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The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two
independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model.
The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conduc-
tance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo
temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group
computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive
view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the
second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance
curves resulting from the two approaches are compared.
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I. INTRODUCTION

Nearly five decades ago, Anderson conceived a Hamil-
tonian to describe the interaction between a magnetic impu-
rity and otherwise free conduction electrons.1 Once a daunt-
ing theoretical challenge, the Anderson Hamiltonian yielded
to an essentially exact numerical diagonalization,2 followed
by an exact analytical diagonalization.3,4 From these and al-
ternative approaches, physical properties were extracted,
which eased the interpretation of experimental data,5 theoret-
ical results provided unifying views of apparently unrelated
phenomena,6 quantitative comparisons brought forth novel
perceptions,7 and dissections of the Anderson model brought
to light the physics of nanoscale devices.8–12

The last ten years were remarkably fruitful. Parallel ad-
vances in scanning tunneling spectroscopy and in the fabri-
cation of nanostructured semiconductor devices enhanced
the interest in transport properties.13–25 In both areas, numer-
ous experimental breakthroughs and theoretical analyses
were reported, and the Anderson Hamiltonian proved spec-
tacularly successful in more than one occasion.26,27

Notwithstanding the substantial volume of exact results,
certain aspects of the model remain obscure. Consider uni-
versality, a concept important in its own right and by virtue
of its diverse applications. Universal relations serve as
benchmarks checking the accuracy of numerical data, as re-
sources promoting the convergence of theoretical findings,
and as instruments bridging the gap between the theorist’s
tablet and the laboratory logbook. The conditions under
which the Anderson model exhibits universal thermodynami-
cal properties were identified.2–4 Although one expects all
properties of the model to be universal in the same domain,
few firm results for the dynamical and transport properties
can be found in libraries.28 The early effort of Costi et al.
showed that the transport coefficients for the particle-hole
symmetric Anderson model are universal.29 For asymmetric
models—even ones that display universal thermodynamical
properties—nonetheless, the universal curves fail to fit the
numerical data, the disagreement growing with the asymme-
try.

Puzzled by such contrasts, we have conducted a system-
atic study of the transport properties for the Anderson Hamil-
tonian. We combined analytical and numerical-
renormalization group �NRG� tools and paid special attention
to universality. In a preliminary report,30 we have discussed
an Anderson model for a quantum dot side coupled to a
quantum wire, a device comprising two conduction paths
whose transport properties are marked by interference.31–35

Notwithstanding the constructive or destructive effects, we
have been able to identify universal behavior throughout the
Kondo regime, the parametrical domain favoring the forma-
tion of a magnetic moment at the quantum dot, and its pro-
gressive screening by the conduction electrons as the tem-
perature is lowered past the scale set by the Kondo
temperature TK. Specifically, we found the thermal depen-
dence of the conductance to map linearly onto a universal
function of the temperature T scaled by the Kondo tempera-
ture TK. The mapping is itself universal; i.e., it depends on a
single physical property, the ground-state phase shift �, into
which the contributions from all model parameters are
lumped.

This paper examines the alternative experimental setup in
which a quantum dot or molecule, instead of side coupled to,
is embedded in the conduction path.5,18,26,36–40 We show that
the thermal dependence of the conductance maps onto the
same universal function. Although linear, the mapping now
depends explicitly on a model parameter—an external poten-
tial applied to the conduction electrons—and hence contrasts
with the conclusion in our previous report. This dependence
accounts for distinctions between the transport properties in
the embedded and side-coupled arrangements. At high tem-
peratures, for instance, potentials appropriately applied to the
conduction electrons in the side-coupled geometry drive the
conductance from nearly zero up to the ballistic limit G2
=2e2 /h.

If the quantum dot is embedded in the conduction path, by
contrast, the high-temperature conductance is pinned at low
values and virtually insensitive to potentials applied to the
conduction electrons. Our analysis shows that, in the embed-
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ded configuration, the dot charge parametrizes the mapping
to the universal conductance curve. That charge being always
close to unity in the Kondo regime, the mapping is never
very far from the identity so that the conductance is always
less than 25% below the universal curve.

To discuss the thermal dependence of the conductance in
the Kondo regime more specifically, we have to know the
Kondo temperature and the ground-state dot charge as func-
tions of the model parameters. The Kondo regime is, more-
over, only one of the physically relevant domains in the para-
metric space of the Anderson Hamiltonian. To offer a more
comprehensive view of zero-bias conduction through the
single electron transistor �SET�, we have gone beyond the
mapping. The second half of this paper, Secs. VI and VII,
covers the Kondo range and the domains contiguous to it
with a large number of temperature-dependent conductance
curves. To discuss the numerical data, we take advantage of
the mapping to the universal function, which links the salient
features of the conductance plots to the rapid changes in dot
occupation that accompany the transitions between regimes.

The transition from the Kondo regime to the neighboring
domains makes the mapping to the universal function pro-
gressively less accurate. To document its decay, we also dis-
play the conductance against temperature for various gate
voltages across the transition and compare the plots with the
conductance curve predicted by the mapping. All illustra-
tions considered, the numerical study provides a unified de-
scription of conduction in the single-electron transistor.

The text is divided in eight sections, more technical as-
pects of the analysis having been confined to the three Ap-
pendixes. Section II defines the model. Section III derives an
expression relating the conductance to the spectral density of
the quantum dot level. Section IV is dedicated to universal-
ity, and Sec. V to the fixed points of the model Hamiltonian
and to an extension of Langreth’s exact expression for the
ground-state spectral density. Section VI then shows that, in
the Kondo regime, the thermal dependence of the conduc-
tance can be mapped onto the symmetric-SET universal con-
ductance.

The numerical survey is reported next. Section VII de-
scribes the numerical procedure, and Sec. VIII displays and
discusses the results. Finally, Sec. IX summarizes the con-
clusions drawn from the analytical derivation and from the
numerically computed conductances.

II. SINGLE-ELECTRON TRANSISTOR

Figure 1 depicts a SET, the prototypical example of em-

bedding. The subject of numerous experimental studies, the
SET comprises two independent conduction bands coupled
by a localized level. In the laboratory, the quantum dot is
unevenly coupled to the electron gases represented by the
two rectangles. The consequences of this asymmetry being
well understood8–11 conciseness recommends that we ana-
lyze only the evenly coupled device.

Qualitatively, the physics of Fig. 1 was understood long
before the first device was developed.8,9 To recapitulate, it is
convenient to start from Fig. 2, which depicts the spectrum
of the SET Hamiltonian H in the weak-coupling limit. With
the dot levels decoupled from the conduction bands, the
eigenstates and eigenvalues of H can be labeled by the dot
quantum numbers, among which the dot occupation nd is
chiefly important. For fixed nd, the product of the lowest dot
state by the conduction-band ground state is shown as a bold
dash. The gray levels above it represent the excited states
consistent with the same nd label.

A small transition amplitude V between the quantum dot
and the wires is sufficient to modify this picture. The ampli-
tude V strongly couples each gray level to the degenerate or
nearly degenerate states in the neighboring columns. Excep-
tions are the lowest levels in the column labeled nd=N in
Fig. 2, which are energetically distant from their neighbors
and thus remain unperturbed to first order in the coupling. At
low temperatures, with kBT small in comparison with the
energy �E separating the ground state from the closest level
in the neighboring columns, the dot occupation is frozen at
nd=N, a constraint that raises the Coulomb blockade against
conduction through the dot.

Suitably adjusted, the gate potential Vd in Fig. 1 lifts the
blockade. The potential shifts the dot energies. Adjusted to
the condition �E�0, it levels the bold dashes in the nd=N
and nd=N+1 columns in Fig. 2 so that an infinitesimal bias
suffices to induce electronic flow between the wires through
the dot. The zero-bias conductance peaks whenever the gate
potential Vd tunes the ground-state expectation value of nd to
a half-integer, e.g., ���nd���→N+1 /2 as �E→0 in Fig. 2.

Each peak identifies a resonance at the Fermi level. As the
gate voltage is swept past �E=0, the ground-state occupation

FIG. 1. �Color online� Single electron transistor. A quantum dot
�circle� bridges two noninteracting quantum wires �rectangles�. A
gate potential Vd controls the dot energy, while the symmetric po-
tentials Vw shift the energy of the wire orbitals close to the dot.
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FIG. 2. �Color online� SET energies in the weak-coupling limit.
The dot-level occupation nd labels the energies. For each nd, the
bold dash represents the conduction-band ground state, while the
thinner lines represent excitations. The coupling between the dot
and the two quantum wires mixes each level to the neighboring
columns.
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changes rapidly from nd=N to nd=N+1, and as required by
the Friedel sum rule, so does the ground-state phase shift. At
moderately low temperatures, for thermal energies smaller
than the average spacing between the bold dashes in the fig-
ure, the plot of the conductance against gate voltage shows a
succession of peaks. Conductances measured at moderately
low temperatures do display a sequence of resonances. At
very low temperatures, however, the conductance pattern
changes to a sequence of intervals alternating between insu-
lating valleys and conducting plateaus.

The conducting plateaus are due to the Kondo effect. For
gate voltages corresponding to odd ground-state dot occupa-
tions, the magnetic moment of the resulting dot spin interacts
antiferromagnetically with the conduction electrons. As the
device is cooled past the Kondo temperature, the screening
of the moment creates the Kondo resonance, a spiked en-
hancement of the density of states anchored at the Fermi
level. The pinned resonance defeats the Coulomb blockade
and allows ballistic conduction through the quantum dot.

III. ANDERSON MODEL

A variant of the Anderson Hamiltonian encapsulates the
physics of the device in Fig. 1. A spin degenerate level cd
represents the dot level, and two structureless half-filled con-
duction bands, labeled L �left� and R �right�, represent the
two quantum wires. The L�R� wire comprises N state ckL�ckR�
with energies defined by the linear dispersion relation �k
= �k−kF�vF�0�k�2kF� so that the bandwidth is 2D=2vFkF.
The per-particle per-spin density of conduction states is �
=1 /2D, and we will let ��D /N denote the energy splittings
in the conduction bands. The model Hamiltonian is then the
sum of three terms, H=Hw+Hd+Hwd, where the first term
describes the wires,

Hw = �
k�

�kck�
† ck� +

W

N
�
kq�

ck�
† cq�, �1�

with an intrawire scattering potential W, fixed by the poten-
tial Vw in Fig. 1, and �=L ,R. The Hamiltonian Hd describes
the dot,

Hd = �dnd + Und↑nd↓, �2�

where U represents the Coulomb repulsion between electrons
in the dot orbital, and the dot energy �d is controlled by the
gate potential Vd in Fig. 1. Finally, the Hamiltonian Hwd
couples the wires to the dot,

Hwd =
V

	2N
�
k�

�ck�
† cd + H.c.� . �3�

A. Parity

To exploit the inversion symmetry of Fig. 1, we define the
normalized even �ak� and odd �bk� operators as

ak =
1
	2

�ckL + ckR� , �4a�

bk =
1
	2

�ckL − ckR� . �4b�

The projection of the model Hamiltonian on the basis of
ak’s and bk’s splits it in two decoupled pieces, H=HA+HB,
where

HA = �
k

�kak
†ak + Wf0

†f0 + V�f0
†cd + H.c.� + Hd, �5�

with the traditional NRG shorthand

f0 � �
k

ak/	N , �6�

and

HB = �
k

�kbk
†bk +

W

N
�
kq

bk
†bq. �7�

B. Conductance

The odd Hamiltonian HB is decoupled from the quantum
dot. It is, moreover, quadratic and hence easily diagonaliz-
able. Appendix C determines its spectrum, analyzes the re-
sponse of the conduction and dot electrons to the application
of an infinitesimal bias, and turns the result into the follow-
ing linear-response expression for the conductance:

G�T� = G2	
W

−D

D

�d��,T��−
�f���
��

�d� , �8�

where f��� is the Fermi function; G2�2e2 /h, the conduc-
tance quantum,


W =



1 + 	2�2W2 , �9�

is the width 
=	�V2 of the cd level, here renormalized by
the scattering potential W, and

�d��,T� =
1

f����mn

e−�Em

Z
��n�cd

†�m��2���mn − �� �10�

is the spectral density for the dot level. Here �m� and �n� are
eigenstates of HA with eigenvalues Em and En, respectively,
�mn�Em−En, and Z is the partition function for the Hamil-
tonian HA.

