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Abstract: In this work we proposed a relative humidity (RH) sensor based on a Bragg 

grating written in an optical fiber, associated with a coating of organo-silica hybrid 

material prepared by the sol-gel method. The organo-silica-based coating has a strong 

adhesion to the optical fiber and its expansion is reversibly affected by the change in the 

RH values (15.0–95.0%) of the surrounding environment, allowing an increased sensitivity 

(22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic 

component. The developed sensor was tested in a real structure health monitoring essay, in 

which the RH inside two concrete blocks with different porosity values was measured over 

1 year. The results demonstrated the potential of the proposed optical sensor in the 

monitoring of civil engineering structures. 

Keywords: fiber Bragg gratings; optical fiber sensors; relative humidity; organo-silica 

hybrid; structure health monitoring 
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1. Introduction 

The relative humidity (RH) of the air is defined as the ratio of the water vapor in the atmosphere to 

the saturation value. There are several methods to measure RH, including resistive, capacitive and 

hygrometric ones to be applied in distinct contexts [1]. Among the several solutions to sense RH, 

conventional electric sensors present several drawbacks such as high cost, need for maintenance 

and inability to be use in hazardous or explosive nature environments, in which electromagnetic 

interference immunity is required.  

The optical fiber sensors can overcome these disadvantages, adding the possibility of multiplexing a 

large number of different sensors (temperature, displacement, pressure, pH value, humidity, high 

magnetic field and acceleration) into the same optical fiber, reducing the multiple cabling used in 

traditional electronic sensing [1]. In what concerns the RH sensors based on fiber-optic techniques, 

they can be classified according to the methods on which they rely. In particular, direct spectroscopy [2–9], 

evanescent wave [10–23], in-fiber grating [24–27] and interferometry [28–32]. 

The possibility of inscribing a Bragg grating in conventional optical fibers (FBG), opens a new field 

for optical sensing, being the subject of considerable research in recent years due to their advantages 

over conventional electronic devices. When used in structural monitoring, FBG sensors can monitor 

deformations and stresses in reinforced concrete elements, urban infrastructures, the curing process  

of concrete and mortars, RH, pH level, in geodynamic applications, among other variables and 

applications [33]. 

In this work we present an innovative RH sensor based on FBGs coated with an organo-silica 

hybrid material known as di-ureasil [34], which will be used to monitor the RH level in concrete 

blocks exposed to environmental conditions, demonstrating its ability to be used in structure health 

monitoring (SHM) applications. 

This paper is organized as follows: after an introduction showing the requirements and advantages 

of optical fiber sensors, namely those based on FBG’s, over conventional methods and devices, a brief 

description of FBG’s and how they have been used as RH sensors is described in Section 2. The 

experimental procedure for the implementation of the proposed sensor is described at Section 3, with 

three sub-sections referring to the hybrid material production, the FBG coating and the sensor 

characterization. Section 4 shows the results of a real field application of this type of sensor in SHM. 

Finally, in Section 5, the main conclusions are presented. 

2. Fiber Bragg Gratings: Fundamentals and RH Sensors 

A Bragg grating is a passive optical device based on the refractive index modulation of the optical 

fiber core, created through the exposure of the fiber optics core to an optical interference pattern of 

ultraviolet radiation. 

The operation principle of a FBG is based on the signal reflection in each plane of the periodic 

structure. When the Bragg condition is match, all the reflected components are in phase and are added, 

otherwise, the components are out of phase and vanished. The Bragg wavelength, λB, at which the 

central wavelength of the reflection mode satisfies the first order Bragg condition, is given by: 

λB = 2 Λ neff (1) 
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where Λ is the refractive index modulation period and neff is the optical fiber core effective refractive 

index [33]. The Bragg wavelength depends both on the neff and Λ and, therefore, any external 

disturbance acting on these parameters can be measured by analyzing the Bragg wavelength of the 

reflected signal. The application of a mechanical deformation or a temperature variation gives rise to a 

change in the refractive index and in the period values. 

Several methods can be used to induce the fiber core refractive index modulation, being the most 

frequent ones the phase mask recording, the interferometric method, and the interferometric method 

with phase mask [33]. The latter one was selected to be used in the present work. A phase mask is an 

optical transmission element, containing a sequence of perturbations in the surface of a silica substrate, 

created by holographic processes or with lithographic scanning electron beam [35]. This inscription 

method is considered a major step forward in the recording of Bragg gratings in optical fiber due to its 

simplicity and ease of recording [36].  

