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Casimir energy in multiply connected static hyperbolic universes
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We generalize a previously obtained result for the case of a few other static hyperbolic universes with
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I. INTRODUCTION

As is well known, Einstein equations~EQ! restrict the
local geometry of spatially homogeneous and isotro
spacetimes to those ofR3, S3, or H3. Recent observationa
data indicate that the curvature of the universe is small, w
out ruling out the case of negative curvature. On the ot
hand, the EQ are insensitive to a global nontrivial topolo
of space, which can be a compact hyperbolic 3-spaceM,
which is isometric to a quotient spaceH3/G. Here G is a
nontrivial discrete group of isometries~known as the ho-
lonomy group!, which acts freely and properly discontinu
ously on the covering spaceH3. Also important is the fact
that G is isomorphic to the fundamental groupp1(M),
which is a group of homotopy classes of maps of the cir
S1 into M @1#. Sincep1(M) is nontrivial, M is multiply
connected.

The 3-spaceM may be represented by a fundamen
polyhedronFP in H3, with an even number of faces, whos
copiesg(FP), gPG, fill up the entireH3. The faces ofFP
are pairwise identified by the basic elements, or genera
of G. The resulting manifold is a bundle with discrete fibe
Gp over base pointsp in the fundamental polyhedron. Thes
fibers are the points of the quotient space.

Among the first applications of the topology conside
ations, there was an attempt to explain multiple quasar
ages@2#. For recent reviews of topology in connection wi
cosmology, see@3,4#, and the article@5# for compactifications
of the 3-sphere.

The first astrophysical limits on the topology of the un
verse were obtained for a 3-torusT3. Accordance with the
homogeneity of the cosmic microwave background radiat
~CMBR! puts a lower limit on the size of the fundament
cell, about 3000 Mpc, which is a cube in the cases of@6# and
@7#. Later on, it was shown that this result is very sensitive
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the type of compactification of the spatial sections. Fo
universe with spatial sectionsT23R, the fundamental cell’s
size is about 1/10 of the horizon, and is compatible with
homogeneity of the CMBR@8#.

In compact universes, the pair separation histogram wo
present spikes for characteristic distances. At first it w
thought that this technique, known as thecrystallographic
method, was able to totally determine the topology of th
universe@9#. It turned out that the crystallographic metho
only applied when the holonomy group contained at leas
Clifford translation, i.e. a translation which moves all th
points by the same distance@10# and@11#. Generalizations of
the crystallographic method were proposed, for example
@12#.

Also in compact universes the light front of the CMB
interacts with itself producing circles in its sky pattern@13#.

A recent result has called our attention to the possibi
that methods based on multiple images will prove not to
efficient @14#. The reasoning is that, according to observ
tions, the curvature is very small, so the fundamental regi
are so big that there has not been time enough for the for
tion of ghost images. The result is that for low curvatu
universes such as ours, only compact universes with
smallest volumes could be detected by pattern repetition

A very attractive argument in favor of compact hyperbo
manifolds is related to pre-inflationary homogenizati
through chaotic mixing@15#. The effect is the same tha
arises in compact hyperbolic surfaces. The geodesic mo
on a surface of genusg.1 shows the absence of KAM toru
@16#. Not only is it ergodic but it also satisfies the Anoso
property, which indicates the presence of strong chaos@16#.
The chaotic properties of theg52 torus were previously
studied, for example in@17#.

We extend our previously obtained result@18# ~see also
@19#! for a few more compact hyperbolic universes. In@18#
we numerically calculated the Casimir effect of a scalar fi
for a static universe whose spatial section is the Weeks m
fold, the smallest volume~with curvature normalized toK
521) compact hyperbolic manifold known. The outcom
©2002 The American Physical Society07-1
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of our calculation is in fact a Casimir energy densityrC .
In compactifications of flat space, the strictly speaki

Casimir energy can be analytically obtained through the v
elegant zeta functions techniques; for a recent review
@20#. Unfortunately this formalism does not yield an analy
cal result in the case of hyperbolic compact manifolds, si
the spectrum of the Laplace-Beltrami operator can only
determined numerically.