As one would expect, given that the odd Hamiltonian HB
commutes with cd, only the eigenvalues and eigenvectors of
HA are needed to compute the right-hand sides of Eqs. �8�
and �10�. The following discussion will hence focus on the
even Hamiltonian, Eq. �5�, which is equivalent to the con-
ventional spin-degenerate Anderson Hamiltonian.1

C. Characteristic energies

Four characteristic energies govern the physical properties
of the Anderson Hamiltonian. Two of them are the charge-
excitation energies catching the eye in Fig. 3: the energy −�d
needed to remove an electron from the dot level and the
energy �d+U needed to add an electron to the level. The
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particle-hole transformation ck→ck
†, cd→−cd

† swaps the two
energies so that the transformed dot Hamiltonian is given by
the right-hand side of Eq. �2� with �d→−��d+U�.

If 2�d+U=0, the dot Hamiltonian remains invariant under
the particle-hole transformation. If, in addition, W=0, Eq. �5�
reduces to the symmetric Hamiltonian

HA
S = �

k

�kak
†ak + V�f0

†cd + H.c.� −
U

2
�nd↑ − nd↓�2. �11�

With V�0, two other energies arise: the level width 
W 
Eq.
�9�� and the Kondo energy kBTK, given by

TK � 	�J exp�− 1/�J� , �12�

where J is the antiferromagnetic interaction between the con-
duction electrons and the dot magnetic moment,41

�J = 2

W

	��d�
U

�d + U
. �13�

In the Kondo regime, thermal and excitation energies are
much smaller than min���d� ,�d+U�. In Fig. 3, only the low-
est levels in the central columns are energetically accessible.
The energy 
W, associated with transitions from the central
to the external columns in the figure �i.e., with cd

1→cd
2 and

cd
1→cd

0 transitions� becomes inoperant. Instead, at very low
excitation and thermal energies, smaller than the Kondo en-
ergy kBTK, the dot spin binds antiferromagnetically to the
conduction spins. In Fig. 3, the lowest states in the left and
right central columns hybridize to constitute a Kondo singlet.

IV. UNIVERSALITY

The concepts recapitulated in Sec. III C emerged over
three decades ago, with the first accurate computation of the

magnetic susceptibility of the Anderson model,2 long before
the first essentially exact computation of the conductance. A
particularly important result in the more recent survey of
transport properties of Costi et al.29 is the thermal depen-
dence of the conductance for the symmetric Hamiltonian HA

S ,
the universal curve GS�T /TK�, depicted by the solid line in
Fig. 4. For kBT�D and any pair �
 ,U� satisfying 
�U in
Eq. �11�, proper adjustment of the Kondo temperature TK
gives a conductance curve G�T /TK� that reproduces
GS�T /TK�.

In Fig. 4, for instance, the solid line was computed from
the eigenvalues and eigenvectors of HA

S with 
=0.1D and
U=3D. The definition G�TK��0.5G2 yielded the Kondo
temperature TK=2.4
10−6D. When the calculation was re-
peated for U=0.6D and the same 
, the Kondo temperature
grew four orders of magnitude to TK=2.2
10−2D. Still, for
kBT�0.1D, the plot of G�T /TK� resulted indistinguishable
from the solid curve. While TK is model-parameter depen-
dent, G�T /TK� is not.

Particle-hole asymmetry drives G away from GS. For U
+2�d�0 or W�0, the universal curve GS�T /TK� no longer
matches G�T /TK�. An example is the dashed curve in Fig. 4,
calculated with 
=0.1D, U=3D, �d=−0.3D, and W=0. The
definition G�TK�=0.5G2, which in this case yields TK=4

10−3D, forces the solid and the dashed lines to agree at
T=TK; the conductance for the asymmetric model nonethe-
less undershoots �overshoots� the universal curve for T
�TK�T�TK�. To reconcile this discrepancy with the concept
of universality, the following sections rely on
renormalization-group concepts.

ΓK

FL

LM

n
d

=
0 1 1 2

εd + U
εd

ΓW

ΓW

FIG. 3. �Color online� Spectrum of the spin-degenerate Ander-
son model, displayed as in Fig. 2. In the weak-coupling limit, the
eigenstates are labeled by the occupation nd and spin component of
the dot configuration displayed at the bottom. For V�0, each level
in the left and right columns hybridizes with nearly degenerate lev-
els in the central columns and acquires the width 
W in Eq. �9�. At
low energies, the levels in the two central columns combine into a
singlet and acquire a width 
K�kBTK. The vertical arrows near the
right border mark the domains of the LM and FL fixed points.

10−2 10−1 1 10 103
0.0

0.5

1.0

G

G2

T/TK

FL

LM

ASYMMETRIC

SYMMETRIC

FIG. 4. �Color online� Thermal dependences of the conductance
for two sets of model parameters, computed by the procedure in
Sec. VII. The solid line depicts the universal conductance curve
�Ref. 29� for the symmetric Hamiltonian �11�. Here, it was com-
puted with 
=0.1D and U=3D. The temperatures were scaled by
the Kondo temperature TK=2.4
10−6D /kB, fixed by the require-
ment G�TK�=0.5G2. The dashed curve is the conductance for
Hamiltonian �5� with 
=0.1D, U=3D, �d=−0.3D, and W=0,
which yielded TK=4.0
10−3D. To keep the data within the tem-
perature range kBT�0.1D, the dashed plot stops at T=25TK. The
horizontal arrows pointing to the vertical axes indicate the corre-
sponding fixed-point conductances, given by Eqs. �22a� and �22b�.
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V. FIXED POINTS

Renormalization-group theory probes the spectrum of
Hamiltonians in search of characteristic energies and scaling
invariances. The wire Hamiltonian �1�, for instance, exhibits
a single trivial characteristic energy: the conduction band-
width 2D. For energies ��D, therefore, its spectrum is in-
variant under the scaling transformation Hw→�Hw, for ar-
bitrary scaling parameter ��1. Accordingly, for ��D, the
wire Hamiltonian is a stable fixed point of the
renormalization-group transformation in Ref. 2.

Latent in the Anderson Hamiltonian �5�, by contrast, are
the four nontrivial characteristic energies discussed in Sec.
III C. Part of the spectrum of HA lies close to fixed points;
the remainder is in transition ranges. In the vicinity of a fixed
point, the spectrum remains approximately invariant under
scaling; in the transition intervals, the eigenvalues are com-
parable to one or more characteristic energies and hence
change rapidly under scale transformations. In particular, the
portion of the spectrum pertinent to the Kondo regime com-
prises two lines of fixed points and a crossover region.

For given thermal or excitation energy E, the inequality
max�E ,
W��min���d� ,�d+U ,D� defines the Kondo regime.
As Fig. 3 shows, the dot occupation is then nearly unitary. In
the energy range kBTK�E�min���d� ,�d+U ,D�, the Hamil-
tonian HA is near the local moment �LM� fixed point. At very
low energies, E�kBTK, i.e., below the energy scale defined
by the narrow set of levels at the center of Fig. 3, the spec-
trum becomes asymptotically invariant under scaling as the
Hamiltonian approaches the frozen level �FL� fixed-point. In
the intermediate region E�kBTK, the Hamiltonian crosses
over from the LM to the FL.

A. Fixed-point Hamiltonians

As the two central columns in Fig. 3 indicate, the LM is
an unstable fixed-point consistent of a conduction band and a
free spin-1 /2 variable. In the FL, a singlet replaces the spin,
and the Hamiltonian is equivalent to a conduction band—a
stable fixed point. In their most general form, the fixed-point
conduction bands mimic the wire Hamiltonian, i.e.,

H
LM
* = �

k

�kak
†ak + WLMf0

†f0, �14�

and

H
FL
* = �

k

�kak
†ak + WFLf0

†f0, �15�

with scattering potentials WFL and WLM dependent on V, W,
U, and �d. Equations �14� and �15� identify two lines of fixed
points, parametrized by WLM and WFL, respectively.

The Schrieffer-Wolff transformation offers an approxima-
tion for the LM potential,

�WLM = �W + 2

W

	��d�
2�d + U

�d + U
. �16�

For most applications, this expression is insufficiently accu-
rate, and an NRG computation is necessary to determine
WLM and WFL. The exception is Hamiltonian �11�, for which

WLM =0, as required by particle-hole symmetry.

B. Fixed-point phase shifts

Appendix A diagonalizes the quadratic Hamiltonians �14�
and �15�. For the LM, the diagonal form reads

H
LM
* = �

k

��g�
†g�, �17�

with phase-shifted energies

�� = �� −
�LM

	
� . �18�

Here � is the energy splitting defined in Sec. III.
At the LM, all conduction states are uniformly phase

shifted, with

tan �LM = − 	�WLM . �19�

For HA=HA
S , in particular, �LM =0, and the low-energy eigen-

values �k coincide with the �k.
The FL eigenvalues are likewise uniformly phase shifted,

H
FL
* = �

k

�̃kg̃k
†g̃k, �20�

where �̃k=�k− �� /	��. From the Friedel sum rule, it follows
that42

� = �LM +
	

2
. �21�

For HA=HA
S , in particular, �=	 /2.

C. Conductance at the fixed points

The LM is the fixed point to which the Anderson Hamil-
tonian would come if 
=0, i.e., if the dot were decoupled
from the electron gases. For 0�
�min���d� ,�d+U ,D�, al-
though the renormalization-group flow never reaches the
LM, it brings HA close to the fixed point. The substantial
portion of the spectrum of HA marked by the thin double-
headed arrow in Fig. 3 is approximately described by the
many-body eigenvalues of H

LM
* , and in the pertinent energy

range, the physical properties of HA and H
LM
* are approxi-

mately the same. Likewise, at low temperatures, the proper-
ties of HA approach those of H

FL
* .

The renormalization-group flow of the Hamiltonian con-
trols the thermal dependence of its physical properties. The
electrical conductance is no exception. As the temperature is
reduced from T�TK to T�TK, as illustrated by the curves in
Fig. 4, the conductance crosses over from a lower plateau to
a higher one. The extension of Langreth’s expression42 de-
rived in Appendix B determines the plateau conductances,

GLM = G2 sin2��LM − �W� = G2 cos2�� − �W� , �22a�

GFL = G2 sin2�� − �W� , �22b�

where �W is the ground-state phase shift for V=0. According
to the analysis in Appendix A,
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tan �W = − 	�W . �23�

The solid curve in Fig. 4 was computed for HA=HA
S so

that �w=0, while the ground-state �i.e., FL� phase shift is �
=	 /2. The high-temperature �low-temperature� tendency of
the plot, G�T�TK�→0 
G�T�TK�→G2�, agrees with Eq.
�22a� 
Eq. �22b��. The dashed curve was also computed with
�w=0, but the ground-state phase shift is smaller than 	 /2
because the Hamiltonian now lacks particle-hole symmetry.
From the low-energy eigenvalues in the NRG run that gen-
erated the conductance curve we find �=0.43	. The conduc-
tances predicted by Eqs. �22� are indicated by the two hori-
zontal arrows in Fig. 4.

Since the width 
=0.1D and the dot energy ��d�=0.3D
fail to satisfy the condition 
� ��d�, the renormalization-
group flow of the asymmetric Hamiltonian in Fig. 4 bypasses
the LM. The Kondo thermal energy for the asymmetric
Hamiltonian is kBTK=4
10−3D. This relatively high energy
leaves no room in the renormalization-group path for the
thermal bracket D�kBT�kBTK, which defines the LM. In-
stead of crossing from the LM to the FL, the Hamiltonian
therefore crosses over from the band-edge regime kBT�D to
the FL, Kondo screening takes place before the dot moment
is fully formed, and even at the highest temperatures in Fig.
4, the conductance is well above the horizontal arrow point-
ing to GLM. At low temperatures, by contrast, the
renormalization-group flow drives HA toward H

FL
* , and the

dashed curve in Fig. 4 rises to GFL.