The usage of sensors based on FBGs to monitor RH requires the presence of a transducer layer that 

induces a thermal or mechanical actuation to which the FBG is directly sensitive [37]. In the proposed 

sensor the transducer layer is an organo-silica-based material with strong adhesion to the optical fiber 

that swells in the presence of distinct RH levels. The expansion of the material will be reflected in the 

FBG, resulting in a Bragg wavelength change. This deformation is also dependent on the Silica Young 

modulus and on the thickness of the material deposited on the fiber [38]. Furthermore, due to the 

thermal sensitivity of the FBG, it is required to include a thermal compensation scheme, to correct the 

environment effects. This can be easily solved by using an uncoated Bragg grating, thus insensitive to 

RH variations. 

2.1. Related Works 

The usage of a FBG in conjunction with a transducer layer to produce and optical sensor was 

already reported, using polymer-based materials as the swelling media. In particular, the influence of 

the RH on a FBG coated with a polymer was first described by Limberger et al. [39]. That sensor uses 

a polyimide coating as the transducer layer with a linear response over a wide range of values of RH 

(10–90%). Yeo et al. proposed a polyimide based RH sensor demonstrating that the sensor sensitivity 

is enhanced by increasing the polymer thickness from 10 to 42 μm [37]. However, in the latter case, 

the sensor response is slower and increases the sensitivity to temperature variations. A small degree of 

hysteresis was observed in all the tested situations. To overcome this problem, Venugopalan et al. 

inserted the FBG-polyimide optical sensor into a stainless steel tube containing multiple holes, 

enabling the contact with the surrounding environment [40]. To compensate the thermal effect on the 

RH sensor measurements, it was also included one uncoated FBG in the tube. This configuration 

provides mechanical resistance to the sensor, essential to withstand harsh conditions typically found in 

SHM and contributes to reduce the effect of cross-sensitivity to thermal changes [40]. Nigel et al. 

proposed a RH sensor based on a Pyralin coated optical FBG with a response time and resolution 

comparable to a capacitive RH sensor. A thin coating of ~2 μm was used for a short response  

time [41]. A fast RH sensor was recently present by Mathew et al., which can operate over a wide RH 

range, based on a bent single mode optical fiber [42]. The sensor makes use of an agarose hygroscopic 

coating with a linear response in the RH range between 25 and 90%. The response time of the sensor is 
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about 50 ms, which is considerably faster. The same authors previously reported a miniature optical 

RH sensor based on a polymer infiltrated photonic crystal fiber interferometer [44,45]. A high sensitivity 

sensor to RH, with a variation in its reflected power of about 12 dB for a RH change of 84% was 

achieved [43]. The response time of the sensor is 400 ms for a RH modification of ~30%.  

The usage of FBG based sensors was also applied to SHM, in which the chemical attack of concrete 

structures may lead to a structural deterioration and moisture is one of the elements of the degradation 

mechanism. In 2006, Yeo et al. presented a fiber-optic-based RH sensor tested in the measurement of 

the moisture absorption in concrete [44]. The sensor uses an FBG coated with a moisture sensitive 

polymer. Several sensors were embedded in concrete samples with distinct different water/cement 

ratios and then immersed into water. It was found that the FBG sensors can be used to monitor the 

moisture content in different concrete samples, indicating new applications of this kind of sensors to 

ensure the integrity of civil engineering structures. In the same year, Yeo et al. presented a study of the 

detection of moisture ingress in concrete by monitoring the shift of the Bragg wavelength of two  

FBG-based RH sensors [45]. The used sensors presented sensitivities of ~3.0× 10-3 nm/%RH relying 

on a moisture-sensitive polymer layer coating.  

The use of an organo-silica hybrid material provides further advantages to the optical sensor such as 

the improved interaction with the optical fiber and durability due to the presence of a silica-based 

inorganic skeleton that provides enhanced sensitivity and efficiency of the transduction process, 

besides the ease and low cost processing. Moreover, the di-ureasil organo-silica hybrid material is 

photosensitive to UV laser radiation without the need of photoinitioators [46], enabling the writing of a 

Bragg grating directly on the transducer layer.  

