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We study the �� /4 ! ��4 massless scalar field theory in a four-dimensional Euclidean
space, where all but one of the coordinates are unbounded. We are considering
Dirichlet boundary conditions in two hyperplanes, breaking the translation invari-
ance of the system. We show how to implement the perturbative renormalization up
to two-loop level of the theory. First, analyzing the full two and four-point func-
tions at the one-loop level, we show that the bulk counterterms are sufficient to
render the theory finite. Meanwhile, at the two-loop level, we must also introduce
surface counterterms in the bare Lagrangian in order to make finite the full two and
also four-point Schwinger functions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2194632�

. INTRODUCTION

In this paper we are interested to show how to implement the renormalization procedure up to
wo-loop level in the massless �� /4 ! ��4 scalar field theory, defined in a four-dimensional Euclid-
an space with one compactified dimension. Our aim is to shed light on the renormalization
rocedure in a system defined in a domain where translational symmetry is broken, which must be
one, for example, in the high temperature dimensional reduced quantum chromodynamics
QCD�, defined in a finite region.

Quantum chromodynamics is a non-Abelian Yang-Mills theory with gauge group SU�3�.
ince it is assumed that the fermions of the theory transform according to the fundamental rep-
esentation of the gauge group, each flavor of quark is a triplet of the color group SU�3�. Gauge
osons transform according to the adjoint representation. The interaction between the quarks is
ediated by the gluons. Due to the non-Abelian structure of the theory, the gluons couple not only
ith the quarks but have also cubic and quartic self-interaction. The self-interaction of the gluons
rovides the antiscreening of the color charge in QCD. This is responsible for asymptotic freedom
nd presumably confinement.

The confinement-deconfinement phase transition in QCD may occur in usual matter at suffi-
iently high temperature or if it is strongly compressed.1–3 In ultrarelativistic heavy ion collisions,
e expect that the plasma of quarks and gluons can be produced. We would like to stress that,

lthough nonequilibrium processes occur in the quark-gluon plasma in the heavy ion collisions, for
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implicity in a first approximation we can assume a static situation. Just after the collision hot and
ompressed nuclear matter is confined in a small region of the space and in such circumstances the
olume and surface effects become very important.

In the above described physical situation there are two important points: the first one is that
he thermodynamic limit of the infinite volume system cannot be used and therefore finite volume
ffects should be investigated and taken into account. The second point is that the quark-gluon
lasma exists in a situation of high temperature, where using the Matsubara formalism to describe
igh temperature QCD, dimensional reduction must occur.4–7 Dimensional reduction is based on
he Appelquist-Carrazone decoupling theorem.8 From a more fundamental theory, the effective
agrangian density of this theory can be obtained as some low-energy limit of the fundamental

heory where the heavy modes have been removed. There are some interesting physical situations
here the decoupling theorem can be used. First, for scalar fields without spontaneous symmetry
reaking. Second, in quantum electrodynamics, where a derivative expansion of the photon effec-
ive action can be obtained by integrating out the fermionic fields. Also in QCD at least in lowest
rder in perturbation theory the decoupling theorem works. The decoupling theorem is not valid,
or example, in spontaneous broken gauge theories. It is important to stress that the nonvalidity of
he decoupling theorem means that low-energy experiments can provide information about the
igh energy physics.

Going back to the heavy-ions collision situation, we can assume that the following scenario
ppears: in the situation where dimensional reduction occurs, we have an effective theory for the
luons field and also finite size effects for these bosonic fields. To shed light on the renormaliza-
ion procedure in systems defined in domain where translational symmetry is broken, as for
xample, the high temperature dimensional reduced QCD, in this paper we are interested to
nvestigate scalar models, impose classical boundary condition over the fields. We hope that this
tudy will give us some insight over the most interesting and also more complicated situation as
he one mentioned above. Therefore, in this paper we analyze how to implement the perturbative
enormalization up to two-loop level of �� /4 ! ��4 massless scalar field model defined in a four-
imensional Euclidean space with one compactified dimension.

Finite size effects and the presence of macroscopic structures in different field theory models
ave been extensively studied in the literature. The critical behavior of the O�N� model in the
resence of a surface was a target of intense investigations.9 The same O�N� model was studied in
wo different geometries: the periodic cube and the cylinder along one dimension �the time� and
nite and periodic in the �d−1� remaining dimensions by Brezin and Zinn-Justin.10 Finite size
ffects in QCD11 and also in different field theory models have also been extensively studied in the
iterature. Assuming periodic or antiperiodic boundary conditions for bosonic and fermionic mod-
ls, respectively, the translation symmetry is maintained, and surface effects are avoided. There-
ore, to avoid surface effects, quantum fields defined in manifolds with periodic or anti-periodic
oundary conditions in the spatial section were preferred by many authors.12 Nevertheless, the
ase of boundaries conditions that break the translational symmetry deserves our attention.

In the case of hard boundary conditions as, for example, Dirichlet-Dirichlet �DD� or
eumann-Neumann �NN�, the translational invariance is lacking. This fact makes the Feynman
iagrams harder to compute than in an unbounded space. Moreover the renormalization program
s implemented in a different way from unbounded or translational invariance systems since some
urface divergence appears.13 For translational invariant systems, one can use the momentum
pace representation, which is a more convenient framework to analyze the ultraviolet divergences
f a theory. Translational invariance is preserved for momentum conservation conditions. For
ontranslational invariant systems a more convenient representation for the n-point Schwinger
unctions is a mixed momentum coordinate space.

