi, Gi, H, and Ji, such that, for given vertices Ki of K(α(t)),










(A′
iF

′
i + K ′

iB
′
iF

′
i ) + (•)′ + γ2P (2r2 + γ2) ∗ ∗

(r2 + γ2)P −F ′
i + GiAi + GiBiK

′
i P −Gi−G′

i ∗
B′

iF
′
i + JiCi−HK ′

i B′
iG

′
i −H−H ′











< 0 (3.50)

holds for i = 1,2, ...,N ,











Ξ ij
11 ∗ ∗

Ξ ij
21 3P −2(Gi + G′

i)− (Gj + G′
j) ∗

Ξ ij
31 B′

i(G
′
i + G′

j) + B′
jG

′
i −3(H + H ′)











< 0, (3.51)

with

Ξ ij
11 =

[

A′
i(F

′
i + F ′

j) + A′
jF

′
i + Ki

′(B′
iF

′
j + B′

jF
′
i ) + Kj

′B′
iF

′
i

]

+ (•)′ + 3γ2P (2r2+γ2),

Ξ ij
21 = 3(r2 + γ2)P − (2F ′

i + F ′
j) + Gi(Ai + Aj) + GjAi + Gi(BiKj + BjKi) + GjBiKi,

and

Ξ ij
31 = B′

i(F
′
i + F ′

j) + B′
jF

′
i + Ji(Ci + Cj) + JjCi−2HKi−HKj,

holds for i, j = 1,2, ...,N and i 6= j, and










Ξ ijk
11 ∗ ∗

Ξ ijk
21 6P −2(Gi + G′

i)−2(Gj + G′
j)−2(Gk + G′

k) ∗
Ξ ijk

31 (B′
i + B′

j)G
′
k + (B′

i + B′
k)G′

j + (B′
j + B′

k)G′
i −6(H + H ′)











< 0, (3.52)

with

Ξ ijk
11 =

[

(A′
i + A′

j)F
′
k + (A′

i + A′
k)F ′

j + (A′
j + A′

k)F ′
i + (Ki

′B′
j + Kj

′B′
i)F

′
k+

+(Ki
′B′

k + Kk
′B′

i)F
′
j + (Kj

′B′
k + Kk

′B′
j)F

′
i

]

+ (•)′ + 6γ2P (2r2+γ2),

Ξ ijk
21 =6(r2 + γ2)P −2(F ′

i + F ′
j + F ′

k) + (Gi + Gj)Ak + (Gi + Gk)Aj + (Gj + Gk)Ai+

+ Gi(BjKk + BkKj) + Gj(BiKk + BkKi) + Gk(BiKj + BjKi),

and

Ξ ijk
31 =(B′

i + B′
j)F

′
k + (B′

i + B′
k)F ′

j + (B′
j + B′

k)F ′
i + (Ji + Jj)Ck + (Ji + Jk)Cj+

+ (Jj + Jk)Ci−2H(Ki + Kj + Kk),

hold for i = 1,2, ...,N−2, j = i+1, ...,N−1, and k = j +1, ...,N , then Li = H−1Ji are the

vertices of the controller L(α(t)) that ensures the asymptotic stabilization of ASOF (α(t))

and the closed-loop eigenvalues placement, for fixed values of α(t), inside the circular

region with radius r2 and center in (−q,0), where q = r2 + γ2.
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Proof. Assume that (3.50)-(3.52) hold. Then, regarding Property 2.1, readily one can

verify that (3.50) implies that H is invertible.

Moreover, remembering that
∑N

i=1 αi = 1, and by multiplying (3.50) by α3
i and sum-

ming for i = 1, ...,N , by multiplying (3.51) by α2
i αj and summing for i = 1, ...,N , j =

1, ...,N , with i 6= j, and by multiplying (3.52) by αiαjαk, and summing for i = 1, ...,N−2,

j = i+ 1, ...,N −1, and k = j + 1, ...,N , we have that











[A(α(t))′F (α(t))′ +KSF (α(t))′B(α(t))′F (α(t))′]+ (•)′ +γ2P (2r2+γ2)

(r2 + γ2)P −F (α(t))′ + G(α(t))A(α(t)) + G(α(t))B(α(t))KSF (α(t))

B(α(t))′F (α(t))′ + J(α(t))C(α(t))−HKSF (α(t))

∗ ∗
P −G(α(t))−G(α(t))′ ∗

B(α(t))′G(α(t))′ −H−H ′











< 0 (3.53)

Now, following analogous steps as performed in Theorem 3.5, one can observe that

(3.53) leads to

x(t)′γ2P (2r2 +γ2)x(t)+ ẋ(t)′(r2 +γ2)P x(t)+x(t)′(r2 +γ2)P ẋ(t)+ ẋ(t)′P ẋ(t) < 0 (3.54)

which with ASOF (α(t)) = A(α(t)) + B(α(t))L(α(t))C(α(t)) yields

ASOF (α(t))′P + P ASOF (α(t)) + 2γ2P +
1
r2

(ASOF (α(t)) + γ2I)′P (ASOF (α(t)) + γ2I) < 0,

an equivalent to (3.45) with A(α(t)) = ASOF (α(t)). The proof is concluded.

Remark 3.5. It is important to observe that the advantages of the polytopic approach

comes at the price of the design complexity associated to the proposed theorems. As in

any polytopic-based model, the complexity increases exponentially with number of vertices

of the system polytope. Therefore, a heavier computational burden is expected when dealing

with systems affected by a high number time-varying parameters.

3.2.4 ILLUSTRATIVE EXAMPLES

In this section, some examples are presented to illustrate efficiency of the proposed

control design strategy.

Example 3.4 In this example, we intend to illustrate the applicability of the proposed

method for GS–SOF controller design. For that extent, we consider the control problem of

the lateral axis dynamics of an L-1011 aircraft, adapted from Nguyen, Chevrel and Claveau

(2018). This system model is assumed to be affected by a time-varying parameter, ρ1(t),

bounded in the interval −0.57≤ ρ1(t)≤ 2.43, representing the airspeed, which affects the

system matrix A(α(t)).
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Furthermore, to increase the problem difficulty, we consider that the aileron deflection

is produced by an electrical actuator whose amplifier gain may also vary in time, according

to the parameter ρ2(t), with 0.9≤ ρ2(t)≤ 1.0 impacting on the matrix B(α(t)). In this

way, the actuator power vary between 90% and 100% of its nominal value. Both time-

varying parameters are assumed to be measurable and available on-line.

The representing LPV state-space model matrices are given by

A(α(t)) =

















−2.98 ρ1(t) 0 −0.034

−ρ1(t) −0.21 0.035 −0.001

0 0 0 1

0.39 −1.35−3ρ1(t) 0 −1.89

















and B(α(t)) =

















−0.032ρ2(t)

0

0

−ρ1(t)ρ2(t)

















(3.55)

In addition, only the bank angle and the roll rate are available state information

measurements (NGUYEN; CHEVREL; CLAVEAU, 2018). Thus, the output signal is

defined as

y(t) =





0 0 1 0

0 0 0 1



x(t). (3.56)

Therefore, the system can be represented in a polytope (3.39) with four vertices, in

which each vertex is defined by the combination of the minimum and maximum values of

ρ1(t) and ρ2(t).

A conventional state feedback technique would not be able to be directly applied.

Conversely, this problem can be addressed from a robust static output feedback control

framework, employing another strategy available in the literature.

In that sense, we may apply the D-stability robust SOF control approach proposed

in Section 3.1, treating the time-varying parameters as uncertainties. Nevertheless, a

feasible control solution is not possible to be obtained, given the aforementioned time-

varying parameter intervals.

Now, we apply the proposed two-stage gain-scheduling static output feedback strategy

for addressing this problem. Firstly, we design a GS–SF gain matrix, K(α(t)), using the

proposed conditions in Theorem 3.7.

For that, we represent the system in terms of a polytope with four vertices, defined

in terms of the combinations of maximum and minimum values of the time-varying pa-

rameters ρ1(t) and ρ2(t), as follows.
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• Vertex 1 - Minimum airspeed and minimum actuator gain

A1 =

















−2.98 −0.57 0 −0.034

0.57 −0.21 0.035 −0.001

0 0 0 1

0.39 0.36 0 −1.89

















, B1 =

















−0.032

0

0

0.57

















, and C1 =

















0 0

0 0

1 0

0 1

















′

(3.57)

• Vertex 2 - Minimum airspeed and maximum actuator gain

A1 = A2, B2 =

















−0.0288

0

0

0.513

















and C2 = C1 (3.58)

• Vertex 3 - Maximum airspeed and minimum actuator gain

A3 =

















−2.98 2.43 0 −0.034

−2.43 −0.21 0.035 −0.001

0 0 0 1

0.39 −8.64 0 −1.89

















, B3 =

















−0.032

0

0

−2.43

















, and C3 = C1. (3.59)

• Vertex 4 - Maximum airspeed and maximum actuator gain

A4 = A3, B4 =

















−0.0288

0

0

−2.187

















, and C4 = C1. (3.60)

Then, applying Theorem 3.7 conditions considering the aforementioned vertices ma-

trices, and specifying a desired D-region for pole placement with γ1 = 0.05 and r1 = 10.5,

yields

K1 =
[

3.6087 −2.8009 0.0145 0.0854
]

, (3.61)

K2 =
[

3.1515 −2.9661 0.0095 −0.0273
]

, (3.62)

K3 =
[

2.7114 −2.9319 0.0464 0.0777
]

, (3.63)

and

K4 =
[

3.3368 −3.1329 0.0224 0.0701
]

(3.64)

as vertices for the GS–SF controller

K(α(t)) = α1(t)K1 + α2(t)K2 + α3(t)K3 + α4(t)K4, (3.65)
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completing the first stage. Note that α(t) represents a convex parametrization of ρ(1,2)(t).

Details on construction of α(1,2,3,4)(t) using ρ(1,2)(t) are presented in Chapter 2.

Now, for the second stage, we apply the LMI conditions proposed in Theorem 3.8 for

the compute of GS–SOF controllers. Considering the same polytope vertices and design

requirements (γ2 = 0.05 and r2 = 10.5), (5.27)-(5.32) yields

L1 =
[

−0.4162 2.2762
]

, L2 =
[

−0.4092 2.5909
]

, (3.66)

L3 =
[

1.3761 7.3189
]

, and L4 =
[

1.2469 7.1502
]

(3.67)

as vertices for the GS-SOF controller

L(α(t)) = α1(t)L1 + α2(t)L2 + α3(t)L3 + α4(t)L4. (3.68)

The results of a simulation are presented in terms of the transient response of the

closed-loop system and the control input (Figure 3.9), when released from initial con-

ditions arbitrarily set as x(0) =
[

0 1 0 0
]

, reflecting gust perturbations. The time-

varying parameters were considered to behave according to sine functions, such as

ρ1(t) = 0.93 + 1.5sin(2π0.2t), (3.69)

and,

ρ2(t) = 0.95 + 0.05sin(2π0.1t). (3.70)

For comparison purposes, we present both open and GS–SOF closed-loop responses.

In upper four charts of Figure 3.9, we can clearly see that both open and closed-loop

systems exhibits an stable behavior, since all state variables converge to the origin.

However, with the designed GS-SOF controller, the state convergence occurs in a

much shorter time and with reduced oscillations, due to the control input action (bottom

chart of Figure 3.9).

The GS controller behavior is better understood by considering the instant values of

ρ1(t) and ρ2(t), in Figure 3.10. Note that as these parameters varies between its extreme

values, the system dynamic matrices change.

In turn, the GS-SOF controller gains are adjusted on-line, according to α(t) (see

the bottom and upper left charts in Figure 3.10). Remind that α(t) are parameterized

according to the instant values of ρ1(t) and ρ2(t).
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Figure 3.9 - Open-loop (dashed lines) and closed-loop (full lines) transient response of
the L-1011 lateral axis dynamics, and control input u(t) (bottom chart).
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Figure 3.10 - Behavior of the time-varying parameters (top left charts); parametric el-
ements of α(t) (top right charts); and GS-SOF gains (bottom chart) in
Example 3.4 simulations.
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4 DISCRETE-TIME GS–SOF CONTROL DESIGN

This fourth chapter is devoted to present new contributions on the stabilization of

linear parameter-varying (LPV) systems via gain-scheduling (GS) static output feedback

(SOF) control. However, the interest now is to investigate the case of discrete-time sys-

tems, and also address the problem of disturbance rejection.

The proposed results are given in terms of new sufficient linear matrix inequalities

(LMI) conditions for synthesizing gain-scheduled SOF controllers that ensure asymptotic

stability. The proposed LMI constraints are given in terms of the existence of an affine

parameter-dependent Lyapunov function (PDLF). Differently from what happens in LPV

continuous-time case, considering PDLFs yields less conservative synthesis conditions,

without adding complexity to the mathematical formulation, and therefore such feature

is explored for obtaining the presented contributions.

Following the results presented in Chapter 3, the discrete-time SOF controller design

is also based on a two-step method: a state-feedback controller is obtained in a first-stage

design, which is then used as input information in the second stage for computing the

desired GS–SOF controller. In a first moment, the enforcement of a lower bound on the

closed-loop decay rate, for performance improvement, is considered. In the sequence, an

extension for coping with disturbance rejection is proposed in terms of the H∞ guaranteed

cost optimization. Some numerical experiments are presented to illustrate the control

synthesis procedure and its efficacy. Also, feasibility analysis are presented to compare

and show the advantages of the proposed results over other available strategies present in

literature.

4.1 TWO-STAGE DISCRETE-TIME GS–SOF CONTROL

In this section, a new two-stage static output feedback controller design strategy is

proposed for the stabilization of discrete-time LPV systems via gain-scheduling control.

The synthesis conditions are given in terms of sufficient LMI constraints that also guar-

antees a lower bound on the closed-loop system decay rate.
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4.1.1 PROBLEM STATEMENT AND PROPOSED APPROACH

Consider a discrete-time LPV system described in a state-space representation as

x(k + 1) = A(α(k))x(k) + B(α(k))u(k)

y(k) = C(α(k))x(k),
(4.1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, y(k) ∈ R
p is the

measured output vector, and (A,B,C)(α(k)) are parameter-varying matrices that belong

to a polytopic domain R parameterized in terms of a time-varying vector α(k) ∈RN such

as

R=







(A,B,C)(α(k)) : (A,B,C)(α(k)) =
N

∑

i=1

αi(k)(A,B,C)i, α(k) ∈ [N ,k = 0,1,2, ...







(4.2)

where (A,B,C)i denotes the i-th of the N polytope vertices. Moreover, R is parameterized

in terms of the vector α(k) = (α1(k), ...,αN (k)), whose entries αi(k) are known time-

varying parameters that belong to the unitary simplex set [N , defined as

[N =







α(k) ∈R
N :

N
∑

i=1

αi(k) = 1;αi(k)≥ 0; i = 1, ...,N,k = 0,1,2, ...







. (4.3)

Assuming that α(k) can be measured or estimated at each discrete time instant k

during system operation, and that only the output vector y(k) is available for feedback,

design a static output-feedback control law

u(k) = L(α(k))y(k) (4.4)

where L(α(k)) ∈ R
m×p is a gain-scheduling controller matrix, such that the closed-loop

system

x(k + 1) = (A(α(k)) + B(α(k))L(α(k))C(α(k)))x(k) (4.5)

is asymptotically stable. Furthermore, L(α(k)) must ensure a bound parameter ρ, asso-

ciated to the convergence of the system states to the origin, described as

||x(k)||2 < ρk||x(0)||2, ∀k ≥ 1, (4.6)

establishing a performance criteria, namely, the decay rate bound (ROSA; MORAIS;

OLIVEIRA, 2018).

For addressing the aforementioned control problem, the results given in Lemma 4.1

are considered, which are related to well-known LMI conditions that, when feasible, are

sufficient for ensuring the asymptotic stability of a discrete-time LPV system x(k + 1) =
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A(α(k))x(k), with decay rate bounded by ρ.

Lemma 4.1. If there exists a parameter-dependent matrix P (α(k)) = P (α(k))′ > 0 such

that

A′(α(k))P (α(k + 1))A(α(k))−ρ2P (α(k)) < 0,∀α(k) ∈ [N , (4.7)

for 0≤ ρ < 1 then system x(k +1) = A(α(k))x(k) is asymptotically stable and has a decay

rate bounded by ρ.

In a linear time-invariant scenario, such conditions are necessary and sufficient for

guaranteeing that all system eigenvalues (λ) are contained within a particular region

in the complex plane, denoted by a circle with radius r = ρ, ρ < 1 (ROSA; MORAIS;

OLIVEIRA, 2018). Such interpretation is illustrated in Figure 4.1.

Figure 4.1 - Unitary circle and circular sub region bounded for 0≤ ρ < 1.

1

Img (λ)

Re (λ)

ρ

Source: Adapted from Rosa, Morais and Oliveira (2018).

Considering the presented framework, a strategy for designing discrete-time GS–SOF

controllers that meet the required control objectives is proposed. The idea is to design

a GS–SOF controller L(α(k)) associated to a symmetric positive definite matrix P that

satisfies the constraints in Lemma 4.1 for Acl(α(k)) = (A(α(k))+B(α(k))L(α(k))C(α(k)))

as in (4.5).

4.1.2 TWO-STAGE DISCRETE-TIME GS–SOF DESIGN WITH DECAY RATE BOUND-
ING

The first main technical contribution regarding the subject addressed in this chapter

is presented in the sequence. It consists of a two-stage LMI-base strategy for the design

of stabilizing GS–SOF controllers, with guaranteed lower bound ρ on the system state

decay rate.

Therefore, in the same fashion as considered in Chapter 3, for the first stage, we might
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consider a control law u(k) = Kx(k) where K ∈R
m×n is a gain matrix such that

x(k + 1) = (A(α(k)) + B(α(k))K)x(k) (4.8)

is asymptotically stable.