In this context, the proposed optical sensor is presented as a low cost and low complexity tool for 

measuring RH that can be used in SHM, in particular for registering the RH level at points near the 

steel reinforcement of civil engineering structures, where high levels of RH can speed up the corrosion 

process. It can also be used in evaluating its overall health status, to identify the location and extent of 

any damage occurring. The proposed solution has application in monitoring of civil engineering 

structures (e.g., buildings, bridges, dams, monuments, among others), especially in large structures, 

where the ability to multiplex sensors becomes an advantage.  

3. Experimental Section 

3.1. Sensor Development 

3.1.1. Fiber Bragg Grating Production 

The Bragg gratings were written in commercial photosensitive single mode fiber (FiberCore 

PS1250/1500) through the phase mask technique, using a KrF laser operating at 248 nm, with a pulse 

energy of 3 mJ, a repetition rate of 500 Hz and an exposition time of 10 s. The refractive index of the 

optical fiber core is 1.447 and we estimate a Gaussian refractive index apodization profile with a 

variation of Δn~10−4 along the FBG length (~3 mm). Four phase masks were used, producing FGBs 

with different Bragg wavelengths (λB = 1537.9, 1539.8, 1543.3 and 1555.6 nm, Table 1), which allow 

the selective identification of all the sensors when multiplexed.  
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Table 1. Bragg wavelength (λB) measured at 30 °C and RH value of 60% and d-U(600) 

layer average thickness (W) for the four developed sensors. 

Properties 
RH sensors 

SFBG-A SFBG-B SFBG-C SFBG-D 

W (±5 μm) 485 591 375 450 

λB (nm) 1539.8 1555.6 1537.9 1543.3 

3.1.2. Organo-Silica Based Materials Synthesis  

The transducer layer is based on an organic-silica hybrid material, so-called di-ureasil, which is 

formed of polyether chains with average molecular weight of 600 g·mol−1 covalently linked to a 

siliceous inorganic skeleton by urea bridges [34], whose volume reversibly depends on distinct levels 

of RH. The di-ureasil, termed as d-U(600), was prepared using a procedure described in detailed 

elsewhere [46,47]. For the precursor synthesis, a tetrahydrofuran (THF, Riedel-de Haën) solution 

containing isocyanate-propyl-trietoxisilane (ICPTES, Aldrich) and a diamine commercially known  

as Jeffamine 600® (Aldrich) is introduced into a reflux system, with a molar ratio Jeffamine 

600®:ICPTES of 2:1 at 82 °C for 18 h, under magnetic stirring. The obtained suspension is transferred 

to a rotary evaporator to carry out the extraction of THF at 60 °C, under vacuum yielding to the  

non-hydrolyzed precursor (di-ureapropil-triethoxysilane, d-UPTES).  

In order to promote the hydrolyze and condensation reactions of d-UPTES two distinct procedures 

were adopted to control the sol-gel reaction time. A fast sol-gel transition (~40 s) was promoted adding 

ethanol (Fisher Chemical) to the d-UPTES in a 3:1 weight/volume ratio using a solution in ethanol of 

HCl 2.0 M (Aldrich) at a ratio of 13:1 (total volume of suspension/HCl). A slower sol-gel transition 

(~5 h) takes place by changing the volume ratio suspension/HCl proportion to 20:1 and the 

concentration of HCl in order to delay the gelation, namely, 1.5 g of precursor d-UPTES is added to 

0.5 mL of ethanol and 0.1 mL 1M HCl (in ethanol). The d-U(600) solutions with longer and slower 

gelification time will be deposit with controlled thickness using the dip-coating method. 

3.1.3. FBG and Organo-Silica Layers Assembling and Sensor Set Up 

The average diameter of the deposited d-U(600) layers on the FBG was varied between 375 ± 5 μm 

and 591 ± 5 μm. The d-U(600) layers were deposited on the FBG using a homemade dip-coating 

system. The dip-coating process was performed at room temperature by immersing the FBG vertically 

in the d-U(600) solution at a velocity of 1.4 mm·s−1. This procedure was repeated 40 times with 120 s 

interval between depositions. During the deposition, the d-U(600) solution was kept under magnetic 

stirring to avoid premature gelation. After deposition, the fibers were transferred to the oven and kept 

at 50 °C for 40 h. In all the cases, the d-U(600) coating revealed strong adhesion to the optical fiber 

and mechanical stability. Hereafter, the sensors will be identified as SFBG-A, SFBG-B, SFBG-C and SFBG-D. 

