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Instituto de F́ısica Teórica, Universidade Estadual Paulista
Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP, Brazil

E-mail: gkrein@ift.unesp.br

Abstract. The time evolution of the matter produced in high energy heavy-ion collisions seems
to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic
degrees of freedom related to energy-momentum conservation, degrees of freedom associated
with order parameters of broken continuous symmetries must be considered because they
are all coupled to each other. Of particular interest is the coupling of degrees of freedom
associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral
fields act as noise sources in the classical equations of motion, turning them into stochastic
differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic
solutions of GLL equations are attainable only in very special circumstances and extensive
numerical simulations are necessary, usually by discretizing the equations on a spatial lattice.
However, a not much appreciated issue in the numerical simulations of GLL equations is that
ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The
divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory.
In the present communication we present a systematic lattice renormalization method to control
the catastrophe. We discuss the implementation of the method for a GLL equation derived in
the context of a model for the QCD chiral phase transition and consider the nonequilibrium
evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.

1. Introduction

Experiments of high energy heavy-ion collisions conducted at the Relativistic Heavy Ion Collider
(RHIC) have produced a state of matter that is strongly interacting and evolves as a low-
viscosity fluid [1, 2, 3, 4, 5, 6] – the strongly interacting quark-gluon plasma (sQGP). The
characterization of the produced matter as strongly interacting came as a great surprise, since
earlier expectations based on the property of asymptotic freedom of quantum chromodynamics
(QCD) were that RHIC would produce a gas-like system of weakly interacting quarks and
gluons. The case for a strongly-interacting system was made on the observation that the space-
time evolution of the produced sQGP is well described by relativistic viscous hydrodynamics.
In particular, hydrodynamics accounts for the measured momentum anisotropies of the detected
hadrons produced in the collision. The momentum anisotropies are the translation to momentum
space of the initial spatial eccentricity of the collision; they are encoded in the Fourier moments
v2, v3, v4, · · · of the measured azimuthal distribution of particles [7]. A weakly–interacting,
gas–like fluid would have no means to induce momentum anisotropies unless the particles of the
fluid are strongly interacting.
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Crucial physics input to a hydrodynamic description of the sQGP are the equation of state
(EOS) and transport coefficients, as shear (η) and bulk (ζ) viscosities; they reflect the properties
of the flowing hadronic matter and should be calculable from QCD. Assuming validity of
hydrodynamics for the sQGP, extraction of transport coefficients from measured momentum
anisotropy patterns can pinpoint the location of the QCD phase transition or of a crossover
from hadronic to quark-gluon matter, as suggested in Ref. [8]. However, it should be noted that
in addition to the hydrodynamic degrees of freedom related to energy-momentum conservation,
degrees of freedom associated with order parameters of broken continuous symmetries must be
considered because they are all coupled to each other. Of particular interest is the coupling
of degrees of freedom associated with chiral symmetry, which is an approximate symmetry of
QCD that is responsible for the smallness of the pion mass and is supposed to be restored
at high temperatures and baryon density. A first work in the direction of coupling chiral
degrees of freedom to viscous hydrodynamics was recently conducted in Ref. [9]. That work
investigated the influence of the coupling of chiral fields (described by the linear σ model) to
viscous hydrodynamic equations on the charged-hadron elliptic flow v2 and on the ratio v4/(v2)

2

considering the kinematical conditions of a Au + Au collision at
√
s = 200 GeV per nucleon.

The conclusions of Ref. [9] were that v2 is very sensitive to the temperature dependence of the
(shear) viscosity to entropy ratio η/s, while v2 is not very sensitive to the coupling of the chiral
fields. In addition, it was found that the ratio v4/(v2)

2 is much more sensitive than v2 to both
the coupling of the chiral sources and the temperature dependence of η/s.

One important limitation of the study in Ref. [9] was the neglect of quantum and thermal
fluctuations of the chiral fields. Temperature effects in that reference were taken into account
via the one-loop effective potential for the chiral fields. Fluctuations, on the other hand, act as
noise sources in the classical equations of motion, turning them stochastic differential equations
in the form of Ginzburg-Landau-Langevin (GLL) equations. Such equations describe the time
evolution of an order parameter under the influence of an environment which is encoded usually
in the form of dissipation and noise terms - for a good text book and references on the subject,
see Ref. [10]. Typically, when a system consisting of a two-phase mixture in a homogeneous
phase is rapidly driven across the critical coexistence temperature into a nonequilibrium state,
fluctuations around the initial homogeneous state will develop, the system will break into
domains of different phases in space, and ultimately will reach a new equilibrium state.