However, as already explored in Chapter 3, the two-stage method might benefit from a

search for a parameter-dependent matrix K(α(k)), instead of a robust gain K. Therefore,

a first theoretical contribution is proposed in terms of a state-feedback synthesis strategy

based on the results presented in Montagner et al. (2005), which considers the LPV

stabilization problem. In their paper, the authors propose that a stabilizing gain-scheduled

state-feedback controller K(α(k)) can be obtained by solving an LMI problem.

The extension for incorporating a bound ρ1
1 in the decay rate is proposed in Theorem

4.1.

Theorem 4.1 (First-Stage GS–SF Design). If there exists symmetric positive definite

matrices Qj ∈ R
n×n and matrices Xj ∈ R

n×n and Yj ∈ R
m×n, j = 1, ...,N such that the

LMIs




Xj + X ′
j−ρ2

1Qj ∗
AjXj + BjYj Qi



 > 0, (4.9)

for i = 1, ...,N , j = 1, ...,N , and




Xj + X ′
j + Xk + X ′

k−ρ2
1(Qj + Qk) ∗

AkXj + AjXk + BkYj + BjYk 2Qi



 > 0, (4.10)

for i = 1, ...,N , j = 1, ...,N −1, k = j + 1, ...,N , have a solution, then the stability of the

closed-loop system (4.8) is assured by the state-feedback control law u(k) = K(α(k))x(k)

with the parameter-dependent gain

K(α(k)) = Y (α(k))X(α(k))−1, (4.11)

with decay rate bound ρ1.

Proof. Omitted for brevity. The proof follows directly as in Montagner et al. (2005),

with a parameter-dependent Lyapunov function V (x(k)) = x(k)′P (α(k))x(k) > 0 ensuring

V (x(k + 1))−ρ2
1V (x(k)) < 0.

Remark 4.1. The LMI conditions in Theorem 4.1 are based on a parameter-dependent

matrix X(α(k)), which is then used for retrieving the GS–SF controller (4.11). However,

despite the fact that considering a parameter-dependent matrix X(α(k)) yields less con-

servative constraints, this hinder the computation of the gain matrix K(α(k)), since it

1Similarly in Chapter 3, we distinguish the decay rate bound ρ considered in the first and second
stages as ρ1 and ρ2, respectively.
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depends on the inverse of X(α(k)), for every α ∈ [N . In this case, K(α(k)) would have

to be computed on-line, by inverting X(α(k)) for every the instant value of α. To avoid

such implementation drawback, one might consider that X(α(k)) = X (i.e. Xi = X, for

i = 1, ...,N). Then, the GS–SF gain matrix can be computed offline, by inverting a single

matrix X, for obtaining the vertices Ki, i = 1, ...,N of (4.11), enabling the compute of

K(α(k)) using

K(α(k)) = α1(k)K1 + · · ·+ αN (k)KN . (4.12)

After obtaining a stabilizing SF gain matrix K(α(k)), we move to the second stage

where such controller is used as an input parameter for a second LMI problem whose

solution, if feasible, yields the desired GS–SOF controller. In the next section, we propose

some new sufficient LMI conditions for implementing the second stage.

As considered in the first-stage design, the basis of the proposed results consists

in considering that the asymptotic stability is ensured by the existence of a polytopic

parameter-dependent Lyapunov function

V (x(k)) = x(k)′P (x(k))x(k), (4.13)

where

P (x(k)) =
N

∑

i=1

αi(k)Pi > 0. (4.14)

Using such definition, it is possible to obtain less conservative synthesis conditions,

when compared to a classic common-quadratic Lyapunov function (CQLF) approach,

which is based on the search for a single matrix P that ensures stability for the whole

polytope domain.

In these terms, new LMI conditions for the asymptotic stabilization of (4.5) through

the design of a GS–SOF controller are proposed in Theorem 4.2, formulated based on the

strategy adopted in Montagner et al. (2005), which allows for arbitrarily fast variations

of the time-varying parameters α(k).

Theorem 4.2 (Second-Stage GS–SOF Design). Assuming that there exists a gain ma-

trix K(α(k)) that asymptotically stabilizes A(α(k)) + B(α(k))K(α(k)), then there ex-

ists a static output-feedback gain-scheduled matrix L(α(k)) that asymptotically stabilizes

A(α(k)) + B(α(k))L(α(k))C(α(k)) with decay rate bounded by ρ2, for any arbitrary time

variation of the parameter α(k) in (4.3), if there exist symmetric matrices Pi > 0 and

matrices Fi, Gi, H, and Ji, such that










ρ2
2Pi−A′

iF
′
i −FiAi−K ′

iB
′
iF

′
i −FiBiKi ∗ ∗

F ′
i −GiAi−GiBiKi Gi + G′

i−Pd ∗
−B′

iF
′
i + HKi−JiCi −B′

iG
′
i H + H ′











> 0 (4.15)
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holds for d = 1, ...,N and i = 1, ...,N ,










Θij
1,1 ∗ ∗

Θij
2,1 2(Gi + G′

i) + Gj + G′
j−3Pd ∗

Θij
3,1 −B′

i(G
′
i + G′

j)−B′
jG

′
i 3H + 3H ′











> 0 (4.16)

holds for d = 1, ...,N , i = j = 1, ...,N , and i 6= j , where

Θij
1,1 = ρ2

2(2Pi + Pj) + (−Fi(Ai + Aj)−FjAi−Fi(BiKj + BjKi)−FjBiKi) + (•)′,

Θij
1,2 = 2F ′

i + F ′
j−Gi(Ai + Aj)−GjAi−Gi(BiKj + BjKi)−GjBiKi, and

Θij
3,1 =−B′

i(F
′
i + F ′

j)−B′
jF

′
i + 2HKi + HKj−Ji(Ci + Cj)−JjCi,

(4.17)

and










Θijl
1,1 ∗ ∗

Θijl
2,1 Θijl

2,2 ∗
Θijl

3,1 −B′
i(G

′
j + G′

l)−B′
j(G

′
i + G′

l)−B′
l(G

′
i + G′

j) 6H + 6H ′











> 0 (4.18)

holds for d = 1, ...,N , i = 1, ...,N − 2, j = i + 1, i + 2, ...,N − 1, and l = j + 1, j + 2, ...,N ,

where

Θijl
1,1 =2ρ2

2(Pi + Pj + Pl) + (−Fi(Aj + Al)−Fj(Ai + Al)−Fl(Ai + Aj)+

−Fi(BjKl + BlKj)−Fj(BiKl + BlKi)−Fl(BiKj + BjKi)) + (•)′,

Θijl
1,2 =2(F ′

i + F ′
j + F ′

l )−Gi(Aj + Al)−Gj(Ai + Al)−Gl(Ai + Aj)+

−Gi(BjKl + BlKj)−Gj(BiKl + BlKi)−Gl(BiKj + BjKi), and

Θijl
3,1 =−B′

i(F
′
j + F ′

l )−B′
j(F

′
i + F ′

l )−B′
l(F

′
i + F ′

j) + 2H(Ki + Kj + Kl)+

−Ji(Cj + Cl)−Jj(Ci + Cl)−Jl(Ci + Cj),

Θijl
2,2 =2(Gi + G′

i) + 2(Gj + G′
j) + 2(Gl + G′

l)−6Pd.

(4.19)

In the affirmative case, the N vertices matrices, Li, for composing gain-scheduled SOF

controller can be retrieved with Li = H−1Ji.

Proof. Assume that LMIs (4.15)-(4.19) holds. Then, immediately we have that H +H ′ >

0. Thus, according to Boyd et al. (1994), the inverse of H exists.

Now, based on the procedure presented in Montagner et al. (2005), we may observe

that by multiplying (4.15) by α3
i (k) and by βd(k), summing from i = 1 to i = N and from

d = 1 to d = N , and that by multiplying (4.16) by α2
i (k)αj(k) and by βd(k), summing

from i, j = 1 to i, j = N , i 6= j and from d = 1 to d = N , and that by multiplying (4.19) by

αi(k)αj(k)αl(k), and by βd(k), summing from i = 1 to i = N −2, j = i + 1 to j = N −1,

l = j +1 to l = N , and from d = 1 to d = N , with
∑N

d=1 βd(k) = 1,βd(k) > 0, it follows that



4.1 Two-Stage Discrete-Time GS–SOF Control 90











ρ2
2P (α(k)) + (−F (α(k))A(α(k))−F (α(k))B(α(k))K(α(k)))+ (•)′

F (α(k))′−G(α(k))A(α(k))−G(α(k))B(α(k))K(α(k))

−B(α(k))′F (α(k))′ + HK(α(k))−J(α(k))C(α(k))

∗ ∗
G(α(k)) + G(α(k))′−P (β(k)) ∗

−B(α(k))′G(α(k))′ H + H ′











> 0 (4.20)

also holds.

Now, performing an analogous transformation as already seen in Chapter 3, we can

pre- and post-multiply (4.20) by

T (α(k)) =





I 0 S(α(k))′

0 I 0



 and T (α(k))′, (4.21)

respectively, to obtain




Υ(α(k)) ∗
Φ(α(k)) G(α(k)) + G(α(k))′−P (β(k))



 > 0 (4.22)

where

Υ(α(k)) =ρ2
2P (α(k))−A(α(k))′F (α(k))′−F (α(k))A(α(k))−K(α(k))′B(α(k))′F (α(k))′+

−F (α(k))B(α(k))K(α(k))−S(α(k))′B(α(k))′F (α(k))′ + S(α(k))′HK(α(k))+

−S(α(k))′J(α(k))C(α(k))−F (α(k))B(α(k))S(α(k)) + K(α(k))′H ′S(α(k))+

−C(α(k))′J(α(k))′S + S(α(k))′HS(α(k)) + S(α(k))′H ′S(α(k)).
(4.23)

and

Φ(α(k)) = F (α(k))′−G(α(k))A(α(k))−G(α(k))B(α(k))K(α(k))−G(α(k))B(α(k))S(α(k)).

(4.24)

Defining S(α(k)) = H−1J(α(k))C(α(k))−K(α(k)) we have that (4.22) becomes





ρ2
2P (α(k)) + (−F (α(k))A(α(k))−F (α(k))B(α(k))H−1J(α(k))C(α(k))) + (•)′

F (α(k))′−G(α(k))A(α(k))−G(α(k))B(α(k))H−1J(α(k))C(α(k))

∗
G(α(k)) + G(α(k))′−P (β(k))



 > 0. (4.25)

Moreover, choosing L(α(k)) = H−1J(α(k)) and conveniently rewriting (4.25) as a sum

of matrices such as
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



−ρ2
2P (α(k)) 0

0 P (β(k))



 +





F (α(k))

G(α(k))





[

A(α(k)) + B(α(k))L(α(k))C(α(k)) −I
]

+

+





A(α(k))′ + C(α(k))′L(α(k))′B(α(k))′

−I





[

F (α(k))′ G(α(k))′
]

< 0, (4.26)

then, according to Lemma 2.4, we have that

ω′





−ρ2
2P (α(k)) 0

0 P (β(k))



ω < 0, ∀ω 6= 0 :
[

A(α(k)) + B(α(k))L(α(k))C(α(k)) −I
]

ω = 0.

(4.27)

By defining ω =
[

x′(k) x′(k + 1)
]′

, we note that (4.27) gives

x(k)′
[

(A(α(k)) + B(α(k))L(α(k))C(α(k)))′P (β(k))(A(α(k)) + B(α(k))L(α(k))C(α(k)))

−ρ2
2P (α(k))

]

x(k) < 0, (4.28)

since x(k + 1) = (A(α(k)) + B(α(k))L(α(k))C(α(k)))x(k) from (4.5).

Using the strategy presented in Montagner et al. (2005) and defining P (β(k)) =

P (α(k + 1)), (4.28) can be rewritten as

x(k)′
[

AN (α(k))′P (α(k + 1))AN (α(k))−ρ2
2P (α(k))

]

x(k) < 0, (4.29)

where AN (α(k)) = A(α(k)) + B(α(k))L(α(k))C(α(k)).

Finally, see that by defining V (x(k)) = x(k)′P (α(k))x(k), (4.29) yields

V (x(k + 1))−ρ2
2V (x(k)) < 0. (4.30)

Therefore, with V (x(k)) being a parameter-dependent Lyapunov function, the feasi-

bility of (4.15), (4.16), and (4.19) is sufficient to ensure (4.20), and consequently (4.30).

Thus, the asymptotic stability of (4.5) is guaranteed with decay rate bounded by ρ2, for

any arbitrary variation of the time-varying parameters in the system polytope.

Remark 4.2. Note that the first-stage SF controller enters in the second stage in terms

of its vertices, similarly as already seen in Theorem 3.5. In fact, as mentioned in Remark

4.1, the gain matrix (as well as any other parameter-dependent matrix in this work) is

described in a polytopic-fashion. And, similarly, Theorem 4.2 provides the desired GS–

SOF controller in terms of its vertices Li, i = 1, ...,N , for composing L(α(k)) as

L(α(k)) = α1(k)L1 + · · ·+ αN (k)LN , (4.31)

by means of the on-line measurement of α(k).
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Remark 4.3. Similar observation regarding the choice of the design parameters as seen

in Chapter 3 can be derived to the results presented in this chapter. The first- and second-

stage decay rate bounds ρ1 and ρ2 do not have to be set with same values (i.e. ρ1 = ρ2)

when applying the proposed method. In fact, if feasibility is not achieved in the second stage

for a particular chose of ρ1 in the first stage, the sufficiency nature of the proposed results

allows for the designer restart the procedure, by setting a different decay rate bound in

the first-stage design, which will generate a different state-feedback gain matrix K(α(k)).

Then, another search for the second stage GS–SOF controller L(α(k)) can be executed, in

terms of the new obtained SF gain matrix.

Remark 4.4. In the same terms of Remark 4.3, note that the application of Theorem

4.2 depends on the success in finding a stabilizing SF gain matrix. Therefore, the use

of Theorem 4.1 for designing the first-stage gain is more interesting for the purposes of

the two-stage method than using a robust state-feedback gain synthesis approach. In fact,

finding a single robust gain K that stabilizes the considered LPV system is a rather more

difficult problem than finding a set of gain matrices Ki, i = 1, ...,N to compose a stabilizing

parameter-dependent state-feedback gain K(α(k)).

At this point, considering the remarks presented above and to bring more clarity about

our method implementation, we summarize the employment of our proposed strategy to

solve robust control problems in terms of an algorithm based on Theorems 4.1 and 4.2,

as presented in Algorithm 4.1.

Algorithm 4.1 Two-stage GS–SOF controller synthesis

1: Reset counter with ǫ← 1 and set maximum iteration limit ǫmax.
2: Step 1-1 (SF Initialization): Find the GS–SF controller K(α(k)) design via Theorem

4.1 with bound ρ1 < 1.
3: Step 1-2 (SF Checking): If Theorem 4.1 returns feasible K(α(k)), go to Step 2-1;

Otherwise, set a different first-stage decay rate bound ρ1← ρnew
1 and restart Step 1-1;

However, if Theorem 4.1 fails with ρ1← 1, it might not be able to find an stabilizing
GS–SF controller, then EXIT.

4: Step 2-1 (SOF Design): Find the GS–SOF controller L(α(k)) design via Theorem 4.2
with K(α(k)) and decay rate bound ρ2 .

5: Step 2-2 (SOF Checking): If Theorem 4.2 returns a feasible L(α(k)), EXIT; Otherwise,
set ǫ← ǫ+1 and if ǫ < ǫmax go to Step 1-1 with different first-stage decay rate bound
ρ1← ρnew

1 to restart the process; However, if ǫ≥ ǫmax, the algorithm was not able to
find a feasible solution for GS–SOF design, then EXIT.

Source: Author’s own results.

In the sequence, we show that standard quadratic stability-based approach, consisting

of a single Lyapunov matrix P , is directly obtained from Theorem 4.2 by setting Pi = P ,

i = 1, ...,N , as enunciated in Corollary 4.1.
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Corollary 4.1. Assuming that there exists a gain matrix K(α(k)) that asymptotically sta-

bilizes A(α(k))+B(α(k))K(α(k)), then there exists a static output-feedback gain-scheduled

matrix L(α(k)) that asymptotically stabilizes A(α(k)) + B(α(k))L(α(k))C(α(k)) with de-

cay rate bounded by ρ2, for any arbitrary time variation of the parameter α(k) in (4.3),

if there exist a symmetric matrix P > 0 and matrices Fi, Gi, H, and Ji such that










ρ2
2P −A′

iF
′
i −FiAi−K ′

iB
′
iF

′
i −FiBiKi ∗ ∗

F ′
i −GiAi−GiBiKi Gi + G′

i−P ∗
−B′

iF
′
i + HKi−JiCi −B′

iG
′
i H + H ′











> 0 (4.32)

holds for i = 1, ...,N ,










Λij
1,1 ∗ ∗

Λij
2,1 2(Gi + G′

i) + Gj + G′
j−3P ∗

Λij
3,1 −B′

i(G
′
i + G′

j)−B′
jG

′
i 3H + 3H ′











> 0 (4.33)

holds for i = j = 1, ...,N and i 6= j, where

Λij
1,1 = 3ρ2

2P + (−Fi(Ai + Aj)−FjAi−Fi(BiKj + BjKi)−FjBiKi) + (•)′,

Λij
1,2 = 2F ′

i + F ′
j−Gi(Ai + Aj)−GjAi−Gi(BiKj + BjKi)−GjBiKi, and

Λij
3,1 =−B′

i(F
′
i + F ′

j)−B′
jF

′
i + 2HKi + HKj−Ji(Ci + Cj)−JjCi,

(4.34)

and










Λijl
1,1 ∗ ∗

Λijl
2,1 Λijl

2,2 ∗
Λijl

3,1 Λijl
3,2 6H + 6H ′











> 0 (4.35)

holds for i = 1, ...,N −2, j = i+ 1, i+ 2, ...,N −1, and l = j + 1, j + 2, ...,N , where

Λijl
1,1 =6ρ2

2P + (−Fi(Aj + Al)−Fj(Ai + Al)−Fl(Ai + Aj)+

−Fi(BjKl + BlKj)−Fj(BiKl + BlKi)−Fl(BiKj + BjKi)) + (•)′,

Λijl
1,2 =2(F ′

i + 2F ′
j + F ′

l )−Gi(Aj + Al)−Gj(Ai + Al)−Gl(Ai + Aj)+

−Gi(BjKl + BlKj)−Gj(BiKl + BlKi)−Gl(BiKj + BjKi),

Λijl
3,1 =−B′

i(F
′
j + F ′

l )−B′
j(F

′
i + F ′

l )−B′
l(F

′
i + F ′

j) + 2HKi + 2HKj+

+ 2HKl−Ji(Cj + Cl)−Jj(Ci + Cl)−Jl(Ci + Cj),

Λijl
2,2 =2(Gi + G′

i) + 2(Gj + G′
j) + 2(Gl + G′

l)−6P, and

Λijl
3,2 =−B′

i(G
′
j + G′

l)−B′
j(G

′
i + G′

l)−B′
l(G

′
i + G′

j).

