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Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap

Sadhan K. Adhikari
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, 01.405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 29 June 2001; published 18 December 2001!

The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive
interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical
solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson
method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency
along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a
function of the vortex quantum numberL. The critical number increases with increasing angular momentumL
of the vortex state but tends to saturate for largeL.
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I. INTRODUCTION

Recent experiments@1,2# on Bose-Einstein condensate
~BEC’s! in dilute bosonic atoms employing magnetic traps
ultralow temperatures have intensified theoretical invest
tions into various aspects of the condensate@3–7#. The prop-
erties of the condensate are usually described by the no
ear mean-field Gross-Pitaevskii~GP! equation @8#, which
properly incorporates the trap potential as well as the in
action among the atoms.

Two interesting features of BEC’s are~a! the collapse in
the case of attractive atomic interaction@2,7# and ~b! the
possibility of formation of a vortex state in harmonic tra
with cylindrical @9–13# as well as spherical@14# symmetry.

For an attractive interatomic interaction@2,7#, the conden-
sate is stable for a critical maximum number of atoms. Wh
the number of atoms increases beyond this critical value,
to interatomic attraction the radius of the BEC tends to z
and the maximum density of the condensate tends to infin
Consequently, the condensate collapses, emitting atoms
the number of atoms is reduced below the critical num
and a stable configuration is reached. With a supply of ato
from an external source the condensate can grow again
thus a series of collapses can take place; this has been
served experimentally in the BEC of7Li with attractive in-
teraction@2#. Theoretical analyses based on the GP equa
also confirm the collapse@7#.

The study of superfluid properties of a BEC is of gre
interest to both theoreticians@9–17# and experimentalists
@18,19#. The quantized vortex state in a BEC is intimate
connected to the existence of superfluidity. Such quanti
vortices are expected in superfluid He II. However, due
the strong interaction between helium atoms there is no
able mean-field description. On the other hand, a wea
interacting trapped BEC is well described by the mean-fi
GP equation, which is known to admit vortex solutions fo
trap with cylindrical symmetry@9,16#, and which can be
studied numerically. This allows for a controlled theoretic
study of quantized vortices in BEC’s in contrast to superfl
He II.

Many different techniques for creating vortex states
BEC’s have been suggested@12#, e.g., stirring the BEC by an
external laser at a rate exceeding a critical angular velocit
1063-651X/2001/65~1!/016703~9!/$20.00 65 0167
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create a singly quantized vortex line along the axis of ro
tion @11#, spontaneous vortex formation in evaporative co
ing @20#, controlled excitation to an excited state of atom
@21#, and rotation of an axially symmetric trap@22#. More-
over, quantized vortex states in BEC’s have been obser
experimentally in coupled BEC’s comprised of two sp
states of87Rb in a spherical trap, where angular momentu
is generated by a controlled excitation of the atoms betw
the two states@19#. Vortices have also been detected in
single-state BEC of87Rb in a cylindrical trap, where angula
momentum is generated by a stirring laser beam@18#. Dis-
covery of the possibility of continuously changing the inte
action between cold85Rb atoms by a magnetic-field-induce
Feshbach resonance@23,24# suggests that one could exper
mentally form vortex states in repulsive condensates
study their collapse after transforming them to attractive c
densates by such a resonance. Because of the intrinsic i
est in BEC’s of vortex states in axially symmetric traps,
this work the formation of such a BEC is studied using t
numerical solution of the time-dependent GP equation w
special attention to its collapse for attractive interatomic
teraction.

In general, a vortex line in a nonrotating trapped BEC
expected to be nonstationary. However, it is possible to h
dynamically stable vortex BEC states in a nonrotating t
with low quanta of rotational excitation or angular mome
tum L per particle@9,15,16,22#. Vortex BEC states for large
repulsive condensates with high quanta of rotational exc
tion are expected to be unstable and decay to vortices
low quanta@11,12,14,17#. In the absence of a vortex, th
stable condensate in an axially symmetric trap has a cy
drical shape. Such a BEC has the largest density on the
of the trap. For a purely attractive interaction, with increa
of the number of atoms the central density of this condens
increases rapidly, leading to instability and collapse@7#.

