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Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap
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The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive
interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical
solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson
method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency
along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a
function of the vortex quantum numbkr The critical number increases with increasing angular momehtum
of the vortex state but tends to saturate for lakge
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I. INTRODUCTION create a singly quantized vortex line along the axis of rota-
tion [11], spontaneous vortex formation in evaporative cool-
Recent experimentgl,2] on Bose-Einstein condensates ing [20], controlled excitation to an excited state of atoms
(BEC's) in dilute bosonic atoms employing magnetic traps af{21], and rotation of an axially symmetric trd@2]. More-
ultralow temperatures have intensified theoretical investigaever, quantized vortex states in BEC's have been observed
tions into various aspects of the condengate7]. The prop- experimentally in coupled BEC's comprised of two spin
erties of the condensate are usually described by the nonlirstates off’Rb in a spherical trap, where angular momentum
ear mean-field Gross-PitaevskiGP) equation[8], which s generated by a controlled excitation of the atoms between
properly incorporates the trap potential as well as the interthe two state§19]. Vortices have also been detected in a
action among the atoms. single-state BEC of’Rb in a cylindrical trap, where angular
Two interesting features of BEC’s afe) the collapse in  momentum is generated by a stirring laser bdad®gl. Dis-
the case of attractive atomic interactip®,7] and (b) the  covery of the possibility of continuously changing the inter-
possibility of formation of a vortex state in harmonic traps action between col8°Rb atoms by a magnetic-field-induced
with cylindrical [9-13] as well as sphericdtl4] symmetry.  Feshbach resonan¢23,24] suggests that one could experi-
For an attractive interatomic interactip®,7], the conden- mentally form vortex states in repulsive condensates and
sate is stable for a critical maximum number of atoms. Wherstudy their collapse after transforming them to attractive con-
the number of atoms increases beyond this critical value, dugdensates by such a resonance. Because of the intrinsic inter-
to interatomic attraction the radius of the BEC tends to zerast in BEC's of vortex states in axially symmetric traps, in
and the maximum density of the condensate tends to infinitythis work the formation of such a BEC is studied using the
Consequently, the condensate collapses, emitting atoms untiimerical solution of the time-dependent GP equation with
the number of atoms is reduced below the critical numbespecial attention to its collapse for attractive interatomic in-
and a stable configuration is reached. With a supply of atomteraction.
from an external source the condensate can grow again and In general, a vortex line in a nonrotating trapped BEC is
thus a series of collapses can take place; this has been obxpected to be nonstationary. However, it is possible to have
served experimentally in the BEC @Li with attractive in-  dynamically stable vortex BEC states in a nonrotating trap
teraction[2]. Theoretical analyses based on the GP equatiowith low quanta of rotational excitation or angular momen-
also confirm the collapsg/]. tum L per particle[9,15,16,22. Vortex BEC states for large
The study of superfluid properties of a BEC is of greatrepulsive condensates with high quanta of rotational excita-
interest to both theoretician®—-17] and experimentalists tion are expected to be unstable and decay to vortices with
[18,19. The quantized vortex state in a BEC is intimately low quanta[11,12,14,17T. In the absence of a vortex, the
connected to the existence of superfluidity. Such quantizedtable condensate in an axially symmetric trap has a cylin-
vortices are expected in superfluid He Il. However, due tadrical shape. Such a BEC has the largest density on the axis
the strong interaction between helium atoms there is no relief the trap. For a purely attractive interaction, with increase
able mean-field description. On the other hand, a weaklyf the number of atoms the central density of this condensate
interacting trapped BEC is well described by the mean-fieldncreases rapidly, leading to instability and collapge
GP equation, which is known to admit vortex solutions for a In the presence of vortex motion the region of largest
trap with cylindrical symmetry{9,16], and which can be density of the BEC with nonzerb is pushed away from the
studied numerically. This allows for a controlled theoreticalcentral axial region and the atoms have more space to stabi-
study of quantized vortices in BEC’s in contrast to superfluidlize. The vortex state of the condensate in a cylindrical trap
He Il has the shape of a hollow cylinder with zero density on the
Many different techniques for creating vortex states inaxis of symmetry. Because of the larger spatial extension of
BEC's have been suggestglP], e.g., stirring the BEC by an such a condensate, it can accommodate a larger critical num-
external laser at a rate exceeding a critical angular velocity tter of atoms before the density increases so high as to lead to
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collapsef9]. The higher the angular momenturin a BEC,  cylindrical coordinate system=(r,6,z) and in the case of
the larger is the critical number of atoms. However, the in-cylindrical symmetry the wave function is taken to be inde-
crease of this critical number with increasihgslows down  pendent ofé in the absence of vortex states of the conden-
asL increases. sate:

The present study is performed with direct numerical so-
lution of the time-dependent GP equation with an axially W(r,7)=y(r,z,7). (2.3
symmetric trap. In the time evolution of the GP equation the _ ) o _
radial and axial variables are dealt with in two independent The GP equation with a cylindrically symmetric trap can
steps. In each step the GP equation is solved by discretizatid¥Sily accommodate quantized vortex states with rotational
with the Crank-Nicholson rule complemented by the knownmotion of the condensate around theaxis without any
boundary condition$25]. We find that this time-dependent @dded complication. In such a vortex the atoms flow with
approach leads to good convergence. There are several otf@ngential velocity.72/(mr) such that each atom has quan-
iterative approaches to numerical solution of the time-tized angular momenturh along thez axis. This corre-
dependent and time-independent GP equations for axiall§jPonds to an angular dependence of
symmetric[4,9,10,26,27 as well as spherically symmetric :
[3] traps. Of the time-dependent methods, the approach of W(r,7)=y(r.z.7)expiL 6) 2.4
Refs. [10] uses alternate iterations in the radial and axial
d|rect|on_s as in this study, whereas REi6] does not give monics in two dimensions. Equati@f.3) is the zero angular
the details of the numerical method employed and R&f] momentum version of E¢2.4).
employs a completely different scheme, i.e., uses alternative Substituting Eq(2.4) into Eq. (2.1), one obtains the fol-

iterations for the real and imaginary parts of the GP equationlO ing GP tion i tial- f ith tized an-
However, Refs[9,10] do not provide enough details of the %ﬂé?gmomgg&if;ﬁ;nn%g ;\)l(?;/_e orm with quantized an

numerical scheme. Because of this a meaningful compariso
of the present method with those of R€8,10,26,27 is not 2019 9 &2 L2
possible. {__(__r_jL_z_T

In Sec. Il we describe the time-dependent form of the GP 2mir or or  oz" r

of the wave function, where exp() are the circular har-

+ Emwz(r2+ N\2Z?)

equation including the vortex states for attractive interaction. 9

In Sec. lll we describe in some detail the numerical method +gN|¢(r,z,r)|2—iha—} #(r,z,7)=0, (2.5
for solving the time-dependent GP equation. In Sec. IV we T

report the numerical results for the collapse of the BEC with;i, L=0,1,2 ... . Thenonzero values of correspond to

the vortex quantum for attractive interaction and finally, in

. _ ton vortex states. Th&?/r? term in Eq.(2.5) is the vortex con-
Sec. V, we give a summary of our investigation.

tribution to the Hamiltonian of the GP equation. This is also
the centrifugal barrier term in the partial-wave linear Sehro
Il. NONLINEAR GROSS-PITAEVSKII EQUATION dinger equation. The limitation to cylindrical symmetry re-
ﬂuces the GP equation in three space dimensions to a two-
imensional partial differential equation. We shall study this
quation numerically in this paper to understand the effect of
the L?/r? term on the collapse in the case of an attractive
atomic interaction.
It is convenient to use dimensionless variables defined by
x=v2r/l, y=v22/l, t= 1w, and

At zero temperature, the time-dependent Bose-Einstei
condensate wave functiod(r,7) at positionr and timer
may be described by the self-consistent mean-field nonline
GP equatior8]. In the presence of a magnetic trap of cylin-
drical symmetry this equation is written as