(4.36)

In the affirmative case, the N vertices matrices, Li, for composing gain-scheduled SOF

controller can be retrieved with Li = H−1Ji.
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Proof. The proof follows analogous steps as seen in Theorem 4.2 proof, considering a

multiplication procedure using only α(k), and through the application of the same trans-

formation as in Theorem 4.2, based on Mehdi, Boukas and Bachelier (2004) followed by

the application of Lemma 2.4, and thus its details are omitted for conciseness.

Additionally, we show that the proposed LMI conditions (4.15)-(4.19) can also be

used to compute a gain-scheduled state-feedback controller. As previously mentioned, the

feasibility in the second stage depends on the considered particular gain matrix K(α(k)).

If (4.15)-(4.19) fails to achieve feasibility for some K(α(k)), then one can set the output

matrix as C(α(k)) = I.

In that case, note that A(α(k))+B(α(k))L(α(k))C(α(k)) falls into the state-feedback

dynamics A(α(k))+B(α(k))L(α(k)), with L(α(k)) being a GS–SF gain matrix. Then, the

obtained gain L(α(k)) can be used as a new input K(α(k)) in (4.15)-(4.19), and another

search for the desired GS–SOF controller can be executed. Despite that convergence is not

guaranteed, this procedure can be employed recursively, and represents another strategy

for dealing with GS–SOF problems.

This feature of the proposed method is formalized in Corollary 4.2.

Corollary 4.2. Assuming that there exists a gain matrix K(α(k)) that asymptotically

stabilizes A(α(k)) + B(α(k))K(α(k)), for any arbitrary time variation of the parameter

α(k) in (4.3), if there exist symmetric matrices Pi > 0 and matrices Fi, Gi, H, and Ji, such

that (4.15), (4.16) and (4.19) hold with Ci = I, i = 1, ...,N , then the N vertices matrices

Li, retrieved with Li = H−1Ji, represents a state-feedback controller that asymptotically

stabilizes A(α(k)) + B(α(k))L(α(k)) with decay rate bounded by ρ2.

Proof. The proof follows similarly as for Theorem 4.2, and thus is omitted for brevity.

The application of the GS–SOF strategy using Corollary 4.2 recursively with Theorem

4.2 is depicted Algorithm 4.2.

Remark 4.5. To avoid misinterpretation, remind that the decay rate bound in Theorem

4.2 is set in terms of the scalar ρ2 for distinguishing it from the first-stage decay rate

bound ρ1 set in Theorem 4.1. However, it must be clear that when using Corollary 4.2 as

a first-stage design, ρ2 will be the decay rate bound associated to the obtained first-stage

state-feedback controller, that is ρ1 = ρ2.

Remark 4.6. Note that analogous results of Corollary 4.2 can be derived from the design

strategies proposed in Chapter 3, for the continuous-time LTI and LPV cases, considering

D-stability concepts.
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Algorithm 4.2 Two-stage GS–SOF controller synthesis recursively through Theorem 4.2

1: Reset counter with ǫ← 1 and set maximum iteration limit ǫmax.
2: Set Cni← Ci, i = 1, ...,N to save the nominal system (4.1) output matrices.
3: Step 1-1 (SF Initialization): Set Ci ← I, i = 1, ...,N and find the GS–SF controller

L(α(k)) = K(α(k)) designed via Corollary 4.2 with bound ρ1 (see Remark 4.5).
4: Step 1-2 (SF Checking): If Corollary 4.2 returns feasible L(α(k)) = K(α(k)), go to

Step 2-1; Otherwise, set a different first-stage decay rate bound ρ1← ρnew
1 and restart

Step 1-1; However, if Corollary 4.2 fails with ρ1← 1, it might not possible to find an
stabilizing GS–SF controller, then EXIT.

5: Step 2-1 (SOF Design): Set Ci ← Cni, i = 1, ...,N and find the GS–SOF controller
L(α(k)) design via Theorem 4.2 with K(α(k)) and bound ρ2 .

6: Step 2-2 (SOF Checking): If Theorem 4.2 returns a feasible L(α(k)), EXIT; Otherwise,
set ǫ← ǫ+1 and if ǫ < ǫmax go to Step 1-1 with different first-stage decay rate bound
ρ1← ρnew

1 to restart the process; However, if ǫ≥ ǫmax, the algorithm was not able to
find a feasible solution for GS–SOF design, then EXIT.

Source: Author’s own results.

4.1.3 TWO-STAGE DISCRETE-TIMEH∞ GS–SOF DESIGN

In this subsection, the goal is to extend the gain-scheduling control synthesis strategy

proposed in Subsection 4.1.2 to address the problem of disturbance rejection for discrete-

time LPV systems. With this purpose, we now consider the state-space realization

x(k + 1) = A(α(k))x(k) + Bu(α(k))u(k) + Bw(α(k))w(k)

z(k) = Cz(α(k))x(k) + Du(α(k))u(k) + Dw(α(k))w(k)

y(k) = Cy(α(k))x(k) + Dy(α(k))w(k),

(4.37)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input vector, y(k) ∈ R
p is the

measured output vector, w(k) ∈ R
q is the exogenous input vector, and z(k) ∈ R

s is

the controlled output vector. Also, (A,Bu,Bw,Cy,Cz,Du,Dw,Dy)(α(k)) are parameter-

dependent matrices that belong to a polytopic domain parameterized in terms of a time-

varying vector α(k) ∈R
N , following similar definitions as in (4.2) and (4.3).

The goal is to design an output-feedback control law u(k) = L(α(k))y(k), where

L(α(k)) is a gain-scheduled SOF controller that asymptotically stabilizes the closed-loop

system

x(k + 1) = (A(α(k)) + Bu(α(k))L(α(k))Cy(α(k)))x(k) + (Bw(α(k)) + Bu(α(k))L(α(k))Dy(α(k)))w(k)

z(k) = (Cz(α(k)) + Du(α(k))L(α(k))Cy(α(k)))x(k) + (Dw(α(k)) + Du(α(k))L(α(k))Dy(α(k)))w(k)

(4.38)

and also guarantees a lower bound ρ in the system decay rate and an H∞ guaranteed
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cost µ, that is ||Hzw||∞ < µ, where

||Hzw||∞ := sup
||w(k)||2 6=0

||z(k)||2
||w(k)||2

,

holds for every possible trajectory of the time-varying parameter α(k). Following previous

works on this subject (SADEGHZADEH, 2017), we denote ||Hzw||∞ as the induced-l2 gain

performance of the closed-loop system (4.38). However, with a slight abuse of language,

we consider the use of the term H∞ guaranteed cost for referring to the bound µ.

To this end, we first derive a set of sufficient LMI conditions for ensuring asymptotic

stability, minimum decay rate ρ and an upper bound µ on the H∞ guaranteed cost

for discrete-time systems. These base LMI constraints are defined regarding the generic

non-forced (i.e. u(k) = 0) discrete-time LPV system realization

x(k + 1) =A(α(k))x(k) +B(α(k))w(k),

z(k) = C(α(k))x(k) +D(α(k))w(k).
(4.39)

In Lemma 4.2, we have sufficient LMI conditions for ensuring the desired control ob-

jectives. This result will be used further in this subsection in order to approach the

H∞ guaranteed control cost problem.

Lemma 4.2. If there exist a symmetric matrix P (α(k)) > 0 such that












ρ2P (α(k))−A(α(k))′F (α(k))′−F (α(k))A(α(k)) ∗ ∗ ∗
F (α(k))′−G(α(k))A(α(k)) G(α(k)) + G(α(k))′−P (β(k)) ∗ ∗
−B(α(k))′F (α(k))′ −B(α(k))′G(α(k))′ γI ∗

−C(α(k)) 0 −D(α(k)) I













> 0

(4.40)

holds for every α∈ [N , then system (4.39) is asymptotically stable and presents minimum

decay rate ρ and H∞ guaranteed cost µ =
√

γ.

Proof. We begin by noting that (4.40) can be equivalently rewritten in terms of a sum

and product of matrices as

















−ρ2P (α(k)) 0 0 0

0 P (β(k)) 0 0

0 0 −γI 0

0 0 0 I

















+

















F (α(k)) 0

G(α(k)) 0

0 0

0 I





















−A(α(k)) I −B(α(k)) 0

−C(α(k)) 0 −D(α(k)) I



+

+

















−A(α(k))′ −C(α(k))′

I 0

−B(α(k))′ −D(α(k))′

0 I





















F (α(k))′ G(α(k))′ 0 0

0 0 0 I



 < 0. (4.41)
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Then, according to Lemma 2.4, by defining

S =

















−ρ2P (α(k)) 0 0 0

0 P (β(k)) 0 0

0 0 −γI 0

0 0 0 I

















, ω =

















x(k)

x(k + 1)

w(k)

z(k)

















,

R =





−A(α(k)) I −B(α(k)) 0

−C(α(k)) 0 −D(α(k)) I



 , and χ =

















F (α(k)) 0

G(α(k)) 0

0 0

0 I

















,

we have that (4.41) implies in

ω′
S ω =

[

x(k)′ x(k + 1)′ w(k)′ z(k)′
]

















−ρ2P (α(k)) 0 0 0

0 P (β(k)) 0 0

0 0 −γI 0

0 0 0 I

































x(k)

x(k + 1)

w(k)

z(k)

















= x(k + 1)′P (β(k))x(k + 1)−x(k)′ρ2P (α(k))x(k) + z(k)′z(k)−γw(k)′w(k) < 0. (4.42)

Once again, employing the strategy presented in Montagner et al. (2005) and defining

P (β(k)) = P (α(k + 1)), (4.42) leads to

x(k + 1)′P (α(k + 1))x(k + 1)−x(k)′ρ2P (α(k))x(k) + z(k)′z(k)−γw(k)′w(k) < 0, (4.43)

which corresponds to a discrete version of the bounded real lemma (BOYD et al., 1994),

that with V (k) = x(k)′P (α(k))x(k) guarantees the asymptotic stability of (4.39) with a

lower bound ρ on the system decay rate and an H∞ guaranteed cost µ =
√

γ.

Now, in terms of the results given in Lemma 4.2, we propose new sufficient LMI con-

ditions that enables the synthesis of H∞ gain-scheduled SOF controllers with minimum

decay rate bound, as stated in Theorem 4.3.

Theorem 4.3. Assuming that there exists a gain matrix K(α(k)) that asymptotically sta-

bilizes A(α(k))+B(α(k))K(α(k)), then there exists a static output-feedback gain-scheduled

matrix L(α(k)) that asymptotically stabilizes A(α(k)) + B(α(k))L(α(k))C(α(k)) with de-

cay rate bounded by ρ2 and H∞ guaranteed cost µ2 =
√

γ2, for any arbitrary time variation

of the parameter α(k) in (4.3), if there exist symmetric matrices Pi > 0 and matrices Fi,
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Gi, H, and Ji, such that






















ρ2
2Pi−A′

iF
′
i −FiAi−K ′

iB
′
ui

F ′
i −FiBui

Ki ∗ ∗ ∗ ∗
F ′

i −GiAi−GiBui
Ki Gi + G′

i−Pd ∗ ∗ ∗
−B′

wi
F ′

i −B′
wi

G′
i γ2I ∗ ∗

−Czi−Dui
Ki 0 −Dwi

I ∗
−B′

ui
F ′

i + HKi−JiCyi
−B′

ui
G′

i −JiDyi
−D′

ui
H + H ′























> 0

(4.44)

holds for d = 1, ...,N and i = 1, ...,N ,























Σij
1,1 ∗ ∗ ∗ ∗

Σij
2,1 Σij

2,2 ∗ ∗ ∗
−B′

wi
(F ′

i + F ′
j)−B′

wj
F ′

i Σij
3,2 3γ2I ∗ ∗

Σij
4,1 0 −2Dwi

−Dwj
3I ∗

Σij
5,1 Σij

5,2 Σij
5,3 −2D′

ui
−D′

uj
3(H + H ′)























> 0 (4.45)

holds for d = 1, ...,N , i = j = 1, ...,N , and i 6= j , where

Σij
1,1 = ρ2

2(2Pi + Pj) +
(

−Fi(Ai + Aj)−FjAi−Fi(Bui
Kj + Buj

Ki)−FjBui
Ki

)

+ (•)′,

Σij
2,1 = 2F ′

i + F ′
j−Gi(Ai + Aj)−GjAi−Gi(Bui

Kj + Buj
Ki)−GjBui

Ki,

Σij
2,2 = 2(Gi + G′

i) + Gj + G′
j−3Pd,

Σij
3,2 =−B′

wi
(G′

i + G′
j)−B′

wj
G′

i,

Σij
5,2 =−B′

ui
(G′

i + G′
j)−B′

uj
G′

i,

Σij
5,3 =−Ji(Dyi

+ Dyj
)−JjDyi

,

Σij
4,1 =−2Czi−Czj−Dui

(Ki + Kj)−Duj
Ki, and

Σij
5,1 =−B′

ui
(F ′

i + F ′
j)−B′

uj
F ′

i + 2HKi + HKj−Ji(Cyi
+ Cyj

)−JjCyi
,

(4.46)

and






















Σijl
1,1 ∗ ∗ ∗ ∗

Σijl
2,1 Σijl

2,2 ∗ ∗ ∗
Σijl

3,1 Σijl
3,2 6γ2I ∗ ∗

Σijl
4,1 0 −2(Dwi

+ Dwj
+ Dwl

) 6I ∗
Σijl

5,1 Σijl
5,2 Σijl

5,3 −2(D′
ui

+ D′
uj

+ D′
ul

) 6(H + H ′)























> 0 (4.47)

holds for d = 1, ...,N , i = 1, ...,N − 2, j = i + 1, i + 2, ...,N − 1, and l = j + 1, j + 2, ...,N ,

where
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Σijl
1,1 =2ρ2

2(Pi + Pj + Pk) + (−Fi(Aj + Al)−Fj(Ai + Al)−Fl(Ai + Aj)+

−Fi(Buj
Kl + Bul

Kj)−Fj(Bui
Kl + Bul

Ki)−Fl(Bui
Kj + Buj

Ki)
)

+ (•)′,

Σijl
2,1 =2(F ′

i + F ′
j + F ′

l )−Gi(Aj + Al)−Gj(Ai + Al)−Gl(Ai + Aj)+

−Gi(Buj
Kl + Bul

Kj)−Gj(Bui
Kl + Bul

Ki)−Gl(Bui
Kj + Buj

Ki),

Σijl
3,1 =−B′

wi
(F ′

j + F ′
l )−B′

wj
(F ′

i + F ′
l )−B′

wl
(F ′

i + F ′
j),

Σijl
4,1 =−2(Czi

+ Czj
+ Czl

)−Dui
(Kj + Kl)−Duj

(Ki + Kl)−Dul
(Ki + Kj),

(4.48)

Σijl
5,1 =−B′

ui
(F ′

j + F ′
l )−B′

uj
(F ′

i + F ′
l )−B′

ul
(F ′

i + F ′
j) + 2H(Ki + Kj + Kl)

−Ji(Cj + Cl)−Jj(Ci + Cl)−Jl(Ci + Cj),

Σijl
2,2 =2(Gi + G′

i + Gj + G′
j + Gl + G′

l)−6Pd,

Σijl
3,2 =−B′

wi
(G′

j + G′
l)−B′

wj
(G′

i + G′
l)−B′

wl
(G′

i + G′
j),

Σijl
5,2 =−B′

ui
(G′

j + G′
l)−B′

uj
(G′

i + G′
l)−B′

ul
(G′

i + G′
j), and

Σijl
5,3 =−Ji(Dyj

+ Dyl
)−Jj(Dyi

+ Dyl
)−Jl(Dyi

+ Dyj
).

(4.49)

In the affirmative case, the N vertices matrices, Li, for composing gain-scheduled SOF

controller can be retrieved with Li = H−1Ji.