In the presence of vortex motion the region of large
density of the BEC with nonzeroL is pushed away from the
central axial region and the atoms have more space to s
lize. The vortex state of the condensate in a cylindrical t
has the shape of a hollow cylinder with zero density on
axis of symmetry. Because of the larger spatial extension
such a condensate, it can accommodate a larger critical n
ber of atoms before the density increases so high as to lea
©2001 The American Physical Society03-1
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collapse@9#. The higher the angular momentumL in a BEC,
the larger is the critical number of atoms. However, the
crease of this critical number with increasingL slows down
asL increases.

The present study is performed with direct numerical
lution of the time-dependent GP equation with an axia
symmetric trap. In the time evolution of the GP equation
radial and axial variables are dealt with in two independ
steps. In each step the GP equation is solved by discretiza
with the Crank-Nicholson rule complemented by the kno
boundary conditions@25#. We find that this time-dependen
approach leads to good convergence. There are several
iterative approaches to numerical solution of the tim
dependent and time-independent GP equations for ax
symmetric @4,9,10,26,27# as well as spherically symmetri
@3# traps. Of the time-dependent methods, the approac
Refs. @10# uses alternate iterations in the radial and ax
directions as in this study, whereas Ref.@26# does not give
the details of the numerical method employed and Ref.@27#
employs a completely different scheme, i.e., uses alterna
iterations for the real and imaginary parts of the GP equat
However, Refs.@9,10# do not provide enough details of th
numerical scheme. Because of this a meaningful compar
of the present method with those of Refs.@9,10,26,27# is not
possible.

In Sec. II we describe the time-dependent form of the
equation including the vortex states for attractive interacti
In Sec. III we describe in some detail the numerical meth
for solving the time-dependent GP equation. In Sec. IV
report the numerical results for the collapse of the BEC w
the vortex quantum for attractive interaction and finally,
Sec. V, we give a summary of our investigation.

II. NONLINEAR GROSS-PITAEVSKII EQUATION

At zero temperature, the time-dependent Bose-Eins
condensate wave functionC(r ,t) at positionr and timet
may be described by the self-consistent mean-field nonlin
GP equation@8#. In the presence of a magnetic trap of cyli
drical symmetry this equation is written as

F2
\2

2m
¹21V~r !1gNuC~r ,t!u22 i\

]

]tGC~r ,t!50.

~2.1!

Herem is the mass of a single bosonic atom,N the number
of atoms in the condensate,V(r ) the attractive harmonic os
cillator trap potential with cylindrical symmetry, andg
54p\2a/m the strength of the interatomic interaction, wi
a the atomic scattering length. A positivea corresponds to a
repulsive interaction and a negativea to an attractive inter-
action. The normalization condition of the wave function

E dr uC~r ,t!u251. ~2.2!

The trap potential with cylindrical symmetry may be wr
ten asV(r )5 1

2 mv2(r 21l2z2) wherev is the angular fre-
quency of the potential in the radial directionr andl is the
ratio of the axial to radial frequencies. We are using
01670
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cylindrical coordinate systemr[(r ,u,z) and in the case of
cylindrical symmetry the wave function is taken to be ind
pendent ofu in the absence of vortex states of the conde
sate:

C~r ,t!5c~r ,z,t!. ~2.3!

The GP equation with a cylindrically symmetric trap ca
easily accommodate quantized vortex states with rotatio
motion of the condensate around thez axis without any
added complication. In such a vortex the atoms flow w
tangential velocityL\/(mr) such that each atom has qua
tized angular momentumL\ along thez axis. This corre-
sponds to an angular dependence of

C~r ,t!5c~r ,z,t!exp~ iLu! ~2.4!

of the wave function, where exp(iLu) are the circular har-
monics in two dimensions. Equation~2.3! is the zero angular
momentum version of Eq.~2.4!.

Substituting Eq.~2.4! into Eq. ~2.1!, one obtains the fol-
lowing GP equation in partial-wave form with quantized a
gular momentumL along thez axis:

F2
\2

2m S 1

r

]

]r
r

]

]r
1

]2

]z22
L2

r 2 D1
1

2
mv2~r 21l2z2!