We use the point splitting technique in the covering spa
which is a static hyperbolic universe. The obtained propa
tor is exact and possesses information about the global p
erties of the manifold, in the sense that the infrared mo
are taken into account.

When the spacetime is multiply connected, the propag
is obtained as the usual sum over paths: all geodesics
necting the two points are taken into account.

We find a static hyperbolic solution for the EQ in Sec.
In Sec. III we write the expression for the vacuum expec
tion value of the energy-momentum tensor in compact
perbolic universes. We obtain in Sec. IV the numerical v
ues of the Casimir energy density in a few multip
connected static spacetimes. Our conclusions are prese
in Sec. V.~We use natural units,G5c5\51, except in Sec.
II.!

II. QUANTUM FIELD THEORY IN THE STATIC
UNIVERSE RÃH 3

The hyperbolic space sectionsH3, can be realized as
surface

~x2x8!21~y2y8!21~z2z8!22~w2w8!252a2, ~1!

imbedded in a Minkowski 4-space

dl25dx21dy21dz22dw2.

As this space is homogeneous, we explicitly write the ori
of coordinates (x8,y8,z8,w8). It can easily be seen that it
isometry group is the proper, orthocronous Lorentz gro
SO↑(1,3), which is isomorphic toPSL(2,C)5SL(2,C)/
$6I % @21#. With the constraint of Eq.~1! on the line element
we obtain

dl25dx21dy21dz2

2
@~x2x8!dx1~y2y8!dy1~z2z8!dz#2

~x2x8!21~y2y8!21~z2z8!21a2
,

ds252dt21dl25g~x,x8!mndxmdxn, ~2!

where we interchangeably write (x0,x1,x2,x2)↔(t,x,y,z).
Both connections,¹x and¹x8 , compatible with the metric of
Eq. ~2!, can be defined through

¹mg~x,x8!ab[0, ~3!

¹m8g~x,x8!ab[0. ~4!

The expression in Eq.~2! is the popular Robertson-Walke
line element, which written in the Lobatchevsky form rea
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ds252dt21a2@dx21sinh2x~du21sin2udf2!#, ~5!

with

sinh2x5
~x2x8!21~y2y8!21~z2z8!2

a2
.

As is well known, the EQ for the homogeneous and is
tropic space sections in Eq.~5!, with a5a(t), reduce to the
Friedmann-Lemaiˆtre equations

S ȧ

a
D 2

2
1

a2
5

8pG

3
r1

L

3
,

2S ä

a
D 1S ȧ

a
D 2

2
1

a2
528pGp1L,

where the right-hand side comes from the classical ene
momentum source for the geometry,Tmn5(r1p)umun

1pgmn, plus the cosmological constant termLgmn.
We assume that the universe was radiation domina

near the Planck era, hencep5r/3, and we obtain the follow-
ing static solution:

a5A 3

2uLu
,

r5
L

8pG
,

ds252dt21a2@dx21sinh2x~du21sin2udf2!#, ~6!

where the cosmological constant is negative.
We now wish to evaluate the vacuum expectation value

the energy density for the case of a universe consisting
classical radiation fluid, a cosmological constant, and a n
interacting quantum scalar fieldf. The solution of EQ is
given in Eq.~6!, where the quantum back reaction is disr
garded. We use the point splitting method in the univer
covering spaceR3H3, for which the propagator is exac
The point splitting method was constructed to obtain
renormalized~finite! expectation values of the quantum m
chanical operators. It is based on the Schwinger formal
@22#, and was developed in the context of curved space
DeWitt @23#. Further details are contained in the articles
Christensen@24,25#. For a review, see@26#.