VI. CROSSOVER

In the Kondo regime, the Schrieffer-Wolff
transformation41 brings the Anderson Hamiltonian HA to the
Kondo form

HJ = �
k

�kak
†ak + WLMf0

†f0 + J�
��

f0�
† ���f0� · S , �24�

with J defined in Eq. �13�.
To eliminate the scattering potential on the right-hand

side, it is convenient to project HJ upon the basis of the
eigenoperators gk of the LM, which yields43

HJ = �
k

��g�
†g� + JW�

��

�0�
† ����0� · S , �25�

where JW=J cos2 �LM, and

�0 =
1

	N
�

�

g�. �26�

In the symmetric case �LM vanishes, and the operator �0
reduces to f0.

In the Kondo regime, the second term on the right-hand
side of Eq. �25� drives the Hamiltonian from the LM to the
FL. Along the resulting trajectory, the eigenvalues of HJ

scale with TK.3,4,44,45 Let TK and T̄K�TK be the Kondo tem-
peratures corresponding to two sets of model parameters in

the Kondo regime: M��
 ,W ,U ,�d� and M̄
��
̄ ,W̄ , Ū , �̄d�, to which correspond the antiferromagnetic

couplings J and J̄, respectively. If �m� is an eigenvector of HJ
with eigenvalue Em, then a corresponding eigenvector �m̄� of
HJ̄, the scaling image of �m�, can always be found, with the

same quantum numbers and eigenvalue Ēm such that

Em /TK= Ēm / T̄K.
The matrix elements of any linear combination of the op-

erators gk are moreover universal. Given two eigenstates �m�
and �n� of HJ and their scaling images �m̄� and �n̄�, then the
matrix elements of �0, for example, are equal: �m��0�n�
= �m̄��0�n̄�. Likewise, the matrix elements of the normalized
operator

�1 =	 3

N
�

�

��

D
g� �27�

are universal: �m��1�n�= �m̄��1�n̄�.

A. Thermal dependence of the conductance

By contrast, the matrix elements �m�cd�n� on the right-
hand side of Eq. �10� are nonuniversal. Even at the lowest
energies, as Eq. �B14� shows, they depend explicitly on the
model parameters. To discuss universal properties, therefore,
we must relate them to universal matrix elements, such as
�m��0�n�, �m��1�n�, or �m�g��n�. As a first step toward that
goal, we evaluate the commutator


HA,aq
†� = �qaq

† +
V
	N

cd
† +

W

N
�

p

ap
†, �28�

and sum the result over q to find that


HA, f0
†� =

1
	3

f1
† + Vcd

† + Wf0
†. �29�

Here we have defined another shorthand

f1 =	 3

N
�

q

�q

D
aq. �30�

Equation �29� relates the matrix elements of cd
† between

two �low-energy� eigenstates �m� and �n� of HA to those of
the operators f0 and f1,

V�m�cd
†�n� = �Em − En − W��m�f0

†�n� − 	3D�m�f1
†�n� .

�31�

In the Kondo regime, with max�Em ,En��D, the first two
terms within the parentheses on the right-hand side can be
dropped.

In the symmetric case, since f0�f1� coincides with �0��1�,
Eq. �31� shows that the product V�m�cd�n� is universal, in line
with the firmly established notion that 
�d�� /kBTK ,T /TK�
and GS�T /TK� are universal functions.29,28 To discuss asym-
metric Hamiltonians, we have to relate the operators f0 and
f1 to �0 and �1. This is done in Appendix A 2, which shows
that, in the Kondo regime, a linear transformation with
model-parameter dependent coefficients relates the matrix el-
ements of both f0 and f1 to those of �0 and �1. When Eq.
�A21� is substituted for f0 and f1 on the right-side of Eq.
�31�, it results that
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		�
W�m�cd
†�n� = �0�m��0

†�n� + �1�m��1
†�n� . �32�

Here, the constants �0 and �1 are combinations of the �un-
known� linear coefficients on the right-hand side of Eq.
�A21�, the parameter W on the right-hand side of Eq. �31�,
and the ratio 		�
W /V, by which we multiplied Eq. �31� to
shorten the following algebra.

Substitution in Eq. �10� yields an expression relating the
spectral density �d to universal functions,

	�
W�d��,T� = �0
2�0��,T� + �1

2�1��,T� + �0�1��01���,T� ,

�33�

where

� j��,T� = �
mn

e−�Em

Zf���
��n�� j�m��2��Em − En − �� �j = 0,1� ,

�34�

and

��01���,T� = �
mn

e−�Em

Zf���
��m��0

†�n��n��1�m� + c.c.�


��Em − En − �� . �35�

Next, we substitute Eq. �33� on the right-hand side of Eq.
�8� to split the conduction into three pieces,

G�T� = �0
2G0�T� + �1

2G1�T� + �0�1G�01��T� , �36�

where

Gj�T� =
G2

�



−D

D

� j��,T��−
�f���

��
�d� �j = 0,1� , �37�

and

G�01��T� =
G2

�



−D

D

��01���,T��−
�f���
��

�d� . �38�

B. Universal contributions to the conductance

Given the universality of the energies Em and of the ma-
trix elements �m�� j�n��j=1,2� on the right-hand sides of
Eqs. �34� and �35�, we see that the spectral densities
� j�� ,T��j=0,1� and ��01��� ,T� are universal. Inspection of
the right-hand sides of Eqs. �37� and �38� shows that the
functions Gj�j=0,1� and G�01� are likewise universal. To
compute them, we are free to consider any convenient
Kondo-regime Hamiltonian.

Particle-hole symmetry makes HA
S especially convenient.

To show that the cross terms make no contribution to the
conductance, i.e., that G�01��T�=0, we only have to notice
that, while leaving HA

S unchanged, the particle-hole transfor-
mation cd→−cd

†, gk→gk
† �i.e., ak→ak

†� reverses the sign of
the product of matrix elements �m��i

†�n��n�� j�m�+c.c. on the
right-hand side of Eq. �35�. We see that ��01��� ,T� is an odd
function of � so that the integral on the right-hand side of Eq.
�38� vanishes.

To evaluate G0 and G1, we start out from the closed form
resulting from the diagrammatic expansion �in the coupling

V� of the conduction-electron retarded Green’s function for
the symmetric Hamiltonian,

Gkk�
S ��� = Gk

�0�����kk� +
V2

N
Gk

�0����Gd
S���Gk�

�0�, �39�

where Gd
S is the retarded dot-level Green’s function for the

symmetric Hamiltonian, and

Gk
�0���� =

1

� − �k + i�
�40�

is the free conduction-electron retarded Green’s function.
From Gkk�

S , it is a simple matter to obtain the spectral
densities on the right-hand side of Eq. �33�,

�0��,T� = −
1

	N
J�

kk�

Gkk�
S ��� , �41�

and

�1��,T� = −
3

	ND2J�
kk�

�k�k�Gkk�
S ��� . �42�

To compute the conductances at temperatures T satisfying
kBT�D, we only need the spectral densities for ��D. It is
an excellent approximation, therefore, to expand the right-
hand side of Eq. �40� to linear order in � /D,

Gk
�0���� =

2�

D
− i	��� − �k� �� � D� . �43�

The sums over momenta on the right-hand side of Eqs.
�41� and �42� are then easily computed. Among the resulting
terms, only the even powers of � contribute to the integral on
the right-hand side of Eq. �37�. To compute the conductance
to O
�kBT /D�2� we hence neglect the terms of O�� /D�.
Equation �41� then gives

�0��,T� = � − 	�
�d
S��,T� . �44�

Substitution on the right-hand side of Eq. �37� then shows
that the universal function G0 is related to the universal con-
duction for the symmetric Hamiltonian,

G0�T� = G2 − GS�T� . �45�

Equation �45� becomes exact, asymptotically, at low tem-
peratures. In the Kondo regime, the deviations, of
O
�kBT /D�2�, are insignificant. As an illustration, the open
circles in Fig. 5 show NRG data for the conductance G0�T�,
Eq. �37�, in excellent agreement with the solid line represent-
ing the right-hand side of Eq. �45�.

To the same accuracy, we can neglect the O�� /D� terms
resulting from the summation on the right-hand side of Eq.
�42�, which yields

�1��,T� =
6�


	
�d

S��,T� . �46�

Equation �37� then shows that G1 is also related to the con-
ductance for the symmetric Hamiltonian,
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G1�T� =
6

	2GS�T� , �47�

C. Mapping to the universal conductance

We next combine Eqs. �45� and �47� with the result
G�01�=0 to reduce Eq. �36� to the equality

G�T� = �0
2
„G2 − GS�T�… + �1

2 6

	2GS�T� . �48�

To determine the coefficients �0 and �1, we need only
compare the right-hand side with the fixed-point expressions
for the conductance. At the LM, GS=0, and Eq. �22a� shows
that �0

2=cos2��−�W�. At the FL, GS=G2, and Eq. �22b�
shows that �6 /	2��1

2=sin2��−�W�. These two results substi-
tuted on its right-hand side, Eq. �48� reads

G� T

TK
� −

G2

2
= − �GS� T

TK
� −

G2

2
�cos 2�� − �W� . �49�

Central in this paper, Eq. �49� maps the conductance
G�T /TK� to the universal function GS�T /TK� linearly. The
mapping is controlled by the argument 2��−�W� of the trigo-
nometric function on the right-hand side. According to the
Friedel sum rule,42 2��−�W� /	 is the screening charge in-
duced by the coupling to the dot, which must equal the dot
occupation nd to insure electrically neutrality. In particular,
when the gate potential Vg is such that dot occupation is
unitary, the phase-shift difference is �−�W=	 /2, the cosine
on the right-hand side of Eq. �49� is equal to −1, the second
terms on the right- and left-hand sides cancel out of Eq. �49�,
and the remaining terms are equal, G�T /TK�=GS�T /TK�. A
particular case is the symmetric Hamiltonian �11�, for which
�=	 /2, �w=0, and G�T /TK�=GS�T /TK�.29

For other gate potentials in the Kondo regime, the ground-
state dot occupation is approximately unitary, as Fig. 3 ex-
plained. The phase shift difference is never too far from 	 /2.
If, by contrast, it were �−�w=	 /4, the conductance in Eq.
�49� would be flat: G�T�=G2 /2. For the intermediate differ-
ences 	 /4��−�w�	 /2 observed in the Kondo regime, the
conductance lies between the universal curve GS�T /TK� and
the horizontal G2 /2. Although monotonically decreasing, the
function G�T /TK� is therefore flatter than GS.

Since �−�w is never too far from 	 /2 in the Kondo re-
gime, at the qualitative level we could still treat G�T /TK� as
if it were proportional to GS�T /TK�, but the mapping �49�
yields much more accurate conductances and affords quanti-
tative comparison with numerical or experimental data. To
underline this conclusion, the following sections present an
NRG survey of electrical conduction through the device in
Fig. 1.

VII. NUMERICAL PROCEDURE

Equation �12� offers an approximation for TK, and Eqs.
�16�, �19�, and �21� roughly determine the ground-state phase
shift �. Such estimates are far from the accuracy needed to fit
numerical or experimental data. In the laboratory, TK and �
−�W are adjustable parameters. The former, in particular, is
determined by the definition G�TK��G2 /2.5,32,33

In the computer office, the two unknown parameters on
the right-hand side of Eq. �49� can be extracted from the
conductance itself, or from other properties of the model
Hamiltonian. The phase shift � can be obtained from the
ground-state eigenvalues of HA, or from the ground-state dot
occupation. The Kondo temperature TK has been traditionally
derived from fits of the temperature dependent magnetic sus-
ceptibility ��T� with the universal curve for kBT��T /TK�.2,4

Here, we break with the tradition and adopt the convention
G�TK��G2 /2 so that both sides of Eq. �49� vanish at T=TK.