1gNuc~r ,z,t!u22 i\
]

]tGc~r ,z,t!50, ~2.5!

with L50,1,2, . . . . Thenonzero values ofL correspond to
vortex states. TheL2/r 2 term in Eq.~2.5! is the vortex con-
tribution to the Hamiltonian of the GP equation. This is al
the centrifugal barrier term in the partial-wave linear Sch¨-
dinger equation. The limitation to cylindrical symmetry r
duces the GP equation in three space dimensions to a
dimensional partial differential equation. We shall study th
equation numerically in this paper to understand the effec
the L2/r 2 term on the collapse in the case of an attract
atomic interaction.

It is convenient to use dimensionless variables defined
x5&r / l , y5&z/ l , t5tv, and

f~x,y,t ![
w~x,y,t !

x
5A~ l 3/2& !c~r ,z,t!, ~2.6!

wherel[A\/(mv). Althoughf(x,y,t) is the dimensionless
wave function, for calculational purpose we shall be us
w(x,y,t) in the following. In terms of these variables E
~2.5! becomes

F2
]2

]x2 1
1

x

]

]x
2

]2

]y2 1
L2

x2 1
1

4 S x21l2y22
4

x2D
18&pnUw~x,y,t !

x U2

2 i
]

]t Gw~x,y,t !50, ~2.7!

wheren5Na/ l . The reduced number of particles is defin
asunu. The normalization condition~2.2! of the wave function
become
3-2
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2pE
0

`

dxE
2`

`

dyuw~x,y,t !u2x2151. ~2.8!

However, physically it would be more interesting to defi
the reduced number of particles in terms of a geometric
averaged frequencyv05l1/3v and a lengthl 05A\/mv0, so
that a new reduced numberk(l) is defined via@26#

k~l![
Nuau

l 0
5nl1/6. ~2.9!

We shall study this number in the present paper.
For a stationary solution the time dependence of the w

function is given byw(x,y,t)5exp(2imt)w(x,y) wherem is
the chemical potential of the condensate in units of\v. If we
use this form of the wave function in Eq.~2.7!, we obtain the
following stationary nonlinear time-independent GP equat
@8#:

F2
]2

]x2 1
1

x

]

]x
2

]2

]y2 1
L2

x2 1
1

4 S x21l2y22
4

x2D
18&pnUw~x,y!

x U2

2mGw~x,y!50. ~2.10!

Equation ~2.10! is the stationary version of the time
dependent Eq.~2.7!. However, Eq.~2.7! is equally useful for
obtaining a stationary solution with trivial time dependen
as well as for studying evolution processes with explicit tim
dependence, and we shall be directly solving Eq.~2.7! nu-
merically in this paper.

Two interesting properties of the condensate wave fu
tion are the mean-square sizes in the radial and axial di
tions, defined, respectively, by

^x2&52pE
0

`

dxE
2`

`

dy xuw~x,y,t !u2 ~2.11!

and

^y2&52pE
0

`

dxE
2`

`

dy x21y2uw~x,y,t !u2. ~2.12!

III. NUMERICAL METHOD

To solve the time-independent GP equation we need
boundary conditions of the wave function asx→0 and` and
uyu→`. For a confined condensate, for a sufficiently largx
anduyu, w(x,y) must vanish asymptotically. Hence the cub
nonlinear term can eventually be neglected in the GP eq
tion for largex and uyu and Eq.~2.10! becomes

F2
]2

]x2 1
1

x

]

]x
2

]2

]y2 1
L2

x2

1
1

4 S x21l2y22
4

x2D2mGw~x,y!50. ~3.1!
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This is the equation for the free oscillator with cylindric
symmetry in partial-wave form. The wave function for a ge
eral state of this oscillator and the corresponding energy
given, respectively, by@28#

w~x,y!5Nxe2~x21ly2!/4F uLu,nxS x

&
D HnyS yAl

&
D ~3.2!

and

m5~11uLu1nx!1~ny1 1
2 !l, ~3.3!