Table 1 gathers selected optical and morphological features of the four developed sensors.  
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3.2. Sensors Characterization 

 

The implemented sensors were calibrated and tested under controlled temperature and RH values, 

using a thermal chamber (Model 340, Challenge Angelantoni Industrie) with a temperature and RH 

sensitivity of 0.1 °C and 0.1%, respectively. The thermal chamber undergoes a RH cycle with values 

between 15.0 and 95.0% (Figure 1(A)) at a constant temperature value of 30.0 °C. The sensors 

response to the imposed conditions is illustrated in Figure 1(B) for SFBG-A and SFBG-B RH sensors. 

 

Figure 1. (A) Time evolution of the imposed relative humidity values within the thermal 

chamber characterization. The temperature was kept at a constant value of 30.0 °C.  

(B) Bragg wavelength response of the SFBG-A and SFBG-B RH sensors.  
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For each HR step the Bragg wavelength was obtained in the steady state regime, revealing a 

growing nonlinear response as plotted in Figure 2, which is well described by a modified sigmoidal 

Richards function–type 1, given by: 

)

)

T

T

S T

S T

−

−

  

  

B 0

B 0

1/(1-d)-k(λ -(λ )1-d

1/(1-d)-k(λ -(λ )1-d

a - e ,d < 1
RH =

a + e ,d > 1
 (2) 

where a, d, k e λ0 are fitting parameters, ST stands for the thermal sensitivity and T is the temperature at 

which the sensors are exposed. The parameter values obtained from the fit of the data in Figure 2 are 

listed in Table 2. 

The sensors response is temperature dependent, due to the thermal expansion of fiber and coating, 

and to the thermo-optical properties of the optical fiber. Therefore, it is compulsory the compensation 

of the thermal effects on the sensors response. To protect the optical fiber, sensors SFBG-C and SFBG-D 

were encapsulated, being inserted into a stainless steel tube 15 cm long with an internal diameter of  

2 mm, Figure 3. The tube has been punctured in the area of the coated optical fiber to allow the 

sensitive material to be exposed to the ambient humidity. 
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Figure 2. Bragg wavelength dependence on the relative humidity values at a constant 

temperature of 30.0 °C for the optical sensors (A) SFBG-A and (B) SFBG-B. The solid lines 

represent the data best fit using Equation (2) (R2 > 0.99). 

   

Table 2. Fitting coefficients to Equation (2) for the SFBG-A, SFBG-B, SFBG-C and SFBG-D optical 

RH sensors. 

Coefficient SFBG-A SFBG-B SFBG-C SFBG-D 

a (%) 100 100 100 100 

λ0 (nm) 1541.5 ± 0.3 1558.6 ± 0.5 1539.1 ± 0.1 1544.1 ± 0.1 

d −1.1 ± 0.1 −1.1 ± 0.2 −1.6 ± 0.1 −0.7 ± 0.1 

k (nm−1) 5.1 ± 0.4 3.1 ± 0.3 8.2 ± 0.5 7.1 ± 0.2 

Figure 3. Prototype of the implemented RH optical sensor inserted in a protective stainless 

steel tube.  

 

For the temperature characterization, the thermal chamber undergoes a temperature cycle with 

values between 5.0 °C and 40.0 °C, at a constant RH of 60%. Afterwards another RH cycle with values 

between 5.0 and 95.0 % at a constant temperature value of 20.0 °C was imposed, Figure 4(A). The 

encapsulated sensors response to the imposed conditions is illustrated in Figure 4(B) for SFBG-C and 

SFBG-D RH sensors. 
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Figure 4. (A) Time evolution of the imposed conditions of temperature and relative 

humidity within the thermal chamber; (B) Bragg wavelength response for SFBG-C and SFBG-D. 
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Figure 5 shows the variation of the Bragg wavelength on the temperature, revealing a linear 

dependence. From the data best fit, using a linear function, a thermal sensitivity (ST) of 8.48 ± 0.09 and 

11.5 ± 0.25 pm·°C−1 was estimated for SFBG-C and SFBG-D sensors, respectively.  