Once TK and � have been determined, by either a Bethe
ansatz calculation or an NRG computation,3,4,28 one can rely
on the mapping �49� to evaluate the temperature-dependent
conductance G�T� in the Kondo regime. Alternatively, one
can apply the NRG procedure described in Secs. VII A and
VII B to compute equally accurate conductance curves G�T�
over the entire parametrical space of the model.

Here, we rely on the latter approach to provide a more
comprehensive view of the model. Sections VIII A and
VIII B will present NRG computations of the conductance as
a function of the gate voltage and temperature. We cover the
Kondo regime and the neighboring regions of the parametric
space of the model to describe charge transport in the single-
electron transistor and to examine the behavior of the map-
ping �49� beyond the limits of the Kondo regime.

A. Numerical-renormalization group method

Excellent descriptions of the NRG method being
available,2,28,46 one page will be sufficient to recapitulate the
four constituents of the procedure.

1. Logarithmic discretization

Two dimensionless parameters ��1 and 0�z�1 define
the logarithmic discretization of the conduction band.28,47

10−2 10−1 1 10 103
0.0

0.5

1.0

G

G2

T/TK

G0/G2

(G2 − GS)/G2

U = 3D

Γ = 0.1D

FIG. 5. �Color online� NRG results for the thermal dependence
of the auxiliary conductance G0�T�, associated with the spectral
density for the operator �0. The open circles show Eq. �37� for j
=0, computed for the symmetric Hamiltonian with the displayed
model parameters. The solid line is the right-hand side of Eq. �45�,
i.e., the universal curve in Fig. 4 subtracted from the quantum con-
ductance G2.
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The infinite energy sequence Em=D�1−z−m�m=0,1 , . . . � de-
fines the intervals Im= 
Em+1 ,Em�. For each interval, a single
operator am+=�Im

akd�k /nm, with normalization factor nm, is
defined. In the negative half of the conduction band, the
sequence −Em�m=0,1 , . . . � defines the mirror image am− of
each operator am+. The am� form a basis upon which the
conduction band Hamiltonian is projected.2

2. Lanczos transformation

Next, a Lanczos transformation48 makes tridiagonal the
projected conduction Hamiltonian so that the model Hamil-
tonian reads

HA = ��
n=0

�

tnfn
†fn+1 + Vf0

†cd + H.c.� + Wf0
†f0 + Hd. �50�

Here, f0 is the operator defined in Eq. �6�, and fn’s �n
=0,1 , . . . � form an orthonormal basis that replaces am�’s
�m=0,1 , . . . �. With z=1, we recover the Lanczos transforma-
tion in Ref. 2. Otherwise, the codiagonal coefficients tn have
to be determined numerically.47 With error O��−n�, it is
found49 that tn=D
�1−�−1� / log ���1−z−n/2, a result that
brings us to the third step in the NRG procedure, the defini-
tion of a truncated Hamiltonian.

3. Infrared truncation

Given a temperature T and a small dimensionless param-
eter �, let N be the smallest integer such that tN��kBT and
consider the infinite sum on the right-hand side of Eq. �50�.
Compared to kBT, the codiagonal element tN is then negli-
gible. To compute G�T�, it is hence safe to drop the term with
n=N in the infinite series, an approximation that decouples
the subsequent terms from the dot Hamiltonian. Once decou-
pled, the terms with n�N will no longer contribute to the
conductance; to neglect tN is thus equivalent to introducing
an infrared cutoff tN−1. Since kBT and tN−1 are of the same
order of magnitude, to emphasize that kBT sets the energy
scale we define the reduced bandwidth DN�D
�1
−�−1� / log ���−�N−1�/2 and the dimensionless, scaled, trun-
cated Hamiltonian HA

N,

DNHA
N � ��

n=0

N−1

tnfn
†fn+1 + Vf0

†cd + H.c.� + Wf0
†f0 + Hd.

�51�

In the scaled sum on the right-hand side, tN−1 /DN, the small-
est codiagonal coefficient, is of O�1�.

4. Iterative diagonalization and ultraviolet truncation

The last step in the NRG procedure is the iterative diago-
nalization of the model Hamiltonian. With N=0, the right-
hand side of Eq. �51� is easily diagonalized; four eigenvalues
Em

0 and four eigenvectors �m�0 �m=1, . . . ,4� result. At this
stage, it is equally simple to calculate the matrix elements

0�m�cd�n�0 between the eigenvectors of HA
N=0, which will be

needed to compute the conductance.
Application of the operators f0↑

† , f0↓
† , f0↑

† f0↓
† , and the iden-

tity 1 on the eigenvectors of HA
N=0 generates 16 states that

constitute a basis upon which the Hamiltonian HA
N=1 can be

projected. Appropriately chosen linear combinations of those
operators yield basis states �p�1 �p=1, . . . ,16� that diagonal-
ize the charge and spin operators; projected on them, HA

N=1

reduces to block-diagonal matrices, which are then diagonal-
ized numerically. The matrix elements 0�m�cd�n�0 �m ,n
=1, . . . ,4� are projected onto the basis �p�1 and subsequently
rotated to the basis of the eigenstates �m�1 �m=1, . . . ,16� of
HA

N=1. Application of the operators f1↑
† , f1↓

† , f1↑
† f1↓

† , and 1 on
the �m�1 creates 64 basis vectors upon which HA

N=2 can be
projected, and the procedure is iterated.

To check the exponential growth of matrix dimensions, a
dimensionless parameter � is chosen, an ultraviolet cutoff
that controls the cost and the accuracy of the iterative diago-
nalization. At the end of iteration N, the eigenvectors with
scaled energies Em /DN above � are discarded before the con-
struction of the basis states �p�N+1, upon which the Hamil-
tonian HA

N+1 will be projected. This expedient limits the num-
ber of basis states and hence the computational effort in each
iteration. The cost of a full NRG run grows linearly with the
number of iterations.

B. Computation of the conductance

In each iteration, the diagonalization in Sec. VII A 4
yields the eigenvalues Em �m=0,1 , . . . ,M, where M is an
integer determined by the ultraviolet cutoff� and correspond-
ing eigenvectors �m� of the scaled Hamiltonian �51�. Once
the matrix elements �m�cd�n� �m ,n=0,1 , . . . ,M� are com-
puted, one could in principle combine Eqs. �8� and �10� to
compute the conductance at any temperature. In practice, in
each iteration the infrared and ultraviolet truncations define a
narrow window, in which the computed conductance can be
accurately computed. This section explains how one can
combine the sequence of thermal intervals thus resulting
from the iterative diagonalization to compose a conductance
curve.

1. Relation between the conductance and the eigenvalues and
eigenvectors of the scaled Hamiltonian

Equation �8� relates the conductance to the dot-level spec-
tral density �d�� ,T�. Since the temperature T defines the en-
ergy window in each iteration, the thermal energy kBT is
guaranteed to be between the infrared and ultraviolet cutoffs.
Although � may be above �below� the ultraviolet �infrared�
cutoff, it is easy to see that only the energies inside the win-
dow contribute significantly to the conductance. To this end,
substitute Eq. �10� on the right-hand side of Eq. �8�. The
resulting integral leads to an expression for the conductance
that depends only on the eigenvalues Em of HA

N within the
energy window and on the corresponding eigenvectors �m�,

G�T� = G2
�	
w

Z �
mn

��m�cd�n��2

e�Em + e�En
. �52�

As suggested by this equality, which can be reduced to a few
lines of computer code, the computational effort behind a
conductance curve G�T� is comparable to the cost of a mag-
netic susceptibility plot.2
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2. Thermal ranges

The eigenvalues of the scaled truncated Hamiltonian
range from unity to � and hence correspond to energies rang-
ing from DN to �DN. Having neglected tN�DN+1, we can
only compute conductances for kBT��DN+1, where ��10.
At the other extreme, the ultraviolet truncation restricts us to
temperatures such that kBT��DN. Thus, provided that
�DN�� / ��DN+1��	�, i.e., that ���, the Nth iteration yields
reliable conductances in the temperature window �DN+1
�kBT�	��DN+1. If a run is stopped at iteration Nmax, the
juxtaposition of the resulting windows yields G�T� for all
temperatures above �DNmax+1 /kB. In practice, the conduc-
tance is only computed for the kBT�0.1D because irrelevant
operators artificially introduced by the logarithmic discreti-
zation make the interval 0.1D�kBT�D unreliable.

3. z trick

Conductance curves computed with large � show oscilla-
tions, which can be traced to a sequence of poles on the J�
= � i	 / log � lines of the complex-energy plane.47 To elimi-
nate these artifacts of the discretization, we average the con-
ductance curve G�T� computed for given z over a sequence
of equally spaced z’s in the interval 0�z�1.50 The expo-
nential dependence of the computational effort on 1 / log �
makes this averaging procedure far more efficient than com-
parably accurate computations with small �.

4. Numerics

The conductances in Sec. VIII were computed with �
=6 and averaged over two z’s: 0.5 and 1. The amplitude of
the residual oscillations encountered after averaging over z,
somewhat smaller than 0.001e2 /h, provides an estimate of
the error introduced by the logarithmic discretization. The
other two parameters controlling the precision of the results
were fixed at �=10.5 and �=50, respectively. Spin degenera-
cies not counted the number of states below the cutoff in
each iteration peaked at 4000 in iteration 6. To estimate the
error due to the infrared and ultraviolet truncations, for each
N�Nmax we compared the conductance at the lowest tem-
perature in the �N−1�th window, �DN�kBT�	��DN, with
the conductance at the highest temperature in the Nth win-
dow. The mismatch between the two results never exceeding
0.001e2 /h, we conclude that deviations due to the three ap-
proximations in the procedure, the logarithmic discretization
and the infrared and ultraviolet truncations, are comparable.
At any temperature, the estimated absolute deviation in the
computed conductances is smaller than 0.05% of the quan-
tum conductance.

The relatively large discretization parameter expedites the
calculation. On a standard desktop computer, a complete run,
including �i� the iterative diagonalization of HA and compu-
tation of the matrix elements on the right-hand side of Eq.
�52� for each z and �ii� the evaluation of the conductance
curve in the interval 10−10D�kBT�0.1D, takes less than
30 s.

C. Renormalization-group flow

Along with the iterative diagonalization procedure, Eq.
�51� defines a renormalization-group transformation,2

T
HA
N� � HA

N+2 = �HA
N + �

n=N

N+1
tn

DN+2
�fn

†fn+1 + H.c.� . �53�

The factor � multiplying the first term on the right-hand side
magnifies the scale on which the eigenvalues of HA

N are ex-
amined. On the new scale, the second term is a fine structure.
In the absence of characteristic energies, as N grows the
magnification compensates the refinement, and the lowest-
energy eigenvalues of HA

N+2 rapidly become indistinguishable
from those of HA

N. This indicates that the Hamiltonian has
reached a fixed point of T.

In the Kondo regime, the condition V=0 turns the Ander-
son Hamiltonian HA into the LM fixed point of T. With V
�0, as the temperature is reduced past the dominant charac-
teristic energy Ec=min���d� ,�d+U ,D�, the Hamiltonian HA

N

first approaches the LM and then moves away toward the FL
fixed point—a strong-coupling fixed point equivalent to Eq.
�5� with V→�. Between the LM and the FL lies the Kondo
temperature TK, around which the conduction electrons
screen the dot moment.

If one of the dot-charge excitation energies, �0���d� or
�2��d+U, is smaller than the dot width 
w, the model
Hamiltonian enters the mixed-valence regime.55 Instead of
min�D , ��d� , �ed+U�, the dominant characteristic energy is
now Ec=min�D ,
w�. The dot moment is only partially
formed, as the coupling 
w drives the model Hamiltonian
toward the FL before it can come close to the LM.

