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Casimir energy in multiply connected static hyperbolic universes
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We generalize a previously obtained result for the case of a few other static hyperbolic universes with
manifolds of nontrivial topology as spatial sections.
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I. INTRODUCTION the type of compactification of the spatial sections. For a
universe with spatial sectionE’x R, the fundamental cell’s
As is well known, Einstein equation€EQ) restrict the size is about 1/10 of the horizon, and is compatible with the
local geometry of spatially homogeneous and isotropichomogeneity of the CMBRS].
spacetimes to those &°, S°, or H®. Recent observational  In compact universes, the pair separation histogram would
data indicate that the curvature of the universe is small, withpresent spikes for characteristic distances. At first it was
out ruling out the case of negative curvature. On the othethought that this technique, known as tbeystallographic
hand, the EQ are insensitive to a global nontrivial topologymethog was able to totally determine the topology of the
of space, which can be a compact hyperbolic 3-sp&¢e  ynjverse[9]. It turned out that the crystallographic method
which is isometric to a quotient spa¢¢’/T. Herel' is @  gnly applied when the holonomy group contained at least a
nontrivial discrete group of isometrig&nown as the ho-  jifford translation, i.e. a translation which moves all the
lonomy group, which acts freely and properly discontinu- i by the same distanfe0] and[11]. Generalizations of

ously on the covering spadd®. Also important is the fact the crystallographic method were proposed, for example in
that I' is isomorphic to the fundamental grousp,(M), 412] y grap prop ’ P

which is a group of homotopy classes of maps of the circl
St into M [1]. Since (M) is nontrivial, M is multiply
connected.

The 3-spaceM may be represented by a fundamental
polyhedronF P in H3, with an even number of faces, whose

Also in compact universes the light front of the CMBR
interacts with itself producing circles in its sky patt¢8].

A recent result has called our attention to the possibility
that methods based on multiple images will prove not to be

copiesy(FP), yeT, fill up the entireH?. The faces of P efficient [14]. The reasoning is that, according to observa-

are pairwise identified by the basic elements, or generatorfOns. the curvature is very small, so the fundamental regions
of T'. The resulting manifold is a bundle with discrete fibers@r€ SO big that there has not been time enough for the forma-

T'p over base pointp in the fundamental polyhedron. These tion of ghost images. The result is that for low curv_ature
fibers are the points of the quotient space. universes such as ours, only compact universes with the
Among the first applications of the topology consider-smallest volumes could be detected by pattern repetitions.
ations, there was an attempt to explain multiple quasar im- A very attractive argument in favor of compact hyperbolic
ages[2]. For recent reviews of topology in connection with manifolds is related to pre-inflationary homogenization

cosmology, sef3,4], and the articl¢5] for compactifications through chaotic mixing(15]. The effect is the same that
of the 3-sphere. arises in compact hyperbolic surfaces. The geodesic motion
The first astrophysical limits on the topology of the uni- on a surface of genug>1 shows the absence of KAM torus
verse were obtained for a 3-tordS. Accordance with the [16]. Not only is it ergodic but it also satisfies the Anosov
homogeneity of the cosmic microwave background radiatiorproperty, which indicates the presence of strong chaék
(CMBR) puts a lower limit on the size of the fundamental The chaotic properties of thg=2 torus were previously
cell, about 3000 Mpc, which is a cube in the casefsptind  studied, for example ih17].
[7]. Later on, it was shown that this result is very sensitive to  We extend our previously obtained res[i8] (see also
[19]) for a few more compact hyperbolic universes.[11]
we numerically calculated the Casimir effect of a scalar field
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of our calculation is in fact a Casimir energy density. ds?’=—dt?+a?[dy?+sintx(d6?+sirfodp?)], (5)
In compactifications of flat space, the strictly speaking
Casimir energy can be analytically obtained through the very, i,

elegant zeta functions techniques; for a recent review see
[20]. Unfortunately this formalism does not yield an analyti- ' o o
cal result in the case of hyperbolic compact manifolds, since Sty = (X=x)+(y-y)+(z-2")
the spectrum of the Laplace-Beltrami operator can only be a2 '
determined numerically.

We use the point splitting technique in the covering space, As is well known, the EQ for the homogeneous and iso-

whiph is a static hyperbolic .universg. The obtained propagat-ropic space sections in E(5), with a=a(t), reduce to the
tor is exact and possesses information about the global ProP-iadmann-Lemaie equations

erties of the manifold, in the sense that the infrared modes
are taken into account. o

When the spacetime is multiply connected, the propagator a
is obtained as the usual sum over paths: all geodesics con- (
necting the two points are taken into account.

