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junto ao Programa de Pós-Graduação em
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RESUMO

Nesta tese o problema de corte de estoque unidimensional multipeŕıodo com mini-
mização dos custos de preparação nos padrões de corte é estudado. Primeiro propomos
um extenso conjunto de formulações pseudo-polinomiais e baseadas em padrões de corte,
principalmente adaptando formulações conhecidas para problemas de corte de estoque da
literatura. Reformulações baseadas no problema de localização de facilidades são discu-
tidas para melhorar os limitantes inferiores dos modelos propostos. Em seguida, apre-
sentamos uma análise teórica comparando as várias formulações propostas em relação ao
seu limitante inferior. Apresentamos uma análise computacional a fim de complementar
a análise teórica e apresentar mais insights com relação à complexidade e qualidade das
formulações na prática. Os experimentos computacionais foram realizados em dois con-
juntos de instâncias sendo o segundo mais dif́ıcil de ser resolvido. Ambos os conjuntos de
instâncias mostraram que as reformulações baseadas no problema de localização de facili-
dade propostas melhoram a qualidade dos limitantes inferiores. Contudo, testes adicionais
mostram que a melhoria do limitante é afetada quando maiores custos do objeto em es-
toque são considerados. Em uma abordagem diferente, um algoritmo genético de chaves
aleatórias viciadas em que o controle dos parâmetros é adaptativo é proposto para resolver
o problema. Para a inicialização da metaheuŕıstica, um procedimento de decodificação
das chaves aleatórias em termos da solução (decoder) do problema é necessário. Dois
(decoders) são propostos e avaliados com base nos resultados de uma heuŕıstica de ger-
ação de colunas integrada a um software de solução. Uma combinação da metaheuŕıstica
e da heuŕıstica de geração de colunas também é apresentada. Os resultados computa-
cionais mostram que ambos os processos de decodificação obtém um melhor desempenho
que a heuŕıstica de geração de colunas para instâncias com items pequenos cujo custo de
preparação nos padrões de corte é maior em relação ao custo do objeto em estoque. Por
fim, são discutidas as conclusões finais e propostas de pesquisa futura.

Palavras chave: Problema de Corte de Estoque Multipeŕıodo. Setup nos Padrões
de Corte. Formulações Fortes. Algoritmo Genético Adaptativo com Chaves Aleatórias
Viciadas (ABRKGA).



ABSTRACT

In this thesis, we study the multi-period one dimensional cutting stock problem min-
imizing setup costs on cutting patterns. We first propose an extensive range of pattern-
based and pseudo-polynomial formulations for the problem, primarily adapting known
formulations for cutting stock problems from the literature. Facility location based refor-
mulations are also discussed to improve the lower bounds of the proposed models. We
then present a thorough theoretical analysis to establish the strength of the various pro-
posed formulations in comparison to each other. A computational analysis is presented
to complement the theoretical analysis and present further insights with respect to the
complexity and strength of the formulations in practice. The computational experiments
were performed over two sets of instances where the second set is more difficult to solve.
Both sets of instances have shown that the proposed facility location reformulations signif-
icantly improve the quality of the lower bounds. However, additional computational tests
show that the lower bound improvement is directly affected by the object cost. Then,
a random key genetic algorithm with adaptive parameter control is proposed to solve
the problem. The metaheuristic initialization requires a decoder process which maps the
random keys to feasible solutions of the problem. Two different decoder processes are
proposed and evaluated according to the performance of a column generation heuristic
solved by an optimization software. An experiment combining both the metaheuristic
and the column generation is also presented. Computational experiments show that both
decoders outperform the column generation based heuristic for instances with small items
length and setup cost greater than the object cost. Finally, some final conclusions and
future research are discussed.

Keywords: Multi-Period Cutting Stock Problem. Cutting Pattern Setup. Strong
Formulations. Adaptive Biased Random Keys Genetic Algorithm (ABRKGA).
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CHAPTER 1

INTRODUCTION

Operational Research (OR) is one of the managerial decision science tools used by

profit and non-profit organizations. As the global environment becomes fiercely compet-

itive, OR has gained significance in applications such as green logistic, quality manage-

ment, benchmarking and decision making techniques. The growth of global markets and

the resulting increase in competition have highlighted the need for OR. In order to be

competitive, business must meet the challenges present in a global market by offering

products and services with good value to their costumers (Agrawal et al. (2010)). OR

leads to a more efficient use of resources, which is not only cost attractive, but lead to

environment friendly decisions as well, being then an essential management tool to gain

competitiveness in a industrial environment (Dekker et al. (2012)).