D. Phase shifts

The potential WLM�WFL� on the right-hand side of Eq. �14�

Eq. �15�� and the associated phase shift �LM��� depend on
the model parameters. With 
=0, for instance, the Hamil-
tonian HA flows directly toward the LM; therefore, WLM
=W and �LM =�w. For 0�
�D, approximate LM phase
shifts can be extracted from the eigenvalues of HA

N, where N
is such that D�DN�kBTK, i.e., such that the model Hamil-
tonian dwells in the vicinity of the LM. For all 
�0, by
contrast, the FL phase shift � can be calculated very accu-
rately from the low-energy eigenvalues of HA because as N
→� the truncated Hamiltonian approaches the FL Hamil-
tonian

H
FL
* = �

�,�
�

��
* g��

† g��. �54�

Here, � and � subscripts distinguish the positive eigenval-
ues from the negative ones, while �=0,1 , . . . counts the posi-
tive �negative� eigenvalues upward �downward� from the
Fermi level.

Once the eigenvalues of HA
N are identified with the many-

body energies generated from Eq. �15�, the ground-state
phase shift � are extracted from the following approximate
expression, which describes all but the �

��
* closest to zero

very accurately.45 For ��5, in particular, within 0.1% de-
viation,

�
��
* = � ��+���/	 �� = 1,2, . . . � , �55�

where �=1−z��=3 /2−z� for odd �even� N.
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VIII. RESULTS

To emulate the conditions under which a SET operates,
we fix the Coulomb repulsion U and effective dot-level
width 
w and examine the ground-state phase shift and the
thermal dependence of the conductance as a function of the
dot energy �d for fixed wire potential W. To mimic the pa-
rameters describing typical devices, Sec. VIII B will study
model Hamiltonians with U�D. The opposite inequality is,
however, more illustrative because it displaces the Kondo
regime to higher temperatures. We prefer to discuss it first.

A. Conductance for U�D

To display a broad range of Kondo temperatures, we
choose the Coulomb repulsion U=5D and the effective dot-
level width 
w=0.15D and examine the ground-state phase
shift � and thermal dependence of the conductance G�T� as
functions of the dot energy �d for five positive wire gate
potentials W. We need not study negative wire potentials,
which would mirror the conductances and phase shifts cal-
culated with positive W, because HA, G, and ��� remain in-
variant under the transformation cd→−cd

†, ak→ak
†, �d+U /2

→−��d+U /2�, and W→−W.
Consider, first, the phase shift. Figure 6 displays the argu-

ment of the trigonometric function on the right-hand side of
the mapping �49�, computed for five wire potentials W, in the
dot-energy range 0��d /D�−U. To draw continuous curves
and to make the ordinate 2��−�w� /	 equal to the ground-

state dot occupancy nd, we have displaced the domain of
definition of � from �−	 /2,	 /2� to �0,	�,

Calculated for W=0, the upright triangles trace a well-
known curve,4 one that remains invariant under the particle-
hole transformation �d+U /2→−��d+U /2�, �→	 /2−�. At
the symmetric point �d+U /2=0, which corresponds to Eq.
�11�, the phase shift is exactly 	 /2. The arrows above the top
axis indicate the Kondo domain, within which the phase shift
remains close to 	 /2. As ��d+U /2� grows, the model Hamil-
tonian first approaches the limits of the Kondo domain and
then invades the mixed-valence domain. In response, �
moves away from 	 /2, toward zero for �d+U /2→U /2, or
toward 	 for �d+U /2→−U /2.

The wire potential reduces the ground-state phase shift
throughout the depicted range. For �W=1, for instance, the
phase shift at the symmetric dot-level energy �d=−2.5D=
−U /2 is reduced from �=	 /2 to �=	 /10. In the Kondo
regime, as the illustration shows, the difference �−�w is
nonetheless pinned at 	 /2. The pinning is due to the Friedel
sum rule.42 Since the ground-state phase shift would be �w if

 were zero, 2��−�w� /	 is the screening charge due to the
coupling to the dot. In the Kondo regime, that charge is
nearly unitary, and �−�w�	 /2.

Figure 6 also shows that a positive wire potential tends to
displace the Kondo regime toward higher dot energies. For
W=0, the rapid decay of the phase shift near �d=0 ��d=
−U� marks the resonance between the nd=0 and nd=1 �nd
=1 and nd=2� dot-level configurations. The Kondo regime
lies between them. As W grows, the two resonances move to
higher �d’s and so does the Kondo regime.

1. Conductance landscape

According to Eq. �49�, the phase-shift difference �−�w
controls G�T�. Consequently, the central features of Fig. 6
are manifest in landscape plots of the conductance. Figure
7�a� shows G�T� in the dot-energy range ��d+U /2��U /2 for
U=5D, and 
=0.15D. The plot surveys the entire Kondo
regime and part of the mixed-valence regime. The plane �d
=−U /2, which represents the symmetric Hamiltonian �11�,
splits the landscape in two symmetric halves, mapped onto
each other by the particle-hole transformation cd→−cd

†, ak
→ak

†.
At the symmetric point �d=−U /2, the temperature-

dependent conductance reproduces the universal function
GS�T /TK�. Here and elsewhere in the Kondo regime, the con-
ductance at fixed �d rises from zero to ballistic as the tem-
perature is reduced past TK, i.e., as one climbs from the high-
temperature Coulomb-blockade valley to the low-
temperature Kondo plateau.

The Kondo temperature depends on �d. Plotted in Fig.
7�b� as a function of the dot energy, TK mirrors the invari-
ance of the Hamiltonian under particle-hole transformations
and reaches the minimum kBTK=8
10−7D at the symmetric
point. As ��d+U /2� grows, the Kondo temperature rises until
kBTk�0.1D, an equality indicating proximity to the mixed-
valence regime, i.e., to the two resonances centered at �d=
−5D and �d=0. As ��d+U /2� grows further, we come into
mixed-valence domain. The dot moment shrinks, and so does
the Kondo cloud. The Kondo bypass of the Coulomb block-

Kondo (W = 0)

−5 −4 −3 −2 0

-2 -1 0
εd+U/2

D 2

0.4

0.8

1.2

2.0
ρW = 0.00
ρW = 0.10
ρW = 0.25
ρW = 0.50
ρW = 1.00

2(δ−δw)
π

εd/D

910Fig. 11 12

FIG. 6. �Color online� Ground-state phase shift �, measured
from the phase shift �w obtained from Eq. �B6� for the displayed
wire potentials W, as a function of the dot-level energy �d. The
phase shifts are defined in the domain 0���	 so that the Friedel
sum rule makes the ordinate equal the dot occupation nd. The �’s
were obtained, with the help of Eq. �55�, from the low-energy spec-
trum of HA resulting from NRG runs with U=5D and 
w=0.15D.
The arrows above the top horizontal axis define the Kondo domain
for W=0. For W�0, the Kondo domain is displaced to the right.
Each vertical arrow pointing to the lower horizontal axis identifies
the figure displaying the thermal dependence of the conductance for
the indicated dot energy.
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ade becomes less and less effective, and the conductance
approaches zero. The steep drops near the �d=0 and �d=
−5D planes in Fig. 7�a� mark the fractional dot occupations
nd�0.5 and nd�1.5, respectively.

2. Wire potential

Figure 8�a� displays the conductance as a function of �d
and T for U=5D, 
w=0.15D, and �W=1. Quantitative dif-
ferences distinguish the plot from Fig. 7�a�. In particular, the
Kondo temperature is now minimized at the higher dot-level
energy �d=−1.9D, the minimum is 30-fold higher, kBTK
=2.4
10−6D, the resonance between the nd=1 and nd=2 dot
configurations is now centered at �d�−4.2D, and of the
resonance between the nd=0 and nd=1 dot configurations
only an incipient rise is visible at the high-�d end of the plot.
Clearly, the wire potential has displaced the Kondo domain
toward higher dot-level energies. This displacement ac-

knowledged, we recognize in Fig. 8�a� the salient features of
Fig. 7�a�.

The two landscapes are similar because the dependence
relating the phase-shift difference on the right-hand side of
Eq. �49� to the wire potential �W is weak. With �−�w

�	 /2, the conductance curve G�T /TK� is approximately
mapped onto GS�T /TK� throughout the Kondo domain. The
rise from the high-temperature valley to the Kondo plateau is
therefore close to universal, dependent on the model param-
eters only through the Kondo temperature TK.

Figure 8�b� shows the Kondo temperature as a function of
the dot energy, a plot that resembles Fig. 7�b�. TK depends on
the antiferromagnetic interaction J between the dot moment
and the conduction electrons around it, a constant related to
the model parameters by the Schrieffer-Wolff expression,41
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FIG. 7. �Color online� �a� Conductance as a function of the
temperature and dot-level energy for U=5D, 
=0.15D, and W=0.
The plot is symmetric with respect to the �d=−U /2=−2.5D plane.
The sharp drops near �d=−5D and �d=0 mark the borders of the
Kondo regime, which extends roughly from �d=−
 to �d+U=−
.
In the Kondo regime, at fixed �d, the more gradual decay of the
conductance with temperature portrays the evaporation of the
Kondo droplet. �b� Kondo temperatures resulting from the intersec-
tion of the landscape �a� with the horizontal plane G�T=TK�
�G2 /2.
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FIG. 8. �Color online� �a� Conductance as a function of the
temperature and dot-level energy for U=5D, 
w=0.15D, and �W
=0.50. The wire potential breaks the particle-hole symmetry visible
in Fig. 7. The sharp drop centered at �d=−5D in Fig. 7 is now fully
visible, while the one centered at �d=0 is out of sight, an indication
that the Kondo regime has been displaced to higher dot energies.
The bell-shaped resonance near the bottom left corner of the kBT
=10−1D plane stakes the mixed-valence regime. �b� Kondo tem-
peratures resulting from the intersection of the landscape �a� with
the plane G�T=TK�=G2 /2.
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�J =
2
w

	
� 1

�0
+

1

�2
� . �56�

Here, �0 ��2� is one of the two dot-charge excitation ener-
gies, the energy needed to remove �add� an electron to the
singly-occupied dot level. For the symmetric Hamiltonian
�11�, in particular, �0=�2=U /2. For nearly symmetric
Hamiltonians, �0= ��d� and �2=U+�d. As �W� or ��d+U /2�
grow, the resulting particle-hole asymmetry renormalizes the
dot energy51,45 so that �0 and �2 are changed to �

0
*= ��

d
*� and

�
2
*=U+�

d
*, respectively, where �

d
* is the effective dot energy

at the LM.45

Since both landscapes were computed for the same effec-
tive width 
w=0.15D, only �i� the excitation energies �

0
* and

�
2
* and �ii� irrelevant operators make the Kondo tempera-

tures in Fig. 8�b� different from those in Fig. 7�b�. The renor-
malized excitation energies displace the Kondo domain
along the �d axis, while the modified irrelevant operators
extend the Kondo plateau toward higher temperatures.

This concludes our overview of the numerically computed
conductance landscapes. Section VIII A 3 will inspect in
more detail the data in four slices of Figs. 7�a� and 8�a� and
compare them to Eq. �49�.

3. Thermal dependence of the conductance

Figure 9 displays the conductance as a function of the
temperature for U=5D, 
w=0.15D, �d+U /2=0, and five
wire potentials: �W=0 and 1, already studied in Figs. 7 and
8, and three intermediate values, �W=0.25, 0.5, and 0.75.
With W=0, the open circles represent the symmetric Hamil-
tonian �11�, and the solid line through them, the universal
function GS�T /TK� first computed in Ref. 29. Notwithstand-
ing the wire potentials, the Hamiltonians represented by the
squares, triangles, and diamonds lie deep inside the Kondo

regime. For each of them, the phase-shift difference ��−�w�
in Table I is close to 	 /2. It follows that the right-hand side
of Eq. �49� is close to GS�T /TK�. The agreement with the
numerical data is excellent.

As the Hamiltonian moves away from the symmetric
plane �d=−U /2, the particle-hole asymmetry becomes more
pronounced, and one might expect the phase shift difference
��−�w� to grow. As Fig. 6 showed, however, the growth is
checked by the Friedel sum rule so that ��−�w��	 /2 in the
Kondo regime. Illustrative results appear in Fig. 10, which
displays conductance curves for �d=−3.4D. Even for the
strongest wire potential in the legend, �W=1, the difference
��−�w� in Table I is only 6% away from 	 /2. As in Fig. 9,
therefore, the conductance curves computed from Eq. �49�
are nearly identical to GS�T /TK�. The agreement with the
numerical data is again excellent. Since we are now closer to
the boundary of the Kondo regime, the Kondo temperature is
more sensitive to the renormalization of the dot-level energy
induced by strong wire potentials. Compared to Fig. 9, Fig.
10 thus exhibits a substantially broader spread of crossover
temperatures.