Proof. Analogously to the proof of Theorem 4.2, we readily note that when (4.44) holds,

the existence of H−1 is ensured. Moreover, by multiplying (4.44) by α3
i (k) and by βd(k),

summing from i = 1 to i = N and from d = 1 to d = N , and that by multiplying (4.45)

by α2
i (k)αj(k) and by βd(k), summing from i, j = 1 to i, j = N , i 6= j and from d = 1 to

d = N , and that by multiplying (4.48) by αi(k)αj(k)αl(k), and by βd(k), summing from

i = 1 to i = N −2, j = i + 1 to j = N −1, l = j + 1 to l = N , and from d = 1 to d = N ,

with
∑N

d=1 βd(k) = 1,βd(k) > 0, we have





















ρ2
2P (α(k))+ (−F (α(k))A(α(k))−F (α(k))Bu(α(k))K(α(k))) + (•)′

F (α(k))′−G(α(k))A(α(k))−G(α(k))Bu(α(k))K(α(k))

−Bw(α(k))′F (α(k))′

−Cz(α(k))−Du(α(k))K(α(k))

−Bu(α(k))′F (α(k))′ + HK(α(k))−J(α(k))Cy(α(k))

∗ ∗ ∗ ∗
G(α(k))+ G(α(k))′−P (β(k)) ∗ ∗ ∗
−Bw(α(k))′G(α(k))′ γ2I ∗ ∗

0 −Dw(α(k)) I ∗
−Bu(α(k))′G(α(k))′ −J(α(k))Dy(α(k)) −Du(α(k))′ H + H ′





















> 0 (4.50)

also holds.
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Then, performing a transformation over (4.50) by pre- and pos-multiplying it by

U(α(k))′ =

















I 0 0 0 S(α(k))′

0 I 0 0 0

0 0 I 0 V (α(k))′

0 0 0 I 0

















and U(α(k)),

with S(α(k)) = H−1J(α(k))Cy(α(k))−K(α(k)) and V (α(k)) = H−1J(α(k))Dy(α(k)) we

obtain














ρ2
2P (α(k))+ (−F (α(k))A(α(k))−F (α(k))Bu(α(k))H−1J(α(k))Cy(α(k)))+ (•)′

F (α(k))′−G(α(k))A(α(k))−G(α(k))Bu(α(k))H−1J(α(k))Cy(α(k))

−Bw(α(k))′F (α(k))′−Dy(α(k))′J(α(k))′H−T Bu(α(k))′F (α(k))′

−Cz(α(k))−Du(α(k))H−1J(α(k))Cy(α(k))

∗
G(α(k))+ G(α(k))′−P (β(k))

−Bw(α(k))′G(α(k))′−Dy(α(k))′J(α(k))′H−T Bu(α(k))′G(α(k))′

0

∗ ∗
∗ ∗

γ2I ∗
−Dw(α(k))−Du(α(k))H−1J(α(k))Dy(α(k)) I















> 0. (4.51)

Now, note that by defining L(α(k)) = H−1J(α(k)) we have that (4.51) becomes














ρ2
2P (α(k))+ (−F (α(k))Acl(α(k)))+ (•)′ ∗ ∗ ∗

F (α(k))′−G(α(k))Acl(α(k)) G(α(k))+ G(α(k))′−P (β(k)) ∗ ∗
−Bcl(α(k))′F (α(k))′ −Bcl(α(k))′G(α(k))′ γ2I ∗

−Ccl(α(k)) 0 −Dcl(α(k)) I















> 0.

(4.52)

where
Acl(α(k)) = A(α(k)) + Bu(α(k))L(α(k))Cy(α(k)),

Bcl(α(k)) = Bw(α(k)) + Bu(α(k))L(α(k))Dy(α(k),

Ccl(α(k)) = Cz(α(k)) + Du(α(k))L(α(k))Cy(α(k)), and

Dcl(α(k)) = Dw(α(k)) + Du(α(k))L(α(k))Dy(α(k)),

(4.53)

which is, according to the results given in Lemma 4.2, a sufficient condition for the

closed-loop system (4.37) to be asymptotically stabilized with the gain-scheduled con-

troller L(α(k)), with closed-loop H∞ guaranteed cost µ2 =
√

γ2 and minimum decay rate

ρ2.

As it occurs in the stabilization problem, the present proposed method requires that
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a stabilizing state-feedback controller K(α(k)) is feed as input parameter in the second-

stage LMIs. Considering this fact, we propose an extension of results presented in Mon-

tagner et al. (2005) to address the state-feedback stabilization of discrete-time LPV sys-

tems considering a minimum decay rate specification and an upper bound on the system

H∞ guaranteed cost. This proposition is enunciated in Theorem 4.4.

Theorem 4.4 (First-Stage H∞ GS–SF Design). If there exists symmetric positive ma-

trices Qj ∈ R
n×n, matrices Xj ∈ R

n×n and Yj ∈ R
m×n, j = 1, ...,N , and given scalars ρ1

and γ1 such that the LMIs
















Xj + X ′
j−ρ2

1Qj ∗ ∗ ∗
0 I ∗ ∗

AjXj + Buj
Yj Bwj

Qi ∗
Czj

Xj + Duj
Yj Dwj

0 γ1I

















> 0, (4.54)

for i = 1, ...,N , j = 1, ...,N , and
















Xj + X ′
j + Xk + X ′

k−ρ2
1(Qj + Qk) ∗ ∗ ∗

0 2I ∗ ∗
AjXk + Buj

Yk + AkXj + Buk
Yj Bwj

+ Bwk
2Qi ∗

Czj
Xk + Duj

Yk + Czk
Xj + Duk

Yj Dwj
+ Dwk

0 2µ1I

















> 0, (4.55)

for i = 1, ...,N , j = 1, ...,N − 1, k = j + 1, ...,N have a solution, then the stability of the

closed-loop system (4.8) is assured with decay rate bound ρ1 and H∞ guaranteed cost µ1 =
√

γ1 by the state-feedback control law u(k) = K(α(k))x(k) with the parameter-dependent

gain

K(α(k)) = Y (α(k))X(α(k))−1, (4.56)

for any arbitrary time variation of the parameter α(k) in (4.3).

Proof. Omitted for brevity. The proof follows directly as in Montagner et al. (2005),

with a parameter-dependent Lyapunov function V (x(k)) = x(k)′P (α(k))x(k) > 0 ensuring

V (x(k + 1))−ρ2V (x(k)) < 0.

Remark 4.7. The employment of the proposed method aiming at the H∞ guaranteed cost

minimization via GS–SOF control design in a two-stage procedure involves the specification

of three design parameters: the first-stage decay rate bound ρ1 and H∞ guaranteed cost

bound µ1 =
√

γ1; and the second-stage minimum decay rate bound ρ2. The second-stage

parameter γ2 can be considered as a scalar variable to be minimized in order to obtain an

optimal H∞ guaranteed cost µ2, for the considered problem variables (K(α(k)) and the

other three design parameters).

Remark 4.8. With respect to the decay rate bounds, the user might consider setting the

minimum decay rate parameters to assume equal values (i.e. ρ1 = ρ2), to simplify the
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design procedure. However, since the choose of ρ1 directly impacts on the second-stage

feasibility, it is possible to consider a linear search over these two parameters, with the

goal of obtaining the best possible solution for the LMI problem, in terms of the smallest

second-stage decay rate bound ρ2 such that the LMI are feasible, aiming at guaranteeing a

faster closed-loop transient performance. Regarding the specification of the parameter γ1,

associated to the first-stage H∞ bound, a linear search over a pre-specified range can be

performed. Once again, it is important to emphasize that for different K(α(k)) designed

in the first-stage and used as input data to the second stage, a different SOF problem is

set in terms of the LMIs (4.44)-(4.48). Therefore, the H∞ guaranteed cost problem in

Theorem 4.3, when configured to minimize the variable γ2 = µ2
2, might yield a different

solution depending on the choices of the first-stage design parameters ρ1 and γ1.

In Algorithm 4.3 we summarize the H∞ GS–SOF design procedure proposed in the

present subsection. The method is based on designing a first-stage H∞ state-feedback

gain controller K(α(k)) through Theorem 4.4 and them using the obtained vertex matrices

as input information for designing the desired H∞ gain-scheduling static output-feedback

controller by solving the problem stated in Theorem 4.3 minimizing the variable γ2.

Algorithm 4.3 Two-stage H∞GS–SOF controller synthesis

1: Reset counter with ǫ← 1 and set maximum iteration limit ǫmax.
2: Step 1-1 (SF Initialization): Find a GS–SF controller K(α(k)) design via Theorem

4.4 with bounds ρ1 < 1 and γ1 = µ2
1.

3: Step 1-2 (SF Checking): If Theorem 4.4 returns feasible K(α(k)), go to Step 2-1;
Otherwise, set a different pair of first-stage decay rate bound ρ1← ρnew

1 and γ1← γnew
1 ,

and restart Step 1-1; However, if Theorem 4.4 fails with ρ1← 1, it might not exist an
stabilizing GS–SF controller, then EXIT.

4: Step 2-1 (SOF Design): Find the GS–SOF controller L(α(k)) design via Theorem 4.3
with K(α(k)), decay rate bound ρ2 and minimum γ2 = µ2

2.
5: Step 2-2 (SOF Checking): If Theorem 4.3 returns a feasible L(α(k)), EXIT; Otherwise,

set ǫ← ǫ + 1 and if ǫ < ǫmax go to Step 1-1 with a different pair of first-stage decay
rate bound ρ1 ← ρnew

1 and H∞ guaranteed cost bound γ1 ← γnew
1 to restart the

process; However, if ǫ ≥ ǫmax, the algorithm was not able to find a feasible solution
for GS–SOF design, then EXIT.

Source: Author’s own results.

Remark 4.9. It is important to observe that the proposed Algorithms 4.1–4.3 represent an

immediate strategy for employing our proposed two-stage method. However, as mentioned

in Remarks 4.3 and 4.7, the designer might consider different strategies for setting the

decay rate and H∞ norm bound parameters in order to obtain best optimization results.

In fact, by performing some tests using the proposed strategy, it was possible to observe

that the H∞ norm bound imposed in the first stage severely impacts on the results obtained

in the second stage. For instance, employing an optimization H∞-SF design might hinder
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feasibility in the SOF design stage. Other preliminary tests showed that by considering a

line search over the imposed first-stage H∞ norm bound, an optimal H∞ guaranteed cost

in the second-stage design can be obtained. However, at the present state of development

of this work, the focus is to derive new LMI conditions for GS–SOF controller synthesis.

The development of an optimized two-stage algorithm for this problem is a subject that is

going to be addressed in futures works.

4.1.4 ILLUSTRATIVE EXAMPLES

In this section, we present some numerical experiments aiming to illustrate the syn-

thesis procedure proposed in this chapter and its features, as well as comparing it with

other strategies available in the literature. All experiments were performed using the

SeDuMi (STURM, 1999) solver, via YALMIP (LOFBERG, 2004) interface.

Example 4.1 For this first example, consider a discrete-time LPV system (SADEGHZADEH,

2017), whose state-space matrices are dependent on a time-varying parameter θ, such as

A(θ) =

















0.0429 −0.0931 0.6249 0.3441

−0.4705 0.4222 0.3410 −0.2100

−0.3855 −0.5937 0.1346 −0.4270

0.3841 0.1436 0.4203 −0.3100

















+ θ

















0.0725 0.0415 0.1360 0.0798

0.0802 0.1609 0.1265 −0.0853

−0.0430 −0.1672 0.1674 −0.0854

0.1354 −0.0016 −0.0511 0.0032

















,

B(θ) =

















−1.0302 1.4171

0 −0.2532

1.6270 0.4504

0.6604 0

















+ θ

















−0.5881 −0.1067

0.6866 −0.2186

0 0

−0.4438 −0.2880

















,

C(θ) =
[

−0.7000 0.2876 0.6224 0
]

+ θ
[

−0.0652 −0.2943 0 −0.2982
]

.

(4.57)

The time-varying parameter θ is bounded in the interval [0,1], but its measurement

is assumed to be available on-line during control operation.

First, we notice that all space-state matrices in (4.57) are affected by θ, including

the output matrix C. Different from the first SOF control approaches (GEROMEL;

PERES; SOUZA, 1996), our proposed method is able to cope with parameter-dependent

output matrix case. Furthermore, no particular structure is imposed to any of the system

matrices, which is an inherent limitation in other strategies that have attempted to address

the SOF problem in this more general formulation (CRUSIUS; TROFINO, 1999; DONG;

YANG, 2008).

Now, we proceed to the GS–SOF controller design using the method proposed in this
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work. Immediately, see that (4.57) can be easily put in a polytopic format, by means of a

convex combination of two vertices via α(k) ∈ [N . Note that, for this particular example,

the relationship between α and θ is direct. In fact, one can see that α have the same

bounds ([0,1]) as θ. In those terms, (4.57) can be represented in a polytopic form as

A(α(k)) =α1(k)

















0.0429 −0.0931 0.6249 0.3441

−0.4705 0.4222 0.3410 −0.2100

−0.3855 −0.5937 0.1346 −0.4270

0.3841 0.1436 0.4203 −0.3100

















+

+ α2(k)

















0.1154 −0.0516 0.7609 0.4239

−0.3903 0.5831 0.4675 −0.2953

−0.4285 −0.7609 0.3020 −0.5124

0.5195 0.1420 0.3692 −0.3069

















,

B(α(k)) =α1(k)

















−1.0302 1.4171

0 −0.2532

1.6270 0.4504

0.6604 0

















+ α2(k)

















−1.6183 1.3104

0.6866 −0.4718

1.6270 0.4504

0.2166 −0.2880

















,

C(α(k)) =α1(k)
[

−0.7000 0.2876 0.6224 0
]

+

+ α2(k)
[

−0.7652 −0.0067 0.6224 −0.2982
]

.

(4.58)

Then, by setting a decay rate bound ρ1 = 0.85 and using Theorem 4.1 conditions,

considering X(α(k)) = X, we obtain

K1 =





0.1718 0.2371 −0.0403 0.2986

0.0545 0.3104 −0.3695 −0.0637



 and

K2 =





0.2407 0.2787 −0.0916 0.3124

0.1826 0.5205 −0.4687 0.0099





(4.59)

as the first-stage parameter-dependent gain matrix K(α(k)) vertices.

In the sequence, we advance to the second stage, by applying Theorem 4.2 conditions,

using the obtained SF gain matrices (4.59) and setting ρ2 = 0.85. Then, the solution

under the LMIs constraints (4.15),(4.16) and (4.19) yields

L1 =





−0.3502

−0.1945



 and L2 =





−0.3667

−0.3540



 (4.60)

as the vertices matrices for the desired GS–SOF controller L(α(k)).

By inspection, we see that (4.60) have a very simple format when compared to its

correspondent SF gains (4.59). Such feature is typical in SOF problems, as only the
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available state information is used for composing the feedback loop. This is one of the

advantages of SOF over dynamic output feedback (DOF) approaches, which require a

system order augmentation, as the DOF controller states must be incorporated to the

problem (CRUSIUS; TROFINO, 1999).

Figure 4.2 - Eigenvalue cloud for system (4.58) in open loop (∗) and closed loop (×)
with GS–SOF controller (4.60) (dashed line: ρ = 0.85; Right chart: close-
up).
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Source: Author’s own results.

For illustration purposes, in Figure 4.2 we present the eigenvalue placement of system

(4.58) in open loop (∗), and also in closed loop via GS–SOF controller (×) formed by the

designed vertices matrices (4.60). This result is obtained by calculating the eigenvalues

λ(A(α(k))) and λ(A(α(k))+B(α(k))L(α(k))C(α(k))) for 50 different values of α(k)∈ [N .

The solid line circle denotes the unitary circle and the dashed one represents the region

inherent to the decay rate bound ρ = 0.85. At first, we can see that system (4.58) presents

unstable eigenvalue configuration for some α(k)∈ [N . However, by applying the proposed

method, the closed-loop eigenvalues, for all α(k) ∈ [N , are all contained in the dashed

circle for ρ = 0.85. Of course, it is important to remember that when dealing with LPV

systems, the concept of eigenvalue configuration for a fixed value of α(k) must be taken

with care. This analysis alone is not sufficient for inferring about the system asymptotic

stability, and it is used here only for illustrating the effects of the decay rate constraint

over the polytope system vertices, as already discussed in Section 3.2.

Completing the analysis, the results of a simulation of system (4.58) response is pre-

sented in the sequence. Both open and closed loop with the designed GS–SOF controller

are considered. The simulation occurred in terms of the state evolution and the produced

control signal behavior, after being released from initial conditions arbitrarily defined

as x(0) =
[

0.1 0.1 −0.2 −0.2
]′

. For this study, we set a sampling period T of 0.2 s.
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Moreover, the time-varying parameter is considered as a sinusoidal wave with frequency

f = 0.2 Hz defined as2

α1(k) = 0.5 + 0.5sin(2π0.2kT ),

α2(k) = 1−α2(k).
(4.61)

In Figure 4.3 the transient behavior of (4.58) in open loop is presented. Note that

for this particular set of initial conditions, (4.58) states converge to the origin3. In Figure

4.4, we present the transient response obtained in closed loop with the designed GS–

SOF controller. We can see that the system state also converges to the origin in closed

loop. However, differently from the open-loop configuration, (4.58) now has guaranteed

asymptotic stability, and also has ensured bound ρ = 0.85 over the state decay rate. In

fact, we can see that the states converge to the origin in 3 seconds (almost 3 times faster

when compared with the open-loop transient).

Figure 4.3 - Transient response of system (4.58) in open loop.
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Source: Author’s own results.

At last, in Figure 4.5 we can see the control signal produced by the designed GS–SOF

controller gains during the closed-loop simulation. Note that the controller gains have

a time-varying behavior (Figure 4.6 upper charts), changing accordingly to the instant

system configuration – which is determined by the actual values of α(k) (bottom chart in

Figure 4.6).

2The time-varying behavior of α(k) is defined a priori just for illustration purposes. In a real practical
application, only the bounds on α(k) are need in the design stage. However, α(k) has to be available
on-line in the implementation stage of gain-scheduled control systems.