Figure 5. Bragg wavelength dependence on the temperature for (A) SFBG-C and (B) SFBG-D 

sensors. The solid lines represent the data best fit using a linear function (R2 > 0.99). 
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The Bragg wavelength dependence on the RH values for SFBG-C and SFBG-D are also well described 

by the modified Richards–type 1 [Equation (2)]. The dependence of the Bragg wavelength on RH is 

not linear in the entire RH range. Therefore, the sensor resolution will depend both on the RH level 

and on the resolution of the interrogation unit. Nevertheless, for higher relative humidity levels 

(>70%), we can assume a linear dependence of the Bragg wavelength with RH yielding to a sensitivity 

of 22.2 pm /%RH for sensor SFBG-B. This value is analogous to the highest reported value for optical 

sensors based on FBG [44]. 

Another important parameter of the sensor is the response time. Such response time was estimated, 

considering the worst case scenario, corresponding to a high HR value (85%), yielding to a value of 

8.1 ± 1.1 and 16.4 ± 0.4 minutes for sensors SFBG-A and SFBG-B, respectively. The attained values show 

that the sensors are suitable to assure the monitoring of RH, which has a time scale higher than the 

sensors response time. The reproducibility was tested with testing cycles, showing no hysteresis. 
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4. Sensor Application in Structure Health Monitoring 

The applicability of the developed sensors was tested in a SHM essay. To accomplish this goal, 

relative humidity and temperature of two cubic (25 cm side) concrete blocks exposed to the 

environmental climatic conditions were monitored using the SFBG-C and SFBG-D sensors. The concrete 

blocks differ in the porosity being, expected, that the more porous one is more sensitive to changes of 

the relative humidity in the contour. In the preparation of the less porous concrete block (Block A) a 

1:2.5:3 composition of Portland cement CEM II/L-C32,5N/river sand/gravel 8/12 was used. For the 

production of the more porous one (Block B) a 1:2.5:3 Portland cement CEM II/B-L32,5N/river 

sand/gravel 12/14 composition was used. It should also be noted that the second formulation of 

concrete was not vibrated during its manufacturing. 

Contrarily to the above mentioned testing and calibration conditions performed at a constant 

temperature, in the present situation it is expected that both temperature and relative humidity will 

change during the monitoring at ambient conditions. Therefore, knowing that the FBG-based sensors 

response is affected either by temperature and relative humidity changes, a temperature optical sensor 

was also constructed. This temperature sensor is also based on a FBG, thus allowing to be multiplexed 

with the developed SFBG-C and SFBG-D sensors. The uncoated FBG used to monitor temperature was 

placed inside a double needle, in order to protect the fiber from physical contact with the exterior, and 

simultaneously enable it to deform with the ambient temperature oscillations. The response of the 

temperature sensor to thermal variations is shown in Figure 6, revealing a linear dependence of the λB 

value with temperature variations within 5.0 to 40.0 °C. The data was fitted using a linear function 

yielding to a temperature sensitivity of 8.67 ± 0.04 pm °C−1. 

Figure 6. Bragg wavelength dependence on temperature variations for the FBG 

temperature sensor. The solid line corresponds to the data best fit using a linear function  

(R2 > 0.999).  
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A single optical fiber was used to collect the signal from SFBG-C and SFBG-D sensors and the 

temperature sensor trough a 1 × 3 optical coupler that multiplexes the signal of the three sensors, 

Figure 7. 
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Figure 7. Optical spectra of the temperature and of SFBG-C and SFBG-D multiplexed sensors.  
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The sensors were placed in holes made in the blocks so that the sensing portion (the Bragg grating) 

would be housed approximately at the center of the concrete block, after which the holes were sealed 

with epoxy resin (Figure 8). The Bragg grating wavelength was periodically measured for the selected 

SFBG-C and SFBG-D sensors and for the temperature one, using an optical commercial interrogation unit 

from Micron Optics, model sm125–500, with a wavelength resolution of 1 pm. 

Figure 8. Photographs of the concrete blocks used in the structure health monitoring test: 

(A) Block A with SFBG-C and temperature sensor, and (B) Block B with SFBG-D. The blocks 

are cubic with 25 cm side. 