Among the very first ideas to emerge from OR to be applied in practice, the cutting

stock problem (CSP) was one of the problems identified by Kantorovich in his 1939 paper

entitled “Mathematical methods of organizing and planning production” (later published

in Kantorovich (1960)) (Ben Amor and Valério de Carvalho (2005)). The CSP

is concerned with determining the best way of cutting a set of objects into smaller items,

in order to satisfy a given demand of the items and optimizing an objective function, often

with a large potential of economic savings, such as the minimization of waste and the min-

imization of used objects. A strong characteristic of CSP is that the research direction has

largely been motivated by taking inspiration, or directly solving, problems from industry.

The literature describes a large range of problems that often include specific operational

constraints and objectives, as describes the EURO Special Interest Group on Cutting and

Packing (ESICUP). One of the Group main purposes is to improve communication among
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individuals working in this field. The CSP wide variety of industrial applications includes

paper, steel, wood and glass industries.

The wide range of cutting stock applications motivated Dyckhoff (1990) to intro-

duce a typology for the cutting problem. His typology organizes the problem according to

four characteristics, which are the geometric dimensions (1, 2, 3, n > 3), type of assignment

(i.e selection of objects and items), assortment of large objects and the characterization

of the assortment of the items. Later, Wäscher et al. (2007) proposed a revised ty-

pology that provided a consistent system of problem types which allows for a complete

categorization of all known cutting problems and the corresponding current literature.

The cutting process in CSP may be affected by various factors, particularly by the

number of times one has to switch between different cutting patterns, e.g., changing the

positions of the cutting knives (Wuttke and Heese (2018)) or the position of lasers.

Such adjustments often interrupt production and/or may impose a setup cost every time

a different cutting pattern is used, often leading to impractical applications due the use of

many different cutting patterns. Therefore, it is desirable to have a cutting plan composed

of fewer cutting patterns. The problem that focuses only on minimizing of the number

of different cutting patterns while satisfying demands is known in the literature as the

Pattern Minimization Problem (PMP) (Vanderbeck (2000)). In the remainder of this

thesis, PMP will be refereed to as the single period problem with setup costs on the

cutting patterns where only the minimization of different cutting patterns is considered

as objective. When additional costs are considered in the objective function (trim loss or

object costs), the problem will be denoted as CSPs. We note that it is important to have

bi-criteria decision problems when setup costs are significant when compared to material

costs (Yanasse and Limeira (2006)). We also remark that even the single period version

of this problem is known to be NP-hard (McDiarmid (1999)).

Considering the CSPs with multiple time periods (Tomat and Gradisar (2017) and

Trkman and Gradisar (2007)), there is a strong relevance to the lot-sizing problem,

which has been an area of very active research over the last six decades (Brahimi et al.

(2017)), offering significant cost savings to the manufacturing sector by generating the

least costly production plan over a planning horizon with multiple periods as well for the

green manufacturing sector (e.g. when carbon emission constraints are considered (Absi

et al. (2016))). The lot-sizing problem deals with key decisions such as when and how much

to produce or stock, while respecting limitations such as satisfying demands on time. The

lot-sizing problem can also be characterized by the number of levels in the production

structure (single level or multi-level), time horizon (finite or infinite) and the presence
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of capacity constraints. The research devoted to the topic (and solution methodologies

therein) is extensive, ranging from polyhedral methods such as extended formulations and

valid inequalities (Doostmohammadi and Akartunalı (2018), Gruson et al. (2019),

and Zhao and Zhang (2020)) to decomposition and relaxations (Akartunalı et al.

(2016), de Araujo et al. (2015), and Van Vyve et al. (2014)), and heuristics designed

for real-world problems (Absi and van den Heuvel (2019), Fiorotto et al. (2017),

and Wu et al. (2018)), as well as stochastic and robust approaches to tackle uncertainty

in a broad range of settings (Alem et al. (2020), Attila et al. (2021), and Quezada

et al. (2020)). An extensive analysis of lot-sizing problems can be found in the book by

Pochet and Wolsey (2006).