Figure 11 displays numerical results for �d+U /2=−1.5D,
a still larger departure from the symmetric condition. For
�W�0.5, the agreement with Eq. �49� is excellent; for �W
=0.75, it is imperfect only at the highest temperatures
shown. For �W=1, however, there is substantial disagree-
ment, which justifies a digression.

Inspection of Fig. 8 shows that for �d=−4D �and �W=1�,
the model Hamiltonian lies well within the mixed-valence
regime.56 In the Kondo regime, Eq. �49� is reliable for ther-
mal energies that are small on the scale of the dominant
characteristic energy EC=min���

d
*� ,U+�

d
* ,D�. If �

d
* had its

bare value, �d=−4D, the mapping would be reliable for
kBT�Ec=D. The renormalized dot energy having pushed the
model Hamiltonian into the mixed-valence regime, the domi-
nant characteristic energy has been reduced to Ec
=min�
w ,D�=
w, which restricts the domain of the mapping
to kBT�0.15D. The failure at higher temperatures is due to
the contribution �Girr of irrelevant operators, which are siz-
able near the characteristic energy. At kBT=0.1D=2 /3
w, for
example, the diamonds in Fig. 11 are pushed 0.2e2 /h below
the solid line; upon cooling, �Girr decays in proportion to
kBT and becomes insignificant below kBT=10−2D.

If −�d were steadily increased beyond −�d=4D, the model
Hamiltonian would traverse the mixed-valence region. Once
��

d
*+U��
w, the dot occupation would approach nd=2. The

dominant characteristic energy Ec= ��
d
*+U� would define the

crossover energy scale, which would hence rise with −�d.
Soon, the model Hamiltonian would be driven to the frozen-
level fixed point at the first steps of the renormalization-
group flow, and the mapping would be reduced to its FL
limit, G�T→0�=sin2��−�w��0.

Equation �49� is asymptotically exact at low temperatures,
i.e., for kBT�Ec. As the above discussion showed, its prac-
tical value is eroded outside the Kondo regime. In the mixed-
valence regime, in particular, the asymptotic region lies well
below the crossover temperature, i.e., in the vicinity of the
FL. To plot the rightmost solid line in Fig. 11, we thus had to
match the right-hand side of Eq. �49� to the diamond at G
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FIG. 9. �Color online� Thermal dependence of the conductance
for �d+U /2=0, and the indicated values of the other model param-
eters. The circles, open and filled squares, triangles, and diamonds
are the NRG data, while the solid lines through them depict Eq.
�49�, with the Kondo temperatures and phase shifts listed in Table I.
The curve through the open circles, in particular, is the universal
conductance GS�T /TK� for the symmetric Hamiltonian �11� �Ref.
29�. Since ��−�w��	 /2, each solid line is close to GS�T /TK�.
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=0.7G2 because the identification G�T=TK�=0.5G2, which
defined TK for all the other plots in Figs. 9–12, became un-
reliable for �W=1. Table I marks with an asterisk the result-
ing Kondo temperature.

Near the opposite extreme of the Kondo regime, for fixed
small −�d, the wire potential drives the model Hamiltonian

toward the center of the Kondo regime. Clear evidence of
this displacement is found in Fig. 8�a�: displaced to positive
dot-level energies, the mixed-valence domain is no longer
visible on the right-hand side of the landscape. The tempera-
ture dependence of the conductance is displayed in Fig. 12,
which shows the �d=−0.4D plane for the five potentials
�W=0, 0.25, 0.5, 0.75, and 1. The �W=0 Hamiltonian is

TABLE I. Phase shifts and Kondo temperatures for the 20 NRG runs depicted in Figs. 9–12. The
ground-state phase shifts � were obtained from Eq. �55�, the wire phase shifts �w from Eq. �B6�, and the
Kondo temperatures from the definition G�T=TK��G2 /2. The Kondo temperature marked with an asterisk
belongs to the mixed-valence regime and, as explained in the text, is the output of a different computation.

Figure Symbol �W �w /	 � /	 ��−�w� /	 kBTK /D

9 � 0.00 0.00 −0.50 0.50 8.1
10−7

9 � 0.25 −0.21 0.29 0.50 1.1
10−6

9 � 0.50 −0.32 0.18 0.50 2
10−6

9 � 0.75 −0.37 0.13 0.51 3.4
10−6

9 � 1.00 −0.40 0.11 0.51 6
10−6

10 � 0.00 0.00 −0.49 0.49 4.4
10−6

10 � 0.25 −0.21 0.30 0.51 1.1
10−5

10 � 0.50 −0.32 0.20 0.52 3.6
10−5

10 � 0.75 −0.37 0.15 0.52 1.1
10−4

10 � 1.00 −0.40 0.13 0.53 3.6
10−4

11 � 0.00 0.00 −0.48 0.48 8.8
10−5

11 � 0.25 −0.21 0.32 0.53 3.3
10−4

11 � 0.50 −0.32 0.23 0.55 1.6
10−3

11 � 0.75 −0.37 0.22 0.59 7.3
10−3

11 � 1.00 −0.40 0.25 0.65 3.4
10−2*

12 � 0.00 0.00 0.42 0.42 8.0
10−3

12 � 0.25 −0.21 0.24 0.45 2.4
10−3

12 � 0.50 −0.32 0.15 0.46 9.4
10−4

12 � 0.75 −0.37 0.10 0.47 4.0
10−4

12 � 1.00 −0.40 0.08 0.48 1.9
10−4
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FIG. 10. �Color online� Thermal dependence of the conductance
for �d+U /2=−0.9D. The symbols and lines were computed as de-
scribed in Fig. 9. As Table I shows, the argument ��−�w� on the
right-hand side of Eq. �49� is close to 	 /2. As a consequence, the
solid lines are only slightly different from GS�T /TK�. The agree-
ment with the numerical data is, again, excellent.
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FIG. 11. �Color online� Thermal dependence of the conductance
for �d+U /2=−1.5D. The symbols and lines were calculated as de-
scribed in Fig. 9. As discussed in the text, the high-temperature
separation between the solid line and the diamonds flags a Hamil-
tonian outside the Kondo regime.
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now at the boundary of the Kondo regime, and for kBT
�10−2D, irrelevant operators introduce significant deviations
�Girr from the solid line. As �W grows, however, the model
Hamiltonian sinks deeper into the Kondo regime, and the
agreement with the solid lines improves.

B. Conductance for U�D

We now consider the more realistic Coulomb repulsion
U=0.05D, which pushes the Kondo regime to the tempera-
ture range kBT�min���d� ,�d+U�. As in Sec. VIII, we con-
sider wire gate potentials, in the interval 0��W�1. To gen-
erate Kondo temperatures comparable to those in Fig. 7�b�,
for each wire potential we choose a dot-level width 
 so that
Eq. �9� yields the effective width 
w=2
10−3D and let the
dot energy run from �d+U /2=−0.04D to �d+U /2=0.04D.
Ampler than the scope of Figs. 7 and 8, this range provides
an encompassing view of the Kondo and mixed-valence re-
gimes.

1. Conductance landscape

Figure 13 shows the conductance as a function of the
temperature and dot energy for �W=0. Analogous to Fig.
7�a�, the plot is symmetric about the �d+U /2=0 plane. In
contrast with Fig. 7�a�, however, the landscape displays a
ridge, parallel to the �d axis, at high temperatures. The ridge
marks the crossover from the free-orbital fixed point,2 the
temperature range associated with thermal energies above
the charge-excitation energies �

0
*���d� and �

2
*��d+U, and

the local-moment fixed point. Since the dot-level spectral
density �d�� ,T� peaks at �

0
* and �

2
*,46,52 the conductance first

rises and then decays as the model Hamiltonian crosses over
from the free-orbital fixed point to the Kondo regime.

The Kondo regime occupies the broad low-temperature
sector of the plot where the excitation energies �

0
* and �

2
*

exceed the dot-level width 
 and the thermal energy kBT. As
the model Hamiltonian enters the Kondo regime, Eq. �49�
takes control of the conductance and reproduces the gradual
rise to the Kondo plateau depicted in Fig. 7�a�.

At the outskirts of the Kondo regime, the narrow strip
satisfying the inequality ��

0
*��
���

2
*��
� defines the

mixed-valence regime. As �d+U /2 
−��d+U /2�� grows at
fixed temperature, the conductance drops sharply in this re-
gime. Beyond the mixed-valence strip, �

0
*��

2
*� is negative,

��
0
*����

2
* � � exceeds 
, and the dot occupation nd approaches

0 �2�. The dot magnetic moment vanishes, and the Coulomb
blockade obstructs conduction even at T=0. In the entire
temperature range ��

0
*��kBT���

2
*��kBT�, the conductance is

close to zero.
Figure 13�b� shows the conductance as a function of the

dot energy and temperature for �W=1. Comparison with Fig.
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FIG. 12. �Color online� Thermal dependence of the conductance
for �d+U /2=2.1D. The lines and symbols were computed as de-
scribed in Fig. 9. The relatively large separation from the symmetric
condition �d+U /2=0 places the W=0 Hamiltonian close to the
border of the Kondo regime; at high temperatures, relatively large
irrelevant operators, whose influence decays in proportion to
kBT /D, introduce deviations from Eq. �49�. Since the wire potential
displaces the Kondo regime to higher dot-level energies, the dis-
tance from the border grows with �W, and so does the agreement
between the numerical data and the solid lines representing Eq.
�49�.
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FIG. 13. �Color online� Conductance as a function of the tem-
perature and dot energy for U=0.05D, 
=0.002D, and wire gate
potentials �W=0 �a� and �W=1 �b�. In each case, a ridge separates
the high-temperature range kBT�U from the Kondo regime. In the
Kondo regime, plots �a� and �b� reproduce the landscapes displayed
in Figs. 7 and 8, respectively.
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13�a� shows that the wire potential moves the Kondo plateau
and mixed-valence regimes to higher dot energies, a dis-
placement analogous to the shift distinguishing Fig. 8�a�
from Fig. 7�a�. At high temperatures, near the free-orbital
fixed point, only in the mixed-valence regime is the conduc-
tance significantly affected by the wire gate potential.

2. Thermal dependence of the conductance

Figure 14 displays the thermal dependence of the conduc-
tance for �d+U /2=0 and four wire potentials, �W=0, 0.5,
0.75, and 1. The symbols represent NRG results, while the
solid lines represent Eq. �49� with the Kondo temperature TK
extracted from the definition G�TK��G2 /2 and the phase
shift � from the low-energy spectrum of the model Hamil-
tonian. In each case, the symbols agree impeccably with the
solid line representing Eq. �49� in the range kBT�2

10−3D. As indicated by the vertical arrow pointing to the
lower horizontal axis, the nd=0 and nd=2 dot configurations
become thermally accessible at higher temperatures. Charge
excitations then control the dynamics of transport and make
it insensitive to the wire potential. The circles, squares, tri-
angles, and diamonds therefore depart from the solid lines to
form a single, broad conductance peak, which corresponds to
the high-temperature ridges in Fig. 13.

Figure 15 plots the conductance as a function of the tem-
perature for �d+U /2=−0.015D and five wire potentials:
�W=0, 0.25, 0.50, 0.75, and 1. The charge excitation ener-
gies ��d� and �d+U are now different; the vertical arrow in
the figure points to the lowest one and indicates proximity to
the mixed-valence regime. The symbols are NRG data, while
the solid lines depict Eq. �49�. The open circles and filled
squares agree very well with the solid line at temperatures
below kBT=10−3D and draw a broad nonuniversal maximum
near the indicated excitation energy.

