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We analyse the constraint structure of the background field model for two-dimensional
gravity via the Hamilton-Jacobi formalism. This analysis consists in finding the com-
plete set of involutive Hamiltonians that assure the integrability of the system. We
then calculate the characteristic equations of the system, also establishing the equiv-
alence between these equations and the field equations. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4748301]

Dedicated to Professor H. G. Valqui on the occasion of his 80th birthday

I. INTRODUCTION

Until now, there is no satisfactory quantum theory for the four-dimensional gravity. In order
to understand some properties of gravity at quantum level, it has been found at lower dimensional
models of gravity interesting topics of research (see Ref. 1 and references therein). There are some
trivialities on those models, for example, the three-dimensional pure gravity has no local degrees of
freedom. For the two-dimensional case, it is well known that the Einstein tensor is identically zero,
then Einstein’s equations are always satisfied for pure gravity.

Because of this trivial behavior of two-dimensional gravity it is customary to make some
reformulations in the Einstein-Hilbert action. One of the most used models is due to Jackiw and
Teitelboim,2 in which the action is given by

IJ T =
∫

d2x
√

gψ (R − k) ,

where ψ is a dilaton field used as a lagrangian multiplier, and k is the cosmological constant. The
Euler-Lagrange (EL) equations for the Jackiw-Teitelboim (JT) model are given by

R − k = 0, ∇μ∇νψ + 1

2
kgμνψ = 0.

The first is the constant curvature equation, and the second is the equation of motion for the dilaton
field which is determined without making further restrictions on the metric. For an extensive review
of two-dimensional dilaton models of gravity, we refer to Ref. 3.

The JT model can be reformulated as an SO(2, 1) gauge theory described by the action

I =
∫
M

T r (B ∧ F),

which is also known as the background field (BF) action4 (we postponed the conventions for Sec. III).
The Hamiltonian analysis of the BF model has been studied in Ref. 5 through Dirac’s method. The
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aim of this article is to analyse the constraint structure of the BF model for two-dimensional gravity
by means of the Hamilton-Jacobi (HJ) formalism.6

The HJ formalism is an alternative method to analyse constrained systems. It was born as a
generalization of Carathéodory’s work7 on variational principles and first-order partial differen-
tial equations. In this formalism we obtain a set of Hamilton-Jacobi partial differential equations
(HJPDEs) also known as Hamiltonian densities, and the integrability of this system is achieved if the
Frobenius’ integrability conditions (ICs) are satisfied. There are several applications and improve-
ments of this formulation.8 Concerning two-dimensional gravity, the HJ formalism has been used
to study the Polyakov’s model in the front-form dynamics,9 the usual Einstein-Hilbert action,10 and
also the linearized gravity.11

The main advantages in using the HJ approach come from the fact that it provides a full
theoretical approach, rather than a consistency construction, to the canonical formulation of singular
systems. One of these advantages is the absence of the so-called Dirac’s conjecture, which states
that first-class constraints are generators of the gauge transformations. However, this conjecture is
not generally valid as shown in Ref. 12. Moreover, at the classical level, gauge fixing is not required
for equivalence between the canonical and lagrangian descriptions. The HJ formalism also provides
a very natural description of systems with non-involutive (equivalent to second-class) constraints,13

that leads to modified generalized brackets (in analogy with Dirac’s brackets).
In Sec. II we briefly discuss the HJ formalism. In Sec. III we introduce the BF model. In Sec. IV

we make the proper HJ analysis which consists in finding the complete set of involutive Hamiltonians
of the theory. In Sec. V we compute the characteristic equations (CEs) and analyse the dynamical
evolution along the independent parameters of the theory. Finally we discuss the results.

II. THE HAMILTON-JACOBI FORMALISM

Let us consider a system described by a Lagrangian density L = L(xi , ẋ i , t), i = 1, 2, . . . , N ,
with a singular Hessian matrix of rank P ≤ N. In this case we separate the variables xi = (xa, xz),
where a = 1, 2, . . . , P and z = 1, 2, . . . , R with P + R = N. The variables xa are related to
the inversible part of the Hessian, while xz are related to its zero-modes. Following Carathéodory’s
variational approach, the necessary and sufficient condition for extremizing the action is given by
p0 + pa ẋa + pz ẋ z − L = 0, where the canonical momenta are defined by pa = ∂S/∂xa, pz = ∂S/∂xz,
and p0 = ∂S/∂t.