Metric variations in the scalar action

S52
1

2E A2g~f ,rf ,r1jRf21m2f2!d4x,

with conformal couplingj51/6, give the classical energy
momentum tensor
7-2
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Tmn5
2

3
f ,mf ,n2

1

6
f ,rf ,rgmn2

1

3
ff ;mn1

1

3
gmnfhf

1
1

6
Gmnf22

1

2
m2gmnf2, ~7!

whereGmn is the Einstein tensor. As expected for massl
fields, it can be verified that the trace of the above tenso
identically zero ifm50. Variations with respect tof result
in the curved space generalization of the Klein-Gordon eq
tion,
c-

-
d

o

nd

p
i-

n

:
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6
f2m2f50. ~8!

The renormalized energy-momentum tensor involves fi
products at the same spacetime point. Thus the idea i
calculate the averaged products at separate points,x andx8,
taking the limitx8→x in the end:

^0uTmn~x!u0&5 lim
x8→x

T~x,x8!mn , ~9!

with
T~x,x8!mn5F1

6
~¹m¹n81¹m8¹n!2

1

12
g~x!mn¹r¹r82

1

12
~¹m¹n1¹m8¹n8!

1
1

48
g~x!mn~h1h8!1

1

12S R~x!mn2
1

4
R~x!g~x!mnD2

1

8
m2g~x!mnGG(1)~x,x8!, ~10!
-
es

l

d,
where the covariant derivatives are defined in Eqs.~3! and
~4!, andG(1) is the Hadamard function, which is the expe
tation value of the anti-commutator off(x) andf(x8) ~see
below!. We stress that the quantityT(x,x8)mn only makes
sense after the limit in Eq.~9! is taken. The geometric quan
tities such as the metric and the curvature are regarde
classical entities.g(x)mn5g(x,x850)mn is obtained from
the line element in Eq.~2!.

The causal Green function, of Feynman propagator, is
tained as

G~x,x8!5 i ^0uTf~x!f~x8!u0&,

where T is the time-ordering operator. Taking its real a
imaginary parts,

G~x,x8!5Gs~x,x8!1
i

2
G(1)~x,x8!, ~11!

we get, for the Hadamard function,

G(1)~x,x8!5^0u$f~x!,f~x8!%u0&52ImG~x,x8!.

III. THE FEYNMAN PROPAGATOR AND THE CASIMIR
ENERGY DENSITY IN RÃM

Green functions, as any other function defined in the s
tially compact spacetimeR3M, must have the same per
odicities of the manifoldM itself. One way of imposing this
periodicity is by determining the spectrum of the Laplacia
which can only be done numerically.

Another method imposes the periodicity by brute force

f M~x!5 (
gPG

f ~gx!.
as

b-

a-

,

The above expression is named the Poincare´ series, and
when it converges, it defines functionsf M on the mani-
fold M.

We define the operator

F~x,x8!5F~x!/A2gd~x2x8!, ~12!

whereF(x)5h2R/62m2, and introduce an auxiliary evo
lution parameters and a complete orthonormal set of stat
ux&, such that

G~x,x8!5^xuĜux8&,

F~x,x8!5^xuF̂ux8&,

Ĝ5 i E
0

`

e2 isF̂ds. ~13!

This last equation implies thatĜ5(F̂2 i0)21, hence the
causal Green function becomes

G~x,x8!5 i E
0

`

dŝ xuexp~2 isF̂!ux8&, ~14!

and the matrix element̂xuexp(2isF̂)ux8&5^x(s)ux8(0)& satis-
fies a Schro¨dinger-type equation,

i
]

]s
^x~s!ux8~0!&5S h2

R

6
2m2D ^x~s!ux8~0!&.

Assuming that^x(s)ux8(0)& depends only on the tota
geodesic distance2(t2t8)21a2x2, with the spatial part
a2x2 derived from Eq.~5!, the above equation can be solve
and we get
7-3
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^x~s!ux8~0!&5
2 ix

sinhx

exp$ im2s1 i @~ t2t8!22a2x2#/4s%

~4ps!2
.

~15!