The circles and open squares in Fig. 15 follow the pattern
set by Fig. 14. For �W�0.5, however, the high-temperature
peak in Fig. 15 first turns into an inflexion point and then
disappears as the wire potential rises. A brief glance at Fig.
13 is sufficient to see that the dot energy �d=−0.04D moves
from the Kondo to the mixed-valence regime as the wire
potential grows from �W=0 to �W=1.

The filled triangles and open diamonds in Fig. 15 are in
the mixed-valence regime. In the same way that the triangles
and diamonds in Fig. 11 lie significantly below the pertinent
solid lines, only above G2 /2 do the triangles and diamonds in
Fig. 15 agree with Eq. �49�, i.e., only below the Kondo tem-
perature. This reinforces our finding that besides accurate at
all temperatures in the Kondo regime, Eq. �49� is reliable at
low temperatures even in the mixed-valence regime.

C. Discussion

In the Kondo regime, Eqs. �22a� and �22b� fix the high-
and the low-temperature conductances, respectively. Equa-
tion �49� shows that the universal function GS�T /TK� controls
the monotonic transition between the two limits. For W=0,
in particular, the fixed-point values depend only on the
ground-state phase shift � and are symmetric with respect to
G2 /2: GLM =G2 cos2 � and GFL=G2 sin2 �. Thus, depending
on �, the transition from GLM to GFL can be steeper or flatter.
Since � can never depart much from 	 /2 in the Kondo re-
gime, the argument of the trigonometric function on the
right-hand side of Eq. �49� can never depart substantially
from 	, and as indicated by the two curves in Fig. 4,
G�T /TK��GS�T /TK��20%. By contrast with this crude es-
timate, the mapping �49� gives excellent agreement with the
symbols in the Kondo-regime curves in Fig. 9–12, 14, and
15.
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ρW = 0.75

ρW = 1.00

U = 0.05 D

Γw = 0.002 D

εd = −0.025 D

U/2D

FIG. 14. �Color online� Temperature dependence of the conduc-
tance for the displayed model parameters. The vertical arrow points
to thermal energy needed to add an electron to or remove an elec-
tron from the dot level. Each solid line represents Eq. �49� for the
Kondo temperature defined by the equality G�T=TK�=G2 /2 and the
phase shift � extracted from the low-energy spectrum of the model
Hamiltonian.

|εd + U |
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FIG. 15. �Color online� Temperature dependence of the conduc-
tance for the displayed model parameters. The vertical arrow points
to thermal energy needed to add a second electron to the dot level,
smaller than the energy necessary to remove the dot electron. As in
Fig. 14, each solid line represents Eq. �49�.
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The wire potential W narrows the dot level and displaces
the ground-state phase shift. Depending on the sign and mag-
nitude of W, the phase shift can take any value in its domain
of definition −	 /2���	 /2. In the Kondo regime, the Frie-
del sum rule nonetheless prevents the difference �−�W from
straying away from 	 /2. All effects considered, the scatter-
ing potential W displaces the conductance curve toward the
symmetric limit G�T /TK�=GS�T /TK�.

These findings are in line with the experimentally estab-
lished notion that in the Kondo regime, SET conductances
always decay with temperature.5,14,36,38 This behavior con-
trasting with that of the conductance in the side-coupled
geometry,31,32 we digress briefly to compare the two arrange-
ments. As demonstrated in Ref. 30, a linear mapping analo-
gous to Eq. �49� can be established between the side-coupled
conductance and GS�T /TK�. Since the coefficient relating the
two functions is cos�2��, instead of cos
2��−�w��, the ap-
proximate equality �−�w�	 /2 makes the coefficient sensi-
tive to changes in �w. Under a sufficiently strong wire poten-
tial, the sign of the coefficient can be reversed. Thus, the
thermal dependence of the conductance through the side-
coupled device is tunable:35 a wire potential can turn a
monotonically increasing function into a monotonically de-
creasing one. The embedded geometry of Fig. 1 is much less
sensitive to W.

In Fig. 1, the charge induced under the symmetric elec-
trodes by the potential W is 	 times �w. According to the
Friedel sum rule,42 the difference �−�W is the charge of the
Kondo cloud, the additional charge that piles up at the wire
tips surrounding the dot as the temperature is lowered past
TK. Neutrality makes the charge of the Kondo cloud equal to
the dot occupancy. Since the symmetric condition nd=1
maximizes the low-temperature conductance, one expects
G�T=0� to be ballistic for 2��−�W�=	, a conclusion in
agreement with Eq. �49�. Since the screening charge is al-
ways nearly unitary, one expects the low-temperature con-
ductance to be close to the conductance quantum, in agree-
ment with the plots in Figs. 9–12, 14, and 15.

D. Prospect of comparison with experiment

Equation �49� is analogous to the expression relating the
universal function GS to the conductance in the side-coupled
arrangement.30 Both expressions are linear, and the linearity
simplifies the comparison with experimental data. To fit the
conductances Gi �i=1, . . . ,N� measured at N temperatures Ti,
we follow the procedure illustrated by Fig. 3 in Ref. 30. We
start with a trial Kondo temperature TK and compute the
scaled temperatures  i=Ti /TK �i=1, . . . ,N�. Since we know
the universal function GS�T /TK�, it is then a simple matter to
compute the set GS� i� �i=1, . . . ,N� of universal conduc-
tances at the scaled temperatures. According to Eq. �49�,
plotted as a function of GS� i�, Gi should lie on a straight
line. If the line is crooked, we have to choose a new trial TK
and repeat the procedure. In practice, we seek the Kondo
temperature optimizing the least-squares linear fit to the plot
of Gi vs GS� i�.

In addition to yielding the Kondo temperature, the linear
regression determines the argument 2��−�W� of the trigono-

metric function on the right-hand side of Eq. �49�. Conve-
nient as the SET therefore is to measure the ground-state
phase shift �, its interferometric scope is narrow, for the
phase shifts in the embedded geometry are always close to
�W+	 /2. By comparison, the side-coupled device consti-
tutes an interferometer of more practical value because it is
free from this limitation.30,53

IX. SUMMARY

The first part of this report derived our central result, Eq.
�49�, which maps the conductance in the embedded geometry
onto the universal conductance for the symmetric Anderson
model �11� linearly. As our discussion of the result showed,
while the Kondo temperature sets the temperature scale, the
dot charge controls the mapping, even with a gate potential
applied to the wires. If the dot occupation nd is unitary, the
mapping reduces to the equality G�T /TK�=GS�T /TK�, the re-
sult found by Costi et al.29 Elsewhere in the Kondo regime,
the dot occupation being still close to unity G�T /TK� is never
qualitatively different from GS�T /TK�. Relative deviations as
large as 20% may nevertheless separate the two functions at
low temperatures.

By contrast with the approximation G�T /TK��GS�T /TK�,
Eq. �49� describes the conductance exactly in the Kondo re-
gime and is hence the appropriate instrument to describe ex-
perimental or numerical data. In particular, once fitted to an
experimental curve, the mapping determines the Kondo tem-
perature TK, as well as the dot charge.

The essentially exact numerical results in the second part
of the paper presented an overview of zero-bias conduction
through a quantum dot embedded in the conduction path of a
nanodevice. Equation �49�, a mapping explicitly param-
etrized by the Kondo temperature and dot occupancy, guided
our discussion of the computed conduction curves in the
Kondo regime. We also surveyed the neighboring domains of
the parametrical space: the free-orbital and mixed-valence
regimes. In the former, instead of scaling with T /TK, the
thermal dependence of the conductance scales with kBT /Ec,
where Ec is a charge-excitation energy, Ec=min��

0
* ,�

2
*�. In

the mixed-valence regime, the effective dot-level width 
w
setting the temperature scale, the mapping �49� becomes as-
ymptotically exact for kBT�
w and only witnesses the final
rise of the conductance to its low-temperature limit G�T
=0�=G2 sin2��−�w�.

By contrast, in the Kondo regime the mapping is asymp-
totically exact for kBT�min D ,�

0
* ,�

2
* and hence describes

accurately the rise of the conductance throughout the Kondo
crossover. The distinction between the Kondo and the mixed-
valence regimes is a problem often encountered in the
laboratory.5,32 The mapping to the universal curve offers a
solution of practical value.
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APPENDIX A: PROPERTIES OF THE FIXED-POINT
HAMILTONIANS

1. Diagonalization

The LM and FL are described by conduction-band Hamil-
tonians of the form

UNIVERSAL ZERO-BIAS CONDUCTANCE FOR THE… PHYSICAL REVIEW B 80, 235317 �2009�

235317-17



H* = �
k

�kak
†ak + W*f0

†f0. �A1�

We want to bring H* to the diagonal form

H* = �
�

��g�
†g�, �A2�

where

g� = �
q

��qaq. �A3�

To this end, we compare the expressions for the commutator

g� ,H*� obtained from Eqs. �A1� and �A2�, from which it
follows that

��q =
1

�� − �q

W*

N
�

k

��k. �A4�

Summation of both sides over q then leads to the eigen-
value condition,

1 =
W*

N
�

q

1

�� − �q
. �A5�

Inspection of this equality shows that, with exception of a
split-off energy, which makes O�1 /N� contributions to the
low-energy properties, the �� are shifted by less than � from
the �k. We therefore refer to the closest conduction energy ��

to label each eigenvalue and define its phase shift �� with the
expression

�� � �� −
�

	
��. �A6�

This definition substituted for ��, a Sommerfeld-Watson
transformation54 evaluates the sum on the right-hand side of
Eq. �A5�,

1

N
�

q

1

�� − �q
= − 	� cot �� + �

W
−D

D 1

�� − �
d� . �A7�

The eigenvalue Eq. �A5� therefore determines the phase
shift,

cot �� = −
1

	�W*
+

1

	W−D

D 1

�� − �
d� . �A8�

At low energies, the contribution of the last term on the
right-hand side, of O�� /D�, can be neglected, and the phase
shift becomes uniform,

tan � = − 	�W*. �A9�

Next, we square both sides of Eq. �A4� and sum the result
over q to determine the coefficients ��q.

�
q

��q
2 = ��

k

��k
W*

N
�2

�
q

1

��� − �q�2 . �A10�

The sum on the left-hand side is unitary. To evaluate the sum
over q on the right-hand side, we differentiate Eq. �A7� with
respect to ��. With relative error O�1 /N�, we find that

1

N2�
q

1

��� − �q�2 = � 	�

sin ��
�2

. �A11�

Thus, Eq. �A10� reduces to

W*�
k

��k = −
1

	�
sin ��, �A12�

the negative sign insuring that �kk→1 for W*→0. From Eq.
�A4� it then follows that

��q =
�

�q − ��

sin ��

	
��� � D� . �A13�

2. Energy moments of the matrix elements of the
eigenoperators g�

This appendix shows that, given two eigenstates �m� and
�n� of the Hamiltonian HA, and considered the operators f0,
f1, �0, and �1 defined by Eqs. �6�, �30�, �26�, and �27�,
respectively, the matrix element �m�f0�n� ��m�f1�n�� is a linear
combination of the matrix elements �m��0�n� and �m��1�n�
with coefficients that are independent of the eigenstates �m�
and �n�, as long their eigenvalues Em and En, respectively, are
much smaller than the conduction bandwidth. We define the
dimensionless energy Emn��Em−En� /D and assume that

�Emn� � 1. �A14�

Under this assumption, we consider the energy moments

Mmn
�p� �

1
	N

�
�
���

D
�p

�m�g��n� �p = 0,1, . . . � , �A15�

where g� ���� is one of the eigenstates �eigenvalues� defined
by Eq. �A2�.

Since the Mmn
p are universal, to evaluate them it is suffi-

cient to consider the symmetric Hamiltonian �11�, for which
the phase shift �LM =0 so that gk, �k, �0, and �1 coincide
with ak, �k, f0, and f1, respectively.

From Eq. �11�, we then have that


g�,HA
S� = ��g� +

V
	N

cd. �A16�

Multiplication of both sides by ��� /D�p−1 followed by sum-
mation over � leads to the coupled recursive relations,

Mmn
�p� = − EmnMmn

�p−1� −
V

p
�m�cd�n� �p = 1,3, . . . � ,

Mmn
�p� = − EmnMmn

�p−1� �p = 2,4, . . . � .