3It is important to clarify that despite that Figure 4.2 shows that (4.58) presents unstable set of
eigenvalues for some α(k) in open loop, the state convergence to the origin is possible for some particular
initial condition. However, asymptotic stability is not guaranteed, which means that the state convergence
to the origin cannot be ensured for every possible initial condition.
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Figure 4.4 - Transient response of system (4.58) in closed loop.
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Figure 4.5 - Control signal produced by the designed GS–SOF controller.
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Figure 4.6 - Variation of the values of GS–SOF controller L(α(k)) (up) according to the
instant measurement of α(k) (bottom).
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Example 4.2 In this second example, the proposed results are compared with the GS–

SOF discrete-time control design strategy presented in Rosa, Morais and Oliveira (2018),

which is a particular result for dealing with polytopic LPV systems, regarding the inclusion

of a decay rate bound ρ.

For such comparison, we consider a polytopic discrete-time system (CAIGNY et al.,

2009), whose vertices are described by the following matrices:

A1 = η











1 0 −2

2 −1 1

−1 1 0











, A2 = η











0 0 −1

1 −1 0

0 −2 −1











, B1 = B2 =











1

0

0











, and C1 = C2 =











1 0

0 1

0 0











′

.

(4.62)

The GS–SOF stabilization strategy proposed in this work (in terms of Theorem 4.2

and Corollary 4.1) and the method presented in Rosa, Morais and Oliveira (2018) were

tested for a grid of values of ρ and η, bounded by the intervals

0.4≤ η ≤ 0.5 and 0.8≤ ρ≤ 1.0.

For simplicity, when testing the performance of the two-stage strategy proposed in the

present work, for each tested value of ρ, the decay rate bound was set to be the same in

both first (Theorem 4.1) and second (Theorem 4.2 and Corollary 4.1) stages (i.e. ρ1 = ρ2).

Moreover, it is important to mention that the same designed gain K(α(k)) – for a given

ρ1 – was used as input information in the second-stage design in both Theorem 4.2 and

Corollary 4.1 tests.

Despite the fact that the strategy proposed in Rosa, Morais and Oliveira (2018) is

not a two-stage based, it depends on the a priori information of scalars γ4 and ξ, as

well as a matrices Qi(α(k)) ∈R
p×n, i = 1,2. Otherwise, their strategy falls into the form

of a bilinear matrix inequality (BMI) problem, which has a considerably higher compu-

tational cost. For employing their method, we set γ = 10−5 and Qi(α(k)) = C(α(k)),

and defined ξ belonging to the set {−0.9,−0.8, · · · ,0.8,0.9}, following the setting that

the authors adopted in Rosa, Morais and Oliveira (2018). Moreover, as in their paper

a stability criterion in terms homogeneous-polynomial Lyapunov function is considered,

while employing their strategy, the polytopic structure (degree g = 1) was considered for

the variable matrices 5, since Theorem 4.2 is based on a polytopic parameter-dependent

matrix P (α(k)).

The result of the tests are compiled in Figure 4.7. As one can observe, the CQLF

4Note that in Rosa, Morais and Oliveira (2018) the parameter γ is not associated to the H∞ guaranteed
cost bound, as γ1 and γ2 in the present work.

5Except for matrix S(α(k)), which is set to have degree 0, for the same reason that we adopted
X(α(k)) = X in Theorem 4.1.



4.1 Two-Stage Discrete-Time GS–SOF Control 109

approach (Corollary 4.1) indeed shows to impose more restrictive conditions for the GS–

SOF design than the strategy proposed in Rosa, Morais and Oliveira (2018), as expected.

However, the polytopic PDLF aproach based on Theorems 4.1 and 4.2 of the present work

shows to be less conservative than the strategy presented in Rosa, Morais and Oliveira

(2018) (for the considered comparison, setting degree g = 1 for the decision variables).

This can be inferred since our method was able to provide a feasible solution for a wider

number of systems (represented by the different values of η), and also for a tighter decay

rate bound ρ. Additionally, note that, as expected, the results achieved with Theorem

4.2 outperforms its CQLF version (Corollary 4.1).

Figure 4.7 - Feasibility region obtained using: Corollary 4.1 (×), Corollary 1 in Rosa,
Morais and Oliveira (2018) (× and ©); and Theorem 4.2 (×, ©, and �).
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Source: Author’s own results.

It is also worth-noting that the method in Rosa, Morais and Oliveira (2018) is tested

for each value of ξ in the previously defined set, in the search for a solution. Of course,

a finer grid on ξ or a parallel line search on γ could yield better results. However, this

implies on a higher computational burden. Such complexity is not present in the strategy

proposed in this work, as the only information needed is a state-feedback gain matrix.

Furthermore, it is also interesting to mention that despite that in the time-invariant

scenario the existence of higher-order polynomial Lyapunov functions (HOPLFs) is a

necessary and sufficient condition for robust stability, this does not apply to the LPV case.

In fact, using HOPLFs is not effective in time-varying scenario, especially when bounds

on the variation rates of the time-varying parameters are considered in the control design

(PANDEY; OLIVEIRA, 2019).

Example 4.3 In this third example we illustrate the efficiency of the extension of the

proposed method for addressing the H∞ norm optimization problem. With this goal in

mind, we once again consider the uncertain discrete time-varying system borrowed from



4.1 Two-Stage Discrete-Time GS–SOF Control 110

Caigny et al. (2009), now encompassing the exogenous input impact, which is affected by

a time-varying parameter θ1(k), and therefore can be represented in terms of a set of two

vertex matrices as

A1 = η











1 0 −2

2 −1 1

−1 1 0











, A2 = η











0 0 −1

1 −1 0

0 −2 −1











, Bu1
= Bu2

=











1

0

0











, Bw1
=











0

1

0











, Bw2
=











0

0

1











,

Cy1
= Cy2

=





1 0 0

0 1 0



 , Cz1
= Cz2

=
[

1 1 1
]

,

Du1
= Du2

= 0, Dw1
= Dw2

= 0, and Dy1
= Dy2

=





0

0



 .

The goal is to evaluate the method proposed in this work in the minimizing the

H∞ guaranteed cost through the employment of Theorem 4.3 according to Algorithm

4.3, and compare the obtained results with other strategies available in the literature,

namely Corollary 1 from Rosa, Morais and Oliveira (2017) and Theorem 8 from Caigny

et al. (2010). Since none of the compared strategies can address minimum decay rate

imposition, for the performed study we set ρ1 = ρ2 = 1 in Theorems 4.3 and 4.4. Moreover,

the first-stage H∞ guaranteed cost bound was set6 in terms of γ1 = µ2
1 = 20 in Theorem

4.4.

Figure 4.8 - H∞ guaranteed cost with GS–SOF controller design obtained with The-
orem 4.3, employed according to Algorithm 4.3, and with the techniques
proposed in Rosa et al. (2017) and de Caigny et al. (2010).
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Source: Author’s own results.

6This choice of γ1 was defined after performing a few tests with other values for this parameter.
However, as already stated in Remark 4.8, a linear search on γ1 can be employed to obtain better results.
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In Figure 4.8 we show the obtained H∞ guaranteed cost achieved with the mentioned

methods when varying the parameter η in the interval 0.43≤ η ≤ 0.445. One can observe

that the technique proposed in the present work outperforms both strategies by yielding

a gain-scheduled SOF control design that grants a smaller H∞ guaranteed cost for all

evaluated values of η, which implies in a better disturbance rejection performance.

For a further comparison, we consider the work of Sadeghzadeh (2017), in which the

author considers that the scheduling parameter have limited variation rate, bounded by

∆1, such that |θ1(k +1)−θ1(k)| ≤∆1. For different specified bound ∆1 on the parameter

deviation, a different H∞ bound can be obtained using his method. For the same system

considered in the present example, the strategy presented in Sadeghzadeh (2017), for the

particular value of η = 0.4525, was able to achieve an H∞ guaranteed cost in the range

12.1861 ≤ µ2 ≤ 24.6150, associated to a deviation bound on the scheduling parameters

0≤∆1 ≤ 0.5. The approach proposed in the present work does not need that a bound on

the parameter variation rate has to be informed in the control design, and therefore is able

to deal with arbitrarily variation rates. For the same value η = 0.4525 our method was

able to obtain an H∞ guaranteed cost µ2 = 17.329 (with ρ1 = ρ2 = 1, and γ1 = µ2
1 = 20),

which is comparable to the results presented in Sadeghzadeh (2017).

Example 4.4 In this final example, we demonstrate our method application in a real

control problem for the stabilization of an inverted pendulum on a cart, adapted from

Sadeghzadeh (2017). Here we seek to illustrate the proposed GS–SOF controller efficacy

over the disturbance rejection during control implementation. The considered system

model is obtained through an Euler’s first-order approximation over a quasi-LPV repre-

sentation of the original nonlinear inverted pendulum model (SADEGHZADEH, 2017),

for a sampling period Ts = 0.05 seconds, yielding a polytopic model that can be described

in terms of the following vertex matrices:

A1 = A2





1 0.05

0.9705 1



 , A3 = A4 =





1 0.0500

1.3531 1



 , (4.63)

Bu1
= Bu3

=





0

−0.0892



 , Bu2
= Bu4

=





0

−0.0409



 , Bw1
= Bw2

= Bw3
= Bw4

=





0

0



 ,

Du1
= Du2

= Du3
= Du4

= 0, Dy1
= Dy2

= Dy3
= Dy4

= 0,

Cz1
= Cz2

= Cz3
= Cz4

=
[

1 0
]

, Cy1
= Cy2

= Cy3
= Cy4

=
[

1 1
]

,

which define a polytope with four vertices (two time-varying parameters). We refer the

reader to Sadeghzadeh (2017) and references within for more details on the inverted

pendulum system modeling.

By employing the proposed strategy with Theorems 4.4 and 4.3 for completing the
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two-stage design, considering the design parameters ρ1 = ρ2 = 1, and γ1 = µ2
1 = 50, one

might obtain the GS–SOF controller

Lα = α1(k)15.7811 +α2(k)31.1018 +α3(k)19.4399 +α4(k)37.0305, (4.64)

which ensures a H∞ guaranteed cost µ2=11.674.

In this example, we consider that both time-varying parameters are available for mea-

surement. In these terms, the scheduling parameters αi(k) for i = 1,2,3,4, can be obtained

following the procedure described in Chapter 2. Running a computational simulation of

controller (4.64) applied to the original nonlinear model of the inverted pendulum, con-

sidering a disturbance input w(k) as a zero-mean Gaussian white noise, with standard

deviation 0.1 (SADEGHZADEH, 2017), we obtain the transient response shown in Figure

4.9. As seen, after being released from the initial condition x0 = [π/3 0]T , the controlled

output z(k) asymptotically converges to the origin, even in with the presence of a distur-

bance input signal w(k) 6= 0.

Figure 4.9 - Controlled output and control signals obtained with the GS–SOF controller
4.64.
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Source: Author’s own results.

It is important to observe that the specification of the first-stage design parameters

ρ1 and µ1 drastically impacts the results obtained in the second stage. For instance,

by setting µ2
1 = 25, while maintaining ρ1 = 1, the second-stage design leads to a H∞

guaranteed cost of µ2 = 12.791. This highlights the importance of an adequate first-stage

design.
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5 NON-NEGLIGIBLE SENSORS AND ACTUATORS DYNAMICS WITH
TRANSPORT DELAY

This chapter presents results obtained with the application of the two-stage SOF

design method studied in this work on the particular problem of uncertain LTI systems

subject to sensors and/or actuators with non-negligible dynamics. In such practical cases,

the actual system states are not available for feedback, but only the measurement signals

at the sensors output. Therefore, full state-feedback employment is hindered. By modeling

the plant, sensors, and actuators dynamics into a single augmented system, static output

feedback control might be applied for solving the problem.

Using the same idea, the dynamic effects of time delay can also be incorporated

in the controller design. Considering the Padé approximation, the delay dynamics are

encompassed in the augmented system and the SOF control technique can be applied to

design a robust controller for asymptotic stabilization under the presence of non-negligible

additional dynamics and time delay.

Differently from the previous results proposed in this thesis, in this chapter, we ex-

plore the benefits of establishing stability certificates in terms of homogeneous-polynomial

Lyapunov functions when compared to conventional parameter-dependent Lyapunov func-

tions and common quadratic Lyapunov functions.

Moreover, in a problem extension, we consider the presence of a disturbance signal

that affect the uncertain LTI system dynamics. For coping with this additional issue, we

extend the two-stage SOF controller synthesis LMI conditions for minimizing the closed-

loop H2 guaranteed cost.

In the sequence, the augmented system modeling as well as the design procedure for

addressing the aforementioned problem are proposed and discussed. At the end of the

chapter, illustrative examples are also presented to evaluate the efficiency of the proposed

strategy.

5.1 PROBLEM STATEMENT

Consider the uncertain linear system described as

ẋ(t) = A(α)x(t) + B(α)z(t) (5.1)



5.1 Problem Statement 114

where x(t) ∈ R
n is a vector with system states and z(t) ∈ R

m is a vector with control

input signals. The parameter-dependent matrices A(α) ∈Rn×n and B(α) ∈Rn×m belong

to a polytopic domain D parametrized in terms of a vector of uncertain time-invariant

parameters α = (α1, ...,αN ) such as

D =







(A,B)(α) : (A,B)(α)=
N

∑

r=1

αr(Ar,Br),α∈∧N







, (5.2)

where (Ar,Br) denotes the r-th polytope vertex, and

∧N =







α ∈ R
n :

N
∑

r=1

αr = 1;αr ≥ 0;r = 1, ...,N







. (5.3)

The state information is measured through q sensors, with dynamics described by

v̇i(t) = av,ivi(t)−av,i





n
∑

j=1

ci,jxj(t)



 , (5.4)

where vi(t) are the sensor outputs, composing the vector v(t) = [v1(t) · · ·vq(t)]′, av,i < 0

are time-invariant (but possibly uncertain) parameters for i = 1,2, ..., q, and ci,j are known

constants for j = 1,2, ...,n.

Also, consider the existence of m actuators whose dynamics are described by

żk(t) = az,kzk(t)−az,k





p
∑

l=1

dk,luDl
(t)



 , (5.5)

composing the vector of control signals z(t) = [z1(t) · · ·zm(t)]′. Moreover, in (5.5), uDl
(t)

are the actuator input commands, forming the vector uD(t) =
[

uD1
(t) · · ·uDp(t)

]′
, az,k < 0

are time-invariant (but possibly uncertain) parameters for k = 1,2, ...,m, and dk,l are

known constants for l = 1,2, ...,p.

The overall control system block diagram, represented in Figure 5.1, helps to illustrate

the considered system and control structure.

Note that we assume that each sensor output vi(t), used in feedback, is available for the

controller with time delay, τsi
, in terms of a delayed sensor output signal vDi

(t). Likewise,

each command signal produced by the controller, ul(t), is received by the actuator with

time delay τal
, in terms of a delayed actuator command signal uDl

(t).

Under these definitions, the problem addressed herein consists in designing a control

law u(t) = LvD(t) where vD(t) ∈ R
q is the vector of time-delayed sensor outputs and

L ∈Rp×q is a gain matrix to be determined in order to ensure the closed-loop asymptotic

stability of the overall system. Moreover, the controller L must be designed in order to
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ensure that the decay rate is greater than a given lower bound γ, following the definitions

given in Subsection 2.1.2.

5.2 PROPOSED STRATEGY

In this section, a system representation that allows for encompassing plant and ad-

ditional dynamics in a single model is presented, as well as a control synthesis strategy

based on LMIs for designing an SOF controller that guarantees closed-loop stability and

minimum decay rate.

5.2.1 SYSTEM AUGMENTATION

For dealing with this control problem, we propose the definition of an augmented

system that encompass the plant, actuators, and sensors dynamics, and also the time

delay effect. To this end, we first consider that the time delay is modeled using the Padé

approximation (NIU et al., 2013).

When analyzed in the frequency domain, a time delay τ can be represented by the

transfer function e−τs. Using the Padé method, e−τs can be approximated by a rational

polynomial function R(s) as

e−τs ≈ R(s) =
b0 + b1τs + · · ·+ bc(τs)c

a0 + a1τs + · · ·+ ak(τs)k
, (5.6)

where usually c = k, and k denotes the order of the approximated model.

Considering that every sensor output signal vi(t), i = 1, ..., q, is received by the con-

Figure 5.1 - Closed-loop block diagram.

Source: Own author.
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troller with time delay τ = τs (possibly uncertain), the function R(s) in (5.6) can be

transformed into an equivalent state-space model of order k = ks that represents the de-

lay effect on the sensor output signal by using the following realization (NIU et al., 2013):







δ̇sdi
(t) = Asd(α)δsdi

(t) + Bsdvi(t)

vDi
(t) = Csd(α)δsdi

(t) + Dsdvi(t)
, (5.7)

where δsdi
(t) ∈R

ks is the vector of phase variables, vDi
(t) is the i-th time-delayed sensor

output, and

Asdi
(α)=























0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0τ

−ks
s

aks

−a1τ
−ks+1
s

aks

−a2τ
−ks+2
s

aks

· · · −aks−1τ−1
s

aks























, (5.8)

Bsdi
=

[

0 0 0 · · · 1
]′

, (5.9)

Csdi
(α)=

1
a2

ks

[

(aks
b0−a0bks

)τ−ks

s (aks
b1−a1bks

)τ−ks+1
s

· · · (aksbks−1−aks−1bks)τ−1
s

]

, (5.10)

Dsdi
=

bks

aks

, (5.11)

with

aj =
(cs + ks− j)!ks!

j!(ks− j)!
, bf = (−1)f (cs + ks−f)!cs!

f !(cs−f)!
, (5.12)

for j = 1, ...,ks, and f = 1, ..., cs, where cs is the numerator degree for the sensor delay

model approximation in (5.6).