We find a static hyperbolic solution for the EQ in Sec. .
In Sec. lll we write the expression for the vacuum expecta-
tion value of the energy-momentum tensor in compact hy-
perbolic universes. We obtain in Sec. IV the numerical val-

ues of the Casimir energy density in a few multiply

connected static spacetimes. Our conclusions are present\@’@ere the right-hand side comes from the classical energy-

in Sec. V.(We use natural unit=c=%=1, except in Sec. momentum source for the geometry*”=(p+p)uru”
1) ' +pg*”, plus the cosmological constant terkg*”.

We assume that the universe was radiation dominated
near the Planck era, henpe= p/3, and we obtain the follow-
ing static solution:

1 8wnG +A
;—TP 3

== —87Gp+A,
a

[l. QUANTUM FIELD THEORY IN THE STATIC
UNIVERSE RXH?

The hyperbolic space sectioh®, can be realized as a 3
surface a= m

(x=x")2+(y—y")?+(z=2")*=(w—w')?=—a% (1)
imbedded in a Minkowski 4-space —

P~ 8nG"
dI?=dx®+dy?+dZ2—dw?.

, , . , . ds?=—dt?+a’[dy?+sinx(d#?+sirfed¢$?)], (6)
As this space is homogeneous, we explicitly write the origin
of coordinates X',y’,z",w’). It can easily be seen that its
isometry group is the proper, orthocronous Lorentz grouﬁN
S0O'(1,3), which is isomorphic toPSL(2,C)=SL(2,C)/
{=1} [21]. With the constraint of E¢(1) on the line element

here the cosmological constant is negative.

We now wish to evaluate the vacuum expectation value of
the energy density for the case of a universe consisting of a
classical radiation fluid, a cosmological constant, and a non-

we obtain interacting quantum scalar fiel@d. The solution of EQ is
dI2=dx?+dy?+dz given in Eq.(6), where the quantum back reaction is disre-
garded. We use the point splitting method in the universal
[(x=x")dx+(y—y’)dy+(z—2")dz]? covering spac&Rx H®, for which the propagator is exact.
- (X—x')2+(y—y")2+(z—2')2+a? The poin_t splitti_ng method was constructed to obtain the
renormalized(inite) expectation values of the quantum me-
d?=—dt2+dI2=g(x,x’),,dx*dx", 2) chanical operators. It is based on the Schwinger formalism
” [22], and was developed in the context of curved space by
where we interchangeably Write((t,Xl,XZ,Xz)H(t,X,y,Z). DeWitt [23]. Further details are contained in the articles by
Both connectionsy, andV,, , compatible with the metric of Christensei24,25. For a review, seg26].
Eq. (2), can be defined through Metric variations in the scalar action
V,.9(X,X") =0, ()
' ’ S=—% f V=0(4,,¢"+ ERG*+mPp?)d*x,
VM/g(X,X/)aBEO. (4)

The expression in Eq2) is the popular Robertson-Walker with conformal couplingé=1/6, give the classical energy-
line element, which written in the Lobatchevsky form readsmomentum tensor
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2 1 1 1 R )
T,U,V:§¢,,U,¢,V_€¢,p¢,pg,ul)_§¢¢;/.l,v+ §g,uv¢|:|¢ Dd)_gd)_m d):O (8)
1 , 1, ) The renormalized energy-momentum tensor involves field
+ gG,w¢ —Mm 9,,9°, () products at the same spacetime point. Thus the idea is to

calculate the averaged products at separate poirasdx’,
whereG,,, is the Einstein tensor. As expected for masslesdaking the limitx’—x in the end:
fields, it can be verified that the trace of the above tensor is o ,
identically zero ifm=0. Variations with respect t@ result <O|TW(X)|O>_ I’|m TOOX) s ©)
in the curved space generalization of the Klein-Gordon equa- x=x
tion, with

1 1 ;1
TOX )= 5 (VuVor + Ve V) = 15900, 9, 97 = 55 (V9,4 9,09,)

+i (X) (D+D’)+i R(x) —ER(X) () )—Emz (), |GB(x,x") (10
489 Mmv 12 Mmv 4 g Mmv 8 g Mmv 1 1

where the covariant derivatives are defined in E§s.and The above expression is named the Poincseges, and
(4), andG® is the Hadamard function, which is the expec- when it converges, it defines functioris, on the mani-
tation value of the anti-commutator ¢f(x) and ¢(x’) (see  fold M.

below). We stress that the quantiff(x,x"),, only makes We define the operator
sense after the limit in Eq9) is taken. The geometric quan-
tities such as the metric and the curvature are regarded as F(x,x')=F(X)/—go(x—x"), (12
classical entitiesg(x),,=g(x,x'=0),, is obtained from
the line element in Eq(2). whereF(x) = —R/6—m?, and introduce an auxiliary evo-

The causal Green function, of Feynman propagator, is obtution parametes and a complete orthonormal set of states
tained as |x), such that

G(x,x")=i(0[Tp(x) p(x")|0), G(x,x")=(x|G|x"),

where T is the time-ordering operator. Taking its real and

imaginary parts, F(x,x")=(X|F[x"),

G(x,x’)=Gs(x,x’)+|§G(1)(x,x’), (12) G=ij0 e "*fds. (13

we get, for the Hadamard function, This last equation implies thab=(F—i0)"*, hence the
causal Green function becomes

GO(x,x")=(0|{ p(x),p(x")}|0)=2IMG(x,x").