with L50,61,62, . . . , nx50,2,4, . . . , and ny
50,1,2, . . . . Here Hny

is the usual Hermite polynomial

F uLu,nx
is another polynomial defined recursively@28,29#, and

N is the normalization. The first few of these polynomia
are H0(j)51, H1(j)52j, H2(j)5(4j222), H3(j)
5j(8j2212), F0,0(j)51, F1,0(j)5j, F2,0(j)5j2,
F0,2(j)5(12j2), F3,0(j)5j3, F1,2(j)5j(j224), etc.
@29#. In this paper we shall be interested in angular mom
tum ~vortex! excitation, as opposed to radial excitation vianx
or axial excitation viany , of the following normalized
ground state wave function fornx5ny50:

w~x,y!5S l

22L13p3~ uLu! !2D 1/4

x11uLue2~x21ly2!/4,

~3.4!

with energy

m511uLu1 1
2 l. ~3.5!

The solution~3.4! of Eq. ~3.1! is a good starting point for the
iterative method for solving the time-dependent GP equa
~2.7! for small values of nonlinearityn as in this paper. Al-
ternatively, to solve the GP equation for large nonlinearityn,
one may start with the Thomas-Fermi approximation for
wave function obtained by setting all the derivatives in t
GP equation to zero@6#, which is a good approximation fo
large nonlinearity.

Next we consider Eq.~2.7! as x→0. The nonlinear term
approaches a constant in this limit because of the regula
of the wave function atx50. Then one has the following
condition:

w~0,y!50, ~3.6!

as in the case of the harmonic oscillator wave function~3.4!.
Both the small- and large-x behaviors of the wave function
are necessary for a numerical solution of the time-depend
GP equation~2.7!. The large-x and large-uyu behaviors of the
wave function are given by Eq.~3.4!, i.e.,

lim
x→`

w~x,y!→e2x2/4, ~3.7!

lim
uyu→`

w~x,y!→e2ly2/4. ~3.8!
3-3
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A convenient way to solve Eq.~2.7! numerically is to
discretize it in both space and time and reduce it to a se
algebraic equations, which can then be solved by using
known asymptotic boundary conditions. The method of
lution using one space derivative is well under control@3,25#.
The GP equation~2.7! can be written formally as

i
]

]t
w5Hw, ~3.9!

where H is the time-independent quantity in the squa
brackets of Eq.~2.7!. The integration in time is effected vi
the following semi-implicit Crank-Nicholson algorithm@25#:

wn112wn

2 iD
5

1

2
H~wn111wn!, ~3.10!

whereD is the constant time step used to calculate the t
derivative, wn is the discretized wave function at timetn
5nD, and the space variablesx and y are suppressed. Th
derivatives in the operatorH are discretized by the finite
difference scheme@25#. The formal solution to Eq.~3.10! is
given by

wn115
12 iDH/2

11 iDH/2
wn ~3.11!

so that if wn is known at timetn one can findwn11 at the
next time steptn11 . This procedure is used to solve the G
equation involving one space variable@3#. In that case after
proper discretization in space using a finite differen
scheme Eq.~3.11! becomes a tridiagonal set of equations
discrete space observables at timetn11 , which is solved by
the Gaussian elimination method and back substitution@25#
using the known boundary conditions~3.6!, ~3.7!, and~3.8!.
Unfortunately, a similar straightforward discretization of E
~2.7! in two space observables using a finite differen
scheme in this case does not lead to a tridiagonal se
equations but rather to an unmanageable set of equa
@25#.

To circumvent this problem the fullH operator in this
case is conveniently broken up into radial and axial com
nentsHx andHy , respectively, whereHx contains the terms
dependent onx and Hy the terms dependent ony, with the
nonlinear term 8&pnuw(x,y)/xu2 involving both x and y
contributing equally to both. Specifically, we take

Hx52
]2

]x2 1
1

x

]

]x
1

L221

x2 1
x2

4
14&pnUw~x,y,t !

x U2

,

(3.12)

Hy52
]2

]y2 1
l2y2

4
14&pnUw~x,y,t !

x U2

, ~3.13!

with H5Hx1Hy . However, the numerical result of th
present scheme is independent of the specific breakup.