In that sense, we can model the sensor dynamics affected by a time delay τ = τs by

defining an augmented vector s(t) ∈ R
q(1+ks) defined as

s(t) =
[

v(t)′ δsd(t)′
]′

,

with δsd(t) =
[

δsd1
(t) · · ·δsdks

(t)
]′

, which combines the sensor dynamics (5.4) subject to a

time-delay effect (5.7), yielding the following augmented state-space model







ṡ(t) = As(α)s(t) + Bs(α)x(t)

vD(t) = Cs(α)s(t)
, (5.13)
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where

As(α) =





Av(α) 0q×qks

Bsd Asd(α)



 , Bs(α) =





−Av(α)C

0qks×n



 , and Cs(α) =
[

Dsd Csd(α)
]

with

Av(α) = diag{av,1,av,2, . . . ,av,q} , C =

















c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

...
...

. . .
...

cq,1 cq,2 . . . cq,n

















,

and

(A,B,C,D)sd(α) = diag
{

(A,B,C,D)sd1
,(A,B,C,D)sd2

, . . . ,(A,B,C,D)sdq

}

, (5.14)

with (A,B,C,D)sdi
as in (5.8) - (5.11) (with the subindex “s” referring to the sensor

time-delay), implying in Asd ∈ R
qks×qks, Bsd ∈ R

qks×q, Csd ∈ R
q×qks, and Dsd ∈ R

q×q.

Similarly, we can model the actuator dynamics affected by time-delayed command

signals by considering a ka-th order Padé approximation, incorporated in an augmented

vector a(t) ∈R
m(1+ka)

a(t) =
[

z(t)′ δad(t)′
]′

,

with δad(t) =
[

δad1
(t) · · ·δadka

(t)
]′

, combining the actuator dynamics (5.5) subject to a

time-delay effect modeled as in (5.7) (now with k = ka and τ = τa), yielding the following

augmented state-space model






ȧ(t) = Aa(α)a(t) + Ba(α)uD(t)

z(t) = Ca(α)a(t)
, (5.15)

where

Aa(α) =





Az(α) −Az(α)DCad

0mka×m Aad(α)



 , Ba(α) =





−Az(α)DDad

Bad



 , Ca(α) =
[

Im×m 0m×mka

]

Az(α) = diag{az,1,az,2, . . . ,az,m} , D =

















d1,1 d1,2 . . . d1,p

d2,1 d2,2 . . . d2,p

...
...

. . .
...

dm,1 dm,2 . . . dm,p

















, and (5.16)

(A,B,C,D)ad = diag{(A,B,C,D)ad1
, (A,B,C,D)ad2

, . . . ,(A,B,C,D)adm} , (5.17)

with (A,B,C,D)adi
as in (5.8) - (5.11) (with the subindex “a” referring to the actuator

time-delay), implying in Aad ∈ R
mka×mka, Bad ∈ R

mka×m, Cad ∈ R
m×mka, and Dad ∈

R
m×m.
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Remark 5.1. In this work, for simplifying the notation and without loss of generality,

we considered that every sensor output signal is subject to the same amount of time delay

τs, likewise assumed for the actuator commands, with a time delay τa. Therefore, the

matrices in (5.7) will be the same for each of the q sensor output signals and each of the

m actuator commands, respectively. However, note that a more general approach can be

directly employed by assuming that the time delay τ , and also its approximation model

order k, are different for every considered signal, defining parameters such as τsi
and ksi

,

i = 1, ..., q, and τal
and ksl

, for l = 1, ...,p.

Next, to incorporate the time-delayed sensor and actuator dynamics in the LTI system

(5.1), we promote a system augmentation, by defining the augmented state vector w(t) ∈
R

n+q(ks+1)+m(ka+1) as

w(t) =
[

x(t)′ s(t)′ a(t)′
]′

. (5.18)

Then, we have the following augmented state-space representation






ẇ(t) = Ā(α)w(t) + B̄(α)u(t)

y(t) = C̄(α)w(t)
, (5.19)

where

Ā(α)=









A(α) 0n×q(ks+1) B(α)Ca(α)

Bs(α) As(α) 0q(1+ks)×m(1+ka)

0m(1+ka)×n 0m(1+ka)×q(1+ks) Aa(α)









, B̄(α) =









0n×p

0q(k+1)×p

Ba(α)









,

and

C̄(α) =
[

0q×n Cs(α) 0q×m(1+ka)

]

.

The output vector y(t) corresponds to the delayed-sensor output vD(t) in (5.13), which

is available for feedback, in contrast to the actual system state vector x(t). Therefore,

the aforementioned problem may be addressed as a static output-feedback control design

with u(t) = LvD(t) = Ly(t).

At this point, we give emphasis to the first main contribution of this chapter. This new

modeling strategy is able to represent, in a single set of matrices, not only the dynamics

associated to sensors and actuators but also the effect of delay in the communication

channels that deliver the information generated in the sensors output and received in

the actuators input, respectively, enabling to address more complex and general control

problems.

Remark 5.2. It is important to note that the polytopic approach enables our strategy to

easily cope with uncertainties on sensors and/or actuators parameters, simply by consid-

ering them as additional uncertain parameters along with the plant uncertainties. The
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same procedure can be employed to consider uncertain time delays τs and/or τa. This is

possible since these parameters will be part of the overall system matrices, generating an

augmented polytope encompassing plant, sensor, actuator, and delay uncertainties.

Remark 5.3. Our method considers the Padé approximation for modeling the time delay

effect over the system dynamics. The approximation error can be reduced by choosing

a higher-order rational polynomial function (5.6). With higher values of ks we obtain a

better approximation on the exact dynamic effect of the delay e−τs. Note that the order

of the delay approximation ks is directly incorporated in our proposed system augmented

model. Of course, the direct trade-off is that a higher-order state-space model is needed, as

the parameter ks will define the dimension of the sensor delay model matrices (5.8)-(5.11),

and similarly in the actuator delay model given in (5.17).

5.2.2 CONTROL DESIGN

For the SOF controller design, we consider the use of a two-stage SOF controller

synthesis strategy, based on the pioneer works of Peaucelle et al. (2000) and Mehdi,

Boukas and Bachelier (2004).

The two-stage method employment in our work consists in first computing a state-

feedback gain K(α) such that

ẇ(t) = (Ā(α) + B̄(α)K(α))w(t),

i.e., the augmented system (5.19), is robustly stable in closed-loop with u(t) = K(α)w(t).

In the sequence, this gain matrix K(α) is fed to a second-stage controller syntheses, in

which the desired SOF stabilizing robust gain L is effectively computed.

As already mentioned in the previous chapters, the first-stage state-feedback design

can be performed using any available strategy in the literature. Here, we consider well-

known conditions (BOYD et al., 1994), based on the existence of matrices W = W ′ > 0

and Z(α) such that

Ā(α)W + WĀ(α)′ + B̄(α)Z(α) + Z(α)′B̄(α)′ + 2γ1W < 0 (5.20)

holds for every α ∈ ∧N . In the synthesis conditions, K(α) = Z(α)W −1 guarantees the

robust state-feedback stabilization of ẇ(t) = (Ā(α) + B̄(α)K(α))w(t) with lower bound

γ1 on the closed-loop system decay rate.

Remark 5.4. Clearly, the conditions presented in (5.20) are of infinite-dimension, as

they are dependent on the uncertain parameter α. Therefore, some manipulation over

these constraints has to be performed to obtain an equivalent finite-dimension problem.
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This issue is left to be properly discussed more ahead in the text, since the second-stage

synthesis conditions are also presented in terms of parameter-dependent LMIs.

In this work, we bring a generalization of the SOF synthesis conditions proposed in

Sereni et al. (2018) for computing SOF gains for the stabilization of the augmented sys-

tem encompassing sensor and actuator dynamics. The results in Sereni et al. (2018) are

achieved by considering that the LMI decision matrices have polytopic dependence on the

uncertain parameter α. Here, we assume that the decision variables have a homogeneous-

polynomial dependence on α of arbitrary degree g (AGULHARI; OLIVEIRA; PERES,

2010a), and also extend the synthesis conditions for enabling the enforcement of a mini-

mum decay rate criterion.

For applying such strategy, we first formally enunciate in Theorem 5.1 a parameter-

dependent LMI condition set that encompasses the results presented in Sereni et al. (2018).

Theorem 5.1. Assuming that there exists a state-feedback gain K(α) such that Ā(α)+

B̄(α)K(α) is asymptotically stable, then there exists a stabilizing static output-feedback

gain L such that Ā(α) + B̄(α)LC̄(α) is asymptotically stable, considering a decay rate

greater than or equal to γ2 > 0, if there exist a symmetric parameter-dependent matrix

P (α) > 0, parameter-dependent matrices F (α), G(α), and matrices H and J such that









(F (α)Ā(α)+ F (α)B̄(α)K(α))+ (•)′ + 2γ2P (α) ∗ ∗
P (α)−F (α)′ + G(α)Ā(α)+ G(α)B̄(α)K(α) −G(α)−G(α)′ ∗

B̄(α)′F (α)′ + JC̄(α)−HK(α) B̄′(α)G(α)′ −H−H ′









< 0. (5.21)

In the synthesis condition, the robust static output-feedback gain is given by L = H−1J .

Proof: Readily note that (5.21) implies in H being invertible (BOYD et al., 1994). In the

sequence, applying a transformation on (5.21) with T (α) and T (α)′ (MEHDI; BOUKAS;

BACHELIER, 2004), where

T (α) =





I 0 S(α)′

0 I 0



 , (5.22)

one can achieve




Ψ(α) Φ(α)

∗ −G(α)−G(α)′



 < 0, (5.23)

where

Ψ(α) =
[

(Ā(α) + B̄(α)(K(α) + S(α)))′F (α)′

+S(α)′(JC̄(α)−H(K(α) + S(α))
]

+ (•)′+2γ2P (α), (5.24)
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and

Φ(α) = P (α)−F (α) + (Ā(α) + B̄(α)(K(α) + S(α)))′G′(α) (5.25)

By defining S(α) = H−1JC̄(α)−K(α), and L = H−1J in (5.24) and (5.25), we have

that (5.23) becomes





[

(Ā(α) + B̄(α)LC̄(α))′F (α)′
]

+ (•)′ + 2γ2P (α)

∗
P (α)−F (α) + (Ā(α) + B̄(α)LC̄(α))′G′(α)

−G(α)−G(α)′



 < 0, (5.26)

which is a sufficient condition for the robust stabilization with a lower bound γ2 on the

system decay rate according to Lemma 2.5, with ẇ(t) = (Ā(α) + B̄(α)LC̄(α))w(t).

The LMI conditions given in (5.21) are of infinite dimension. In order to make them

computationally tractable, we need to convert them into a finite set of LMI conditions, by

imposing some particular structure to the decision variables. Following previous works on

the subject, by assuming that the parameter-dependent matrices are modeled as homo-

geneous polynomials of sufficiently large degree g on the uncertain parameter α, we may

obtain a finite set of LMIs with no loss of generality (AGULHARI; OLIVEIRA; PERES,

2010b). This means that the higher the degree g considered for the polynomial matrices,

the lesser is the conservatism introduced in the constraint formulation. For a sufficient

large g, the obtained finite set of LMI will exactly represent the constraints in (5.21).

For an arbitrary degree g considered for the homogeneous-polynomial matrices in

(5.21), we can obtain a finite set of LMIs in order to solve the control design problem

using semidefinite programming tools. For the particular case of g = 1, we have a polytopic

parameter-dependent Lyapunov function (PDLF) such as

P (α) = α1P1 + α2P2 + · · ·+ αNPN .

In this case, sufficient conditions for the LMIs in Theorem 5.1 can be obtained by checking

a finite set of LMI constraints over the vertices of the polytopic parameter-dependent

matrices. This result is formally stated in the following corollary.

Corollary 5.1. By assuming that P (α), F (α), and G(α) in Theorem 5.1 are homogeneous-

polynomial matrices of degree g = 1, as well as the state-feedback first-stage gain matrix

K(α), then a sufficient condition for (5.21) to hold is that there exist symmetric matrices
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Pi > 0, and matrices Fi, Gi, H, and J such that










(FiĀi + FiB̄iKi) + (•)′ + 2γ2Pi ∗ ∗
Pi−F ′

i + GiĀi + GiB̄iKi −Gi−G′
i ∗

B̄′
iF

′
i + JiC̄i−HKi B̄′

iG
′
i −H−H ′











< 0 (5.27)

holds for i = 1,2, ...,N ,








Ξ
ij
11 ∗ ∗

Ξ
ij
21 −2(Gi + G′

i)− (Gj + G′
j) ∗

Ξ
ij
31 B̄′

i(G
′
i + G′

j)+ B̄′
jG

′
i −3(H + H ′)









< 0, (5.28)

with

Ξ ij
11 =

[

Ā′
i(F

′
i + F ′

j) + Ā′
jF

′
i + K ′

i(B̄
′
iF

′
j + B̄′

jF
′
i )+K ′

jB̄
′
iF

′
i

]

+ (•)′ + 2γ2(2Pi + Pj), (5.29)

Ξ ij
21 = 2Pi + Pj− (2F ′

i + F ′
j) + Gi(Āi + Āj)+GjĀi + Gi(B̄iKj + B̄jKi) + GjB̄iKi, (5.30)

and

Ξ ij
31 = B̄′

i(F
′
i + F ′

j) + B̄′
jF

′
i + J(2C̄i + C̄j)−H(2Ki + Kj), (5.31)

holds for i, j = 1,2, ...,N and i 6= j, and








Ξ
ijk
11 ∗ ∗

Ξ
ijk
21 Ξ

ijk
22 ∗

Ξ
ijk
31 Ξ

ijk
23 −6(H + H ′)









< 0, (5.32)

with

Ξ ijk
11 =

[

(Ā′
i + Ā′

j)F
′
k + (Ā′

i + Ā′
k)F ′

j + (Ā′
j + Ā′

k)F ′
i +

+(K ′
iB̄

′
j + K ′

jB̄
′
i)F

′
k + (K ′

iB̄
′
k + K ′

kB̄′
i)F

′
j+

+(K ′
jB̄

′
k + K ′

kB̄′
j)F

′
i

]

+ (•)′ + 4γ2(Pi + Pj + Pk),

Ξ ijk
21 = 2(Pi + Pj + Pk)−2(Fi + Fj + Fk)′

+ (Gi + Gj)Āk + (Gi + Gk)Āj + (Gj + Gk)Āi+

+ Gi(B̄jKk + B̄kKj) + Gj(B̄iKk + B̄kKi) + Gk(B̄iKj + B̄jKi),

Ξ ijk
31 = (B̄′

i + B̄′
j)F

′
k + (B̄′

i + B̄′
k)F ′

j + (B̄′
j + B̄′

k)F ′
i +

+ 2J(C̄i + C̄j + C̄k)−2H(Ki + Kj + Kk),

Ξ
ijk
22 =−2(Gi + G′

i + Gj + G′
j + Gk + G′

k),

Ξ
ijk
23 = (B̄′

i + B̄′
j)G

′
k + (B̄′

i + B̄′
k)G′

j + (B̄′
j + B̄′

k)G′
i,

holds for i = 1,2, ...,N −2, j = i+ 1, ...,N −2, and k = j + 1, ...,N .
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Proof: Note that by multiplying (5.27) by α3
i and summing for i = 1, ...,N , by multiply-

ing (5.28) by α2
i αj , and summing for i, j = 1,2, ...,N , i 6= j, and by multiplying (5.32) by

αiαjαk, and summing for i = 1,2, ...,N−1, j = i+1, ...,N−2, and k = j +1, ...,N , bearing

in mind that α ∈ ∧N , we directly obtain the parameter-dependent form (5.21).

It is important to observe that both Theorem 5.1 and, consequently, Corollary 5.1

encompass the conditions proposed in Sereni et al. (2018), showing that this previous

work is a particular case of the LMI formulation proposed in the present work. Observe

that by considering a robust first-stage gain matrix (i.e., K(α) = K), the LMI conditions

in Corollary 5.1 are reduced to Theorem 2 in Sereni et al. (2018), as they will no longer

have a cross-product between three parameter-dependent matrices, and thus only sums

in i and j will be needed. This result is stated in Corollary 5.2.

Corollary 5.2. By assuming that, in Theorem 5.1, P (α), F (α), and G(α) are homoge-

neous polynomials of degree g = 1, and that the state-feedback first-stage gain matrix is

such that K(α) = K, then a sufficient condition for (5.21) hold is that there exist sym-

metric matrices Pi > 0, and matrices Fi, Gi, H, and J such that








(FiĀi + FiB̄iK)+ (•)′ + 2γ2Pi ∗ ∗
Pi−F ′

i + GiĀi + GiB̄iK −Gi−G′
i ∗

B̄′
iF

′
i + JiC̄i−HK B̄′

iG
′
i −H−H ′









< 0 (5.33)

holds for i = 1,2, ...,N ,









Ξ
ij
11 ∗ ∗

Ξ
ij
21 −(Gi + G′

i)− (Gj + G′
j) ∗

Ξ
ij
31 B̄′

iG
′
j + B̄′

jG
′
i −2(H + H ′)









< 0, (5.34)

with

Ξ ij
11 =

[

Ā′
iF

′
j + Ā′

jF
′
i + K ′(B̄′

iF
′
j + B̄′

jF
′
i )

]

+ (•)′ + 2γ2(Pi + Pj), (5.35)

Ξ ij
21 = Pi + Pj− (F ′

i + F ′
j) + GiĀj + GjĀi + +GiB̄jK + GjB̄iK, (5.36)

and

Ξ ij
31 = B̄′

iF
′
j + B̄′

jF
′
i + J(C̄i + C̄j)−H(Ki + Kj), (5.37)

holds for i = 1,2, ...,N −1 and j = i+ 1, i+ 2, ...,N.