Fosco and Svaiter considered the anisotropic scalar model in a d-dimensional Euclidean
pace, where all but one of the coordinates are unbounded. Translational invariance along the
ounded coordinate which lies in the interval �0,L� is broken because the choice of boundary
ondition chosen for the hyperplanes at z=0 and z=L. Two different possibilities of boundary

onditions were considered: �DD� and also �NN�, and the renormalization of the two-point func-
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ion was achieved in the one-loop approximation.14 Further, the renormalization of the four-point
unction was achieved in the one-loop approximation by Caicedo and Svaiter.15 Finally Svaiter16

tudied the renormalization of the �� /4 ! ��4 massless scalar field model in the one-loop approxi-
ation in finite size systems assuming that the system is in thermal equilibrium with a reservoir.
lso, still studying surface, edge, and corners effects, Rodrigues and Svaiter17 analyzed first the

enormalized vacuum fluctuations associated with a massless real scalar field, confined in the
nterior or a rectangular infinitely long waveguide. A closed form of the analytic continuation of
he local zeta function in the interior of the waveguide was obtained and a detailed study of the
urface and edge divergences was presented. Next, these authors18 studied the renormalized stress
ensor associated with an electromagnetic field in the interior of a rectangular infinitely long
aveguide.

In this paper we will consider an interacting massless scalar model, in a four-dimensional
uclidean space, where the first three coordinates are unbounded and the last one lies in the

nterval �0,L�. We analyze only DD boundary conditions. First, we present an algebraic expression
n coordinate space for the free propagator which let us identify the divergences of the n-point
chwinger functions for the interacting theory. This algebraic expression agrees with the result
btained by Lukosz.19 We would like to stress that instead of assuming hard boundary conditions,
ome authors assumed soft boundary conditions and also treated the boundary as a quantum
echanical object.20 Here, we prefer to keep hard classical boundary conditions.

The organization of the paper is as follows: In Sec. II we discuss the slab configurations,
btaining some important expressions for the free propagator in order to understand some proce-
ures in the divergence identification. In Sec. III the regularization program is implemented in the
ne-loop approximation. In Sec. IV the regularization program is implemented in the two-loop
pproximation. Section V contains our conclusions. In the Appendix, an expression for the free
ropagator is introduced. Throughout this paper we use �=c=1.

I. CLASSICAL BOUNDARY CONDITIONS AND SOME PROPERTIES OF THE FREE
ROPAGATOR

Let us consider a neutral scalar field with a ���4� self-interaction, defined in a d-dimensional
inkowski space-time. The vacuum persistence functional is the generating functional of all

acuum expectation value of time-ordered products of the theory. The Euclidean field theory can
e obtained by analytic continuation to imaginary time allowed by the positive energy condition
or the relativistic field theory. In the Euclidean field theory, we have the Euclidean counterpart for
he vacuum persistence functional, that is, the generating functional of complete Schwinger func-
ions. The ���4�d Euclidean theory is defined by these Euclidean Green’s functions. The Euclidean
enerating functional Z�h� is formally defined by the following functional integral:

Z�h� =� �d��exp�− S0 − SI +� ddxh�x���x�� , �1�

here the action that describes a free scalar field is

S0��� =� ddx�1

2
����2 +

1

2
m0

2�2�x�� , �2�

nd the interacting part, defined by the non-Gaussian contribution, is

SI��� =� ddx
�

4!
�4�x� . �3�

In Eq. �1�, �d�� is a translational invariant measure, formally given by �d� � =	x d��x�. The
2
erms � and m0 are, respectively, the bare coupling constant and mass squared of the model.
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inally, h�x� is a smooth function that we introduce to generate the Schwinger functions of the
heory by means of functional derivatives. Note that we are using the same notation for functionals
nd functions, for example, Z�h� instead of the usual notation Z�h�.

In the weak-coupling perturbative expansion, we perform a formal perturbative expansion
ith respect to the non-Gaussian terms of the action. As a consequence of this formal expansion,

ll the n-point unrenormalized Schwinger functions are expressed in a power series of the bare
oupling constant g0. Let us summarize how to perform the weak-coupling perturbative expansion
n the ���4�d theory. The Gaussian functional integral Z0�h� associated with the Euclidean gener-
ting functional Z�h� is

Z0�h� = N� �d�� exp�−
1

2
�K� + h�� . �4�

e are using a compact notation and the first term on the right-hand side of Eq. �4� is given by

�K� =� ddx� ddy��x�K�m0;x,y���y� . �5�

he term that couples linearly the field with the external source is

h� =� ddx��x�h�x� . �6�

As usual N is a normalization factor and the symmetric kernel K�m0 ;x ,y� is defined by

K�m0;x,y� = �− � + m0
2��d�x − y� , �7�

here � denotes the Laplacian in the Euclidean space Rd. As usual, the normalization factor is
efined using the condition Z0�h��h=0=1. Therefore N= �det�−�+m0

2��1/2 but, in the following, we
re absorbing this normalization factor in the functional measure. It is convenient to introduce the
nverse kernel, i.e., the free two-point Schwinger function G0�m0 ;x−y� which satisfies the identity