The procedure is then to define the unknown wave fu
tion on a two-dimensional mesh in thex-y plane. The time
evolution is then performed in two steps. First the time e
01670
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lution is effected using the operatorHx , settingHy50 along
lines of constanty with i ]w/]t5Hxw. Next the time evolu-
tion is effected using the operatorHy , settingHx50 along
lines of constantx with i ]w/]t5Hyw. This procedure is
repeated alternately. This scheme is conveniently represe
in terms of an auxiliary functionwn11/2 by

wn115
12 iDHy/2

11 iDHy/2
wn11/2, wn11/25

12 iDHx/2

11 iDHx/2
wn,

~3.14!

so that

wn115
~12 iDHy/2!

~11 iDHy/2!

~12 iDHx/2!

~11 iDHx/2!
wn, ~3.15!

wheren50,1,2, . . . denotes the number of iterations. For
small time stepD, if we neglect terms quadratic inD, Eq.
~3.15! is equivalent to Eq.~3.11!. Hence for numerical pur-
poses we have been able to reduce the GP equation in
space dimensionsx andy into a series of GP equations in on
space variable, eitherx or y. The GP equations in one spac
variable can be dealt with numerically in a standard fash
using Crank-Nicholson discretization and subsequent s
tion by the Gaussian elimination method. This scheme
stable independent of the time step employed.

The time-dependent GP equation~2.7! is solved by time
iteration by mapping the solution on a two-dimensional g
of pointsNx3Ny in x andy. First Eq.~2.7! with Hx is dis-
cretized using the following finite difference scheme alo
thex direction within the semi-implicit Crank-Nicholson rul
@25#:

i ~w j ,p
n112w j ,p

n !

D
52

1

2h2 @~w j 11,p
n11 22w j ,p

n111w j 21,p
n11 !

1~w j 11,p
n 22w j ,p

n 1w j 21,p
n !#

1
1

4xjh
@~w j 11,p

n11 2wn21,p
n11 !

1~w j 11,p
n 2w j 21,p

n !#

1Fxj
2

8
1

L221

2xj
2 12&pn

uw j ,p
n u2

xj
2 G

3~w j ,p
n111w j ,p

n !, ~3.16!

where the discretized wave functionw j ,p
n [w(xj ,yp ,tn) re-

fers to a fixedy5yp5ph, p51,2, . . . ,Ny at different x
5xj5 jh, j 51,2, . . . ,Nx , andh is the space step. This pro
cedure results in a series of tridiagonal sets of equati
~3.16! in w j 11,p

n11 , w j ,p
n11, andw j 21,p

n11 at timetn11 for eachyp ,
which are solved by Gaussian elimination and back subs
tion @25# starting with the initial harmonic oscillator solutio
~3.4! at t050 and n50. Then Eq.~2.7! with Hy is dis-
cretized using the following finite difference scheme alo
the y direction:
3-4
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i ~w j ,p
n112w j ,p

n !

D
52

1

2h2 @~w j ,p11
n11 22w j ,p

n111w j ,p21
n11 !

1~w j ,p11
n 22w j ,p

n 1w j ,p21
n !#

1Fl2yp
2

8
12&pn

uw j ,p
n u2

xj
2 G ~w j ,p

n111w j ,p
n !,

~3.17!

where noww j ,p
n refers to a fixedxj5 jh for all yp5ph.

Using the solution obtained afterx iteration as input, the
discretized tridiagonal equations~3.17! along they direction
for constantx are solved similarly. This two-step procedu
corresponds to a full iteration of the GP equation and
resulting solution corresponds to timet15D andn51. This
scheme is repeated about 500 times to yield the final solu
of the GP equation. The normalization condition~2.8! is pre-
served during time iteration due to the unitarity of the tim
evolution operator. However, it is convenient to reenforce
numerically after each iteration in order to maintain a hi
level of precision. Also, the solution at each time step w
satisfy the boundary conditions~3.6!, ~3.7!, and ~3.8!. At
each iteration the strength of the nonlinear term is increa
by a small amount so that after about 500 time iterations
full strength is attained and the required solution of the
equation obtained. The solution so obtained is iterated s
eral times~between 20 and 50 times! until an equilibrated
final result is obtained. This solution is the ground state
the condensate corresponding to the specific nonlinear
stantsk andL.