Substituting this solution for the integrand in Eq.~14! gives
for the Feynman propagator

G~x,x8!52
m

8p

x

sinhx

H1
(2)
„mA~ t2t8!22a2x2

…

A~ t2t8!22a2x2
,

~16!

where H1
(2) is the Hankel function of the second kind an

order one.
The Hadamard function can be obtained from Eqs.~16!

and ~11!,

G(1)~x,x8!5
m

2p2

x

sinhx

K1„mA2~ t2t8!21a2x2
…

A2~ t2t8!21a2x2
,

~17!

whereK1 is the modified Bessel function of the second ki
and order one. The massless limitm50 can immediately be
checked:

G(1)~x,x8!m505
x

2p2sinh~x!
H 1

2~ t2t8!21a2x2J .

Remembering that, fora→`,

sinhx5a21A~x2x8!21~y2y8!21~z2z8!2→x,

the well known Minkowski result is recovered for the ma
sive and massless cases,

G(1)~x,x8!5
m

2p2

K1„mA2~ t2t8!21r 2
…

A2~ t2t8!21r 2
,

G(1)~x,x8!m505
1

2p2 H 1

2~ t2t8!21r 2J ,

wherer is the geodesic distance in the spatial Euclidean s
tion.

Substituting Eq.~17! and the covariant derivatives~3! and
~4! into Eq. ~10!, we obtainT(x,x8)mn .

The Klein-Gordon equation remains unchanged un
isometries:

£jF S h2
R

6
2m2DfG5S h2

R

6
2m2D£jf,

where £j is the Lie derivative with respect to the Killing
vector j that generates the isometry, hence summation
the Green functions over the discrete elements of the gr
G is well defined.

In M5H3/G, a summation over the infinite number o
geodesics connectingx and x8 is obtained by the action o
the elementsgPG, which are the generatorsgi and their
products~except the identity; see below!, on x8. SinceG is
08350
c-

r

in
p

isomorphic top1(M)—see Sec. I—each geodesic linkingx
andx8 in M is lifted to a unique geodesic linkingx andgx8
in H3. Thus from Eq.~9! we get

rC5^0uT~x!mnu0&Mumun

5umun lim
x8→x

(
gÞ1

T~x,gx8!mn . ~18!

The infinite summation occurs because the spacetimeR
3M is static, so there has been enough time for the qu
tum interaction of the scalar field with the geometry to trav
any distance. Since we know the universe is expanding,
infinite summation is not physically valid. The presence
the mass term, however, naturally introduces a cutoff.

In Eq. ~18! the subscriptgÞ1 means that the direct pat
is not to be taken into account. We shall show, followi
@26#, that this exclusion is indeed equivalent to a renorm
ization of the cosmological constant.

First remember that the effective actionW is given by

eiW5E Df exp~ iS!,

where the action for the scalar field can be transformed
a Gaussian type after integration by parts,

S52
1

2E d4xA2g~x!E d4yA2g~y!f~x!F~x,y!f~y!.

In a very informal way, the functional integration can b
regarded as a usual Gaussian integral1 which, making use of
Eqs.~12! and ~13!, results in

eiW5Fdet
i F̂

2p
G21/2

W5
i

2
ln@detF̂#1const.

dW5
i

2
trd~ ln F̂ !5

i

2
tr@ F̂21dF̂#

dW5
i

2
trF i E

0

`

e2 isF̂dF̂dsG
dW5dF2

i

2
trS E

0

`e2 isF̂

s
dsD G

1This result is made more rigourous by assuming a particu

complete representation basis for the operatorF̂.
7-4
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W52
i

2
trS E

0

`e2 isF̂

s
dsD 5E d4xLeff .