� ddzG0�m0;x − z�K�m0;z − y� = �d�x − y� . �8�

ince Eq. �4� is a Gaussian functional integral, simple manipulations, performing only Gaussian
ntegrals, gives

� �d��e−S0+
ddxh�x���x� = exp�1

2
� ddx� ddyh�x�G0

�2��m0;x − y�h�y�� . �9�

herefore, we have an expression for Z0�h� in terms of the inverse kernel G0
�2��m0 ;x−y�, i.e., in

erms of the free two-point Schwinger function. This construction is fundamental to perform the
eak-coupling perturbative expansion with the Feynman diagramatic representation of the pertur-
ative series. The non-Gaussian contribution in a perturbation with regard to the remaining terms
f the action. It is important to point out that the weak-coupling perturbative expansion can be
efined in arbitrary geometries, and classical boundary conditions must be implemented in the
wo-point Schwinger function. Another way is to restrict the space of functions that appear in the
unctional integral.

We are interested in studying finite size systems, where the translational invariance is broken.
n this situation, we are analyzing the perturbative renormalization for the �� /4 ! ��4 massless
calar field model, in the two-loop approximation. Therefore, let us assume boundary conditions
ver the plates for the massless field ��x�. For simplicity we are assuming Dirichlet-Dirichlet

oundary conditions, i.e.,
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��r�,z��z=0 = ��r�,z��z=L = 0, �10�

or the free field. Since the translational invariance is not preserved, let us use a Fourier expansion
f the fields in the following form:

��r�,z� =
1

�2���d−1�/2 � dd−1p

n

�n�p��eip� ,r�un�z� , �11�

here the set un�z� are the orthonormalized eigenfunctions associated to the operator −d2 /dz2 ,
−d /dz2un�z�=kn

2un�z��, and kn=n� /L, n=1,2 , . . . . The orthonormal set corresponding to the
igenfunctions of the Hermitian operator −d2 /dz2 defined on a finite interval is given by

un�z� =�2

L
sin�n�z

L
�, n = 1,2, . . . . �12�

hese eigenfunctions satisfy the completeness and orthonormality relations, i.e.,



n

un�z�un
*�z�� = ��z − z�� �13�

nd

�
0

L

dz un�z�un�
* �z� = �n,n�. �14�

ince we are interested in performing the weak coupling expansion, let us first write the free
wo-point Schwinger function. This free two-point Schwinger function can be expressed in the
ollowing form:

G0
�2��r�,z,z�� =

1

�2��d−1 � dd−1p

n

eip� .r�un�z�un
*�z��G0,n�p�� , �15�

here G0,n�p�� is given by

G0,n�p�� = �p�2 + kn
2 + m2�−1. �16�

ext, we will present some properties of the two-point free Schwinger function in order to
nderstand the behavior of the interacting field theory in the presence of macroscopic structures.
herefore, in order to understand some procedures used in the identification of the divergences in

he Schwinger functions that will appear in the next section, let us analyze some properties of the
ree two-point Schwinger function. Substituting Eq. �12� and Eq. �16� in Eq. �15� we get that the
ree propagator G0

�2��r�1−r�2 ,z1 ,z2� can be written as

G0
�2��r�1 − r�2,z1,z2� =

2

L


n=1

�

sin�n�z1

L
�sin�n�z2

L
� � dd−1p

�2��d−1

eip� .�r�1−r�2�

�p�2 + �n�

L
�2

+ m2� . �17�

he next step is to show that the two-point free Schwinger function can be written in terms of the
ariables: r12,z12

− and finally z12
+ , where r12= ��r�1−r�2 � � /L, z12

− = �z1−z2� /L, and z12
+ = �z1+z2� /L, re-

pectively. Working in the four-dimensional case and also in the massless situation, a straightfor-
�2� � �
ard calculation �see the Appendix� gives us that G0 �r1−r2 ,z1 ,z2� can be written as

ed as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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G0
�2��r�1 − r�2,z1,z2� =

1

16�2L2 

k=−�

�

� 1

�k −
�z12

− �
2
�2

+ � r12

2
�2

−
1

�k −
�z12

+ �
2
�2

+ � r12

2
�2� . �18�

he former expression for the two-point Schwinger function was obtained also by Lukosz19 using
he image method. Performing the summations in Eq. �18� �see the Appendix�, it is possible to find
closed expression for G0

�2��r�1−r�2 ,z1 ,z2�. We get

G0
�2��r�1 − r�2,z1,z2� =

sinh��r12�
16�L2r12 � sin��z1

L �sin��z2

L �
�sinh2��r12

2
� + sin2��z12

−

2
���sinh2��r12

2
� + sin2��z12

+

2
��� .