#? 9
— 5=V2+V(r)+gN|¥(r,7)|*=ih —|¥(r,7)=0.
2m o @(X,y,1)
2.1 p(xy )= ———=N"22)y(r.zn), (26

Herem is the mass of a single bosonic atothe number

of atoms in the condensaté(r) the attractive harmonic os- Wherel = y#/(mw). Although ¢(x,y,t) is the dimensionless
cillator trap potential with cylindrical symmetry, ang  wave function, for calculational purpose we shall be using
=4mh?a/m the strength of the interatomic interaction, with ¢(X,y,t) in the following. In terms of these variables Eq.
a the atomic scattering length. A positieecorresponds to a (2.5 becomes

repulsive interaction and a negatiaeto an attractive inter-

2 2 2
action. The normalization condition of the wave function is _ J n E i_ J n L + > x2+a2y2— 4
X2 X ax Wz x2 4 X2
f dr[w(r,7)2=1. (22 ey D2 3
+8V2mn|———— —i—r| ey, =0, 2.7

The trap potential with cylindrical symmetry may be writ-
ten asV(r)=2ime?(r>+1%z%) wherew is the angular fre- wheren=Na/l. The reduced number of particles is defined
quency of the potential in the radial directiorand\ is the  as|n|. The normalization conditio(®.2) of the wave function
ratio of the axial to radial frequencies. We are using thebecome
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% o - This is the equation for the free oscillator with cylindrical
277L dXJ_de|<P(X,Y-t)| x =1 (2.8)  symmetry in partial-wave form. The wave function for a gen-
eral state of this oscillator and the corresponding energy are

However, physically it would be more interesting to define9'Ve™ respectively, by28]

the reduced number of particles in terms of a geometrically

averaged frequenay,=\ 3w and a lengthy= \A/mwg, S0 go(x,y)=Nxe‘(x2+"y2)’4F‘L| ) x H, yN 3.2
that a new reduced numbk(\) is defined vig 26] "X\V2 N\ V2
N|a and
k(x)z#:m\l’? (2.9
° = (1+|L+ 0+ (ng+ DX, 3.3

We shall study this number in the present paper. )

For a stationary solution the time dependence of the Wavg'th L=0+1*2,..., n=024..., and n,
function is given bye(x,y,t)=exp(—iut)e(xy) wherep is  =0:1.2... . Here Hny is the usual Hermite polynomial,

the chemical potential of the condensate in unitd@f If we  F|_| ,, is another polynomial defined recursivésg,2d, and
use this form of the wave function in E(.7), we obtain the A/ is the normalization. The first few of these polynomials
following stationary nonlinear time-independent GP equatiorare Hy(£)=1, H,(&)=2&, H,(&)=(4€2—2), Hj(é)

(8l =£(8¢6°-12), Fodé)=1, Fidd)=& Fod§)=¢,
Fod8)=(1-£8%), F3d§)=¢&" F1A8)=E&(6°—4), etc
[29]. In this paper we shall be interested in angular momen-
tum (vorteX excitation, as opposed to radial excitation mia

[ #? 1 ¢ L?
or axial excitation viany, of the following normalized

1
e —— st — =
x> xax dy* x° 4

4
2322
X“+ Ny 2

T 8vImn P(X,y) Z_M o(x.y)=0 2.10 ground state wave function far,=n,=0:
1/4 ) )
— 1+|L|a— Ay9)/4
Equation (2.10 is the stationary version of the time- ¢(X-Y)—(22L+3W3(|L|!)z x!HItemOayHiA
dependent Eq2.7). However, Eq(2.7) is equally useful for (3.4)