The singularity of the Hessian matrix assures that there are R canonical constraints H ′
z

≡ pz − ∂L/∂ ẋ z = 0. This allows us to define the canonical Hamiltonian H0 = pa ẋa + pz ẋ z − L ,
such that we have a set of R + 1 first-order HJPDE

H ′
α ≡ pα − ∂L/∂ ṫα = 0, α = 0, 1, 2, ..R, (1)

where tα = (x0 ≡ t, xz). The Cauchy’s method allows one to relate (1) to a set of total differential
equations, the characteristic equations

dxa = ∂ H ′
α

∂pa
dtα, dpa = −∂ H ′

α

∂xa
dtα, d S = padxa − Hαdtα. (2)

Solutions of the first two equations are curves of R + 1 parameters tα on the phase space defined
by the conjugated variables (xa, pa). From (2), and considering tα as independent parameters, the
evolution of any phase space function F = F(xa, tα , pa, pα) is given by the fundamental differential

d F = {F, H ′
α}dtα, (3)

where the Poisson brackets (PBs) are defined on the extended phase space of the variables (xa, tα , pa,
pα). Therefore, the canonical constraints H ′

α play the role of generators of the dynamical evolution
of the system: they are considered as the Hamiltonians of the system. Note that for a regular system,
the CE (3) become Hamilton’s equations.

A complete solution of the set of HJPDE is given by a family of surfaces orthogonal to the
characteristic curves. The Frobenius’ integrability condition assures the existence of this solution,
as well as the independence between the parameters tα , and it is expressed in terms of vector fields
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tangent to the family of surfaces. In terms of the Hamiltonians H ′
α , which are generators of these

vectors, the IC is written as

{H ′
α, H ′

β} = C γ

αβ H ′
γ , (4)

i.e., the Hamiltonians must close a Lie algebra with the PB. Hamiltonians that satisfy (4) are called
involutive Hamiltonians. The presence of Hamiltonians that do not satisfy the above condition,
the so called non-involutive Hamiltonians, indicates that the system of HJPDE is not complete, or
the parameters are not independent. In this case, the equivalent IC d H ′

α = 0 should provide new
constraints to the system, as well as indicate the dependence between the parameters.13 The HJ
constraint analysis is actually the search for a complete set of involutive Hamiltonians of the system.

It is possible that after a complete set of HJPDE is found, there remains a subset of non-involutive
Hamiltonians H ′

x . In this case we may proceed with the method outlined in Ref. 13, and build
the matrix with elements Mxy ≡ {H ′

x , H ′
y}. This procedure redefines the dynamics by eliminating

the parameters related to these Hamiltonians with the use of the generalized brackets (GBs). If the
M matrix is singular of rank K ≤ R, we have a regular submatrix Māb̄, with ā = 1, 2, . . . K , and we
define the GB by

{A, B}∗ = {A, B} − {A, H ′
ā}(Māb̄)−1{H ′̄

b, B}. (5)

We can write the fundamental differential as

d F = {F, H ′
ᾱ}∗dt ᾱ, ᾱ = 0, K + 1, . . . , R. (6)

After the procedure of finding possible new Hamiltonians and eliminating possible dependence
between the parameters, the Hamiltonians H ′

ᾱ become the complete set of involutive Hamiltonians
of the system, this time with the PB substituted by the GB.

III. THE BF MODEL

Let us consider a gauge group G acting on fields of a two-dimensional manifold M. The BF
theory consists on the gauge connection 1-form A and a scalar field B, also called background field
(B-field), whose action is given by

IB F [B, A] =
∫
M

T r (B ∧ F). (7)

The trace is taken on the adjoint representation of G, and the field strength F is related to the gauge
connection 1-form A by the covariant exterior derivative F = DA = dA + A ∧ A. The corresponding
EL equations are

F = 0, DB = 0. (8)

The interpretation of these equations is straightforward: we have a flat connection A, since it has
zero field strength, while the B field is parallel to A. With this machinery we may proceed to make a
model for the gauge field of the Poincaré group ISO(1; 1), in which we write the connection A as a
combination of the 1-form zweibein eI and the 1-form spin connection ω