�19�

t is not difficult to show that the two-point Schwinger function G0
�2��r�1−r�2 ,z1 ,z2� satisfies the

ollowing properties:

�i� The free two-point Schwinger function is not negative, i.e., G0
�2��r�1−r�2 ,z1 ,z2�	0, for

z1 ,z2� �0,L� and r�1, r�2�R3, since we are working in a Euclidean space.
�ii� The free two-point Schwinger function is zero when one of its points are evaluated on the

boundaries

G0
�2��r�1 − r�2,0,z2� = G0

�2��r�1 − r�2,L,z2� = G0
�2��r�1 − r�2,z1,0� = G0

�2��r�1 − r�2,z1,L� = 0,

since we are assuming Dirichlet boundary conditions.
�iii� The free two-point Schwinger function contain the usual bulk divergences, i.e., when

�r�1 ,z1�= �r�2 ,z2�, it is singular. From Eq. �18� we can identify three singular terms. Split-
ting the free two-point Schwinger function in the singular and regular terms we have

G0
�2��r�1 − r�2,z1,z2� =

1

4�2L2� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ �2 + r12

2 �
+

1

4�2L2� 

k=−�

k�0

�
1

�2k − �z12
− ��2 + r12

2 − 

k=−�

k�0

�
1

�2k − �z12
+ ��2 + r12

2 � . �20�

The first term on the right-side of the last equation, is singular only when r�1=r2
� and z1

=z2. This is the term that carries the usual bulk divergences. The second term is singular
only when z1=z2=0 and r�1=r�2. The third term is singular only when z1=z2=L and r�1
=r�2. These two terms mentioned previously carries surface divergences. Finally the two
last terms do not have singularities.

�iv� When �r�1−r�2 � /L
1 the free propagator behaves like

G0
�2��r�1 − r�2,z1,z2� �

1

2�L2

e−�r12

r12
sin��z1

L
�sin��z2

L
� , �21�

which shows an exponential convergence behavior.
�v� The integral of the variable �r� ,z� on a neighborhood around �r�� ,z�� of the free propagator

is finite, i.e., 
Rd3r dz G0
�2��r�−r�� ,z ,z����. See Fig. 1.

Property �v� allows us to show that the external legs of the Feynman diagrams do not create

ivergences. Let us suppose we have the integral corresponding to some Feynman diagram,
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�
R

d3r dz G0
�2��r� − r��,z,z��F�r��,z�� , �22�

here G0
�2��r�−r�� ,z ,z�� is some external leg and F�r�� ,z�� describes the remainder part of the

iagram. Now in order to proceed we must use the following statement: for two continuous and

ositives functions f�x�� and g�x�� defined in a finite region R with the exception of the point x1
�

here f�x�� diverges, then the integral I=
Rddxf�x��g�x�� is finite, if and only if I�=
Vddxf�x�� is
nite on some neighborhoods V of the point x�1. With the property �v� and the statement before we
an see that external legs from the Feynman diagrams do not generate divergences.

II. REGULARIZED TWO- AND FOUR-POINT SCHWINGER FUNCTIONS AT ONE-LOOP
RDER

In this section we identify the divergent contribution in the two- and four-point Schwinger
unction at one-loop level. Essentially we use Eq. �20� in the 1PI diagrams of the Green functions
onsidering their external legs, and the integrations in the coordinate space. We write Eq. �20� as

G0
�2��r�1 − r�2,z1,z2� =

1

4�2L2� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ �2 + r12

2 + h�r12,z1,z2�� ,

�23�

here h�r12,z1 ,z2� is given by

h�r12,z1,z2� =
1

4 

k=−�

k�0

�
1

�k −
�z12

− �
2
�2

+ � r12

2
2� −

1

4 

k=−�

k�0,1

�
1

�k −
z12

+

2
�2

+ � r12

2
2� . �24�

rom the property �iii� we see that the three first contributions on the right-hand side of Eq. �23�
ave singularities. Otherwise, the last term is finite in the whole domain where we defined the
odel. After this brief introduction, we are able to study the interacting theory. Let us start

nalyzing the tadpole diagram, displayed in Fig. 2, from which we can write the expression for the

FIG. 1. The integral of the variable �r� ,z� on a neighborhood around �r�� ;z��.
FIG. 2. The two-point function at one-loop level.
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ne-loop two-point Schwinger function G1
�2��r�1−r�2 ,z1 ,z2�. We have that

G1
�2��r�1 − r�2,z1,z2� =

�

2
� d3r dz G0

�2��r�1 − r�,z1,z�G0
�2��0,z,z�G0

�2��r�2 − r�,z2,z� . �25�

n the following we are generalizing the results obtained by Fosco and Svaiter.14 Let us begin
tudying the quantity G0

�2��0,z ,z� that appears in the tadpole defined in Eq. �25�. From Eq. �20� we
et that G0

�2��0,z ,z� can be written as

G0
�2� = �0,z,z� =

1

4�2L2�A −
1

�2z/L�2 −
1

�2 − 2z/L�2 + 

k=−�

k�0

�
1

�2k�2 − 

k=−�

k�0,1

�
1

�2k − 2z/L�2� , �26�

here A is given by

A = lim
�z1,r�1�→�z2,r�2�

L2

�z1 − z2�2 + �r�1 − r�2�2

= lim
�→�

L2S4

8�2 �2, �27�

d= �2�d/2 /
�d /2�� and � is an ultraviolet cutoff. In the same way, from Eq. �26� by performing
he summations, we-get for G0

�2��0,z ,z�,

G0
�2��0,z,z� =

1

4�2L2�A +
�2

12
−

�2

4

1

sin2��z/L�� . �28�

ubstituting Eq. �27� in Eq. �28� we obtain

G0
�2��0,z,z� = lim

�→�

S4

32�4�2 +
1

48L2 −
1

16L2

1

sin2��z/L�
. �29�

he first term in Eq. �29� is a bulk divergence. Substituting Eq. �29� in Eq. �25� we get