obtaining a stationary solution with trivial time dependence
as well as for studying evolution processes with explicit timewith energy
dependence, and we shall be directly solving Exj7) nu-
merically in this paper. w=1+]|L|+3\. (3.5
Two interesting properties of the condensate wave func-
tion are the mean-square sizes in the radial and axial direcFhe solution(3.4) of Eq. (3.1) is a good starting point for the
tions, defined, respectively, by iterative method for solving the time-dependent GP equation
(2.7 for small values of nonlinearity as in this paper. Al-
5 % * 5 ternatively, to solve the GP equation for large nonlineamijty
(x >:27Tf0 dxf_wdy Xy, 1)l (2.1 one may start with the Thomas-Fermi approximation for the
wave function obtained by setting all the derivatives in the
GP equation to zerf6], which is a good approximation for
large nonlinearity.
o w0 Next we consider Eq2.7) asx—0. The nonlinear term
(y2)=27rJ dxf dy x y?le(x,y,1)]2  (2.12 approaches a constant in this limit because of the regularity
0 - of the wave function ak=0. Then one has the following
condition:

and

I1l. NUMERICAL METHOD
N . #(0y)=0, (3.6
To solve the time-independent GP equation we need the
boundary conditions of the wave functionxas-0 and~ and  as in the case of the harmonic oscillator wave funct@#).
|y|—c0. For a confined condensate, for a sufficiently laxge Both the small- and large-behaviors of the wave function
and|y|, ¢(x,y) must vanish asymptotically. Hence the cubic are necessary for a numerical solution of the time-dependent
nonlinear term can eventually be neglected in the GP equasP equatior(2.7). The largex and largely| behaviors of the

tion for largex and|y| and Eq.(2.10 becomes wave function are given by E¢3.4), i.e.,
[ P 19 P L2 lim o(x,y)—e x4, 37
Vv e ‘
oxXe X dIX dy° X X
1 4 ; a2
+7 X2+>\2y2—p>—u e(x,y)=0. (3. IyI\IToc p(xy)—e MM (3.8
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A convenient way to solve Eq2.7) numerically is to lution is effected using the operathl , settingH,=0 along
discretize it in both space and time and reduce it to a set dfnes of constany with id¢/dt=H,e. Next the time evolu-
algebraic equations, which can then be solved by using th#on is effected using the operatst,, settingH,=0 along
known asymptotic boundary conditions. The method of sodines of constantx with ide/dt=Hye. This procedure is
lution using one space derivative is well under conftg25]. repeated alternately. This scheme Is conveniently represented

The GP equatiori2.7) can be written formally as in terms of an auxiliary functior"* %2 by
9 . .
Ia—t(p Ho, (3.9 (pn+l:1_|AHy/2(Pn+ll2 (Pn+1/2:1_'AHX/2(P
1+iAH/2 ' 1+iAH 27

where H is the time-independent quantity in the square (3.149
brackets of Eq(2.7). The integration in time is effected via that
the following semi-implicit Crank-Nicholson algorithf25]: 0 tha

¢n+1_¢n_1 o nr1 (I=1AH2) (1-1AH,/2)

A et e, (3.10 ¢ T+iaA,p) (1+iaA ¢ B

whereA is the constant time step used to calculate the timgyheren=0,1,2 ... denotes the number of iterations. For a

derivative, ¢" is the discretized wave function at time  small time stepd, if we neglect terms quadratic in, Eq.
=nA, and the space variablesandy are suppressed. The (3.15 is equivalent to Eq(3.11). Hence for numerical pur-
derivatives in the operatofl are discretized by the finite poses we have been able to reduce the GP equation in two
difference schemg25]. The formal solution to Eq3.10 is  space dimensionsandy into a series of GP equations in one
given by space variable, eitheror y. The GP equations in one space
variable can be dealt with numerically in a standard fashion
using Crank-Nicholson discretization and subsequent solu-
tion by the Gaussian elimination method. This scheme is
stable independent of the time step employed.