The trace of the operator is over the Hilbert space, define
Eq. ~13!, trÂ5 limx8→x*A2gd4x^xuÂux8&. Using the Schro¨-
dinger kernel̂ xuexp(2isF̂)ux8&, given in Eq.~15!, we obtain
the effective Lagrangian

Leff5
2 i
2 A2g lim

x8→x

E
0

`^xuexp~2 isF̂!ux8&
s ds

52
1

2
A2gE

0

` eim2s

~4p!2s3
ds5L`A2g,

~19!

which shows that the direct path (g51) corresponds to a
divergent cosmological termL` .

IV. CASIMIR DENSITY rC IN A FEW UNIVERSES

According to quantum cosmology, a smaller universe
a greater probability of being spontaneously created. A
the chaotic mixing becomes more significant for smaller v
umes@15#. We describe some spatially compact univers
with increasing volumes, in Secs. IV A–IV D. As seen
Sec. I, manifoldsM>H3/G, whereG is a discrete subgroup
of isometries andH3 is its universal covering, are multiply
connected.

The values ofrC shown for each manifold were taken
points (u,w) on the surface of a sphere inside its fundam
tal region. For all of them the radius of the sphere is
same,d5ax50.390035 . . .a, whered is the geodesic dis
tance. Our result is displayed in Figs. 2, 4, 6 and 8 fo
scalar field with massm50.4, and a metric scale factora
510. Anglesu andw correspond to the co-latitude and lo
gitude, so the linesu50 andu5p correspond to the pole
of the chosen sphere. For each manifold we also write

FIG. 1. Fundamental region for the Weeks manifold.
08350
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plicitly the radius of the inscribed sphereRinradius .
The description that follows applies to Secs. IV A–IV D

Thegi matrices that generateG were obtained with the com
puter programSNAPPEA @27#. The numerical code has bee
improved since our previous paper@18#. To yield a numerical
result, the infinite summation~18! has to be truncated. Reca
that this summation occurs in the covering spaceH3. We
halted the summation each time the action of the genera
gi and their products on the origin (x1,x2,x3)5(0,0,0)
reached a geodesic distance bigger thand5ax
55.29834 . . .a. Care was taken so that no point wa
summed more than once. In other words, the summa
~18!, which yeldsrC , was truncated when the interior of th
hyperbolic sphere of geodesic radiusd5ax
55.29834 . . .a, was covered with replicas of the fundame
tal region. We checked that additional contributions were
important for the evaluation ofrC .

FIG. 2. rC for the Weeks universe.

FIG. 3. Fundamental region for the Thurston manifold.
7-5
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A. Weeks manifold

This manifold was discovered independently by Wee
@28# and Matveev-Fomenko@29#, and is the manifold with
the smallest volume ~in units of a3) known, V
50.942707 . . .a3. Its fundamental region is an 18-fac
polyhedron, shown in Fig. 1. The radius of the inscrib
sphere isRinradius50.519162 . . .a.

The vacuum expectation value of the 00-component of
energy-momentum tensor,rC5Tmnumun, as seen by a co
moving observer, is shown in Fig. 2.

B. Thurston manifold

The Thurston manifold was discovered by the field me
alist William Thurston@30#. This manifold possesses a fun

FIG. 4. rC for the Thurston universe.

FIG. 5. Fundamental region for the Best manifold.
08350
s
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-

damental region of 16 faces, its volume isV
50.981369 . . .a3 ~Fig. 3!, andRinradius50.535437 . . .a.

Figure 4 shows the value ofrC5Tmnumun5T00, as seen
by a comoving observer.

C. Best manifold

This manifold was discovered as a by-product of a stu
of finite subgroups ofSO(1,3) by a geometrical aproac
@31#. Its fundamental region is an icosahedron withV
54.686034 . . .a3 and Rinradius50.868298 . . .a, shown in
Fig. 5.

The vacuum expectation value ofrC5Tmnumun, as seen
by a comoving observer, is shown in Fig. 6.

FIG. 6. rC for the Best universe.

FIG. 7. Fundamental region for the Seifert-Weber manifold.
7-6
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D. Seifert-Weber Manifold

For this manifold, which was discovered by Weber a
Seifert @32#, V511.199065 . . .a3, Rinradius
50.996384 . . .a, and the fundamental region is a dodec
hedron~Fig. 7!.