G1
�2��r�1 − r�2,z1,z2� = lim

�→�

�S4

64�4�2�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

+
�

96L2�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

−
�

32L2�
R

d3r dz
G0

�2��r�1 − r�,z1,z�G0
�2��r�2 − r�,z2,z�

sin2��z/L�
�30�

he first term on the right-hand side carries a bulk divergence. The second term is finite. To see
his we analyze the integral by sectors. Therefore we have

�
R

d3r dz G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z� = �
R1

+ �
R2

+ �
R3

+ �
R4

+ �
R5

, �31�

here each integral is defined in different regions displayed in Fig. 3, where the points �r�1 ,z1� and
r�2 ,z2� are the centers of the regions R1 and R2, respectively. Using the property �v� we have that
he integrals on R1 and R2 are finite. Since the free propagators G0

�2��r�1−r� ,z1 ,z� and G0
�2��r�2

r� ,z2 ,z� presented in Eq. �31� do not have divergences on R3 and this region is compact, then the
ntegral on R3 is finite. The integrals defined in regions R4 and R5 also are finite since from the

roperty �iv� the propagator decreases exponentially when one of its points becomes far from the
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ther. Thus the integral defined by Eq. �31� is finite. Finally we must study the third integral on the
ight-hand side of Eq. �30�. Note that the term 1/sin2��z /L� diverges when z is evaluated on the
oundaries.

Nevertheless this integral is convergent, because the products of G0
�2��r�1−r� ,z1 ,z� and G0

�2�

�r�2−r� ,z2 ,z� take away the divergence. Using Eq. �19�, we have that the third integral on the
ight-hand side of Eq. �30� is finite. Therefore the one-loop two-point Schwinger function only has
ulk divergence.

Our next step is to analyze the four-point Schwinger function in the one-loop level �see Fig.
�. Since the free propagator only has singularities when its two points are equal or also when the
wo points joined are evaluated at the boundaries, we continue our analysis of the integrals only in
he domains where the two external points of the free propagators take the same values. The
omplete four-point function at one-loop level is given by

G1
�4��r�1,z1,r�2,z2,r�3,z3,r�4,z4� =

�2

2
� dd−1r� dd−1r��

0

L

dz�
0

L

dz� G0
�2��r�1 − r�,z1,z�G0

�2��r�2 − r�,z2,z�

� �G0
�2��r� − r��,z,z���2G0

�2��r�3 − r��,z3,z��G0
�2��r�4 − r��,z4,z�� . �32�

or simplicity, in Fig. 5 we define three different regions between the boundaries. The first one, R1

s concerned when �r�� ,z�� is close to �r� ,z�. In this region the contribution coming from �G0
�2��r�

r�� ,z ,z���2 is singular. Nevertheless, we still must analyze if this divergent behavior will appear
n the integral defined by Eq. �32�. We will show that the singularities will appear only as bulk
ivergences. In the region R2 �z ,z�→0 and r��→r�� the term �G0

�2��r�−r�� ,z ,z���2 is also divergent.
s we will see, this divergent behavior disappears when we compute the complete four-point

unction at one-loop order, defined by Eq. �32�. In the region R3 �z ,z�→L and r��→r�� the situation
s identical as in the region R2. Using the same argument that we used before to analyze the
onvergence of the integral denned by Eq. �22�, we can study the convergence of the integral
efined by Eq. �32� with the amputated external legs. Therefore we must study Eq. �32� with the
xternal legs amputated. Therefore we must study the quantity 
d3r dz d3r� dz��G0

�2��r��
r� ,z� ,z��2. Substituting Eq. �23� in the former equation we get

FIG. 3. Regions of integration Ri.
FIG. 4. The four-point function at one loop.
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� d3r dz d3r� dz��G0
�2��r�� − r�,z�,z��2 =

1

�4�2L2�2�I1 + I2 + I3 + I4 + I5� + finite part, �33�

here the integrals Ii , i=1,2 , . . . , are given by

I1 =� d3r� dz d3r� dz�
1

��z12
− �2 + r12

2 �2 , �34�

I2 =� d3r dz d3r� dz��−
1

��z12
+ �2 + r12

2 �2 +
1

��2 − z12
+ �2 + r12

2 �2� , �35�

I3 =� d3r dz d3r� dz��−
2

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 � −
2

��z12
− �2 + r12

2 ���2 − z12
+ �2 + r12

2 �� �36�

I4 =� d3r dz d3r� dz�
2

��z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 � , �37�

I5 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2 −
1

�2 − z12
+ � + r12

2 �h�r12,z1,z2� . �38�

et us investigate each term of Eq. �33�. The integral I1 must be analyzed only in the region R1.
or this purpose we need an auxiliary result. We can prove that a continuous and positive function

f�x� which does not have singularities except for x=0, and M =
−��
�� ddxf�w2� where w2= �w� �2, then

here exist �� such that M =Sd
0
��dw wd−1f�w2� where ������d�. Then we get

I1 = �
R1

d3r� dz�
1

��z12
− �2 + r12

2 �2 = �
r�−��

r�+��

d3r��
z−�

z+�

dz�
1

��z − z��2 + �r� − r���2�2

=�
−��

�� d4w

w4 = S4�
0

��
dw

w3

w4 = S4 ln w �0��. �39�

herefore I1 contributes with a bulk divergence of the type as the one that appears in the theory
ithout boundaries. In the usual renormalization procedure, the contribution coming from I1 can
e eliminated by the usual counterterms. Concerning the contribution coming from I2 we have that
he first term 1/ ��z12