so that if¢" is known at timet, one can finde""* at the The time-dependent GP equati@7) is solved by time
next time sted, ;. This procedure is used to solve the GPiteration by mapping the solution on a two-dimensional grid
equation involving one space varialjg]. In that case after of points N, x N, in x andy. First Eq.(2.7) with H, is dis-
proper discretization in space using a finite differencecretized using the following finite difference scheme along

scheme Eq(3.11) becomes a tridiagonal set of equations inthex direction within the semi-implicit Crank-Nicholson rule
discrete space observables at titye;, which is solved by [25]:

the Gaussian elimination method and back substitUti&)

o, 1—iAHR

— n
¢ =IriARR® (311

using the known boundary conditio3.6), (3.7), and(3.8). (oMl on ) 1
Unfortunately, a similar straightforward discretization of Eq. Nejp ~ip) _ _ —2[(4’?:11;)_ 2<P,n+pl+ ¢?+11p)
(2.7 in two space observables using a finite difference A 2h '

scheme in this case does not lead to a tridiagonal set of

, ; (@] 1p— 200yt @]
equations but rather to an unmanageable set of equations (e51p7 260101 €1-1p)]

[25].

To circumvent this problem the fulH operator in this + m[(@?ﬁ]{p_gogti,p)
case is conveniently broken up into radial and axial compo- !
nentsH, andH,, respectively, wherél, contains the terms + ((p?+ 1p~ (p?_ 1p)]
dependent ox andH, the terms dependent on with the ) ) N2
nonlinear term 82n|e(x,y)/x|? involving both x andy L5 L _1+2‘f2 0 |7l
contributing equally to both. Specifically, we take 8 2ij ™ 12

#? 19 L2-1 Xx° X (et o), (3.16

x,y,1)|?
+ —+4v2an (P(Ty)

He=— oyt = —+
X X2 X 9x X2 4

(3.12) where the discretized wave functiapf'ngo(xj Ypotn) re-
fers to a fixedy=y,=ph, p=12,... N, at differentx

9 N\%y? o(X,y,1)[? =x;=jh, j=1,2,... N, andh is the space step. This pro-
1 1 J 1 L 1 X
Hy= Wﬂ' +4v2mmn X , (313 cedure results in a series of tridiagonal sets of equations

(3.16 in 71, o] nt ande(], attimet,, ; for eachy,,
with H=H,+H,. However, the numerical result of the which are solved by Gaussian elimination and back substitu-
present scheme is independent of the specific breakup.  tion [25] starting with the initial harmonic oscillator solution
The procedure is then to define the unknown wave func{3.4) at t,=0 and n=0. Then Eq.(2.7) with H, is dis-
tion on a two-dimensional mesh in thxey plane. The time cretized using the following finite difference scheme along

evolution is then performed in two steps. First the time evothey direction:
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i((P]DT)l_ ‘P? o) 1 the time-dependent GP equation for an attractive interatomic

— = W[(go?;il—Zqu;lJr ol nty) interaction, with special attention to the collapse of the con-
densate. To assure that we are on the correct track using the

+(€0?p+1_2¢?,p+€0?,p71)] present program we first solved the GP equation for the

spherically symmetric case with=1 andL=0, and com-
nil . n pared our results with the calculation of R¢80]. As an
8 +2v2amn X2 (efp + i) additional check we also solved the GP equation in two

) space dimensions with=0 and without thed?/dy? term in

(317 Eq.(2.7) and compared with the calculation of RE31]. In
both cases the present calculation agrees with these previous