We found the convergence of the two-step iterat
scheme to be fast for smallunu. However, the final conver
gence of the scheme breaks down ifunu is too large. For an
attractive interaction there is no such problem as the
equation does not sustain a large nonlinearityunu. Typical
values of the parameters used in this paper for discretiza
along thex andy directions areNx5400, Ny5800, respec-
tively, with xmax58, uyumax58, andD50.05 forl.0.5. For
smallerl ~,0.5! the wave function extends further along th
y axis and largeruymaxu and Ny are employed to obtain a
converged result. The above choice of parameters co
sponds to a typical space step ofh50.02 along both radia
and axial directions. These parameters were obtained
some experimentation and are found to lead to good con
gence.

As the time dependence of the stationary states is trivia
w(x,y,t)5w(x,y)exp(2imt)—the chemical potentialm can
be obtained from the propagation of the converged gro
state solution at two times, e.g.,w(x,y,tn) andw(x,y,tn1n8).
From the numerically obtained rati
w(x,y,tn)/w(x,y,tn1n8)5exp(imn8D), m can be obtained a
the time stepD is known. In the calculation ofm an average
over relatively large values ofn8 leads to a stable result.

IV. NUMERICAL RESULTS

Using the numerical method described in Sec. III w
present results in this section for the numerical solution
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the time-dependent GP equation for an attractive interato
interaction, with special attention to the collapse of the co
densate. To assure that we are on the correct track using
present program we first solved the GP equation for
spherically symmetric case withl51 andL50, and com-
pared our results with the calculation of Ref.@30#. As an
additional check we also solved the GP equation in t
space dimensions withl50 and without thed2/dy2 term in
Eq. ~2.7! and compared with the calculation of Ref.@31#. In
both cases the present calculation agrees with these prev
ones.

Before describing the results for nonzeroL we first com-
pare the present results forL50 with those of Ref.@26# for
a cylindrically symmetric trap. For the spherically symmet
case l51, and the critical numberkc(l) of Eq. ~2.9!
for collapse is found to be 0.575 in agreement w
Refs.@6, 26,30#. In a recent experiment usingl50.3919, the
critical reduced number for collapse for an attractive cond
sate of85Rb atoms formed using a Feshbach resonance
found to bekc50.45960.01260.054@32#. In their calcula-
tion Gammalet al. @26# obtainedkc50.550 forl50.3919.
In the present calculation we obtainkc50.553, in excellent
agreement with Ref.@26#, using an entirely different numeri
cal routine. However, the disagreement with the experim
tal result@32# remains. We also calculated the critical numb
kc(l) for some other values ofl. For l55, 2, and 0.2 we
obtain kc50.50, 0.56, and 0.52, respectively, compared
0.498, 0.561, and 0.509 obtained in Ref.@26#. The small
difference between the results of the two calculations se
to be a consequence of numerical error. Also, as in Ref.@26#
we note that forl not so different from unity (5.l.0.2)
the critical reduced number for collapsekc(l) satisfies
kc(l)'kc(1/l), and attains a maximum atl51 corre-
sponding to the spherically symmetric situation. Howev
this symmetry is broken for large values ofl, e.g., for l
.5, where we havekc(l),kc(1/l). Moreover, we find in
the following that this symmetry is also broken for nonze
L, where, however, forl.1, kc(l).kc(1/l).

Next we comment on the discrepancy between the exp
mental critical number of atoms for collapse for an attract
BEC of 85Rb atoms formed using a Feshbach resonance@32#
on one hand and the theoretical results of Ref.@26# and the
present calculation on the other hand. In view of the succ
of the mean-field GP equation in explaining many station
results and time-evolution phenomena of the attractive B
of 7Li atoms with an almost spherical trap@2,7#, it seems that
this description is perfectly appropriate for attractive cond
sates. Hence, we do not believe that a relatively small de
tion from spherical symmetry as in the experiment of R
@32# would invalidate the applicability of the GP equation
an attractive condensate. Whether the inclusion of higher
der interaction terms in the mean-field GP equation co
account for the observed data@26# yet remains to be estab
lished. To resolve the discrepancy we advocate further
perimental study of collapse for attractive condensates a
changing the trap symmetry~l!.