A = eI PI + ω	,

where I = 0, 1, and PI and 	 are the generators of translations and Lorentz boost, respectively. The
zweibein and the spin connection are considered independent, and the Poincaré algebra is given by

[	, PI ] = ε J
I PJ , [PI , PJ ] = 0, (9)

the Levi-Civita symbol is defined such that ε01 = 1.
The Killing metric is defined by these generators as

gab ≡ T r (Ja Jb),

with J0 = P0, J1 = P1, and J2 = 	. In the two-dimensional case, the Killing metric is degenerated,
then it is not possible to build a consistent gauge theory. To solve this problem the presence of a
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non-vanishing cosmological constant k is needed, so we can deform the Poincaré algebra (9) to the
(anti) de Sitter algebra

[	, PI ] = ε J
I PJ , [PI , PJ ] = kεI J 	. (10)

In this case the Killing metric results to be invariant and non-degenerate:

gab =
(

kηI J 0

0 1

)
.

The (anti) de Sitter algebra is expressed in terms of the generators Ja by [Ja, Jb] = f c
ab Jc, where

f c
ab ≡ εabcgcd , and ε012 = 1.

In terms of the zweibein and the spin connection we have the field strength

F = (
deI − ωε I

J ∧ eJ
)

PI +
(

dω + k

2
εI J eI ∧ eJ

)
	 ≡ T I PI + R	,

where T I and R represent the torsion and curvature 2-forms of the zweibein field in the first-order
formalism. The flat connection equation F = 0 becomes

deI − ωε I
J ∧ eJ = 0, (11)

dω + k

2
εI J eI ∧ eJ = 0. (12)

Equation (11) is the torsion-free equation T I = 0, and along with (12), and considering an inversible
zweibein, it is possible to compute the spin connection in terms of eI. In this case Eq. (12) becomes
the equation of constant Ricci’s scalar curvature R = k. This is the standard procedure to show the
equivalence between the two-dimensional BF gravity and the JT model (see Refs. 4 and 14).

IV. THE HAMILTON-JACOBI ANALYSIS

Instead of using the differential forms, it is preferred to use its components A = Aa
μ Jadxμ and

B = BaJa, so the action can be written as

IB F [B, A] =
∫

dx2 Ba(∂0 Aa
1 − ∂1 Aa

0 + f a
bc Ab

0 Ac
1). (13)

In terms of the components, the flat connection equation becomes

∂0 Aa
1 − ∂1 Aa

0 + f a
bc Ab

0 Ac
1 = 0, (14)

while the equation for the B-field becomes

δ
μ

0 D1 Ba − δ
μ

1 D0 Ba = 0, (15)

where Dμ Ba ≡ ∂μ Ba + f c
ab Ab

μ Bc . It is clear that (15) is equivalent to DμBa = 0.
It is well known that the elimination of the divergence terms in the Lagrangian density does not

modify the EL equations, but it changes the functional form of the canonical momenta. Therefore,
we consider the equivalent action

IB F [B, A] =
∫

d2xL =
∫

d2x
(
Ba∂0 Aa

1 + Aa
0 D1 Ba

)
. (16)

Considering Aa
μ and Ba as the variables of the configuration space of the theory, we identify the

canonical conjugated momenta

πμ
a ≡ ∂L

∂(∂0 Aa
μ)

= δ
μ

1 Ba, �a ≡ ∂L
∂(∂0 Ba)

= 0,

as their respective canonical constraints. The canonical Hamiltonian density H0 ≡ π
μ
a ∂0 Aa

μ

+ �a∂0 Ba − L is then given by

H0 = −Aa
0 D1 Ba . (17)
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We have then the set of HJPDE

H′ ≡ π + H0 = 0, → x0 ≡ t, (18)

H′0
a ≡ π0

a = 0 → Aa
0 ≡ λa

0, (19)

H′1
a ≡ π1

a − Ba = 0 → Aa
1 ≡ λa

1, (20)

H′a ≡ �a = 0 → Ba ≡ εa . (21)

The left hand sides of these equations are the Hamiltonian densities for which we have related the
set of parameters (x0, λa

μ, εa). The fundamental PBs of the theory are given by

{Aa
μ(x), πν

b (y)} = δa
bδμ

ν δ(x − y), {Ba(x),�b(y)} = δa
bδ(x − y), (22)

and the fundamental differential,

d F =
∫

dy
[{F,H′(y)}dt + {F,H′μ

a (y)}dλa
μ(y) + {F,H′a(y)}dεa(y)

]
. (23)

The fundamental differential is used to test the integrability of the system in order to find other
possible Hamiltonian densities to complete the system (18). We may proceed in another way: we
analyse the algebra of the previous Hamiltonian densities, build the GB, and then find the remaining
constraints. For this particular case, the this method simplifies calculations and clarifies certain
aspects of the formalism.