where noon}"p refers to a fixedx;=jh for all y,=ph. ones.
Using the solution obtained after iteration as input, the Before describing the results for nonzdrave first com-
discretized tridiagonal equatiori3.17) along they direction  pare the present results for=0 with those of Ref[26] for
for constantx are solved similarly. This two-step procedure a cylindrically symmetric trap. For the spherically symmetric
corresponds to a full iteration of the GP equation and thease A\=1, and the critical numbek.(\) of Eqg. (2.9
resulting solution corresponds to timg=A andn=1. This for collapse is found to be 0.575 in agreement with
scheme is repeated about 500 times to yield the final solutioRefs.[6, 26,30. In a recent experiment using=0.3919, the
of the GP equation. The normalization conditi@®8) is pre-  critical reduced number for collapse for an attractive conden-
served during time iteration due to the unitarity of the time-sate of®®Rb atoms formed using a Feshbach resonance was
evolution operator. However, it is convenient to reenforce itfound to bek,=0.459+ 0.012+0.054[32]. In their calcula-
numerically after each iteration in order to maintain a hightion Gammalet al. [26] obtainedk.= 0.550 for\ =0.3919.
level of precision. Also, the solution at each time step willIn the present calculation we obtaig=0.553, in excellent
satisfy the boundary condition8.6), (3.7), and (3.8). At agreement with Ref26], using an entirely different numeri-
each iteration the strength of the nonlinear term is increasedal routine. However, the disagreement with the experimen-
by a small amount so that after about 500 time iterations theal result{32] remains. We also calculated the critical number
full strength is attained and the required solution of the GR« (\) for some other values of. For A\=5, 2, and 0.2 we
equation obtained. The solution so obtained is iterated sewbtain k.=0.50, 0.56, and 0.52, respectively, compared to
eral times(between 20 and 50 timesintil an equilibrated 0.498, 0.561, and 0.509 obtained in RE26]. The small
final result is obtained. This solution is the ground state ofdifference between the results of the two calculations seems
the condensate corresponding to the specific nonlinear cone be a consequence of numerical error. Also, as in R,
stantsk and L. we note that forA not so different from unity (5A>0.2)

We found the convergence of the two-step iterationthe critical reduced number for collapde(\) satisfies
scheme to be fast for smgl|. However, the final conver- ke(\)=~kc(1/\), and attains a maximum at=1 corre-
gence of the scheme breaks downnifis too large. For an  sponding to the spherically symmetric situation. However,
attractive interaction there is no such problem as the Gkhis symmetry is broken for large values ®f e.g., forx
equation does not sustain a large nonlineafiy Typical ~ >5 where we havé.(\) <k.(1/\). Moreover, we find in
values of the parameters used in this paper for discretizatiofhe following that this symmetry is also broken for nonzero
along thex andy directions areN, =400, N, =800, respec- |, where, however, fok>1, ko(\)>k(1/\).
tively, With Xpa,=8, |Y|max=8, andA=0.05 for\>0.5. For Next we comment on the discrepancy between the experi-
smaller\ (<0.5) the wave function extends further along the mental critical number of atoms for collapse for an attractive
y axis and largefyn,d and N, are employed to obtain a BEC of 8Rb atoms formed using a Feshbach reson#&2k
converged result. The above choice of parameters corrgsn one hand and the theoretical results of R26] and the
sponds to a typical space stepfof0.02 along both radial present calculation on the other hand. In view of the success
and axial directions. These parameters were obtained afteff the mean-field GP equation in explaining many stationary
some experimentation and are found to lead to good convefesults and time-evolution phenomena of the attractive BEC
gence. of ’Li atoms with an almost spherical tr§p,7], it seems that

As the time dependence of the stationary states is trivial—this description is perfectly appropriate for attractive conden-
@(X,y,1) = ¢(x,y)exp(—iut)—the chemical potentigk can  sates. Hence, we do not believe that a relatively small devia-
be obtained from the propagation of the converged groun@ion from spherical symmetry as in the experiment of Ref.
state solution at two times, e.@(X,y,t,) ande(X,y,tn1n).  [32] would invalidate the applicability of the GP equation to
From the numerically obtained ratio an attractive condensate. Whether the inclusion of higher or-
o(X,Y,t))/ (XY, thin) =expiun’A), u can be obtained as der interaction terms in the mean-field GP equation could
the time step) is known. In the calculation of an average account for the observed ddta6] yet remains to be estab-
over relatively large values of’ leads to a stable result. lished. To resolve the discrepancy we advocate further ex-
perimental study of collapse for attractive condensates after
changing the trap symmetity).