After the above preliminary comparative study, w
present results for the numerical solution of the GP equa
~2.7! for nonzeroL50,1,2, . . . ,8 andl5A8 and 1/A8 for
3-5
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different k(l). We recall thatl5A8 corresponds to the ex
periment of Ensheret al. @1# for the BEC of 87Rb atoms.
These two possibilities forl correspond to axial compres
sion (l.1) and elongation (l,1) of the condensate. Fo
eachL we increasek from 0 and calculate the chemical po
tential m. With increase ofk the wave function become
more and more localized in space, and beyond a cer
value of k the density at the peak of the wave function d
verges and no stable normalizable solution of the GP eq
tion with a well definedm can be obtained.

In Fig. 1 we plot m vs k(l) for l5A8 and 1/A8 for
different L. We also exhibit the result for the spherical
symmetric casel51 (L50) for comparison. The curves ar
plotted for all allowed values ofk for the ground state in eac
case. The curves go up to a maximum critical valuekc of k
which defines the critical numberNc of atoms in that par-
ticular case viakc5Ncuau/ l 0 . We find that~i! kc for a par-
ticular l increases with increasingL and~ii ! kc for a particu-

FIG. 1. Chemical potentialm vs reduced numberk for different
l andL. The curves are labeled by theirL values.

FIG. 2. Critical reduced numberkc vs L for l5A8 ~full line
with 3!, 1 ~dash-dotted line with1!, and 1/A8 ~dashed line with
.!. The lines are polynomial fits to the points.
01670
in

a-

lar nonzeroL increases asl increases from 1/A8 to A8,
which demonstrates the breakdown of the numerically no
symmetrykc(l)'kc(1/l) for L50. To demonstrate thes
two effects in an explicit fashion we plot in Fig. 2kc vs L for
l5A8, 1, and 1/A8. The three curves intersect at approx
mately L50, which demonstrates thatkc(l5A8)'kc(l
51/A8),kc(l51) for L50, with kc(l5A8)50.54, kc(l

FIG. 3. The wave functionuf(x,y)u[uw(x,y)/xu vs x andy for
l51/A8 and for ~a! L50, k50.54, ~b! L52, k52.58, ~c! L54,
k54.00, and~d! L52, k52.50.
3-6
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51/A8)50.55, andkc(l51)50.575. However, this sym
metry is broken for nonzeroL where kc(l5A8).kc(l
51).kc(l51/A8). The critical numberkc(l) increases
with increasingL for all l, and we see from Fig. 2 that thi
rate of increase slows down asL increases.

In Figs. 3 and 4 we plot the wave functionuf(x,y)u
[uw(x,y)/xu in dimensionless variables of Eq.~2.6!. In Figs.
3~a!–3~c! we show the wave function forl51/A8 and L
50, 2, and 4, respectively, where the parameterk is chosen
to be very close to the critical valuekc for collapse. The
nature of the wave function is qualitatively different for ze
and nonzeroL. For L50 the wave function is peaked on th
y axis; whereas for nonzeroL it is zero on they axis and
peaked at some finitex. In all cases the peak is sharp and t
density of atoms is very large at the peak. The BEC collap
with a slight increase in the parameterk. For smallerk the
wave function has a much broader maximum. Whenk ap-
proacheskc a sharp maximum of the wave function appea
very rapidly. To illustrate this in Fig. 3~d! we plot theL52
wave function fork52.5. If we compare this with the wav
function of Fig. 3~b! for L52 andk52.58'kc , the change
in the shape is explicit.

FIG. 4. Same as Fig. 3 forl5A8 and for~a! L50, k50.53,~b!
L52, k53.15, ~c! L54, k55.13, ~d! L56, k56.71, and~e! L
58, k58.12.
01670
es

s

In Figs. 4~a!–4~e! we plot the wave function forl5A8
and for L50, 2, 4, 6, and 8, respectively, fork'kc . If we
compare Figs. 3 and 4 for the sameL we find that forl
51/A8 the wave functions extend over a larger region alo
the y axis compared to those forl5A8. This is apparent if
we compare Fig. 3~a! with Fig. 4~a!, and is expected asl
5A8 corresponds to a stronger harmonic oscillator poten
in the y direction responsible for axial compression. Fro
Figs. 3 and 4 we find that for bothl values the peak in the
wave function moves further away from they axis asL in-
creases.