+ �2+r12
2 �2 is not singular in the region R1. In the region R2, using the same

uxiliary result that we used before, we can obtain an upper bound to the contribution coming

FIG. 5. Regions of integration for the four-point function.
rom this term. We get
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�
R2

d3r dz d3r dz�
1

��z + z��2 + �r� − r���2�2 �� d3r�
r�−��

r�+��

d3r��
0

� �
0

�

dz dz�
1

�z2 + z�2 + �r� − r���2�2

�
1

4
� d3r�

−��

��

d5w
1

w2 =
1

12
S5��3�

R�
d3r . �40�

ince the region R��R2 is finite this integral is convergent. Next, let us analyze the term 1/ ��2
z12

+ �2+r12
2 �2 of I2 in the region R3. Since the behavior of the field in each plates �for z=0 and

=L� is the same, then the analysis follows the same lines as previous ones and therefore this
ontribution is also finite. To study I3, we consider first the term 2/ ��z12

− �2+r12
2 ���z12

+ �2+r12
2 �. This

xpression must be studied in the regions R1 and R2, respectively. In R1 we can see that the
onvergence of

�41�

epends on the convergence of

�
R1

d3r dz d3r� dz�
1

�z − z��2 + �r� − r���2
. �42�

rom the above arguments we have that Eq. �42� can be written as

�
−��

�� d4w

w2 = S4�
0

��
dw w =

S4��2

2
, �43�

hus Eq. �42� gives a finite contribution. Now we consider the first term of I3 in the region R2. For
his purpose we will use the following property. Let us take a continuous and positive function f�x�
hich does not have singularities except for x=0, and N=
0

��
0
��dlydmzf�y2+z2� then there exist ��

n such a way that N= �Sl+m+2 /Sl+1Sm+1�
0
��dw wl+m+1f�w2� where ���0. Using this property, we

ave for the first term of Eq. �35�, in the region R2, that

� d3r�
0

�

dz�
z

z+�

dz��
r�−��

r�+��

d3r�
1

��z − z��2 + �r� − r���2���z + z��2 + �r� − r���2�

�� d3r�
0

�

dz�
0

�

du�
−��

��

d3v
1

�u2 + v2��z2 + u2 + v2�

�
1

4
S4� d3r�

0

�

dz�
0

��
dw

w

�z2 + w2�
=

S3S4

2S1S2
��. �44�

herefore the first term of I3 is also finite in R2. The second term 2/ ���z12
− �2+r12

2 ���2−z12
+ �2

r12
2 �� in I3 must be analyzed also in the regions R1 and R3. This analysis follows the same lines

s the last case, therefore the contribution coming from this term is also finite.
We have now to study the term I4. Note that 2 / ���z12

+ �2+r12
2 ���2−z12

+ �2+r12
2 �� must be analyzed

n the regions R2 and R3, respectively. Let us start with the region R2. Using previous arguments

e have that the convergence of I4 depends on the convergence of the following expression:
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�
0

� �
0

�

dz dz��
r�−��

r�+��

d3r�
1

z2 + z�2 + �r� − r���2
=

S5

4
�

0

��
dw

w4

w2 =
S5

12
��3, �45�

hich is finite. In the region R3 our analysis follows the same lines as in the region R2, thus the
ntegral in the region. R3 is also finite.

Using the same argument that we used before, it is not difficult to show that the contribution
oming from I5 is also finite. We conclude that the integrals given by Eq. �32� only have bulk
ivergences. In this way we can conclude that at the one-loop level the bulk counterterms are
ufficient to render the complete connected Schwinger functions finite. In the next section we will
dentify the divergent contribution in the connected two-point Schwinger functions at the two-loop
rder.

V. THE DIVERGENCES IN THE TWO-POINT SCHWINGER FUNCTIONS AT TWO-LOOP
EVEL

In this section we will generalize some results obtained by Fosco and Svaiter14 and also by
aicedo and Svaiter.15 We will identify the divergent contribution in the connected two-point
chwinger functions at the two-loop order. The diagrams that we are interested to analyze are
isplayed in Fig. 6. The expression that corresponds to Fig. 6�a� is given by

�2

4
� d3r� dz� d3r dz G0

�2��r�1 − r��,z1,z���G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z�G0
�2��r�2 − r��,z2,z�� .

�46�

ince the external legs in Eq. �46� do not contribute to generate divergences, let us consider only
he following integral:

� d3r dz�G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z� . �47�

eplacing Eq. �29� in Eq. �47� we get

� d3r dz�G0
�2��r�� − r�,z�,z��2G0

�2��0,z,z� = lim
�→�

S4

32�4�2� d3r dz�G0
�2��r�� − r�,z�,z��2

+
1

48L2 � d3r dz�G0
�2��r�� − r�,z�,z��2

−
1

16L2 � d3r dz�G0
�2��r�� − r�,z�,z��2 1

sin2��z/L�
.