Before considering integrated decisions during the production process, the literature

has dealt with the cutting stock and the lot-sizing problems separately and sequentially.

Firstly, the lot-sizing is solved and subsequently, the CSP is solved. However, this ap-

proach may increase the total cost, especially if the cutting process is economically relevant

(Gramani et al. (2009) and Poltroniere et al. (2008)). The integration of these prob-

lems opens an interesting area for further research. Over the last decades this tendency

was observed for the cutting stock and the lot-sizing. The interest in this problem often

originates from direct practical applications of the integrated environments in various in-

dustries. For example, in the paper industry, large reels are manufactured or purchased

and a decision about the size of the lots must be taken. Next, the large reels are cut into

smaller reels that might correspond to customer requests, and a decision related to the

cutting stock problem is needed (Melega et al. (2018)). Another motivation for study-

ing these kind of problems is to explore models that capture the interdependence between

both decisions in order to obtain better solutions. In general, the integrated lot-sizing

and cutting stock problem consists of determining the cutting patterns and multiplicities

of the corresponding cutting patterns (i.e., occurrence frequency) in each period of the

planning horizon to satisfy customer demands while optimizing a given objective function,

such as minimizing the costs associated with cutting pattern setup, inventory holding or

objects consumed.

The integrated lot-sizing and cutting stock problems were reviewed in the extensive

research of Melega et al. (2018), where a deterministic mathematical model, that con-

siders multiple dimensions of integration and comprises several aspects found in practice,

is proposed. This model is used as a framework to classify the current literature in this

field. The authors essentially identify three levels of production, with the first level asso-

ciated to the purchase/manufacture of object(s), the second level to the cutting process
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of objects into pieces, and third level to production of final products from pieces. An

example of the generalized three level integration for two periods is presented in Figure

1. In their classification scheme, the case that considers exclusively the second level, with

multiple time periods in a planning horizon, the inventory of cut pieces providing the

link between different periods and cutting of objects planned for each period is called the

Multi-Period Cutting Stock Problem (MPCSP). It is also worth noticing that when more

than one level is considered, with multiple time periods in a planning horizon, Melega

et al. (2018) classify the problem as the Integrated Lot-sizing and Cutting Stock Problem.

Figure 1: Integration between three production levels and two time periods. Source
(Melega et al. (2018))

Although integrated decision problems have gained more attention over the last decades,

there are only a small number of papers dealing with setups on cutting patterns with multi-

ple periods in the literature. Moreover, most of this literature uses the multi-period adap-

tation of the well-known CSP formulations of Gilmore and Gomory (1961, 1963) and

Kantorovich (1960). The cutting stock formulations based on the model of Gilmore

and Gomory (1961, 1963) are classified as pattern-based formulations. The generalized

model of Melega et al. (2018) is a pattern-based model and it address most of their

literature review papers considering the MPCSP with setups. Even though this type of

formulation avoids linearity issues, the number of variables in pattern-based models is

exponential in the number of items.
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As we note, different types of CSP models derive different types of MPCSP models.

The arc-flow based models of Alves and Valério de Carvalho (2008a), Delorme

(2017), and Valério de Carvalho (1999, 2002) are a different branch for modeling the

CSP. The model of Valério de Carvalho (1999, 2002) was firstly proposed for the

MPCSP by Poldi and de Araujo (2016) (through without cutting pattern setup min-

imization). The fist MPCSP model considering setups on cutting pattern was proposed,

to the best of our knowledge, by Ma et al. (2019) and is based on the PMP arc-flow of

Alves and Valério de Carvalho (2008a). Another types of CSP model formulations

are the One-cut formulation of Dyckhoff (1981) and the knapsack-based formulation

of Kantorovich (1960). A non-linear knapsack-based formulation was presented by

Vanderbeck (2000).

In this thesis, we consider theMPCSP with setup costs on cutting patterns and an one-

dimensional cutting process, which will hereafter refer to it as the MPCSPs. This research

makes important contributions in this domain. First, we present four formulations to

provide a rather complete picture of alternative formulations for the MPCSPs. To the

best of our knowledge three of these MPCSPs formulations are proposed here for the first

time in the literature, the ones inspired by the CSP models of Johnston and Sadinlija

(2004), Delorme and Iori (2019) and Ben Amor and Valério de Carvalho (2005).