To understand some aspects of the variation ofkc with L
andl exhibited in Fig. 2, we plot in Figs. 5~a! and 5~b! the
mean-square sizes^x2& and^y2& vs k for different L and for
l51/A8 andA8, respectively. The results for vortex stat
(L.0) in the spherically symmetric case withl51 remain
between those forl51/A8 and A8 and are not explicitly
shown here. For nonzeroL the system acquires a positiv
rotational energyL2/x2 which allows it to move away from
the axial directiony. For L50 the region of highest densit
is they axis. ForLÞ0 the density is zero on they axis and
has a maximum at some finitex. Consequently, the conden
sate has the shape of a hollow cylinder. Because of vo
motion the condensate swells and has more space to s

FIG. 5. Mean-square sizeŝx2& ~full lines! and ^y2& ~dashed
lines! vs reduced numberk for ~a! l51/A8 and~b! l5A8.
3-7
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lize. Hence forL.0 the density does not go to an unstab
level with the same number of atoms as forL50, andkc
increases with increasingL for all l. However, for allL and
l, with an increase of nonlinearityk ~or n! in the GP equa-
tion ~2.7!, the attractive nonlinear interaction term takes co
trol and eventually the mean-square sizes^x2& and ^y2& are
reduced as can be seen from Fig. 5. This eventual shrin
in size with increase of the number of atoms for allL andl
together with the outward push due to vortex motion
nonzeroL takes the density of the BEC at the maximum
the wave function to an unstable high level at some criti
valuekc of k, leading to collapse.

Although, for a fixedl, kc increases with increasingL,
the rate of increase slows down for largeL. As k ~or n!
increases sufficiently for largeL ~.8!, the nonlinear term
containingn becomes the deciding factor in the GP equat
and theL2/x2 term starts to play a secondary role. Cons
quently, the increase in the critical numberkc with increasing
L slows down asL increases and the numberkc tends to
saturate as can be seen clearly in Fig. 2. In all cases~l
5A8, 1, and 1/A8! this tendency to saturation is visibl
beyondL54.

V. SUMMARY

In this paper we present a numerical study of the tim
dependent Gross-Pitaevskii equation under the action
harmonic oscillator trap with cylindrical symmetry with a
tractive interparticle interaction to obtain insight into the c
lapse of vortex states of BEC’s. The time-dependent
equation is solved iteratively by discretization using a tw
step Crank-Nicholson scheme. We obtain the boundary c
ditions ~3.6!, ~3.7!, and ~3.8! of the solution of the dimen-
sionless GP equation~2.7! and use them for its solution. Th
solution procedure is applicable for both attractive and rep
sive atomic interactions as well as for both stationary a
an

s

.

J
.
se

et
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time-evolution problems. It is expected that numerical dif
culty will appear for large nonlinearity or large values of th
reduced number of particlesk and for large vortex quantum
number L. For medium nonlinearity, as in this paper, th
accuracy of the time-independent method can be increa
by reducing the space and time steps used in discretizat

The ground state wave function for eachL is found to be
sharply peaked for attractive interatomic interaction with t
parameters set close to those for collapse. In the case o
attractive interaction, the mean-square sizes^x2& and ^y2&
decrease as the number of particles in the condensate
creases toward the critical number for collapse. Con
quently, the density increases rapidly, signaling the onse
collapse beyond a critical reduced numberkc .

The presence of the quantized vortex states increase
stability of the BEC with attractive interaction. The critica
numberkc(l) for L50 is largest in the spherically symme
ric casel51. For vortex states (LÞ0), kc(l) increases with
increasingl. As the vortex quantum numberL increases,kc
also increases. However, in the present calculation a
dency to saturation in the value ofkc is noted with increasing
L. As the parametern or k in the GP equation increases, th
nonlinear term starts to play the dominating role in the G
equation compared to the angular momentum termL2/x2.
Once this happens, the rate of increase ofkc with L slows
down, and it is not unlikely that the critical number wi
attain a limiting maximum value for a largerL ~.8! than
those considered in this paper. This and other investigat
into the collapse of vortex states are welcome in the futu
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