FIG. 8. rC for the Seifert-Weber universe.
d
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y

tu

m

e

08350
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Figure 8 shows the value ofrC5Tmnumun, as seen by a
comoving observer.

V. CONCLUSIONS

We explicitly evaluated the distribution of the vacuu
energy density of a conformally coupled massive scalar fie
for static universes with compact spatial sections of nega
curvature and increasing volume: Weeks, Thurston, Best,
Seifert-Weber manifolds. As a specific example, we ch
m50.4 for the mass of the scalar field, anda510 for the
radius of curvature. The values of the Casimir energy den
rC on a sphere of proper~geodesic! radiusd53.90035 . . .
inside the fundamental polyhedron for each of these ma
folds are shown in Figs 2, 4, 6, and 8. In all these cases it
be seen that there is a spontaneous generation of low m
polar components. As expected, the effect becomes we
for increasing volume universes.
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@4# M. Lachièze-Rey and J.-P. Luminet, Phys. Rep.254, 135

~1995!.
@5# E. Gaussman, R. Lehoucq, J.-P. Luminet, J.-P. Uzan, an

Weeks, Class. Quantum Grav.18, 5155~2001!.
@6# I.Y. Sokolov, JETP Lett.57, 617 ~1993!.
@7# A. de Oliveira-Costa and G.F. Smoot, Astrophys. J.448, 477

~1995!.
@8# B.F. Roukema, Class. Quantum Grav.17, 3951~2000!.
@9# R. Lehoucq, M. Lachie`ze-Rey, and J.-P. Luminet, Astron. As

trophys.313, 330 ~1996!.
@10# R. Lehoucq, J.-P. Luminet, and J.-P. Uzan, Astron. Astroph

344, 735 ~1999!.
@11# G.I. Gomero, A.F.F. Teixeira, M.J. Rebouc¸as, and A. Bernui,

Int. J. Mod. Phys. D11, 869 ~2002!.
@12# H.V. Fagundes and E. Gausmann, Phys. Lett. A261, 235

~1999!.
@13# N.J. Cornish, D. Spergel, and G. Starkman, Class. Quan

Grav.15, 2657~1998!.
@14# G.I. Gomero, M.J. Rebouc¸as, and R. Tavakol, Class. Quantu

Grav.18, L145 ~2001!.
@15# N.J. Cornish, D. Spergel, and G. Starkman, Phys. Rev. L

77, 215 ~1996!.
J.

s.

m

tt.

@16# N.L. Balazs and A. Voros, Phys. Rep.143, 109 ~1986!.
@17# J. Levin and J.D. Barrow, Class. Quantum Grav.17, L61

~2000!.
@18# D. Müller, H.V. Fagundes, and R. Opher, Phys. Rev. D63,

123508~2001!.
@19# D. Müller and H.V. Fagundes, gr-qc/0205050.
@20# M. Bordag, U. Mohideen, and V.M. Mostepanenko, Phys. R

353, 1 ~2001!.
@21# B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov,Modern

Geometry—Methods and Applications~Part 1!, 2nd ed.
~Springer-Verlag, New York, 1992!.

@22# J. Schwinger, Phys. Rev.82, 664 ~1951!.
@23# B.S. De Witt, Phys. Rep.19, 296 ~1975!.
@24# S.M. Christensen, Phys. Rev. D17, 946 ~1978!.
@25# S.M. Christensen, Phys. Rev. D14, 2490~1976!.
@26# A.A. Grib, S.G. Mamayev, and V.M. Mostepanenko,Vacuum

Quantum Effects in Strong Fields~Friedmann Laboratory Pub
lishing, St. Petersburg, 1994!.

@27# J. Weeks,SNAPPEA: A computer program for creating and
studying hyperbolic 3-manifolds, freely available at sitêhttp://
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