�48�

he first term and the second one in Eq. �48� can be renormalized introducing only bulk counter-
erms. The most interesting behavior appears in the last term of this equation. Note that this

FIG. 6. Two-point Schwinger functions at two-loop level.
nrenormalized quantity contains only bulk divercences, since the contribution coming from
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G0
�2��r��− r̄ ,z� ,z��2 cancels the surface divergent behavior generated by the 1/sin2��z /L� term.

evertheless, after the introduction of a bulk counterterm to render the contribution �G0
�2��r��

r� ,z� ,z��2 finite between the plates, surface divergences appear. Thus this surface divergence must
e renormalized. After the introduction of surface and bulk counterterms, the finite contribution
oming from the last term of Eq. �48�, up to a finite renormalization constant, is given by

1

16L2 � d3r dz��G0
�2��r�� − r�,z�,z��2 −

1

�4�2L2�2

1

��z12
− �2 + r12

2 �2�� 1

sin2��z/L�
−

L2

��z�2 −
L2

�2�L − z�2� .

�49�

herefore this term contains an overlapping between bulk and surface counterterms.
We still must analyze the sunset diagram. The expression corresponding to Fig. 6�b� is given

y

�2

6
� d3r� dz� d3r dz G0

�2��r1
� − r��,z1z���G0

�2��r�� − r�,z�,z��3G0
�2��r�2 − r��,z2,z�� . �50�

gain, the external legs do not contribute to generate divergences, and therefore let us study the
mputated diagram, i.e., without external legs. We have

� d3r dz d3r� dz��G0
�2��r�� − r�,z�,z��3 =

1

�4�2L2�3 �I1 + I2 + ¯ + I12� + finite part, �51�

here

I1 =� d3r dz d3r� dz�
1

��z12
− �2 + r12

2 �3 , �52�

I2 =� d3r dz d3r� dz�
1

��z12
+ �2 + r12

2 �3 , �53�

I3 =� d3r dz d3r� dz�
1

��2 − z12
+ �2 + r12

2 �3 , �54�

I4 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 �2��z12
+ �2 + r12

2 �
, �55�

I5 =� d3r dz d3r�dz�
2

��z12
− �2 + r12

2 �2��2 − z12
+ �2 + r12

2 �
, �56�

I6 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 �2 , �57�

I7 =� d3r dz d3r� dz�
2

��z12
− �2 + r12

2 ���2 − z12
+ �2 + r12

2 �2 , �58�

I8 =� d3r dz d3r� dz�
2

��z+ �2 + r2 �2��2 − z+ �2 + r2 �
, �59�
12 12 12 12
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I9 =� d3r dz d3r� dz�
2

��z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 �2 , �60�

I10 =� d3r dz d3r� dz�
6

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 ���2 − z12
+ �2 + r12

2 �
,

�61�

I11 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2

−
1

�2 − z12
+ �2 + r12

2 �2

h�r12,z1,z2� , �62�

I12 =� d3r dz d3r� dz�� 1

�z12
− �2 + r12

2 −
1

�z12
+ �2 + r12

2

−
1

�2 − z12
+ �2 + r12

2 �h2�r12,z1,z2� , �63�

et us analyze each contribution coming from each term of Eq. �51�. The first integral I1 given by
q. �52� is divergent in R1. In general we can show that

�
R1

d3r� dz�
1

��z12
− �2 + r12

2 �n = �finite, n � 2,

� , n 	 2.
� �64�

sing the above result we can see that the integrals I3 , I4 and the first integral of I11 are divergent.
hese integrals contain bulk divergences which must be removed introducing bulk counterterms.
ext let us analyze the contribution coming from the integral I2 in the region R2. Using previous

rguments and considering the external legs we get

�
R2

d3r dz d3r� dz�
zz�

��z12
+ �2 + r12

2 �3 �� d3r�
−��

�� �
0

� �
0

�

d3u dz dz�
zz�

�z2 + z�2 + w2�3 �
S7

S2
2��� d3r .

�65�

herefore this term gives a finite contribution to Eq. �50�. The contribution from the integral I6 to
he integral must be studied in region R2. In this case we must consider the external legs, and the
roperty: let us take a function f�x ,y� positive which does not have singularities except for
x ,y�= �0,0� , I=
0

�
0
�dx dy f�x ,y� then, I�
0

�dx
x
x+�dy f�x ,y�+
0

�dy
y
y+�dyf�x ,y�, we get

�
R2

d3r dz d3r� dz�
zz�

��z12
− �2 + r12

2 ���z12
+ �2 + r12

2 �2

� 2� d3r�
−��

��

d3w�
0

�

dz�
0

�

du
z�z + u�

�u2 + w2��u2 + z2 + w2�2 . �66�

rom the above arguments we have that the contribution from the integral I6 is smaller than

S4� d3r��

dz���
ds

z2s

�s2 + z2�2 + 2S3� d3r��

dz��

du���
ds

zus2

�u2 + s2��u2 + s2 + z2�2

0 0 0 0 0
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�
S4S5

S2S3
��� d3r + 2

�S5�2

�S2�2S3
� d3r�

0

��
dw

w4

w4 � �S4S5

S2S3
�� + 2

�S5�2

�S2�2S3
��� � d3r . �67�

e conclude that the integral I6 is finite. Also integrating the contribution coming from the term

8 on R2 we get

�68�

sing the fact that the integral 
R2
d3r dz d3r� dz� 1/ ��z12

+ �2+r12
2 �2 is finite, we have that this inte-

ral also is convergent in R2. The contribution from the term I10 on R2 is given by

�69�

ince the integral 
R2
d3r dz d3r� dz�

1
��z12

− �2+r12
2 ���x12

+ �+r12
2 � is finite, then the integral defined by Eq. �69�

s convergent in R2. The contribution coming from the terms I11 contain only a bulk divergence.
therwise, the contributions coming from the terms I12 are finite. We conclude that we need only
ulk counterterms to render the integral defined by Eq. �50� finite. The same analysis can be done
or the four-point Schwinger function in the two-loop approximation. We obtained that only bulk
ivergences appear in the full four-point function.