(A) (B) 

Figure 9 shows the variation of RH over time using the developed sensors. As expected, the amount 

of moisture is more stable inside the concrete blocks than in the surrounding external environment. 
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Figure 9. Relative humidity variation over time monitored with SFBG-C and SFBG-D sensors 

between 11 November 2010 and 11 November 2011.  
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The maximum RH value is measured during the months of December and January and the 

minimum one was monitored during August. The RH values measured with the SFBG-D sensor  

(Block B) are always higher than the ones measures with the sensor SFBG-C (Block A) due to the higher 

porosity of Block B, when compared with that of Block A. From the characterization data and from the 

test, it is concluded that the proposed di-ureasil based optical sensors provide a suitable response for 

the RH sensing in concrete structures with application SHM essays. 

5. Conclusions 

This work describes the development of a relative humidity optical sensor based on fiber Bragg 

gratings coated with an organo-silica di-ureasil hybrid material. The hybrid material was deposited by 

deep coating with controlled thickness and swells reversibly in the presence of distinct RH values 

(5.0–95.0 %) behaving as a transducer layer. When compared with polymer-based solutions, the 

proposed di-ureasil layer shows enhanced durability, sensitivity (22.2 pm/%RH), adhesion and 

compatibility with the optical fiber due to the presence of a siliceous based network. The produced 

optical sensors were tested in a real structure health monitoring essay, in monitoring the RH inside two 

concrete blocks for a time period of 1 year. The results demonstrated the viability of the produced 

sensors in the monitoring of civil engineering structures, namely, large structures where the ability to 

multiplex becomes an advantage. 

Acknowledgements 

The authors acknowledge the financial support from Fundação para a Ciência e Tecnologia (FCT), 

FEDER, COMPETE through PTDC/CTM/101324/2008 and PEst-C/CTM/LA0011/2011. The  

PhD (SFRH/BD/41077/2007) and Postdoctoral SFRH/BPD/34365/2006, SFRH/BPD/76735/2011) 

fellowships are also gratefully acknowledged. 



Sensors 2012, 12 8858 

 

 

 

References 

1. Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture 

measurement. Sens. Actuators A Phys. 2008, 144, 280–295. 

2. Zhou, Q.; Shahriari, M.R.; Kritz, D.; Sigel, G.H. Porous fiber-optic sensor for high-sensitivity 

humidity measurements. Anal. Chem. 1988, 60, 2317–2320. 

3. Posch, H.E.; Wolfbeis, O.S. Optical sensors. 13. Fibre-optic humidity sensor based on 

fluorescence quenching. Sens. Actuators 1988, 15, 77–83. 

4. Raichur, A.; Pedersen, H. Fiber optic moisture sensor for baking and drying process control.  

In Proceeding of the Food Processing Automation IV, Chicago, IL, USA, 3–5 November 1995;  

pp. 180–189. 

5. Brook, T.E.; Taib, M.N.; Narayanaswamy, R. Extending the range of a fibre-optic relative-

humidity sensor. Sens. Actuators B Chem. 1997, 39, 272–276. 

6. Otsuki, S.; Adachi, K.; Taguchi, T. A novel fiber-optic gas sensing arrangement based on an air 

gap design and an application to optical detection of humidity. Anal. Sci. 1998, 14, 633–635. 

7. Glenn, S.J.; Cullum, B.M.; Nair, R.B.; Nivens, D.A.; Murphy, C.J.; Angel, S.M. Lifetime-based 

fiber-optic water sensor using a luminescent complex in a lithium-treated nafion (TM) membrane. 

Anal. Chim. Acta 2001, 448, 1–8. 

8. Tao, S.Q.; Winstead, C.B.; Jindal, R.; Singh, J.P. Optical-fiber sensor using tailored porous  

sol-gel fiber core. IEEE Sens. J. 2004, 4, 322–328. 

9. Bedoya, M.; Diez, M.T.; Moreno-Bondi, M.C.; Orellana, G. Humidity sensing with a luminescent 

Ru(II) complex and phase-sensitive detection. Sens. Actuators B Chem. 2006, 113, 573–581. 

10. Russell, A.P.; Fletcher, K.S. Optical sensor for the determination of moisture. Anal. Chim. Acta 

1985, 170, 209–216. 

11. Ogawa, K.; Tsuchiya, S.; Kawakami, H.; Tsutsui, T. Humidity-sensing effects of optical fibers 

with microporous SiO2 cladding. Electron. Lett. 1988, 24, 42–43. 

12. Kharaz, A.; Jones, B.E. A distributed fibre optic sensing system for humidity measurement.  

Sens. Actuators A Phys. 1995, 47, 491–493. 