After the above preliminary comparative study, we

Using the numerical method described in Sec. Il wepresent results for the numerical solution of the GP equation
present results in this section for the numerical solution 0f2.7) for nonzeroL=0,1,2 . ..,8 and\ =8 and 14/8 for

IV. NUMERICAL RESULTS
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FIG. 1. Chemical potentigk vs reduced numbek for different
N andL. The curves are labeled by théirvalues.

differentk(\). We recall that\ = \/8 corresponds to the ex-
periment of Ensheet al. [1] for the BEC of ®’Rb atoms.
These two possibilities fok correspond to axial compres-
sion (\>1) and elongation\<1) of the condensate. For
eachL we increasek from 0 and calculate the chemical po-
tential u. With increase ofk the wave function becomes
more and more localized in space, and beyond a certain
value ofk the density at the peak of the wave function di-
verges and no stable normalizable solution of the GP equa-
tion with a well definedu can be obtained.

In Fig. 1 we plotx vs k(\) for A=1/8 and 14/8 for
different L. We also exhibit the result for the spherically
symmetric casa =1 (L=0) for comparison. The curves are
plotted for all allowed values dffor the ground state in each
case. The curves go up to a maximum critical vatyef k
which defines the critical numbeM. of atoms in that par-
ticular case vigk.=N.|a|/l,. We find that(i) k. for a par-
ticular A increases with increasirigandy(ii) k. for a particu-

\4.
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FIG. 2. Critical reduced numbek, vs L for A=+/8 (full line

PR R (T ST R ST VO W

[=<]

FIG. 3. The wave functiohé(X,y)|=|¢(x,y)/x| vs x andy for
A=1/\/8 and for(a) L=0, k=0.54, (b) L=2, k=2.58, (c) L=4,
k=4.00, and(d) L=2, k=2.50.

lar nonzeroL increases as. increases from 1/8 to /8,
which demonstrates the breakdown of the numerically noted
symmetryk.(\)~k(1/\) for L=0. To demonstrate these
two effects in an explicit fashion we plot in Fig.k2 vs L for
A=18, 1, and 1{8. The three curves intersect at approxi-

with x), 1 (dash-dotted line witht), and 148 (dashed line with ~Mately L=0, which demonstrates that.(\ = \8)~Kk.(\

%). The lines are polynomial fits to the points.
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FIG. 5. Mean-square sizex?) (full lines) and (y?) (dashed

FIG. 4. Same as Fig. 3 for= 8 and for(a) L=0,k=0.53,()  nes vs reduced numbek for (a) A=1/\8 and(b) x= 8.