In the present communication we concentrate on a difficulty that appears in the numerical
simulation of GLL equations. Analytic solutions of GLL equations are attainable only in very
special circumstances, like when nonlinear couplings are neglected. Linearization of the equations
are usually valid in a restricted time interval only [11] and extensive numerical simulations,
usually by discretizing the equations on a space lattice, are necessary for obtaining equilibrium
solutions. One difficulty is related to the well-known Rayleigh-Jeans ultraviolet catastrophe of
classical field theory [12], which manifest themselves via severe lattice-spacing dependence of
the solutions of the GLL equations. This is an intrinsic feature of the problem, not related
to a particular discretization method of the equations. In order to obtain sensible results in
numerical simulations of GLL equations, a renormalization procedure has to be implemented.
The implementation of a simple and efficient method [13, 14] to control the lattice-spacing
dependence of the solutions of a GLL derived from the linear σ model will be one of the main
topics of the present communication.

2. Ginzburg-Landau-Langevin equation - chiral symmetry

Let us start with a brief review of the usage of a GLL equation in statistical physics. A GLL
equation for an order parameter field ϕ(x, t) in presence of a noise field ζ(x, t) is typically
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given by [10]

Γ
∂ϕ(x, t)

∂t
= − δH[ϕ]

δϕ(x, t)
+ ζ(x, t), (1)

where Γ is an Onsager (dissipation) coefficient and H[ϕ] is the Ginzburg-Landau-Wilson (GLW)
Hamiltonian, which is typically of the form

H[ϕ] =

∫

dx

[

1

2
κ(∇ϕ)2 + U0(ϕ)

]

, (2)

with κ a positive constant (the range of the interaction in e.g. Ising-like models). A prototype
U(ϕ) is

U0(ϕ) =
1

2
r0 ϕ

2 +
1

4
u0 ϕ

4, (3)

with r0 and u0 > 0 constants that can depend on the temperature. For r0 < 0, U0(ϕ) is of a
double-well shape. For simplicity, let us consider a simple white-noise correlation function for
the noise field:

〈ζ(x, t)〉ζ = 0, 〈ζ(x, t)ζ(x′, t′)〉ζ = 2ΓT δ(t− t′) δ(x − x′), (4)

where 〈· · · 〉ζ means average over noise realizations and T is the external temperature. From the
Fokker-Planck equation associated with the GLL equation of Eq. (1), it is not difficult to show
that the equilibrium probability distribution of field configurations ϕ(x) is the Boltzmann factor

Peq[ϕ] = e−H[ϕ]/T . (5)

The equilibrium partition function is then given by the functional integral

Z[ϕ] =

∫

Dϕe−H[ϕ]/T . (6)

The meaning of this is that a correlation function, e.g. a two-point correlation function
〈ϕ(x1)ϕ(x2)〉, defined as

〈ϕ(x1)ϕ(x2)〉 =
1

Z

∫

Dϕϕ(x1)ϕ(x2) e
−H[ϕ]/T , (7)

can also be calculated via the long-time solutions of the GLL equation as

〈ϕ(x1)ϕ(x2)〉 = lim
t→∞

1

NR

NR
∑

r=1

ϕr(x1, t)ϕr(x2, t), (8)

where ϕr(x, t) is a solution of the GLL equation of Eq. (1), with the index r indicating r-th noise
realization, and Nr is the total number of realizations (Nr is supposed to be large). However,
despite straightforward, the calculation of the averages in Eq. (8) face the problem that the
solutions of the GLL equations suffer from sever lattice spacing dependence, as mentioned in
the previous Section. Before discussing this, let us consider the derivation of GLL equations in
the context of the quark-gluon plasma.