Secondly, we consider strengthening the formulations by using extended reformulations.

More specifically, we use the facility location reformulation of Krarup and Bilde (1977).

Although this is an effectively used method in the lot-sizing domain, its application to the

MPCSPs is not trivial due to cutting patterns. Thirdly, we present a thorough theoretical

analysis investigating the strength of various formulations given in the thesis, providing a

comparative ranking with respect to lower bounds to be expected from the formulations.

To complement our theoretical analysis with an understanding of performance in practice,

a computational analysis is provided. Moreover, in order to solve large instances of the

problem, we also propose a solution method based on the Adaptive Biased Random Key

Genetic Algorithm (ABRKGA) presented by Chaves et al. (2018).

We remark that although the concepts of the cutting-stock and lot-sizing formulations

are used, the formulations proposed are not direct adaptations from the literature of these

individual problems. Considering the point of view of the CSP, the inclusion of setups on

the single period case is already an area of extensive research (see Section 2.2). In this

thesis, some of the proposed formulations are presented for the first time in the literature,

even considering their simplified single period version. From the lot sizing problem point

of view, since we are considering the production of cutting patterns (which contains a
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set of items), the classical production variables of the Uncapacitated Lot Sizing (ULS )

problem had to be modified and the theoretical results for the ULS are no longer valid.

As the adaptations are not direct, an interesting problem arises, which is different from

the classical ULS and has not been fully explored in the literature. It is important to

highlight that, to the best of our knowledge, the facility location reformulation has never

been applied to such a problem, and it presents high quality lower bounds.

It is worth remarking that in the MPCSPs addressed in this study, the setup cost only

reflects the direct or indirect costs related to a setup, for example, when changeovers imply

an unavoidable loss of material (Arbib and Marinelli (2007)), or when several workers

are needed to perform the setup, which implies high labor cost (Kolen and Spieksma

(2000)), or when a setup involves a costly craft-work (Bonnevay et al. (2016)). The

considered setup costs do not include penalty costs for lost production capacity, since this

should be taken into account via the introduction of setup times, which may impact time-

related parameters or indicators (such as due dates, throughput, production capacity). In

general, when considering practical applications, production capacity and its consequent

constraints must be considered when integrating cutting stock and lot sizing problems.

Since the research developed in this thesis does not consider production capacity, it is

limited to some exceptional practical applications, and it is also relevant as a relaxation

of several real problems, where production capacity is apparent.

The remainder chapters of this thesis are organized as follows: a literature review

with models and methods related to the MPCSPs, as well as a discussion regarding the

impact of setup costs, setup times and production capacity, is presented in Chapter 2. The

formulations and their descriptions are presented in Chapter 3, in the following order: 1)

a multi-period adaptation of the classical CSP model of Gilmore and Gomory (1961)

(denoted by AGG), 2) an extension of the CSP model of Johnston and Sadinlija (2004)

(denoted by AJS ), 3) an arc-flow extension of the Alves and Valério de Carvalho

(2008a) model motivated by the reflect formulation ofDelorme and Iori (2019) (denoted

by ARE ), and 4) an extension of the CSP vehicle routing problem formulation firstly

proposed by Ben Amor (1997) (denoted by AVR). Later, on the same chapter, we

strength the formulations using the facility location reformulation and present theoretical

results evaluating the strengths of the different formulations. In Chapter 4, the two

heuristic procedures used in this thesis are presented, namely, the column generation

technique and the ABRKGA. Two applications of the ABRKGA are proposed to solve the

MPCSPs. Then, in Chapter 5 a discussion about the computational experiments regarding

the models considering two sets of instances is presented, next, a sensitivity analysis of
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the lower bounds over the object cost is presented, followed by the computational results

regarding the ABRKGA. The chapter is then concluded with an additional experiment

combining the ABRKGA and the column generation procedure. Finally, in Chapter 6 we

make our concluding remarks and discuss some potential directions for future research.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCHES

The multi-period cutting stock problem (MPCSP) is studied in this thesis. This

problem addresses multiple periods in a finite planning horizon, the inventory of items

which comprises the link between periods, and the cutting process of objects in each

period. In this way, the decision-making of such processes might occur at different levels

of the supply chain. For instance, the planning managers are usually responsible for the

production planning of the items in order to meet the demand, whereas the machine

manufacturers perform the optimization of the cuts in the cutting process. In this work,

we proposed eight formulations for the MPCSPs, one formulation was adapted from the

literature, while seven others were new formulations proposed for the problem, four of

which were reformulations based on the facility location problem with stronger lower

bounds. A thorough theoretical study regarding lower bound strength was conducted in

order to establish a comparative understanding among these formulations. Except for

the lower bound relationship between the AGG model and the knapsack based facility

location reformulations, a dominance relation could be found for all other models. In

addition, a computational study was performed based on randomly generated instances

to evaluate the formulations in terms of computational performance and so that theoretical

relationships could be better understood.

The computational experiments were performed over two sets of instances. In the first

set, we fix the item length and vary the holding costs and the object length while in the

second, we fix the holding costs and the object length and vary the item length, resulting

in more difficult instances. For both sets of instances the integer solutions were obtained

considering the setup cost as 100 times the object cost. Regarding the upper bound
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achievements of the proposed formulations when using the first data set, the AGGFL

and AREFL* models were able to find the smallest relative gaps on 22 out of 24 classes,

with 1.77% and 2.11% on average, respectively. In addition, the AGGFL and AREFL*

models were in average always faster than their respective original formulations. As

for the second set of instances, the pattern based formulations present slight differences

on overall integer solution while AGGFL showed a better computational performance.

The AJS model obtained the best average of relative gaps for classes with small items,

however, as the instances size increase, the model could not find all feasible solutions,

whereas AV R could find more feasible solutions than AJS for all classes (though with

bigger relative gaps). The arc-flow formulations obtained, in general, the best relative

gaps for instances with medium and high item lengths, whereas AREFL* obtained the

best gaps for classes where feasible solutions could be found. In general, as the item

length becomes smaller in relation to the object length the facility location formulation

presented more difficulties in finding feasible solution for the problem. This observation

is clearer when the knapsack based models were considered, since their facility location

reformulation had difficulties even for obtaining smaller relative gaps than the respective

original formulations. In general, except for the pattern-based formulation, the arc-flow

and knapsack-based models struggle to solve medium-size instances where 6 periods and 20

items are considered. As for the lower bounds, the facility location improvement is highly

affected by the increase of the object cost value. However, all experiments showed that

the facility location reformulations improve the quality of the lower bounds. Considering

the second set of instances, the improvement ranges from 139% to 181%, when the object

cost is considered as 1, down to 0.49% to 1.59% when the cost is considered as 1000. We

highlight that Chapters 1, 2, 3 and 4 were partially published in Silva et al. (2023).

A metaheuristic based on the Adaptive Biased Random Key Genetic Algorithm

(ABRKGA) is also presented for the problem. A chromosome represented as random

item production in different periods and rules to construct cutting patterns where a de-

coder procedure uses these information to obtain a feasible cutting plan is presented. Two

different processes of encoding and decoding, D1 and D2, were proposed based on differ-

ent ways of selecting the production and construct the cutting patterns for each period.

A column generation approach based on the AGG model is also used for comparative

purpose. The solution procedures where tested using the second set of instances. Three

costs Scenarios such that the setup price is 10 times bigger, equal and 10 times smaller

than the object cost, denoted here as Scenarios 1, 2 and 3, respectively, were considered

for test evaluation.
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The computational experiments show that D1 and D2 outperforms the column gener-

ation technique for all instances in the classes with small items with cost Scenarios 1 and

2. D2 is the only decoder which obtained comparable results to the column generation

procedure for the classes with small items when considering the third Scenario. Compara-

ble results for the medium and high item length classes were also found for Scenarios 1 and

2 while the column generation outperforms both decoders in these classes when Scenario

3 is considered. D1 is almost 3 times faster than D2 and slight variation in computational

time is noted from both decoders as the object cost varies. In general, D1 works better

than D2 for smaller object costs while D2 works better than D1 when higher costs were

considered. An additional experiment using D1 and the column generation procedure is

conducted for the costs Scenarios 2 and 3. The combined procedure obtained comparable

results in all instances in better computational time for both costs configuration.

An interesting subject for future research is to extend the theoretical insights and

reformulations proposed in this thesis to cutting stock problems considering different

practical aspects, such as: several machines, capacity constraints, sequence-dependent cut

setups (Arbib and Marinelli (2007) and Wuttke and Heese (2018)), among others.