13. Otsuki, S.; Adachi, K.; Taguchi, T. A novel fiber-optic gas-sensing configuration using extremely 

curved optical fibers and an attempt for optical humidity detection. Sens. Actuators B Chem. 1998, 
53, 91–96. 

14. Kharaz, A.H.; Jones, B.E.; Hale, K.F.; Roche, L.; Bromley, K. Optical fibre relative humidity 

sensor using a spectrally absorptive material. Proc. SPIE 2000, 4185, 370–373. 

15. Bariain, C.; Matias, I.R.; Arregui, F.J.; Lopez-Amo, M. Optical fiber humidity sensor based on a 

tapered fiber coated with agarose gel. Sens. Actuators B Chem. 2000, 69, 127–131. 

16. Gupta, B.D.; Ratnanjali. A novel probe for a fiber optic humidity sensor. Sens. Actuators B Chem. 

2001, 80, 132–135. 

17. Jindal, R.; Tao, S.Q.; Singh, J.P.; Gaikwad, P.S. High dynamic range fiber optic relative humidity 

sensor. Opt. Eng. 2002, 41, 1093–1096. 



Sensors 2012, 12 8859 

 

 

18. Muto, S.; Suzuki, O.; Amano, T.; Morisawa, M. A plastic optical fibre sensor for real-time 

humidity monitoring. Meas. Sci. Technol. 2003, 14, 746–750. 

19. Arregui, F.J.; Ciaurriz, Z.; Oneca, M.; Matias, I.R. An experimental study about hydrogels for the 

fabrication of optical fiber humidity sensors. Sens. Actuators B Chem. 2003, 96, 165–172. 

20. Gaston, A.; Perez, F.; Sevilla, J. Optical fiber relative-humidity sensor with polyvinyl alcohol 

film. Appl. Opt. 2004, 43, 4127–4132. 

21. Alvarez-Herrero, A.; Guerrero, H.; Levy, D. High-sensitivity sensor of low relative humidity 

based on overlay on side-polished fibers. IEEE Sens. J. 2004, 4, 52–56. 

22. Xu, L.N.; Fanguy, J.C.; Soni, K.; Tao, S.Q. Optical fiber humidity sensor based on Evanescent-

wave scattering. Opt. Lett. 2004, 29, 1191–1193. 

23. Corres, J.M.; Bravo, J.; Matias, I.R.; Arregui, F.J. Nonadiabatic tapered single-mode fiber coated 

with humidity sensitive nanofilms. IEEE Photon. Technol. Lett. 2006, 18, 935–937. 

24. Kronenberg, P.; Rastogi, P.K.; Giaccari, P.; Limberger, H.G. Relative humidity sensor with 

optical fiber Bragg gratings. Opt. Lett. 2002, 27, 1385–1387. 

25. Luo, S.F.; Liu, Y.C.; Sucheta, A.; Evans, M.; van Tassell, R. Applications of LPG fiber optical 

sensors for relative humidity and chemical warfare agents monitoring. Proc. SPIE 2002, 4920, 

193–204. 

26. Tan, K.M.; Tay, C.M.; Tjin, S.C.; Chan, C.C.; Rahardjo, H. High relative humidity measurements 

using gelatin coated long-period grating sensors. Sens. Actuators B Chem. 2005, 110, 335–341. 

27. Konstantaki, M.; Pissadakis, S.; Pispas, S.; Madamopoulos, N.; Vainos, N.A. Optical fiber  

long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating. Appl. Opt. 

2006, 45, 4567–4571. 

28. Venugopalan, T.; Yeo, T.L.; Sun, T.; Grattan, K.T.V. LPG based PVA coated sensor for relative 

humidity measurement. IEEE Sens. J. 2008, 8, 1093–1098. 

29. Mitschke, F. Fiber-optic sensor for humidity. Opt. Lett. 1989, 14, 967–969. 

30. Arregui, F.J.; Liu, Y.J.; Matias, I.R.; Claus, R.O. Optical fiber humidity sensor using a nano 

fabry-perot cavity formed by the ionic self-assembly method. Sens. Actuators B Chem. 1999, 59,  

54–59. 

31. Kronenberg, P.; Culshaw, B.; Pierce, G. Development of a novel fiber optic sensor for humidity 

monitoring. Proc. SPIE 1999, 3670, 480–485. 

