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Dynamical systems of the billiard type are of fundamental importance for the description of

numerous phenomena observed in many different fields of research, including statistical

mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents

the recent progress in this area with contributions from the mathematical as well as physical stand

point. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730155]

Billiard-type dynamical systems are at the heart of the

foundations of statistical mechanics and the theory of

dynamical systems, thanks to their clear meaning, very

rich dynamics and relevance to many problems in

physics. This Focus Issue presents some recent develop-

ments in the theory and applications of these systems.

The contributions treat both fundamental and advanced

questions in billiard systems from both mathematical and

physical points of view.

The statistical theory of dynamical systems was created

by Boltzmann and Gibbs as a natural foundation of statistical

mechanics. Later on, this theory acquired the name ergodic

theory thanks to Boltzmann’s celebrated ergodic hypothesis,

which asserts that a gas of elastically colliding particles of hard

spheres in a box is an ergodic dynamical system. Although the

Boltzmann hypothesis is still not proved in full generality, it

was one of the major inspirations behind the development of a

modern theory of dynamical systems. An elastically colliding

gas of hard spheres is indeed a billiard dynamical system.

These impressive developments again started with statistical

physics. A brilliant Russian physicist Krylov1 observed that

dynamics of hard spheres is very unstable and, moreover, this

intrinsic instability reminds one very much of the instability of

other mechanical systems, namely geodesic flows on surfaces

of negative curvature which were (at that time recently) rigor-

ously investigated by Hedlund2 and Hopf,3 who proved that

these systems are hyperbolic (a term which is often substituted

by “chaotic” in the physics literature) and ergodic. Rigorous

studies of the chaotic properties of billiards started with a re-

markable groundbreaking 1970 paper by Sinai.4 Since that

time the theory and applications of billiards have experienced

enormous development. Billiards acquired a leading role in the

theory of dynamical systems as well as in applications. A new

fundamental mechanism of hyperbolicity (the mechanism of

“chaos”), called defocusing, was discovered in billiards5 and

subsequently was proved to work also in other classes of dy-

namical systems (including of course geodesic flows). More-

over, billiards became one of the most favorite systems for

theoretical investigations and real experiments. There are

many physical labs over the world where billiard experimental

devices were constructed, which allowed to obtain new

insights into various branches of physics. All these advances

are not surprising because billiards are simultaneously very

visual (arguably, billiards form the most visual class of dynam-

ical systems) and billiards naturally appear as relevant models

in numerous branches in physics. Unfortunately, there is not

much interaction (and sometimes even knowledge of recent

developments) between the physics and mathematics commun-

ities. The present Focus Issue is intended to make a contribu-

tion to increasing such interaction and collaborations. The

issue contains both physical and mathematical papers, as well

as papers that combine rigorous, numerical and phenomeno-

logical results demonstrating the breadth and depth of the mod-

ern theory of billiard-type systems and its growing influence in

such classical areas of research as time-dependent (non-auton-

omous) dynamics and general theory of Hamiltonian systems.

It is well known (although not proved rigorously in a

general case) that a generic Hamiltonian system has a

“divided” phase space, i.e., in its phase space there coexist

chaotic and ergodic components of positive measure and

KAM tori with regular (even integrable) dynamics. Such

structure strongly influences the dynamics on chaotic ergodic

components: the dynamics becomes intermittent, i.e., quasi-

regular dynamics generated by the “stickiness” in vicinity of

KAM tori coexist with strongly chaotic dynamics far from

them. One of the fundamental problems in this respect is an

appearance of KAM tori under perturbations of chaotic dy-

namical systems. The paper by Rom-Kedar and Turaev6

addresses and analyzes a process of creation of KAM tori

under perturbation of the billiard reflection law, i.e., by con-

sidering steep potentials instead of a hard core (billiard)

potential. Bunimovich and Vela-Arevalo7 discuss a notion of

stickiness and demonstrate that KAM islands can be of two

types (elliptic and parabolic) and that they can in general be

sticky as well as non-sticky.
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Studies of billiards inspire the investigation of various

non-conservative systems which can be naturally considered

as billiards in some fields (electrical, gravitational, etc) or

just models with modified laws of reflection. The paper by

Bálint, Borbély, and Varga8 presents an analysis of statistical

properties of the system of two point masses moving along a

vertical line in a gravitational field and elastically colliding

with each other and with a “floor.” Chernov, Korepanov, and

Simanyi9 investigate a gas of N hard disks in a box with vari-

ous modifications to the elastic law of reflection from the

boundary. A major result is that all the perturbations, how-

ever small they are, tend to induce a collapse to stable

regimes of motion, whereas unperturbed billiard dynamics is

chaotic. A very much related in spirit paper by Del Magno

et al.10 considers a billiard in a square with modified reflec-

tion law. A study of non-elastic triangular billiards is con-

ducted by Arroyo, Markarian, and Sanders.11 A major goal is

to investigate a topological structure of strange attractors

which appear in this system and can be very complicated.

An elegant example of a dissipative dynamical system is

considered in the paper by Gallavotti, Gentile, and Giu-

liani.12 They rigorously study dynamics of a chaotic system

subject to a weak periodic perturbation. The resulting dy-

namics is characterized by periodic visits to a strange attrac-

tor, the shape of which is exactly established.