GLL equations can be derived from a microscopic Hamiltonian describing interparticle inter-
actions by means of the Schwinger-Keldysh (closed-time-path) effective action formalism [15]. In
general, the resulting equations can be rather involved, with the order parameter appearing non-
linearly in functionals nonlocal in space and time (memory). Simple forms like the ones shown in
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Eqs. (1) - (4) are obtained only after a series of approximations and truncations. In the context
of the strongly-interacting quark-gluon plasma (SQGP), Ref. [16] is a recent example where such
a simple equation can be derived. Let us review the logic behind such approaches, starting with
the hydrodynamic description of the sQGP used in Ref. [9]. Quarks and antiquarks are assumed
to constitute a heat bath in local thermal equilibrium, propagated via fluid dynamic equations
at the the level of densities, while the chiral fields are propagated via medium-corrected classi-
cal equations of motion. Specifically, the energy-momentum tensor T µν of the combined quark
q = (u, d) and chiral φ = (φ0, φi) = (σ, πi), i = 1, 2, 3 fields is split as

T µν = T µν
q + T µν

φ , (9)

with
T µν
q = (ǫ+ p)uµuν − pgµν +Πµν , (10)

where the unknowns are the fluid four-velocity uµ (normalized as uµu
µ = 1), the viscous shear-

tensor Πµν , the energy density ǫ = ǫ(φ, T ), and the pressure p = p(φ, T ) - in the spirit of a
hydrodynamics description, they are supposed in local equilibrium at a temperature T . The
fluid equations of motion are obtained from the condition of energy-momentum conservation
DµT

µν = 0, where Dµ is the geometric covariant derivative [9] – the equations of motion for the
components of Πµν are those of the dissipative hydrodynamic formalism of Refs. [17, 18, 19].
To close the set of equations, one needs explicit expressions for the temperature dependence of
ǫ and p, and the equations of motion for the chiral fields.

Here, like in Ref. [9], we use the linear σ model, so that the contribution from the chiral fields
to the energy-momentum tensor in Eq. (9) is given by

T µν
φ =

4
∑

a=0

∂〈Lφ〉
∂(∂µφa)

∂νφa − gµν〈Lφ〉, (11)

where 〈· · · 〉 means local thermal average and

L = Lq + Lφ, (12)

with
Lq = q̄ [iγµ∂µ − g (σ + γ5~τ · ~π)] q, (13)

and

Lφ =
1

2
(∂µσ∂

µσ + ∂µ~π · ∂µ~π)− U(σ, ~π), (14)

where

U(σ, ~π) =
λ2

4

(

φ2 − v2
)2 − hqσ − U0 , (15)

is the potential which exhibits chiral symmetry breaking, and φ2 = σ2 + ~π2. The parameters of
the model are fixed as follows. The vacuum expectation values of the fields (condensates)
are taken 〈σ〉 = fπ and 〈~π〉 = 0, with the pion decay constant fπ = 93 MeV. Also, the
partially conserved axial–vector current relation yields hq = fπm

2
π with mπ = 138 MeV.

This leads to v2 = f2
π − m2

π/λ
2. Using λ2 = 20, the value of the mass of the σ field is

mσ =
√

2λ2f2
π +m2

π ∼ 600 MeV. The constant U0 is chosen such that the potential energy
vanishes in the ground state. Note that these are fitted to experimental values, because at the
level of approximation worked in Ref. [9], they do not become corrected by quantum or thermal
effects.
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The equations of motion of the chiral fields are given by

�σ +
δVeq(σ, ~π)

δσ
= −gρs , (16)

�~π +
δVeq(σ, ~π)

δ~π
= −g~ρps , (17)

where � is the D’Alambertian and ρs and ~ρps are the equilibrium thermal averages of the scalar
and pseudo-scalar chiral condensates :

ρs = 〈q̄q〉 = Iσ σ, ~ρps = 〈q̄γ5~τq〉 = Iπ ~π, (18)

where

Iσ = 2gdq

∫

d3p

(2π)3
1

E

(

1 + eE/T
)

−1
, (19)

Iπ = 2gdq

∫

d3p

(2π)3
1

E

(

1 + eE/T
)

−1
. (20)

Here, dq = 12 is the color–spin–isospin charge degeneracy of the quarks and E = (p2+m2
q)

1/2 is

the single-quark energy, with the quark mass given by m2
q = g2(σ2 + π2). We consider the case

of zero net baryon number (zero baryon chemical potential). In addition, Veq is the one-loop
equilibrium effective potential

Veq(σ, ~π) = U(σ, ~π)− 2dqT

∫

d3p

(2π)3
ln

(

1 + e−E/T
)

. (21)

Here we have changed the definition of dq as compared to the dq in Ref. [9] by a factor of two,
incorporating this factor in the definition of ρs, ~ρps and Veq.