Reduced to a matrix equation, this system is easily solved,

Mmn
�p� = −

V

p
�m�cd�n��1 + �

r=1

p−2

�
�Emn�r

r
� + Mmn

�0��Emn�p

�p = 1,3, . . . � , �A17�

and
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Mmn
�p� = −

V

p
�m�cd�n��

r=1

p−1

�
�Emn�r

r
+ Mmn

�0��Emn�p �p = 2,4, . . . � ,

�A18�

where the primed sums are restricted to odd r’s.
In view of Eq. �A14�, the terms proportional to �Emn�p�p

�1� on the right-hand sides of these two equalities can be
neglected. From Eq. �A17� we then see that Mmn

�1� =
−V�m�cd�n� and all the other odd moments are proportional to
Mmn

�1�, and from Eq. �A18�, we see that the only nonzero even
moment is Mmn

�0�. More specifically,

Mmn
�p� = � �m��1�n�

p
�p = 1,3, . . . �

0 �p = 2,4, . . . � .
� �A19�

This simple relation suggests that we define the following
orthonormal basis of conduction states:

�� �	2� + 1

N
�

p

P���p�gp �� = 0,1, . . . � , �A20�

where P� denotes a Legendre polynomial. In particular, with
�=0 ��=1�, we recover Eq. �26� 
Eq. �27��.

Given two eigenstates �m� and �n� of HA, the matrix ele-
ment �m����n� is a linear combination of the moments Mmn

�r�

�r=1,3 , . . . ,� for odd �, or r=2,4 , . . . ,� for even p�. It fol-
lows from Eq. �A19�, then that �m����n���m��1�n� ��
=3,5 , . . . �, while �m����n�=0 ��=2,4 , . . . �. More generally,
the matrix element of any conduction operator is a linear
combination of �m��0�n� and �m��1�n�. In particular,

�m�f i�n� = �
j=0

1

�ij�m�� j�n� �i = 0,1� , �A21�

where f0 and f1 are the operators defined by Eqs. �6� and
�30�, respectively, and �ij �i , j=0,1� are model-parameter
dependent constants.

APPENDIX B: FIXED-POINT CONDUCTANCES

This appendix derives an expression for the spectral den-
sity �d�� ,T� at the fixed points. We start with Eq. �28�, from
which we obtain an expression for the matrix element of the
conduction operator aq

† between two low-energy eigenstates
�m� and �n� of HA,

�m�aq
†�n� =

1
	N

V

Em − En − �q
�m�cd

†�n�

+
W

N

1

Em − En − �q
�m��

p

ap
†�n� . �B1�

Summation of both sides over q leads to an expression for
the matrix element in the last term on the right-hand side,

�m��
p

ap
†�n��1 − WSmn� = 	NV�m�cd

†�n�Smn, �B2�

where

Smn �
1

N
�

q

1

Em − En − �q
, �B3�

which brings Eq. �B1� to the form

�m�aq
†�n� =

�m�cd
†�n�

	N�Em − En − �q�
V

1 − WSmn
. �B4�

Consider now this equality at one of the two fixed points,
LM or FL. The fixed-point Hamiltonian has then the qua-
dratic form �A2�, which defines the complete basis of the
operators g�. The matrix element �m�g�

†�n� vanishes unless
�m�=g�

†�n�, which implies Em=En+��. At a fixed point, there-
fore, the sum on the right-hand side of Eq. �B3� reduces to
that in Eq. �A7�, i.e.,

Smn = − 	� cot �*, �B5�

where we have ignored the last term on the right-hand side of
Eq. �A7� because at a fixed point the ratio �� /D→0. Equa-
tion �B5� suggests that we introduce the phase shift �W, de-
fined by

tan �W � − 	�W , �B6�

to simplify Eq. �B4�,

�m�aq
†�n� =

V�m�cd
†�n�

	N�Em − En − �q�

sin �* cos �W

sin��* − �W�
. �B7�

In analogy with Eq. �A3� we can, moreover, write

g� = ��0cd + �
q

��qaq, �B8�

with normalized coefficients,

��0
2 + �

q

��q
2 = 1. �B9�

Equation �B8� is easily inverted to yield the expressions

aq = �
�

��qg�, �B10�

and

cd = �
�

��0g�. �B11�

Substitution of Eq. �B10� for aq on the left-hand side of Eq.
�B7� and of Eq. �B11� for cd on the right-hand side then
yields

��q
2 =

V2��0
2

N��� − �q�2� sin �* cos �W

sin��* − �W� �
2

. �B12�

We divide both sides by N, sum them over q, and substitute
Eq. �A11� for the resulting sum on the right-hand side to find
that

�
q

��q
2 = NV2��0

2 � 	� cos �W

sin��* − �W��2

. �B13�
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Substitution in the second term on the left-hand side of
Eq. �B9� now shows that, with error O�1 /N�, the fixed-point
matrix elements �m�cd

†�n� are constants, dependent only on
the phase shift and scattering potential,

��m�cd
†�n��2 =

1

NV2

sin2��* − �W�

	2�2 cos2 �W
. �B14�

The fixed-point spectral density, as one would also expect,
is temperature independent,

�d��,T� =
1

NV2Z�
m,n

e−�Em
sin2��* − �W�

	2�2 cos2 �W
���� − �� ,

�B15�

equivalent to

�d��� =
sin2��* − �W�

	
 cos2 �W
. �B16�

With W=0, we recover the celebrated expression42

�d��� =
sin2 �*

	

. �B17�

More generally, however, to obtain the fixed-point spectral
densities, we set �*=� at the FL, and �*=�−	 /2 at the LM,
from which it results that

�d
LM =

cos2�� − �W�
	
w

, �B18a�

�d
FL =

sin2�� − �W�
	
w

. �B18b�

Substitution of Eqs. �B18a� and �B18b� for �d on the right-
hand side of Eq. �8� leads to Eqs. �22a� and �22b�, respec-
tively.

APPENDIX C: ZERO-BIAS CONDUCTANCE

By contrast with the coupling to the impurity, which is
independent of the odd operators bk defined by Eq. �4b�, the
Hamiltonian describing a bias voltage couples to bk’s. Pre-
liminary to the discussion of the conductance, it is therefore
convenient to derive results for bk’s analogous to those in
Appendix A. Specifically, given the formal equivalence be-
tween Eqs. �7� and �A1�, we can follow the steps in that
Appendix to write HB in the diagonal form

HB = � �̃�g̃�
†g̃�, �C1�

with

g̃� = �
k

�̃�,kbk, �C2�

and derive a result analogous to Eq �A12�. At low energies,
in particular, i.e., for ��̃���D, the eigenvalues �̃� are uni-
formly spaced, with the phase shift �w defined by Eq. �B6�,
and

�
k

�̃�,k = cos �W. �C3�

Multiplication of both sides by g̃� and summation over �
then shows that

�
k

�m̃�bk�ñ� = cos �w�
�

�m̃�g̃��ñ� �C4�

for any pair �m̃�, �ñ� of low-energy eigenstates of HB.
It is likewise convenient to compute the following com-

mutator:


H,ak
†bk� =

V
	N

cd
†bk +

W

N
�

q

�aq
†bk − ak

†bq� , �C5�

from which we see that, given two eigenstates �!m� and �!n�
of HA with eigenvalues Em and En, respectively,

�!m�ak
†bk�!n� =

V
	N

�!m�cd
†bk�!n�

Em − En

+
W

N
�

q

�!m�aq
†bk − ak

†bq�!n�
Em − En

. �C6�

1. Current

To calculate the conductance, we can, for instance, exam-
ine the current flowing into the R wire,

Î =
dqR

dt
= −

ie

" �H,�
k

ckR
† ckR� , �C7�

i.e.,

Î = −
ie

2"�H,�
k

„ak
†ak + bk

†bk − �ak
†bk + H.c.�…� , �C8�

which reduces to

Î =
ie

2"

V
	N

cd
†�

k

�ak + bk� + H.c., �C9�

because summed over k, the last term on the right-hand side
of Eq. �C5� vanishes.

2. Conductance

To induce a current, we add to the model Hamiltonian an
infinitesimal slowly growing perturbation that lowers the
chemical potential of the R wire relative to that of the L wire,

H� � ��h��t� = − e
��

2 �
k

�ckR
† ckR − ckL

† ckL�e�t/",

�C10�

with an infinitesimal shift ��.
Projected on the basis of ak’s and bk’s, h� reads

h��t� = −
e

2�
k

�ak
†bk + H.c.�e�t/", �C11�

and Eq. �C6� shows that
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�!m�h��t��!n� = −
eV

2	N
e�t/"�

k

�!m�cd
†bk − bk

†cd�!n�
Em − En

.

�C12�

Standard linear response theory relates h� to the conduc-
tance,

G�T� = −
i

Z"



−�

0

�
m

e−�Em�!m�
Î,h��t���!m�dt ,

�C13�

where Z is the partition function at the temperature T.
Comparison with Eq. �C11� shows that the operators ak

within the parentheses on the right-hand side of that equality
make no contribution to the conductance. We therefore de-
fine

Îb �
ie

2"

V
	N

cd
†�

k

bk + H.c., �C14�

and rewrite Eq. �C13�,

G�T� = −
i

Z"



−�

0

�
m

e−�Em�!m�
Îb,h��t���!m�dt .

�C15�

Following the insertion of a completeness sum �n�n��n�
on the right-hand side of Eq. �C15�, straightforward manipu-
lations lead to the familiar expression,

G�T� =
1

Z�
m,n

�e−�Em − e−�En�
�!m�Îb�!n��!n�h��0��!m�

Em − En + i�
.

On the right-hand side, we now substitute Eq. �C12� 
Eq.

�C14�� for h� �Îb�. This yields

G�T� = − i
e2

4"

V2

NZ �
m,n,k,q

� �!m�bq
†cd�!n��!n�cd

†bk�!m�
Em − En + i�

+
�!m�cd

†bk�!n��!n�bq
†cd�!m�

Em − En + i�
� e−�Em − e−�En

Em − En
.

�C16�

Aided by Eq. �C4�, we can now trade the sum over the con-
duction operators bk for a sum over the eigenoperators g̃�,

G�T� = − i
e2

2h


W

N�Z �
m,n,�,��

� �!m�g̃��
† cd�!n��!n�cd

†g̃��!m�

Em − En + i�

+
�!m�cd

†g̃��!n��!n�g̃��
† cd�!m�

Em − En + i�
� e−�Em − e−�En

Em − En
.

�C17a�

Since the g̃� diagonalize HB, only the terms with �=�� con-
tribute to the sum on the right-hand side. We interchange the
indices m and n in the second term within the parentheses on
the right-hand side to show that

G�T� =
	e2

h

�
w

�NZ �
m,n,�

e−�Em��!m�cd
†g̃��!n��2��Em − En� .

�C18�

Since �!m�= �m��m̃�, where �m���m̃�� is an eigenstate of HA
�of the quadratic Hamiltonian HB�, the right-hand side splits
into two coupled sums,

G�T� =
	e2

h

�
W

N�Z �
m,n,�

e−�Em��m�Vcd
†�n��2


��Em − En − �̃���
m̃,ñ

e−�Em̃�m̃�g̃��ñ��ñ�g̃�
†�m̃� .

�C19�

The second sum is equal to Zb
1− f��̃p��, where f��� is the
Fermi function and Zb is the partition function for the
Hamiltonian Hb. The identity

−
1

f���
�f

��
= �„1 − f���… �C20�

then turns Eq. �C19� into

G�T� =
e2

hZa

	
W

�N �
m,n,�

e−�Em

f��̃��
�−

�f

��
�

�̃�

��m�cd
†�n��2


��Em − En − �̃�� , �C21�

where Za is the partition function for the Hamiltonian HA.
Definition �10� of the spectral density �d�� ,T� allows us to

rewrite Eq. �C21� as

G�T� =
e2

h

	
W

�N �
�
�−

�f

��
�

�̃�

�d��̃�� , �C22�

from which Eq. �8� follows.
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