A classical area of study in billiards is the analysis of

the set of their periodic orbits. Although this set is believed

(although not proved in the general case) to have measure

zero, it plays an important role for many aspects of dynamics

of billiards. The paper by Pinto-de-Carvalho and Ramirez-

Ros13 deals with billiards inside planar, strictly convex tables

with smooth boundaries. It is shown, in particular, that

Birkhoff’s classical result provides an optimal lower bound

for a number of periodic points with a fixed structure in such

billiards. A classification of symmetric periodic orbits in el-

lipsoidal billiards is presented in the paper by Casas and

Ramirez-Ros.14

Regarding the dynamical regime of stickiness, Oliveira,

Emidio, and Beims15 show the appearance of stickiness in a

soft triangular billiard whose walls are appropriate to study the

soft to hard wall transition by changing the softness parameter.

The emergence of chaotic motion inside the quasi-regular

region is shown by Manchein and Beims16 to occur inside

Arnold stripes, which are intervals of initial conditions leading

to the chaotic motion and which increase with the nonlinear

parameter. For higher-dimensional systems such stripes define

the chaotic channels inside which Arnold diffusion starts to

occur. The effect of stickiness is quantified by Dettmann and

Georgiou17 in the open “drive-belt” billiard from the point of

view of the escape through the hole. The survival probability

decays algebraically due to the presence of multiple families

of marginal unstable periodic orbits and decays exponentially

in the limit of small hole size. When noise is considered in the

dynamics of a generic and mixed-phase space, the survival

probability has a total of five different decay regimes that pre-

vail for different intermediate times, as observed for the annu-

lar billiard by Altmann, Leitão, and Lopes.18

One of the most famous billiard-type system in statisti-

cal mechanics is a Lorentz gas generated by a motion of a

point particle in an array of immovable scatterers. Nandori

and Szasz19 consider a Lorentz gas in a half strip with a

modified (time-dependent) reflection law in a wall located at

the origin. They demonstrate that in a certain scaling limit, a

new type of a Brownian motion arises which is a general-

ization of the Brownian motion and reflected Brownian

motion.

The dynamics of billiards in billiard tables with the

boundary of zero curvature cannot be chaotic (hyperbolic).

In particular, it has a zero Kolmogorov entropy. However,

such billiards in polygons and polyhedra may demonstrate

high complexity of their orbits. Mathematical tools to study

such billiards are quite different from the ones developed for

billiards in tables with non-everywhere-flat boundaries. A

review by Gutkin20 discusses the current state and some

open problems in this area.

As mentioned above, billiard systems are suitable models

for attempting to understand non-equilibrium statistical

mechanics. This is done by Gaspard and Gilbert,21 who ana-

lyze the energy transfer processes of interacting hard spheres.

Energy spreading is discussed in the work of Roy and

Pikovsky22 in the regular lattice of the Ding-Dong model.

It is natural to ask if billiard particles can acquire unlim-

ited energy when colliding with a moving boundary. If this

does occur, a phenomena called “Fermi acceleration” is tak-

ing place. In such approach, Itin and Neishtadt23 discuss the

particle dynamics inside a rectangular billiard with moving

boundaries. For small perturbations from the integrable prob-

lem, adiabatic invariants are destroyed, and this can lead to

Fermi acceleration. The standard description of Fermi accel-

eration, developed in a class of time-dependent billiards, is

generally given in terms of a diffusion process which takes

place in momentum space. Therefore, the evolution of the

probability density function for the magnitude of particle

velocities as a function of the number of collisions is deter-

mined by the Fokker-Planck equation, as explained by

Karlis, Diakonos, and Constantoudis.24 However, the phe-

nomenon is not robust. Therefore, the introduction of dissi-

pation leads the dynamics to contract the area in the phase

space and to present attractors which lead to the suppression

of the phenomenon. Considering these attractors are far

away from infinity, the suppression of Fermi acceleration

results. Indeed, the unlimited energy growth in time-

dependent billiards can be suppressed by considering differ-

ent kinds of dissipation. This is confirmed in the work of

Ryabov and Loskutov25 for a time-dependent non-integrable

focusing billiard and by Livorati, Caldas, and Leonel26 for

the stadium like-billiard with inelastic collisions. Addition-

ally, this suppression can be carefully described by the use

of scaling arguments leading to the characterization of scal-

ing exponents describing a phase transition from limited to

unlimited energy growth, as shown in the breathing Lorentz

gas by Oliveira and Leonel27 considering both in-flight dissi-

pation and inelastic collisions. A rigorous study of various

piecewise smooth Fermi-Ulam models was conducted by

DeSimoi and Dolgopyat.28 They succeeded to prove that for

all possible motions of the wall which have just one disconti-

nuity, there is a single parameter which determines the dy-

namics of the system for large energies.
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Many authors of the papers published in this Focus issue

had the opportunity to meet each other in an International

School-Conference Mathematics and Physics of Billiard-

Type dynamical systems: Billiards’11, held in Ubatuba-

Brazil in February 2011 when discussions of a Focus issue in

this subject arose. At that time, our friend Alexander Losku-

tov was among us. However, it is our sad duty to acknowl-

edge a crucial contribution to this Focus Issue of Sasha

Loskutov and say that he started work enthusiastically in this

direction. His sudden and untimely death happened in 05

November 2011 and was a shock for everybody who knew

Sasha. This issue is a tribute to his memory.

The authors acknowledge support from FAPESP, CAPES,

FUNDUNESP (Brazilian agencies), PROPG/UNESP, and

PROPe/UNESP as well as support from UFPR and UNESP

for the realization of International School-Conference Mathe-

matics and Physics of Billiard-Type dynamical systems: Bil-

liards’11, held in Ubatuba-Brazil in February 2011, where the

initial discussions about this Focus Issue arouse.
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