In addition, other strength strategies from the lot-sizing literature, such as shortest path

reformulation and facet defining inequalities can be extended to enhance formulations

based on cutting stock problems. The column-and-row method addressed by Sadykov

and Vanderbeck (2013) may also be used to generate cutting patterns considering the

facility location reformulation. Considering the capacitated case, applying Lagrangian

relaxation to the capacity constraint will result in a sub-problem similar to the one studied

in this thesis. A multi-objective approach can also be applied to analyze the complex

trade-offs present in the objective function.

As for future research regarding the ABRKGA, sequential heuristics such as the one

proposed by Haessler (1975) may be adapted in the decoder since such strategies have

been proven effective to deal with items with high length. Other strategies such as imple-

menting local search and adapting the decoder to consider capacity constraints are inter-

esting topics of research. In addition, the work of Chaves and Lorena (2021) proposed

a BRKGA with Q-Learning algorithm (BRKGA − QL), where the BRKGA parame-

ters are set during the evolutionary process using Reinforcement Learning, indicating the

best configuration at each stage. Therefore, testing decoders under the BRKGA − QL

framework is also a research topic.

We also would like to highlight that the feature considered in this thesis, where a

cutting pattern produces several items, can be extended to several process industries,
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where the products are obtained by processes that can produce several types of products

simultaneously. These processes can be a specific mode of configuration of a production

system that can produce several different items simultaneously and in varied quantities. A

recent general discussion about it can be found in Villas Boas et al. (2021). Examples

of such process industries are: refineries (Göthe-Lundgren et al. (2002) and Shi et

al. (2014)), molded pulp (Mart́ınez et al. (2018, 2019)), electrofused grains (Luche

et al. (2009)), foundry (de Araujo et al. (2008)), offset printing industry (Baumann

et al. (2015)) industries, among others. In practice, industries define a list of alternative

processes as input data, and the decision is related to the selection of the processes to

be used in each period of the planning horizon. However, according to Mart́ınez et al.

(2019), for some production environments, the number of configurations might be large

and hence the complete enumeration not possible while considering only a subset of them

may lead to sub-optimal solutions. Hence, an integrated approach that considers the

process configuration together with other decisions is also an interesting avenue for future

research.
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Gonçalves, J. F., & Resende, M. (2011). Biased random-key genetic algorithms for

combinatorial optimization. J Heuristics, 17, 487–525.
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sional multipeŕıodo. Pesquisa Operacional, 30, 153–174.

Poltroniere, S. C., Poldi, K. C., Toledo, F. M. B., & Arenales, M. N. (2008).

A coupling cutting stock-lot sizing problem in the paper industry. Annals of Op-

erations Research, 157 (1), 91–104.

Quezada, F., Gicquel, C., Kedad-Sidhoum, S., & Vu, D. Q. (2020). A multi-stage

stochastic integer programming approach for a multi-echelon lot-sizing problem

with returns and lost sales. Computers & Operations Research, 116, 104865.

Reinertsen, H., & Vossen, T. W. M. (2010). The one-dimensional cutting stock prob-

lem with due dates. European Journal of Operational Research, 201 (3), 701–711.

Sadykov, R., & Vanderbeck, F. (2013). Column generation for extended formulations.

EURO Journal on Computational Optimization, 1 (1), 81–115.

Santos, S. G., de Araujo, S. A., & Rangel, M. S. N. (2011). Integrated cutting

machine programming and lot sizing in furniture industry. Pesquisa Operacional

para o Desenvolvimento, 3 (1), 1–17.

Shi, L., Jiang, Y., Wang, L., & Huang, D. (2014). Refinery production scheduling in-

volving operational transitions of mode switching under predictive control system.

Ind. Eng. Chem. Res., 53, 8155–8170.

Signorini, C. d. A. (2021). One-dimensional cutting stock problems with multiple period-

sapplied to the precast slab industry [Doctoral dissertation, Universidade Estadual

Paulista].



REFERENCES 120

Signorini, C. d. A., de Araujo, S. A., Poltroniere, S., & Melega, G. M. (2022).

One-dimensional multi-period cutting stock problem with two stages applied to

lattice slab production. Journal of the Operational Research Society, -.
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