32. Yu, H.H.; Yao, L.; Wang, L.X.; Hu, W.B.; Jiang, D.S. Fiber optic humidity sensor based on  

self-assembled polyelectrolyte multilayers. J. Wuhan Univ. Technol. 2001, 16, 65–69. 

33. Antunes, P.; Lima, H.; Alberto, N.; Bilro, L.; Pinto, P.; Costa, A.; Rodrigues, H.; Pinto, J.L.; 

Nogueira, R.; Varum, H.; André, P.S. Optical Sensors Based on Fiber Bragg Gratings for 

Structural Health Monitoring. In New Developments in Sensing Technology for SHM;  

Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 253–295. 

34. de Zea Bermudez, V.; Carlos, L.D.; Alcacer, L. Sol-gel derived urea cross-linked organically 

modified silicates. 1. Room temperature mid-infrared spectra. Chem. Mater. 1999, 11, 569–580. 

35. Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications 

and Sensing; Artech House: Norwood, MA, USA, 1999. 

36. Kashyap, R. Fiber Bragg Gratings; Elsevier-Academic Press: San Diego, CA, USA, 2010. 



Sensors 2012, 12 8860 

 

 

37. Yeo, T.L.; Sun, T.; Grattan, K.T.V.; Parry, D.; Lade, R.; Powell, B.D. Characterisation of a 

polymer-coated fibre bragg grating sensor for relative humidity sensing. Sens. Actuators B Chem. 

2005, 110, 148–155. 

38. Antunes, P.; Lima, H.; Monteiro, J.; Andre, P.S.; Elastic constant measurement for standard and 

photosensitive single mode optical fiber. Microw. Opt. Technol. Lett. 2008, 50, 2467–2469. 

39. Limberger, H.; Giaccari, P.; Kronenberg, P. Influence of Humidity and Temperature on  

Polyimide-Coated Fiber Bragg Gratings. In Proceedings of the Bragg Gratings, Photosensitivity, 

and Poling in Glass Waveguides, Stresa, Italy, 4 July 2001, paper BFB2. 

40. Venugopalan, T.; Yeo, T.L.; Basedau, F.; Henke, A.S.; Sun, T.; Grattan, K.T.V.; Habel, W. 

Evaluation and calibration of FBG-based relative humidity sensor designed for structural health 

monitoring. Proc. SPIE 2009, 7503, 750310–750310–5. 

41. David, N.A.; Wild, P.M.; Djilali, N. Parametric study of a polymer-coated fibre-optic humidity 

sensor. Meas. Sci. Technol. 2012, 23, 035103–0351010. 

42. Mathew, J.; Semenova, Y.; Farrell, G. A fiber bend based humidity sensor with a wide linear 

range and fast measurement speed. Sens. Actuators A Phys. 2012, 174, 47–51. 

43. Mathew, J.; Semenova, Y.; Farrell, G. Relative humidity sensor based on an agarose infiltrated 

photonic crystal fiber interferometer. IEEE J. Sel. Top. Quant. 2012, 10.1109/JSTQE.2011.2182337. 

44. Yeo, T.L.; Eckstein, D.; McKinley, B.; Boswell, L.F.; Sun, T.; Grattan, K.T.V. Demonstration of 

a fibre-optic sensing technique for the measurement of moisture absorption in concrete.  

Smart Mater. Struct. 2006, 15, N40–N45. 

45. Yeo, T.L.; Cox, M.A.C.; Boswell, L.F.; Sun, T.; Grattan, K.T.V. Monitoring ingress of moisture 

in structural concrete using a novel optical-based sensor approach. J. Phys. Conf. Ser. 2006, 45, 

186–192. 

46. Vicente, C.M.S.; Venkatachaam, R.; Ferreira, B.M.; Marques, P.G.; Marques, C.A.F.; Pecoraro, 

E.; Carlos, L.D.; André, P.S.; Ferreira, R.A.S. Thin film optimization design of organic-inorganic 

hybrids for waveguide high-rejection optical filters. Phys. Status Solidi 2011, 5, 280–282. 

47. Fernandes, V.R.; Vicente, C.M.S.; Wada, N.; André, P.S.; Ferreira, R.A.S. Multi-objective 

genetic algorithm applied to spectroscopic ellipsometry of organic-inorganic hybrid planar 

waveguides. Opt. Express 2010, 18, 16580–16586. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