G(x,x’)=iJ ds(x|exp( —isF)|x"), (14)
lll. THE FEYNMAN PROPAGATOR AND THE CASIMIR 0
ENERGY DENSITY IN RXM ~
and the matrix elementx|exp(—isF)[x")=(x(s)|x'(0)) satis-
Green functions, as any other function defined in the spafies a Schrdinger-type equation,
tially compact spacetim&x .M, must have the same peri-
odicities of the manifold\ itself. One way of imposing this d R
periodicity is by determining the spectrum of the Laplacian, =5 (X(s)[x"(0))= ( O- g—mz)(x(s)|x’(0)>.
which can only be done numerically.

Another method imposes the periodicity by brute force: Assuming that(x(s)|x'(0)) depends only on the total

geodesic distance- (t—t")?+a%y?, with the spatial part
2 2 - -
fr(x)= Z f(yx). a“x- derived from Eq(5), the above equation can be solved,
yel and we get
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—iyx exp{im®s+i[(t—t")%2—a%y?]/4s} isomorphic tom,(M)—see Sec. |—each geodesic linkirg
andx’ in M is lifted to a unique geodesic linkingand yx'

(x(s)|x"(0))=

i 2
sinhx (4S) in H3. Thus from Eq.(9) we get
(15)
Substituting this solution for the integrand in Ed4) gives pc=(0|T(x),,|0) puru”
for the Feynman propagator
y HPmMJ(t—t")%2-a%? =uru” lim X T, yX) - (18)
G(X,X")=—— = , , y#l
8 sinhy [(t—t')2—aZy? x/ =X
(16)

The infinite summation occurs because the spacetine
whereH{? is the Hankel function of the second kind and X M is static, so there has been enough time for the quan-

order one. tum interaction of the scalar field with the geometry to travel
The Hadamard function can be obtained from Ed$) any distance. Since we know the universe is expanding, the
and (11), infinite summation is not physically valid. The presence of
the mass term, however, naturally introduces a cutoff.
De o M X Ko(my—(t—t')?+a’x?) In Eq. (18) the subscripty# 1 means that the direct path
GHxx) = 2m2 sty (=t ) 2rai? is not to be taken into account. We shall show, following

17) [26], that this exclusion is indeed equivalent to a renormal-
ization of the cosmological constant.
whereK; is the modified Bessel function of the second kind ~ First remember that the effective actigvis given by
and order one. The massless limit=0 can immediately be
checked:

X 1
GO(x, X" ) me o= .
(%X Im=0 27725inh()(){—(t—t')2+a2)(2]

eW= J Do expiS),

where the action for the scalar field can be transformed into

Remembering that, fon— o a Gaussian type after integration by parts,
’ - )

H —a—1 —y\2 '\ 2 . 72_> 1
sinfiy=a VO YD @2 o 5= 5[ a%/=900 [ dyy=ameFxy By

the well known Minkowski result is recovered for the mas-
sive and massless cases,

In a very informal way, the functional integration can be
m Ky(m ’——(t—t’)2+r2) regarded as a usual Gaussian intelgnalich, making use of

GM(x,x" )= — Egs.(12) and(13), results in
(x) 272 = (t—t")%+r?
IIE —-1/2
1 1 W= det,—
G(l) X,X, = — —————— ¢, e
(Xm0 2772{—(t—t’)2+r2] i

wherer is the geodesic distance in the spatial Euclidean sec-
tion.

Substituting Eq(17) and the covariant derivativé8) and
(4) into Eq.(10), we obtainT(x,x") ,, .

i .
W= EIn[detF]+c0nst.

. The 'Klein-Gordon equation remains unchanged under SW= i—tré(lnlf):i—tr[lfflélf]
isometries: 2 2
ef(0-2me)g|=(o-2-me)e i sk
¢ i Ad 5 M| Ect SW= Etr[iJ' e SFsFds
0

where £; is the Lie derivative with respect to the Killing
vector ¢ that generates the isometry, hence summations in i v isF
the Green functions over the discrete elements of the group SW=s| — —tr( J ds”
I is well defined. 2\Jo s
In M=H3/T, a summation over the infinite number of
geodesics connectingand x’ is obtained by the action of
the elementsyeI’, which are the generatorz and their This result is made more rigourous by assuming a particular
products(except the identity; see beloywon x’. Sincel’ is  complete representation basis for the operétor
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FIG. 1. Fundamental region for the Weeks manifold. N
FIG. 2. p¢ for the Weeks universe.
i o —isF
W= —3tr . — Us :f d*X Lo plicitly the radius of the inscribed spheRe,adius-

The description that follows applies to Secs. IV A—IV D.