Proof: Note that by multiplying (5.33) by α2
i and summing for i = 1, ...,N , and by

multiplying (5.34) by αiαj , and summing for i = 1,2, ...,N − 1 and j = i + 1, i + 2, ...,N ,

bearing in mind that α ∈ ∧N , we directly obtain the parameter-dependent form (5.21),

with K(α) = K.
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As mentioned before, one can find a finite set of LMI conditions that ensure (5.21) by

assuming that the decision variables are homogeneous-polynomial parameter-dependent

matrices. Corollary 5.1 presents the sufficient conditions for (5.21) to hold for the case

of g = 1. Progressively less conservative conditions might be obtained with higher order

polynomials in α. However, deriving such finite set of LMI could be a laborious task, as

can be seen from the complexity associated to the case of g = 1. Fortunately, one can

employ computational packages available in the literature to computationally generate

the finite set of LMI, as for instance the specialized parser ROLMIP (AGULHARI et al.,

2019), which is adopted in the present work.

A final remark needs to be made on how to define the degree of the polynomial

variables in the first-stage design conditions (5.20). Note that the two-stage method

consists of sufficient conditions, since the first-stage design is performed independently

from the second stage, as long as the obtained feedback matrix K(α) is a stabilizing

one. Therefore, the designer can impose different restrictions in the first stage, either

on the decay rate or on the degree of the polynomial variables. This means it is not

mandatory to impose γ1 = γ2 in the design procedure (as already discussed in the previous

chapters), nor to specify the same degree on the decision variables Z(α), P (α), F (α), or

G(α). Nevertheless, feasibility in the second stage is directly affected by these choices, as

illustrated by the examples in the next section.

5.3 ILLUSTRATIVE EXAMPLES

In this section, two examples are presented in order to illustrate the application and

benefits of the proposed approach for addressing the problem of robust stabilization of

uncertain LTI systems subject to non-negligible sensor and actuator dynamics, and time

delay, by means of the definition of an augmented system and the employment of a

two-stage-based SOF control design. Also, we intend to show that the generalization

of previous results proposed in this work is indeed relevant for addressing complex SOF

designs as the one exploited herein. The LMIs associated to the investigated problems

are coded in the MATLAB software, with YALMIP interface (LOFBERG, 2004), and the

SDPT3 solver (TOH; TODD; TÜTÜNCÜ, 1999).

Example 5.1 In this first example, we demonstrate the benefits of our proposed method.

For that, we consider the control design of the lateral axis dynamics for an L-1011 aircraft.
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The system state-space model is adapted from Nguyen, Chevrel and Claveau (2018) as

ẋ(t) =

















−2.980 θ 0 −0.034

−θ −0.210 0.035 −0.001

0 0 0 1

0.390 −1.350−3θ 0 −1.890

















x(t) +

















−0.032

0

0

−θ

















u(t), (5.38)

where the four state variables x(t) = (x1(t),x2(t),x3(t),x4(t)) are the yaw rate, the sideslip

angle, the bank angle and the roll rate, respectively. The control input u(t) is the aileron

deflection. Note that both system and input matrices are affected by an uncertain pa-

rameter θ, such that

−1.0≤ θ ≤−0.5

which represents the airspeed.

We assume that only the state variables x3(t) and x4(t) are measured on-line by means

of two sensors with dynamics described as in (5.4), with

Av = diag(−1,−1) and C =





0 0 1 0

0 0 0 1



 .

The control input u(t) is applied through an actuator with dynamics as in (5.5), with

Az =−1 and D = 1.

The sensors and actuator information channels are subject to time delay in such

way that the measured state information, v(t), and actuator command, u(t), experience

a time delay τ = τs = τa = 350 ms (a realistic value considering Avionics Full Duplex

Switched Ethernet (AFDX) aviation data buses (FENG, 2016)) before being delivered to

the controller and to the system actuator, respectively.

To apply the proposed method, we start by modeling the time delay effect using

a Padé approximation of order 2. Therefore, regarding (5.12) with ks = ka = 2 and

τ = τs = τa = 350, we have that the state-space matrices of (5.7) for the delayed sensors

and actuator are

• Sensor Channel 1

Asd1
=





0 1

−59.2593 −13.3333



 , Bsd1
=





0

1



 , Csd1
=

[

0 −26.6667
]

, Dsd1
= 1.

(5.39)

• Sensor Channel 2

Asd2
= Asd1

, Bsd2
= Bsd1

,Csd2
= Csd1

and Dsd2
= Dsd1

. (5.40)
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• Actuator Channel 1

Aad1
=





0 1

−59.2593 −13.3333



 , Bad1
=





0

1



 , Cad1
=

[

0 −26.6667
]

, Dad1
= 1.

(5.41)

Firstly, by considering that θ may only assume values within the given interval, we can

represent the uncertain system (5.38) in terms of the convex combination of two vertices

• Vertex 1

A1 =















−2.980 −1 0 −0.034

1 −0.210 0.035 −0.001

0 0 0 1

0.390 1.650 0 −1.890















,B1 =















−0.032

0

0

1.000















• Vertex 2

A2 =















−2.980 −0.500 0 −0.034

0.500 −0.210 0.035 −0.001

0 0 0 1

0.390 0.150 0 −1.890















,B1 =















−0.032

0

0

0.500















defined according to the minimum and maximum values of θ, following the polytopic

definition (5.2).

Given the two vertices (A1,B1), (A2,B2), as well as the sensor and actuator matrices,

and the Padé delay model, a thirteenth-order augmented system is obtained as in (5.19).

We now proceed to the design phase were we aim at computing an SOF gain L such

that the augmented system Ā+ B̄LC̄ is asymptotic stable, relaying only on the available

sensors output signal. For that, we apply the extended two-stage HPLF-based LMI strat-

egy to search for the desired stabilizing gain L with minimum decay rate specification.

To this end, we first design a stabilizing state-feedback controller by solving the LMI

problem under the conditions given in (5.20). For this design, we consider a polynomial

parameter-dependent variable Z(α) with degree1 g = 2, and also impose a minimum first-

stage decay rate specification γ1 = 0.02. The obtained state-feedback controller is

K(α) = α2
1K1 + α1α2K2 + α2

2K3 (5.42)

1For a more detailed review on the use of ROLMIP for computationally defining polynomial variables
and parameter-dependent LMIs, we refer the reader to the work of Agulhari et al. (2019).
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with

K1 =
[

−0.9624 −0.8310 −3.6782 −4.4970 0.5890 0.6020

0.1047 −0.0117 −0.0141 0.0199 −0.4611 −144.5650 14.4716
]

,

K2 =
[

−0.8498 −1.3383 −6.8547 −7.4811 1.2836 0.8902

0.2097 −0.0216 −0.0279 0.0378 −0.6510 −279.7175 29.5492
]

,

K3 =
[

0.0614 −0.76541 −3.4788 −2.8447 0.7254 0.2582

0.1071 −0.0111 −0.0135 0.0189 −0.5118 −142.6304 14.3959
]

.

In the sequence, we use K(α) (in terms of the vertex matrices K1, K2, and K3)

in the second-stage LMIs of Theorem 5.1, which are based on homogeneous-polynomial

functions. We set the polynomial Lyapunov function P (α) and auxiliary polynomial

variables F (α) and G(α) to be of degree g = 2. In addition, by enforcing a minimum

second-stage decay rate γ2 = 0.2, we find

L =
[

−0.5219 −0.3148
]

. (5.43)

We begin analyzing this result by emphasizing the simplicity of the obtained SOF

gain. Since our method considers only the available measured system information (which,

in this case, consists of the two sensors outputs), the designed feedback gain (5.43) is

a vector with two gains. In a hypothetical full-state feedback implementation, the gain

matrix would be a vector with thirteen gains, as obtained in the first-stage design (5.42),

in order to encompass plant, sensors and actuators states, if they were possible to be

measured.

In Figure 5.2, we present the closed-loop time-response of each of the four states of

system (5.38), with its dynamic sensors and actuators as given in (5.39)-(5.41), considering

an initial condition x(0) =
[

0 1 0 0
]

, which represents the aircraft state after a gust

perturbation (ANDRY; CHUNG; SHAPIRO, 1984). We can see that the SOF controller

(5.43) (solid lines) enforced a stable behavior, even with sensor and actuator delayed

communication channels in τ = 350 ms.

Additionally, to illustrate the impact of neglecting the delay in the control design,

we also plotted (dashed lines) the transient response of the closed-loop system with an

SOF gain designed for an augmented system that only considers the sensors and actuator

additional dynamics, as considered in the preliminary work of the results proposed in the
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Figure 5.2 - L-1011 lateral axis closed-loop dynamics with SOF design neglecting
(SERENI et al., 2020) and considering transport delay (SOF controller
(5.43)).
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Source: Author’s own results.

present thesis (SERENI et al., 2020). Comparing both responses in this example, we can

clearly see a degradation in the system performance, observed in terms of smaller damping

during system transient, especially with x3(t) and x4(t) state variables (the ones used in

the feedback loop).

For completing the analysis of our proposed method, we illustrate the impact of the

minimum decay rate γ in the control design. For that, we present a comparison of the

control design (5.43) – which considered a minimum decay rate constraint γ2 = 0.2 –

with another design, carried out without imposing restrictions on the decay rate of the

closed-loop system (i.e. γ2 = 0).

By employing the same procedure adopted in the synthesis of the SOF gain matrix

(5.43), but now considering γ1 = γ2 = 0 we obtain

L =
[

−0.2332 −0.0502
]

. (5.44)

A comparison of the closed-loop responses obtained with the SOF gains (5.43) and

(5.44) is presented in Figure 5.3 in terms of the state variables x3(t) and x4(t). One

can clearly see that without imposing a minimum decay rate constraint, the closed-loop

system exhibits a worse performance in terms of a longer settling-time.

Remark 5.5. The decay rate bound γ1 considered in the first part of this example, imposed

in the first-stage design (and the resulting gain K(α)) directly impacts the feasibility in
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Figure 5.3 - L-1011 lateral axis closed-loop dynamics with SOF design with minimum
decay rate γ = 0.2 and without minimum decay rate enforcement (γ = 0).
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Source: Author’s own results.

the second-stage phase. For this particular example, by setting γ1 = 0.02 we obtained

feasibility in the second-stage with γ2 = 0.2. If desired, a search on γ1 can be employed for

obtaining an “optimal” maximum value for the second-stage decay rate bound γ2, since

with higher bounds we enforce faster transient responses (BOYD et al., 1994).

Remark 5.6. A final yet important remark regarding Example 5.1 is that by considering a

design approach via Corollary 5.1 or 5.2 we obtain some interesting results. If we consider

a parameter-dependent first-stage design, by setting Z(α) with degree g = 1 and use the

obtained matrix gains in Corollary 5.1 we do not find a feasible solution for the same

decay rate design parameters. Corollary 5.2 also fails in obtaining feasibility in the second-

stage design. These results illustrate the benefits of considering a higher-degree Polya’s

relaxation associated to the HPLF approach, when compared to the polytopic method in

Sereni et al. (2018), which will be more properly discussed in Example 5.3.

Example 5.2 In this second example, we give more emphasis to the importance of

considering the delay effect in the control design. To that end, we show that methods

known for its robustness characteristics, such as conventional sliding mode control (SMC)

techniques, suffers destabilization in the presence of time delay.

Consider an uncertain linear system such as (5.1), described in terms of the following

vertex matrices:

• Vertex 1
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A1 =









−0.277 −32.980 −5.432

0.365 −0.319 −9.490

0 0 −5









,B1 =









0

0

−5









• Vertex 2

A2 =









−4.277 −50 −5.432

0.365 −1.318 −9.490

0 0 −5









,B2 = B1

We consider the design of an sliding-mode controller in terms of the control law

u(t) = Rx(t) + ρ
Nx(t)

||Mx(t)||+ δ
,

where R,M, and N are constant matrices, and ρ a constant scalar. Such parameters are

obtained through the employment of the classic SMC as described in Utkin (1978). For

the considered example, one might obtain:

ρ = 0.1, R =
[

−0.58 −7.96 17.09
]

,

N =
[

0.1 −1 0.1
]

, and

M =
[

−0.1 1 −0.1
]

.

The constant parameter δ is a small scalar included for avoiding the chattering phe-

nomenon, often present in sliding mode control structures (BAG; SPURGEON; ED-

WARDS, 2002). For this example, we set δ = 10−2.

In a simulation considering an arbitrary initial condition x0 =
[

0.15 0.15 0.15
]T

,

the SMC controller is able to stabilize the considered system in closed-loop, yielding the

transient response presented in Figure 5.4 (top).

However, when a time delay τa = 0.02 is inserted in the control signal channel, such

that ẋ = A(α)x(t)+Bu(t−τa), the same SMC controller is not able to maintain stability,

as the simulation results for the same initial conditions show in Figure 5.4 (bottom).

By employing our robust SOF method that encompasses the input signal delay in the

controller design, we obtain a stabilizing controller

L =
[

−0.0484 −1.4265 2.2506
]

,

with sensor and actuator models matrices2 Av = diag(−100,−100,−100), Az =−100, and

2Note that we considered actuators and sensors with fast dynamics. With that, only the delay effect
will have a significant impact in the controllers simulation responses, which is the objective in this
comparison example.
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Figure 5.4 - Simulation results obtained for Example 5.2 system considering a conven-
tional SMC controller (UTKIN, 1978).
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a 2nd order delay Padé approximation model. The first- and second-stage LMI variables

degrees are set as degP = degF = degG = 2, degZ = 0, and γ1 = γ2 = 0. As we can see

in Figure 5.5, in contrast to the SMC strategy, our method presents stability robustness

with respect to the presence of time delay in the control input channel, since closed-loop

transient when input delay is considered exhibits only small variations when compared to

delay-free transient.

Remark 5.7. It is very important to stress that the SMC technique addressed in Utkin

(1978), which is considered in this example, was designed and analyzed for ensuring ro-

bustness to uncertainties and unmatched non linearities. Therefore, such method is not

suited for coping delay effects. The purpose of this example is to show that even techniques

well-known for presenting robustness to several practical control issues are susceptible to

present undesired dynamic characteristics in the presence of time-delay effects.

Example 5.3 This third example is aimed at illustrating the benefits of considering an

HPLF-based two-stage robust SOF design strategy with minimum decay rate constraints

for uncertain LTI systems with sensor and actuator time-delayed dynamics.

For that purpose, a set of feasibility tests is performed, which consisted in attempting

to find a feasible solution for the control design of the L-1011 lateral axis dynamics

(presented in Example 5.1) using a polytopic parameter-dependent strategy (SERENI



5.3 Illustrative Examples 132

Figure 5.5 - Simulation results obtained for Example 2 system considering a robust SOF
controller using our proposed two-stage design via Theorem 5.1.
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et al., 2018, 2020) (Corollary 5.2) and the HPLF generalization proposed in this work

(Theorem 5.1).

Note that for different ranges for the uncertain parameter θ and different values for the

time delay τ we have a different control design problem. We consider that the uncertain

parameter θ lies in the range specified by−1.0−δ≤ θ≤−0.5+δ, with 1.0≤ δ≤ 2.5. At the

same time, we consider a range of test values for the time-delay defined by 0.05≤ τ ≤ 0.5.

Therefore, for each pair (δ,τ) in the specified ranges, we have a different problem in terms

of uncertain parameter and time delay. Moreover, observe that for higher values of δ, we

are assuming that the uncertain parameter belongs to a wider uncertainty range.

In a first study, we assume that no minimum decay rate is enforced in the control

designs of both stages (i.e. γ1 = γ2 = 0). Then, for each pair (δ,τ) we seek to find a

first-stage state-feedback gain3 using (5.20), and then we feed the obtained controller

information to the LMI problems stated in Corollary 5.2 and Theorem 5.1.

In Figure 5.6 we present for which pairs (δ,τ) each strategy succeeded in finding a

stabilizing robust SOF gain L. As we can clearly see, the HPLF strategy considered in

3Since the second-stage design is sensitive to the state-feedback gain designed in the first stage, we
perform both tests assuming that the first stage is executed considering the degree of Z(α) to be equal
to 0 (degZ = 0), enabling the use of the same gain K(α) = K in both second-stage synthesis conditions
of Theorem 5.1 and Corollary 5.2 (SERENI et al., 2018).
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Figure 5.6 - Feasibility region obtained for the L-1011 lateral axis SOF stabilization
problem without imposing a minimum decay rate when applying the poly-
topic PDLF SOF design strategy (SERENI et al., 2018) (© - Corollary
5.2); and when using the HPLF extension proposed in Theorem 5.1 (© and
�).
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Source: Author’s own results.

this work (Theorem 5.1) outperforms the polytopic PDLF approach used in Sereni et

al. (2020), and proposed in Sereni et al. (2018) (Corollary 2), as Theorem 5.1 is able to

provide a feasible solution for a larger number of problems. For this test, the variables

(P,F,G)(α) in Theorem 5.1 where assumed to be polynomials with degree g = 2. In

practical terms, the result presented in Figure 5.6 shows that Theorem 5.1 guarantees

the robust SOF stabilization of the L-1011 lateral axis dynamics for a wider range of

uncertainty on the airspeed parameter θ, by allowing the decision variables to be defined

as homogeneous polynomials with degree higher than g = 1, in contrast as considered in

Sereni et al. (2018).

In a second feasibility test, we now consider that a minimum decay rate is imposed

in both stages of design. Repeating the same procedure as in the first test, the feasibility

region in Figure 5.7 is obtained. Once again, we see that the HPLF strategy outperformed

the polytopic PDLF approach used in Sereni et al. (2020). However, a comparison with

the results in Figure 5.6 reveals that the additional constraint of a minimum decay rates

increases the difficulty of providing a stabilizing SOF gain. Indeed, the feasibility region

in Figure 5.7 covers a smaller range of model uncertainty, which is defined by the value

of δ.