Notice that the subset of Hamiltonian densities h0 ≡ H′a and h1 ≡ H′1
a is not involutive, then

we build the matrix M(x, y) with components

Mrs(x, y) ≡ {hr (x), hs(y)} =
(

03×3 13×3

−13×3 03×3

)
δ(x − y),

where r, s = 0, 1. The inverse matrix M− 1(x, y) is given by

M−1
rs (x, y) =

(
03×3 −13×3

13×3 03×3

)
δ(x − y).

With this matrix, we eliminate the parameters
(
λa

1, εa
)

related to the non-involutive Hamiltonian
densities by building the GB

{F(x), G(y)}∗ = {F(x), G(y)} −
∫

dzdw{F(x), hr (z)}M−1
rs (z, w){hs(w), G(y)}. (24)

The only non-zero GBs are given by

{Aa
μ, πν

b }∗ = δa
bδμ

ν δ(x − y), {Aa
μ(x), Bb(y)}∗ = δa

bδ1
μδ(x − y). (25)

The reduction of the phase space is now evident, since Bb and �b are not canonical conjugated
anymore. In fact, now Bb plays the role of π1

b . It is still necessary to test the integrability of the
Hamiltonian H′0

a . For this purpose we notice that after the construction of the GB the fundamental
differential is now given by

d F =
∫

dy
[{F,H′}∗dt + {F,H′0

a }∗dλa
]
,

where we have renamed λa ≡ λa
0.

Since {H′0
a ,H′}∗ = −D1 Ba , to achieve integrability we have to consider the new Hamiltonian

density

C ′
a ≡ D1 Ba = 0. (26)
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It is straightforward to see that the IC for C ′
a is satisfied: they are in involution with the other

Hamiltonians under the GB. In particular, we have the algebra

{C ′
a(x), C ′

b(y)}∗ = f c
ab C ′

c(x)δ(x − y), (27)

and the IC programme is closed for this system.

V. THE CHARACTERISTIC EQUATIONS

In the HJ description, we consider the complete set of involutive Hamiltonians H′,H′0
a , and

C ′
a as generators of the dynamical evolution of the system. Note that the functions H′ and H′0

a are
related to the parameters t and λa, respectively. However, C ′

a is not related to any variable of the
theory. To consider this Hamiltonian as a generator we expand the phase-space with a new set of
variables ωa. The fundamental differential of the system is then given by

d F =
∫

dy
[{F,H′(y)}∗dt + {F,H′0

a (y)}∗dλa(y) + {F, C ′
a(y)}∗dωa(y)

]
. (28)

From (28) we obtain the CE

d Ba = − f c
ab Bc

[
Ab

0dt − dωb
]
, (29)

d�a = 0, (30)

and

d Aa
μ = δ0

μdλa + δ1
μ

[
D1 Aa

0dt − D1dωa
]
, (31)

dπμ
a = δ0

μ D1 Badt − δ1
μ f c

ab Bc
[
Ab

0dt − dωb
]
. (32)

These equations should be equivalent to the EL equations (14) and (15). Because of the presence of
the parameters ωa, we need to clarify under what conditions the equivalence of these equations are
valid.