The trace of the operator is over the Hilbert space, defined ifheg; matrices that generaie were obtained with the com-
Eq. (13), ttA=lim,, ./ V—gd*x(x|A|x'). Using the Schiro puter programsNAPPEA[27]. The numerical code has been

dinger kernekx|exp(—isF)|x'), given in Eq.(15), we obtain
the effective Lagrangian

improved since our previous pagdd8]. To yield a numerical
result, the infinite summatiofi8) has to be truncated. Recall
that this summation occurs in the covering spate We
halted the summation each time the action of the generators

—i o [=(X|exp(—isF)|x") : e action of
Le= 5 V=0 Ilmf s ds g, and their products on the originx{,x?x%)=(0,0,0)
x'—x” 0 reached a geodesic distance bigger thah=ay
- =5.29831...a. Care was taken so that no point was
1 o gMms summed more than once. In other words, the summation
A 0 mds=/\x\/jg, (18), which yeldsp, was truncated when the interior of the

(19) hyperbolic  sphere  of geodesic radiusd=ay
=5.2983 .. .a, was covered with replicas of the fundamen-
which shows that the direct pathy€1) corresponds to a tal region. We checked that additional contributions were un-
divergent cosmological termy, . important for the evaluation gi:.

IV. CASIMIR DENSITY pc IN A FEW UNIVERSES

According to quantum cosmology, a smaller universe has
a greater probability of being spontaneously created. Also,
the chaotic mixing becomes more significant for smaller vol-
umes[15]. We describe some spatially compact universes,
with increasing volumes, in Secs. IV A-IV D. As seen in
Sec. |, manifoldsM=H?3/T", wherel is a discrete subgroup
of isometries andH® is its universal covering, are multiply
connected.

The values ofpc shown for each manifold were taken at
points (0, ¢) on the surface of a sphere inside its fundamen-
tal region. For all of them the radius of the sphere is the
same,d=ay=0.3900% . ..a, whered is the geodesic dis-
tance. Our result is displayed in Figs. 2, 4, 6 and 8 for a
scalar field with massn=0.4, and a metric scale facter
=10. Anglesfd and ¢ correspond to the co-latitude and lon-
gitude, so the line=0 and 6= 7 correspond to the poles
of the chosen sphere. For each manifold we also write ex-
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FIG. 6. p¢ for the Best universe.

FIG. 4. p¢ for the Thurston universe.

A. Weeks manifold

This manifold was discovered independently by Weeksdamental region of 16 faces, its volume ¥
[28] and Matveev-Fomenkf29], and is the manifold with =0.9813® . ..a° (Fig. 3, andRj,agius=0.53547 . . .a.
the smallest volume (in units of a® known, V Figure 4 shows the value @ic=T,,u“u"=Ty, as seen
=0.94270 ...a. Its fundamental region is an 18-face by a comoving observer.
polyhedron, shown in Fig. 1. The radius of the inscribed
sphere iR aqgius=0.51912 . . . a. C. Best manifold

The vacuum expectation value of the 00-component of the
energy-momentum tensosc=T,,u”u”, as seen by a co-
moving observer, is shown in Fig. 2.

This manifold was discovered as a by-product of a study
of finite subgroups ofSO(1,3) by a geometrical aproach
[31]. Its fundamental region is an icosahedron wih
_ =4.68603 . . .a% and R, aqiys=0.8682% . . .a, shown in
B. Thurston manifold Fig. 5.

The Thurston manifold was discovered by the field med- The vacuum expectation value pE=T,,u“u”, as seen
alist William Thurston[30]. This manifold possesses a fun- by a comoving observer, is shown in Fig. 6.

FIG. 5. Fundamental region for the Best manifold. FIG. 7. Fundamental region for the Seifert-Weber manifold.
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Figure 8 shows the value @fc=T,,u”u”, as seen by a
comoving observer.

V. CONCLUSIONS

We explicitly evaluated the distribution of the vacuum
energy density of a conformally coupled massive scalar field,
for static universes with compact spatial sections of negative
curvature and increasing volume: Weeks, Thurston, Best, and
Seifert-Weber manifolds. As a specific example, we chose
m=0.4 for the mass of the scalar field, aaer 10 for the
radius of curvature. The values of the Casimir energy density
pc on a sphere of propggeodesit radiusd=3.900% . . .
inside the fundamental polyhedron for each of these mani-
folds are shown in Figs 2, 4, 6, and 8. In all these cases it can
be seen that there is a spontaneous generation of low multi-
polar components. As expected, the effect becomes weaker
for increasing volume universes.
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