For completing the analysis of the results proposed in our work, we present a study

of the influence that the degree of the polynomial matrix K(α), chosen in the first-stage

design, exerts over the feasibility in the second stage.
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Figure 5.7 - Feasibility region obtained for the L-1011 lateral axis SOF stabilization
problem imposing a minimum decay rate (γ1 = γ2 = 0.025) when apply-
ing the polytopic PDLF SOF design strategy (SERENI et al., 2020) (©);
and when using the HPLF extension proposed in Theorem 5.1 (© and �).
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New feasibility tests – on the same basis of the two previous ones – where conducted,

by combining different choices for the polynomial degrees of the decision variables in both

first and second stages. In the first stage, three values were tested for the degree degZ

of the polynomial variable Z(α), namely degZ = 0, degZ = 1, and degZ = 2. It is worth

recalling that degZ also corresponds to the degree of K(α), as K(α) = W −1Z(α). In the

second stage, the polynomial variables P (α), F (α), and G(α) were also chosen to be of

the same degree degP FG (i.e. degP = degF = degG = degP FG), which was set to either

0, 1, or 2. For each pair (degZ,degP FG) ∈ {0,1,2}×{0,1,2}, the feasibility of the LMI

(5.1) in Theorem (5.21) was assessed. The results are presented in Figure 5.8.

As expected in light of the previous results, by allowing the decision variables to

be homogeneous-polynomially dependent on the uncertain parameter we obtain a wider

feasibility region, which increases with higher polynomial degrees.

However, the inverse result is observed regarding the polynomial degree established

for the first-stage gain K(α). As seen from both scenarios (with and without minimal

decay rate specification), the best feasibility results in the second-stage design are obtained

when the first-stage gain is set to be independent from the uncertain parameter. Moreover,

the higher degree set for the polynomial gain matrix K(α), the smaller is the resulting

feasibility region in the second stage.
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Figure 5.8 - Feasibility regions obtained for the L-1011 lateral axis SOF stabilization
problem for different choices of the polynomial degree of the decision vari-
ables associated to the first- and second-stage designs with (bottom charts)
and without (top charts) minimum decay rate constraints.
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5.4 EXTENSION TOH2 CONTROL

Now consider the state-space realization

ẋ(t) = A(α)x(t) + B(α)z(t) + Bd(α)d(t)

ζ(t) = Cz(α)x(t) + Dz(α)z(t)
(5.45)

where ζ(t) ∈Rqz and d(t) ∈Rmd are the controlled output and disturbance input vectors,

respectively. Additionally, Bd(α) ∈ R
n×md is the disturbance input matrix to the system

dynamics, Cz(α) ∈ R
qz×n is the controlled output matrix, and Dz(α) ∈ R

qz×m is the

control input direct transmission matrix.

Assuming that sensor and actuator dynamics are modeled as described in Section II,
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an augmented system can be derived such as

ẇ(t) = Ā(α)w(t) + B̄(α)z(t) + B̄d(α)d(t)

ζ(t) = C̄z(α)w(t) + D̄z(α)z(t)

y(t) = C̄(α)w(k),

(5.46)

where w(t) is defined as in (5.18) and Ā(α), B̄(α), and C̄(α) are given as in (5.19), while

B̄d(α) =











Bd(α)

0q(1+ks)×md

0m(1+ka)×md











, D̄z(α) = Dz(α)

and

C̄z(α) =
[

Cz(α) 0qz×q(1+ks) 0qz×m(1+ka)

]

.

In such fashion, the augmented system (5.46) models the effect of an exogenous input

signal d(t) over the system dynamics. Moreover, it indicates the vector ζ(t), which consists

of a linear combination of the original system state vector x(t), defined according to the

shape of the matrix Cz(α).

The H2 problem here considered consists in finding a robust controller L such that

the augmented system (5.46) is asymptotically stable and also that the closed-loop H2

guaranteed cost is bounded by µ. The system decay rate is also imposed to have a

lower bound γ. Such performance criteria are desired to be meet assuming a control law

u(t) = Ly(t).

For achieving such control objective, we consider the H2 conditions presented in

Subsection 2.1.4 and that the closed-loop system (2.12) is such that , with

A(α) = Ā(α) + B̄(α)LC̄(α), B(α) = B̄d(α), (5.47)

C(α) = C̄z(α)+ D̄z(α)LC̄(α) and, D(α) = 0. (5.48)

Now, based on the considered two-stage procedure, we propose new sufficient LMI

conditions for computing the robust H2 controller L based on the state-feedback controller

K(α) obtained in the previous stage, as enunciated in Theorem 5.2.

Theorem 5.2. Assuming that there exists a state-feedback gain K(α) such that Ā(α)+

B̄(α)K(α) is asymptotically stable, then there exists a stabilizing static output-feedback

gain L such that Ā(α) + B̄(α)LC̄(α) is asymptotically stable, considering a decay rate

greater than or equal to γ > 0, if there exist parameter-dependent symmetric matrices

P (α) > 0 and Y (α) > 0, parameter-dependent matrices F (α), G(α), and matrices H and
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J such that are a solution to the following optimization problem:

min ν

subject to

trace(Y (α))≤ ν, (5.49)




Y (α) B̄d(α)′P (α)

P (α)B̄d(α) P (α)



 > 0, (5.50)

and

















(F (α)Ā(α) + F (α)B̄(α)K(α)) + (•)′ + 2γP (α)

P (α)−F (α)′ + G(α)Ā(α) + G(α)B̄(α)K(α)

C̄z(α)+ D̄z(α)K(α)

B̄(α)′F (α)′ + JC̄(α)−HK(α)

∗ ∗ ∗
−G(α)−G(α)′ ∗ ∗

0 −I ∗
B̄(α)′G(α)′ D̄z(α) −H−H ′

















< 0 (5.51)

Then, at the optimal solution, system (5.46) in closed-loop with u(t) = Ly(t), where L =

H−1J , has a lower bound γ > 0 on the system decay rate and the closed-loop system H2

norm is bounded by µ such that µ =
√

ν ≥ ||H(s)||2.

Proof: Assuming that (5.51) holds, we have that H is invertible. Now, by pre- and

post-multiplying (5.51) by U(α) and U(α)′, where

U(α) =











I 0 0 S(α)′

0 I 0 0

0 0 I 0











, (5.52)

where S(α) = H−1JC̄(α)−K(α), we have after some algebraic manipulation:










(

F (α)(Ā(α) + B̄(α)H−1JC̄(α))
)

+ (•)′ + 2γP (α) ∗ ∗
P (α)−F (α)′ + G(α)

(

Ā(α) + B̄(α)H−1JC̄(α)
)

−G(α)−G(α)′ ∗
C̄z(α)+ D̄z(α)H−1JC̄(α) 0 −I











< 0. (5.53)

Defining L = H−1J comes










(

F (α)(Ā(α) + B̄(α)LC̄(α))
)

+ (•)′ + 2γP (α) ∗ ∗
P (α)−F (α)′ + G(α)

(

Ā(α) + B̄(α)LC̄(α)
)

−G(α)−G(α)′ ∗
C̄z(α) + D̄z(α)LC̄(α) 0 −I











< 0. (5.54)
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Following the definition given in (5.47) and (5.48), we have








F (α)A(α)+ (•)′ + 2γP (α) ∗ ∗
P (α)−F (α)′ + G(α)A(α) −G(α)−G(α)′ ∗

C(α) 0 −I









< 0. (5.55)

At this point, one should observe that the upper-left 2×2 block matrix in (5.55) rep-

resents the robust stability condition for ẇ(t) =Aw(t), as seen in Lemma 2.5. Therefore,

(5.55) is equivalently represented by




A(α)′P (α)+ P (α)A(α)+ 2γP (α) C(α)′

C(α) −I



 < 0. (5.56)

Note that by applying the Schur complement on (5.56), we have

A(α)′P (α)+ P (α)A(α)+ 2γP (α)+C(α)′C(α) < 0

⇒A(α)′P (α)+ P (α)A(α)+C(α)′C(α) <−2γP (α) < 0,

as P (α) > 0 and γ > 0.

Finally, also by means of the Schur complement, we have that (5.50) is equivalent

to Y (α)−B(α)′P (α)B(α) > 0. Therefore, according to Lemma 2.3, with ν = µ2 we have

µ =
√

ν > ||H(α,s)||2, and by minimizing ν and consequently the trace of Y (α), we min-

imize the system’s H2 guaranteed cost. The proof is then finished.

It is important to stress that in the two-stage approach the first-stage gain matrix

K(α) can be designed using any stabilizing state-feedback control synthesis. In this work,

we consider the use of the conditions presented in (5.20). Investigating the efficiency of

the proposed robust SOF H2 controller synthesis with different first-stage control design

techniques are beyond the scope of this work.

Finally, as in Theorem 5.1, the LMI conditions in Theorem 5.2 are of infinite di-

mension. Therefore, the same procedure of defining a finite set of LMI by considering a

homogeneous-polynomial structure for the decision variables using the specialized parser

ROLMIP (AGULHARI et al., 2019) is adopted for employing Theorem 5.2.

Remark 5.8. Despite of the fact that our mathematical development unravels based on

the augmented system (5.46), which serves for modeling the sensor/actuator dynamics

and delay effect, the proposed conditions in Theorem 5.2 are generic and can be applied

to any uncertain LTI system that could be modeled as in (5.46).

Example 5.4 Now we aim at illustrating the efficacy of the H2 control strategy pro-

posed in Theorem 5.2. To this, consider the uncertain continuous-time system borrowed
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from Dong and Yang (2007), defined in terms of polytope with vertex matrices:

• Vertex 1

A1 =





1 2

0 −4



 , B1 =





1

0



 , Bd1 =





2

1



 , C1 =
[

1 0
]

, Cz1 =
[

1 2
]

, Dd1 = 1.

• Vertex 2

A2 =





2 −1

0 −5



 , B2 =





1

1



 , Bd2 =





1

1



 , C2 =
[

2 1
]

, Cz2 =
[

1 1
]

, Dd2 = 2.

Adapting the example for employing our proposed method, we also consider sensor

and actuator with non-negligible dynamics, which are modeled as described in Subsection

5.2.1, with Av = −100, Az = −100. We also assume that the information in both state

and input channels are delayed in 30 ms, whose dynamic effects are modeled using a 2nd

order delay Padé approximation model.

Now, applying our two-stage procedure over the consequent augmented system, we

first design a stabilizing state-feedback gain K(α) using (5.20), with γ1 = 0 and degZ = 0

for obtaining:

K(α) =
[

−1.9710 −0.1149 0.9088 −0.0047

−4.7203×10−5 0.8105 −898.7575 −7.8539
]

.

Then, by solving the minimization problem stated in Theorem 5.2, with variables

degrees set as degP = degF = degG = degY = 1 and γ = 0, we obtain a stabilizing robust

SOF controller

L =−4.3039,

which ensures a H2 guaranteed cost µ = 6.9858. For comparison purposes, observe that

in Dong and Yang (2007), the proposed H2 control strategy achieved a more conservative

guaranteed cost µ = 8.0343, even without the additional complexity associated to our

approach, which considers delay and sensor/actuator non-negligible dynamics.
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6 CONCLUSION

This thesis compiles new contributions to control theory field related to the design

of SOF controllers. In the presented chapters, different control problems related to SOF

design were addressed, and new alternatives for controller synthesis were proposed and

its features were demonstrated and illustrated in numerical and practical examples.

Among the proposed results, a new robust D-stabilising SOF control design LMI-

based method was proposed. Differently from other results available in the literature,

that also addressed the robust pole placement in a circular D-region for uncertain LTI

systems, the LMI conditions proposed in Theorem 3.2 offers a solution for incomplete

state measurement by means of a static output feedback controller design. Moreover, we

demonstrated that when considering D-stability constraints, the two-stage method might

yield better feasibility performance when closed-loop pole placement is enforced in both

stages of design. In that scope, the robust SOF D-stabilization Strategy 3 regarding new

LMI synthesis conditions for first (Theorem 3.4) and second (Theorem 3.5) stages showed

to be capable of outperform simpler strategies.

Such enhanced performance stems from the less conservative nature of the second-

stage LMI proposed in Theorem 3.5, which makes use of a parameter-dependent state-

feedback gain matrix design in the first stage, using Theorem 3.4. One of the advantages

of the results proposed in this work is that with less conservative conditions the designer

might specify a smaller allocation region, enabling a more precise shaping of the dynamic

behavior in closed-loop.

The presented examples in Chapter 3 support this conclusion, and also illustrates that

by means of the proposed strategy it is possible to establish good compromise between

performance and control signal magnitude. The practical applicability of our method

was also attested by the results of a practical control implementation on a real active

suspension system.

Also in Chapter 3, a new gain-scheduled controller synthesis strategy was proposed for

LPV systems under incomplete state measurement and closed-loop pole placement con-

straints. As seen from the design examples and simulation results, the proposed strategy

is capable of improving the transient performance an LPV system without compromising

its stability, even in the absence of some state information, by means of the enforcement
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of the eigenvalue placement of the closed-loop LPV system in a specific circular region of

the complex plane, for a fixed value of the time-varying parameters.

In addition, we showed that our gain-scheduling approach is indeed suitable for deal-

ing with LPV systems, while other strategies, such as robust control for uncertain systems,

failed to yield a feasible controller for the time-varying parameters intervals considered

in the presented example. Different from other gain-scheduling techniques, our strategy

does not rely on online, nor offline information about the derivatives of the time-varying

parameters that affects the system dynamics. This feature yields a simpler yet efficient

mathematical approach, as it does not involve the inversion of literal matrices. In these

terms, the proposed method shows to have a promising development perspective in ana-

lyzing the benefits of imposing pole placement constraints in LPV controller designs.

On the discrete-time case, we proposed a new LMI-based control design strategy for

LPV systems via gain-scheduled static output-feedback. Using a two-stage procedure, our

method demonstrated to be capable of improving the system performance in terms of a

shorter transient time, by means of the inclusion of a minimum decay rate bound in the

controller synthesis, as illustrated in Example 4.1.

Also, the proposed strategy presented to yield less conservative results in the GS–SOF

stabilization problem with additional bound on the closed-loop decay rate when compared

to another method available in the literature, as seen from the results in Example 4.2.

Moreover, the presented examples attest the versatility and potentiality of our contribu-

tion, since it was able to address a general case, where all state-space matrices are affected

by time-varying parameters, without imposing any particular structure, as seen in other

SOF control strategies in literature.

We also showed that the extension of the proposed method for addressing more com-

plex problems, as the H∞ control problem in LPV scenario by means of affine PDLFs,

could outperform other available techniques, according to the results presented in Example

4.3. Additionally, we observed that allowing for the arbitrary variation of the scheduling

parameters in the controller design might not represent a major issue. In fact, for some

particular cases, while other available strategies managed to yield a lower bound on the

H∞ guaranteed cost when slow variation deviation bounds are assumed, the opposite is

observed for higher deviation bounds, as also discussed in Example 4.3. Therefore, the

employment of a more straight-forward approach that only requires the range on which

the scheduling parameters can vary might be interesting for problems where the infor-

mation about the deviation bounds is not previously available, inclusive in real control

problems, as addressed in the inverted pendulum stabilization, showed in Example 4.4.

At last, while exploring additional practical issues in real control problems, we were

able to propose the employment of an strategy that is able to address additional sensors
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and actuator non-negligible dynamics subject to time delay by means of an SOF control

design applied to an augmented system representation. The simulation results show the

importance of considering such practical issues in the control design, attesting to the

relevance of the synthesis method presented in this work. In practical terms, the results

attest for the potential of the proposed approach to be applied in the control design for

others attitude angles in aircraft.

By confronting the results observed in Examples 5.1 and 5.3, we see that a minimum

decay rate specification is of value to improve the closed-loop dynamics. However, enforc-

ing this specification may be a challenging issue, as the feasibility of the LMIs involved

in the synthesis of the robust controller may be compromised. This fact indicates the

importance of being able to employ less conservative synthesis condition, in order to ob-

tain a better transient response in closed-loop, justifying the employment of the HPLF

approach proposed in Theorem 5.1.

Furthermore, our proposed augmented system designed in terms of the Padé approx-

imation shows to be able to outperform other classic robust control strategies, such as

the sliding-mode control (SMC), as presented in Example 5.2. Disturbance rejection is

also possible to be coped with by employing our extended LMI synthesis conditions for

H2 guaranteed cost minimization. The proposed controller design showed to yield a less

conservative bound on the H2 norm, when compared to other available strategies, even

considering more complex control requirements (additional sensor/actuator dynamics and

time delay effect).

At last, it is important to highlight that the polytopic system modeling strategy

considered in our work not only enables the designer to consider uncertain sensor and

actuator parameters, and uncertain time delays, but also that these parameters can be

time-varying. Therefore, the proposed method can be directly applied to address linear

parameter-varying (LPV) systems through a gain-scheduling control design.

Future Perspectives

The SOF stabilization is an open problem in the literature. The two-stage design

strategy shows to be a very interesting way for dealing with such a challenging control

problem. Based on the obtained results, presented in this thesis, we can infer that much

work can still be done, and there is plenty room for exploring the potential of the proposed

theorems. In the sequence, some future research topics on the subject addressed in this

thesis are enlisted.

Two-Stage SOF Control Design:

• investigate the improvement of the two-stage method, by incorporating information

about the second-stage design on the first-stage LMIs;
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• extend the proposed LMI conditions to fuzzy Takagi-Sugeno models of nonlinear

systems;

• develop new experiments for comparing the proposed results with other similar

available in the literature.

Robust and GS–SOF D-stabilization:

• development of extensions for coping with disturbance rejection via H2 and/or H∞

norm minimization;

• investigation of more complex pole placement regions, as in Chilali and Gahinet

(1996), and less conservative pole placement LMI conditions;

• evaluate the use of parameter-dependent Lyapunov functions in the LPV case;

• develop a more profound investigation regarding the performance improvement

achieved through LMI pole placement constraints in LPV controller design;

Discrete-time GS–SOF stabilization:

• derive extensions to cope with mixed H2/H∞ problem;
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