In Eqs. (16) and (17), the influence of the quark fluid on the chiral fields is approximated by
an equilibrium average over quantum and thermal fluctuations, encoded by the thermal averages
of the scalar and pseudo-scalar chiral condensates ρs and ~ρps. A mean field treatment like this
neglects physical effects like the decay of mesons into quark-antiquark pairs and the scattering of
mesons by the quarks and antiquarks of the fluid. Such microscopic processes lead to dissipation
and noise terms in the effective effective equations of motion for the coarse-grained chiral fields,
which are of the form of GLL equations. Within the linear sigma model, a GLL equation can be
derived using the Schwinger-Keldysh (closed-time-path) effective action formalism[15]. Written
in the rest frame of the fluid, the GLL equation for the σ field derived in Ref. [16] is given by

∂2σ

∂t2
−∇2σ + η

∂σ

∂t
+

δU

δσ
+ gρs = ξ, (22)

with the noise field satisfying

〈ξ(x, t)〉ξ = 0, 〈ξ(x, t)ξ(x′, t′)〉ξ = mση coth
(mσ

2T

)

δ(t− t′) δ3(x− x′), (23)

where the dissipation coefficient is given by

η = g2
dq
π

1

m2
σ

(

m2
σ

4
−m2

q

)3/2 [

1− 2
(

1 + emσ/2T
)

−1
]

. (24)
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Here the processes σ → q̄q are included; but processes σ ↔ 2π are not. The last ones are
extremely important when mσ > 2mπ, which occur at low temperatures. On the other hand, at
low temperatures η as given in Eq. (24) is very small and σ decay and recombination processes
must be included to take into account of the correct physics. Using the result of a study in
Ref. [20] in the context of the σ model, processes σ ↔ 2π can be taken into account with a noise
correlation of the form

〈ξ(x, t)ξ(x′, t′)〉ξ = 2ησT δ(t− t′) δ3(x− x′), (25)

with ησ = 2.2 fm−1 for a temperature T = 123 MeV .
From Eq. (15), one has

δU

δσ
= −λv2σ + λσ3, (26)

where we used for simplicity hq = 0 in the equation of motion. The GLL equation of Eq. (22)
can then be written as

∂2σ

∂t2
−∇2σ + η

∂σ

∂t
−

(

λv2 − Iσ
)

σ + λσ3 = ξ. (27)

Note that the presence of the second order time derivative turns the GLL equation a hyperbolic
partial differential equation, in contrast to the purely diffusive parabolic equation of Eq. (1).
The presence of the second order time derivative is a consequence of causality imposed by
relativity. In the context of statistical physics, hyperbolic GLL equations appear when memory
effects are incorporated in the phase separation and phase ordering processes [21, 22]. One
consequence of the hyperbolic nature of the equation is that time-dependent oscillations appear
in the evolution of the order parameter toward equilibrium, as we shall see below. Regarding the
equilibrium probability distribution of field configurations σ(x), one can show that it is given
by the Bolztmann factor (the proof is a little more elaborated than in the case of a parabolic
equation, see e.g. Ref. [23]):

Peq[σ] = e−H[σ]/T ′

, (28)

where T ′ = (mσ/2) coth(mσ/2T ) and

H[σ] =

∫

d3x

[

1

2
(∇σ)2 − 1

2

(

λv2 − Iσ
)

σ2 +
1

4
λσ4

]

. (29)

As already mentioned analytic solutions of such nonlinear equations are attainable only
in very special circumstances, like when nonlinear terms in H[σ] are dropped. Such linear
approximations are usually valid in a restricted time interval only [11] and extensive numerical
simulations, usually by discretizing the equations on a space lattice, are necessary for obtaining
solutions over a large time interval. In the next Section, we will obtain explicit numerical
solutions of Eq. (27) and discuss a method do regularize the equation so that results independent
of the lattice spacing are obtained.

3. Lattice simulation of the GLL equation

In this Section we discuss the physical situation inwhich the system initially at a high
temperature, where the σ field is almost zero, is instantaneously quenched to a low temperature
phase; e.g. below the critical (or crossover) temperature.