. CONCLUSIONS

In this paper we are interested to show how to implement the renormalization procedure in
ystems where the translational invariance is broken by the presence of macroscopic structures.
or the sake of simplicity we are studying the self-interacting massless scalar field theory in a
our-dimensional Euclidean space. We impose that one coordinate is defined in a compact domain,
ntroducing two parallel mirrors where we are assuming Dirichlet-Dirichlet boundary conditions.
ote that although that there are some similarities with the finite temperature field theory using the
atsubara formalism, in thermal systems there appears only bulk divergences, as for example, in

he case of the system where we assume periodic boundary conditions. In nontranslational invari-
nt systems, in general, to render the theory finite it is necessary to introduce surface counterterms.

In this work we generalize some results obtained by Fosco and Svaiter14 and also by Caicedo
nd Svaiter.15 We identify the divergences of the Schwinger functions in the massless self-
nteracting scalar field theory up to the two-loop approximation. First, analyzing the full two- and
our-point Schwinger functions at the one-loop level, we show that the bulk counterterms are
ufficient to render the theory finite. Second, at the two-loop level, we must introduce surface
ounterterms in the bare Lagrangian in order to make finite the full two- and also four-point
chwinger functions. The most interesting behavior appears in the “double scoop” diagram given
y Eq. �46�. The amputated diagram is given by Eq. �47� and we are interested in the last term of
q. �48�. This unrenormalized quantity contains only bulk divergences. Nevertheless, after the

ntroduction of a bulk counterterm to render the contribution finite between the plates, surface
ivergences appear. Thus this surface divergence must be renormalized. Therefore this term con-
ains an overlapping between bulk and surface counterterms. This procedure can be generalized to
he n-loop level. The inclusion of the counterterm in the Lagrangian up to two-loop level with the
ull renormalized action and the general algorithm to identify the surface and bulk conterterms in

he n-loop level will be left to future work.
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PPENDIX

In this Appendix we will derive a useful representation for the free two-point Schwinger
unction. Starting from Eq. �17�, we have that G0

�2��r�1−r�2 ,z1 ,z2� is given by

G0
�2��r�1 − r�2,z1,z2� =

2

�2��d−1L


n=1

� � dd−1p sin�n�z1

L
�sin�n�z2

L
� eip� · �r�1 − r�2�

�p�2 + �n�

L
�2

+ m2� .

�A1�

sing the variables u= �z1−z2� /L and v= �z1+z2� /L defined, respectively, in the region
� �−1,1� and v� �0,2�, and also making use of a trigonometric identity and performing the sum

hat appears in Eq. �A1� we obtain21

G0
�2��r�1 − r�2,z1,z2� =

1

2
� dd−1p

�2��d−1

eip� · �r�1 − r�2�
�p�2 + m2�1/2 � cosh�L�1 − �u���p�2 + m2�1/2�

sinh�L�p�2 + m2�1/2�

−
cosh�L�1 − v��p�2 + m2�1/2�

sinh�L�p�2 + m2�1/2�
� . �A2�

aking m=0,d=4, and integrating the angular part, it is possible to show that G0
�2��r�1−r�2 ,z1 ,z2�

an be written as

G0
�2��r�1 − r�2,z1,z2� =

− i

2�2��2r�L2�
0

�

dx�eixr� − e−ixr��� cosh��1 − �u��x�
sinh x

−
cosh��1 − v�x�

sinh x
� ,

�A3�

here the variable r� is defined by r����r�1−r�2 � � /L. Making use of the following integral repre-
entation of the product between the gamma function and the Riemann zeta function21

�
0

�

dx
xz−1e−�x

epx − 1
=


�z�
pz ��z,

�

p
+ 1� , �A4�

here Re�z��1,Re�� / p��−1 and the Riemann zeta function ��z ,q� is defined by

��z,q� = 

k=0

�
1

�k + q�z , q � 0,− 1,− 2, . . . , �A5�

hen, it is possible to write G0
�2��r�1−r�2 ,z1 ,z2� as

G0
�2��r�1 − r�2,z1,z2� =

1

16�2L2� 

k=−�

�
1

�k −
�u�
2
�2

+ � r�

2
�2 − 


k=−�

�
1

�k −
v
2
�2

+ � r�

2
�2� . �A6�
inally, using the following identity:
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k=−�

�
1

�k − z�2 + r2 =
�

2r

sinh�2�r�
sinh2��r� + sin2��z�

, �A7�

e obtain the expression for the two-point Schwinger function that we need to proceed in our
nalysis. Using the above equation in Eq. �A6� we get

G0
�2��r�1 − r�2,z1,z2� =

sinh��r��
16�L2r�

� sin��z1

L �sin��z2

L �
�sinh2��r�

2 � + sin2��u
2 ���sinh2��r�

2 � + sin2��v
2 ��� . �A8�
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