The integrability assures independence between the parameters (t, λa, ωa), so the dynamics
in the direction of any parameter is independent of the others. In this case, we have that temporal
evolution alone gives

D0 Ba = 0, (33)

∂0�
a = 0, (34)

and

∂0 Aa
μ = δ1

μ D1 Aa
0, (35)

∂0π
μ
a = δ0

μ D1 Ba − δ1
μ f c

ab Bc Ab
0. (36)

We see that (33) is one of the EL equations for the B field (15). Equation (34) represents the IC
for the Hamiltonian (21), note that this is related to the fact that the Ba fields serve as Lagrange
multipliers in the action. The component μ = 0 of (35) states that Aa

0 has no dynamics, while the
component μ = 1 is the EL equation (14). For μ = 0, (36) yields ∂0π

0
a = D1 Ba = C ′

a , which is zero
by imposition of integrability. Therefore, this equation reproduces the EL equation D1Ba = 0. At
last, for μ = 1 (36) gives

∂0π
1
a + f c

ab Bc Ab
0 = 0.
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Using (33) it becomes ∂0π
1
a = ∂0 Ba , which corroborates the interpretation of Ba as a conju-

gate momenta related to Aa
1. Therefore, we showed that the time evolution of the characteristic

equations (33)–(35) is completely equivalent to the EL equations (14) and (15).
The evolution in the direction of the parameters (λa, ωa), on the other hand, gives the following

set of infinitesimal transformations:

δAa
μ = {Aa

μ,H′0
b }∗δλb + {Aa

μ, C ′
b}∗δωb = δ0

μδλa − δ1
μ D1δω

a, (37)

δBa = {Ba, C ′
b}∗δωb = f c

ab Bcδω
b. (38)

These variations left invariant the action (13) if we choose

δωa = −ξ a, δλa = D0ξ
a, (39)

in other words, the BF theory is invariant under the gauge transformations

δAa
μ = Dμξ a, (40)

δBa = f c
ab Bcξ

b. (41)

Since the set of involutive Hamiltonians
(
H′0

b , C ′
b

)
generates the transformation (37), we have that

the generator of the gauge transformation is given by

G =
∫

dy
[
H′0

a (y)D0ξ
a(y) − C ′

a(y)ξ a(y)
]
, (42)

and it can be directly verified that

{Ba, G}∗ = − f c
ab Bcδω

b = f c
ab Bcξ

b,{
Aa

μ, G
}∗ = δ0

μδω̇a − δ1
μ D1δω

a = Dμξ a .

VI. FINAL REMARKS

In this work we have dealt with the Hamilton-Jacobi constraint structure of the two dimensional
BF gravity. The Frobenius’ integrability conditions are a cornerstone of the mathematical structure
of this formalism. We saw in Sec. IV that the Poisson algebra of the canonical constraints of the BF
model allowed the construction of the GB, due to the presence of the two non-involutive Hamiltonian
densities

(
H′1

a ,H′a). We built the GB, and by proceeding with the integrability, we obtained the set(
H′,H′0

a , C ′
a

)
as the complete set of involutive Hamiltonian densities of the theory.

These results can be compared with the ones obtained in Ref. 5. The set of involutive Hamil-
tonians match with their set of first-class constraints. In particular, the generators C ′

a are the first-
class secondary constraints found by Constantinidis et al. This is an expected feature, since the
gauge character of the theory cannot be changed under a distinct formalism. However, Ref. 5 does
not present the equivalent non-involutive (second-class) Hamiltonians

(
H′1

a ,H′a), and therefore
the use of the GB (24) has no analogy in their analysis in terms of Dirac’s brackets. This is so
because Ref. 5 does not consider the B-field as a variable of the formalism, and then they had to
ignore the constraint H′1

a = 0 as a proper primary constraint for the sake of consistency.
We built the fundamental differential (28), from where we obtained the characteristic

equations (29)–(31) of the system. These equations depend explicitly of the parameter ωa related
to the Hamiltonian C ′

a , and this dependence does not spoil the equivalence between the CE and the
EL equations of the system. This is so because integrability implies that the parameters must be
independent, therefore time evolution is independent of the dynamics of the other parameters.

We notice that all the involutive Hamiltonians contribute to the construction of the gauge
generator (42), and now we can count the degrees of freedom of this theory. The dimension of the
phase-space of the BF model is 18, 6 of these dimensions are related to the (Ba, �a) canonical
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variables, and 12 are related to
(

Aa
μ, πν

a

)
. The construction of the GB reduces the phase-space since

we identify the variable Ba with the momenta π1
a . The momenta �a are eliminated by the GB. Our

reduced phase-space has now the dimension of 12. On the other hand, we have six generators of
gauge transformation, three for each involutive Hamiltonian. These generators reduce the number
of dynamical variables in 12. As a result we have zero degrees of freedom for BF gravity.
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