It is useful to work with dimensionless quantities. We rescale space-time coordinates (t, x)
and the field σ: x = x′/(λv2)1/2, t = t′/(λv2)1/2, σ′ = σ/v. The GLL equation in Eq. (27) can
be rewritten in terms of these dimensionless variables as (henceforth we drop the primes)

∂2σ

∂t2
−∇2σ + η̄

∂σ

∂t
− ǫ σ + σ3 = ζ, (30)
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where the dimensionless noise field ζ(x, t) has zero mean and correlation

〈ζ(x, t)ζ(x′, t′)〉ζ = 2γ δ(t− t′) δ3(x− x′), (31)

with
η̄ = η/(λv2)1/2, ǫ = −1 + Iσ/(λv

2), γ = ηT/v2. (32)

Here we used Eq. (25) for the noise correlation, appropriate for the physical situation we are
considering. In the present work we use γ varying the range of 0.5 ≤ γ ≤ 2, η̄ = 1, and ǫ = −1
(corresponding to the neglect of Iσ/(λv

2), which should not be a bad approximation for low
temperatures). Evidently when hydrodynamic equations are coupled to the chiral equations,
one is not free to choose the values of η̄, ǫ and γ, since they are all functions of the local
temperature determined by the hydrodynamic equations.

We discretize Eq. (30) on a three-dimensional spatial lattice and use a leapfrog algorithm for
the time evolution. We use the notation

σ(x, t) = σ(x, y, z, t) → σijk(n), t = n∆t, n = 0, 1, · · · , Nt − 1, (33)

(x, y, x) = (ia, ja, ka), i, j, k = 0, 1, · · · , N − 1, , (34)

where a is the (dimensionless) lattice spacing. The leapfrog algorithm is defined by the following
iteration scheme:

∂σ(x, t)

∂t
→ σ̇ijk(n) =

1

2
[σ̇ijk(n + 1/2) + σ̇(n− 1/2)] , (35)

∂2σ(x, t)

∂t2
→ σ̈ijk(n) =

1

∆t
[σ̇ijk(n+ 1/2) − σ̇ijk(n − 1/2)] , (36)

σ̇ijk(n+ 1/2) =
1

∆t
[σijk(n+ 1)− σijk(n)] , (37)

Now we rewrite Eq. (30) in terms of the discrete field variables σijk(n):

1

∆t
[σ̇ijk(n+ 1/2) − σ̇ijk(n− 1/2)] = A(σ, ζ)ijk(n)−

η̄

2
[σ̇ijk(n + 1/2) + σ̇ijk(n− 1/2)] , (38)

where
A(σ, ζ) =

(

∇2σ
)

− ǫ σ + σ3 + ζ. (39)

The equation that has to be solved iteratively is then

σ̇ijk(n+ 1/2) =
1

1 + (η̄/2)∆t
{[1− (η̄/2)∆t] σ̇ijk(n− 1/2) +A(σ, ζ)ijk(n)∆t} , (40)

with the field updated as

σijk(n+ 1) = σijk(n) + σ̇ijk(n+ 1/2)∆t. (41)

The noise field is generated at each time and lattice point as

ζijk(n) =

√

2γ

a3∆t
Gijk(n), (42)

where Gijk(n) is a zero-mean unit-variance Gaussian random number.
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In Fig. 1 we present results for the spatially averaged value of the (noise-averaged) field as a
function of time

σ̄(t) =
1

N3

N
∑

i,j,k=1

〈σijk(n)〉ζ , (43)

where 〈σijk(n)〉ζ is the average over noise realizations. Results are shown for three values of
lattice spacings, a = 0.5, 0.8 and 1.0 – in physical units, they correspond roughly to 0.35 fm,
0.57 fm and 0.7 fm, respectively. For the time spacing, we use ∆t = 0.001 – corresponding to
7× 10−4 fm/c. We show results for γ = 1 and γ = 2.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t

0.00

0.25

0.50

0.75

1.00

σ(
t)

a = 1.0

a = 0.8

a = 0.5

0.0 5.0 10.0 15.0 20.0

t

0.00

0.25

0.50

0.75

1.00

σ(
t)

a = 1.0

a = 0.8

a = 0.5

Figure 1. Volume average of the noise averaged σ field as a function of the time, Eq. (43). The
left panel is for γ = 1 and the right panel is for γ = 2.