L=2, k=3.15, (c) L=4, k=5.13,(d) L=6, k=6.71, and(e) L

=8,k=8.12. In Figs. 4a)—4(e) we plot the wave function fok = /8

and forL=0, 2, 4, 6, and 8, respectively, fér=k.. If we
=1/{/8)=0.55, andk.(\=1)=0.575. However, this sym- compare Figs. 3 and 4 for the sarhewe find that for\
metry is broken for nonzerd. where k(A= 8)>k.(\ =1/\/8 the wave functions extend over a larger region along
=1)>k,(\=1/\/8). The critical numberk.(\) increases they axis compared to those for=8. This is apparent if
with increasingL for all X, and we see from Fig. 2 that this we compare Fig. & with Fig. 4@a), and is expected as
rate of increase slows down asincreases. = /8 corresponds to a stronger harmonic oscillator potential
In Figs. 3 and 4 we plot the wave functidmp(x,y)| in the y direction responsible for axial compression. From
=|p(x,y)/x| in dimensionless variables of E(R.6). In Figs.  Figs. 3 and 4 we find that for botk values the peak in the
3(a)-3(c) we show the wave function fox=1/,/8 andL wave function moves further away from tlyeaxis asL in-
=0, 2, and 4, respectively, where the paramétey chosen Creases.
to be very close to the critical valule. for collapse. The To understand some aspects of the variatiok ofvith L
nature of the wave function is qualitatively different for zero and\ exhibited in Fig. 2, we plot in Figs.(8 and 3b) the
and nonzerd.. ForL=0 the wave function is peaked on the mean-square sizéx?) and(y?) vs k for differentL and for
y axis; whereas for nonzerb it is zero on they axis and A=1/\/8 and /8, respectively. The results for vortex states
peaked at some finite In all cases the peak is sharp and the(L>0) in the spherically symmetric case with=1 remain
density of atoms is very large at the peak. The BEC collapsebetween those for=1//8 and 8 and are not explicitly
with a slight increase in the parameterFor smallerk the  shown here. For nonzerb the system acquires a positive
wave function has a much broader maximum. Wheap-  rotational energy.?/x?> which allows it to move away from
proachesk, a sharp maximum of the wave function appearsthe axial directiory. For L=0 the region of highest density
very rapidly. To illustrate this in Fig. (@) we plot theL=2 is they axis. ForL# 0 the density is zero on thgaxis and
wave function fork=2.5. If we compare this with the wave has a maximum at some finite Consequently, the conden-
function of Fig. 3b) for L=2 andk=2.58~k., the change sate has the shape of a hollow cylinder. Because of vortex
in the shape is explicit. motion the condensate swells and has more space to stabi-
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lize. Hence forL>0 the density does not go to an unstabletime-evolution problems. It is expected that numerical diffi-
level with the same number of atoms as for-0, andk,  culty will appear for large nonlinearity or large values of the
increases with increasirlg for all \. However, for allL and  reduced number of particldsand for large vortex quantum
\, with an increase of nonlinearity (or n) in the GP equa- numberL. For medium nonlinearity, as in this paper, the
tion (2.7), the attractive nonlinear interaction term takes con-accuracy of the time-independent method can be increased
trol and eventually the mean-square size$) and(y?) are by reducing the space and time steps used in discretization.
reduced as can be seen from Fig. 5. This eventual shrinking The ground state wave function for ealclis found to be
in size with increase of the number of atoms forlathnd\  sharply peaked for attractive interatomic interaction with the
together with the outward push due to vortex motion forparameters set close to those for collapse. In the case of an
nonzerolL takes the density of the BEC at the maximum of attractive interaction, the mean-square size$ and (y?)
the wave function to an unstable high level at some criticaldecrease as the number of particles in the condensate in-
valuek, of k, leading to collapse. creases toward the critical number for collapse. Conse-
Although, for a fixed\, k. increases with increasing, quently, the density increases rapidly, signaling the onset of
the rate of increase slows down for largie As k (or n) collapse beyond a critical reduced number
increases sufficiently for large (>8), the nonlinear term The presence of the quantized vortex states increases the
containingn becomes the deciding factor in the GP equationstability of the BEC with attractive interaction. The critical
and thelL?/x? term starts to play a secondary role. Conse-numberk (\) for L=0 is largest in the spherically symmet-
guently, the increase in the critical numlsgrwith increasing  ric casex = 1. For vortex statesl(#0), k.(\) increases with
L slows down ad. increases and the numbkg tends to increasingh. As the vortex quantum numbeérincreasesk,
saturate as can be seen clearly in Fig. 2. In all cdaes also increases. However, in the present calculation a ten-
=48, 1, and 148) this tendency to saturation is visible dency to saturation in the value kf is noted with increasing
beyondL =4. L. As the parameten or k in the GP equation increases, the
nonlinear term starts to play the dominating role in the GP
V. SUMMARY equation compared to the angular momentum térx?.
Once this happens, the rate of increasekofwith L slows
In this paper we present a numerical study of the timedown, and it is not unlikely that the critical number will
dependent Gross-Pitaevskii equation under the action of attain a limiting maximum value for a largér (>8) than
harmonic oscillator trap with cylindrical symmetry with at- those considered in this paper. This and other investigations
tractive interparticle interaction to obtain insight into the col-into the collapse of vortex states are welcome in the future.
lapse of vortex states of BEC's. The time-dependent GP
equation is solved iteratively by discretization using a two-
step Crank-Nicholson scheme. We obtain the boundary con- ACKNOWLEDGMENTS
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