The results in Fig. 1 show very clearly the severe lattice spacing dependence of the solutions.
The sensitivity is stronger for larger values of γ – note that γ is a measure of the strength of
the quantum and thermal fluctuations. As said previously, the sensitivity of the solutions on a
is due to the noise sources and is a manifestation of the ultraviolet divergences of classical field
theory; when ζ = 0, the sensitivity is absent. Although we have solved the GLL equation for
fixed values of η̄, ǫ and γ, it should be clear that in the coupled hydrochiral evolution, the
lattice spacing sensitivity of the GLL equation can introduce large errors in the outcome of the
simulation. In the next Section we discuss a method to control the lattice spacing sensitivity.

4. Renormalization of the GLL equation

The equilibrium probability distribution for the field configurations σ that are solutions of
Eq. (22) is the Boltzmann factor given in Eq. (28). Equilibrium expectation values and
correlation functions of σ with this partition function leads to ultraviolet divergences in spatial
dimension larger than one – these divergences are completely unrelated to the usual divergences
of the quantum theory. In the dynamics toward equilibrium, the divergences manifest themselves
in the wild lattice spacing dependence of the solutions as a → 0, as seen in the previous Section.
The lattice dependence can be eliminated by renormalizing the GLL equation through the
addition of appropriate counterterms. In three-dimensions, the theory is super-renormalizable,
only the term proportional to σ2 in Eq. (29) needs renormalization.

In the calculation of the macroscopic free energy (or the effective potential, Ω = −T logZ),
there are only two divergent perturbative graphs in three spatial dimensions, the ones shown
in Fig. 2: the tadpole diagram (left graph), which is linearly divergent, and the setting-sun
diagram (right graph), which is logarithmically divergent. The divergent parts of these graphs
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can be calculated as a function of the lattice spacing – for an explicit and detailed derivation, see
Ref. [13]. They are given in terms of the dimensionless quantities introduced above as [13, 24]:

Ωdiv(σ) =
1

2
ǫ(µ)σ2, (44)

with

ǫ(µ) = 3γ
Σ

4πa
− 6γ2

{

1

16π2

[

log

(

6

µa

)

+ 0.09

]}

, (45)

where Σ ≃ 3.1759, and µ is a renormalization scale. Finite results are then obtained by
subtracting this term from the original (rescaled) GLL equation; the parameter v2 then becomes
renormalized and µ dependent, it has to be fitted to a measurable quantity. Once it is fitted
at some scale µ, its value at another scale µ′ is given by renormalization group equations, as
usual [10].

Figure 2. Divergent Feynman graphs that contribute to the effective potential in three spatial
dimensions. Left graph is the tadpole and the right graph is the setting-sun.

In Fig. 3 we present the results with the above counter-term added to the GLL equation –
we used the value µ = 1, but the results are not much dependent on the value of µ, since the
first term in Eq. (45) dominates the divergence. As seen, the subtraction leads to solutions that
are independent of the lattice spacing within very good precision. Similar results are obtained
for more intense noises, i.e. for larger values of γ.
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Figure 3. Volume average of the noise averaged σ field as a function of the time, Eq. (43),
obtained with the counter-term added to the GLL equation. The left panel is for γ = 1 and the
right panel is for γ = 2.
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5. Conclusions

In summary, we have discussed a simple and systematic method to renormalize GLL equations
on a spatial lattice. Numerical results of simulations were presented for a GLL equation derived
in the context of the linear σ model. The usage of the renormalization method when coupling
the chiral equations to hydrodynamic fluid equations is straightforward. Work in this direction
is in progress.
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[20] Biró T and Greiner C 1997 Phys. Rev. Lett. 79 3138
[21] Koide T, Krein G and Ramos R O 2006 Phys. Lett. B 636 96
[22] Cassol-Seewald N C, Copetti M I M and Krein G 2008 Comp. Phys. Comm. 179 297
[23] Horowitz A M 1985 Phys. Lett. B 156 89
[24] Fraga E S, Krein G and Mizher A J 2007 Phys. Rev. D 76 034501

XIII Mexican Workshop on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 378 (2012) 012032 doi:10.1088/1742-6596/378/1/012032

10




