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Virasoro constraints and flavor-topology duality in QCD
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We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector
of topological chargen. The constraints depend on the topological charge only through the combinationNf

1bn/2 where the value of the Dyson indexb is determined by the reality type of the fermions. This duality
between flavor and topology is inherited by the small-mass expansion of the partition function andall spectral
sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special caseb52 but arbitrary
topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the
potentialV(X)51/X.
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I. FLAVOR-TOPOLOGY DUALITY

Through the work of ’t Hooft we know that the low
energy limit of QCD is dominated by light flavors and topo
ogy @1#. We expect that the same will be the case for
low-lying eigenvalues of the Dirac operator. Indeed,
massless flavors, the fermion determinant results in the
pulsion of eigenvalues away froml50. It is perhaps less
known that the presence of exactly zero eigenvalues has
same effect. The reason is the repulsion of eigenvalues w
occurs in all interacting systems and has probably best b
understood in the context of random matrix theory where
eigenvalues obey the Wigner repulsion law@2#.

In QCD, the fluctuations of the low-lying eigenvalues
the Dirac operator are described by chiral random ma
theory~chRMT! @3–5#. This is a random matrix theory with
the global symmetries of the QCD partition function. It
characterized by the Dyson index@6# b which is equal to the
number of independent variables per matrix element.
QCD with fundamental fermions we haveb51 for Nc52
and b52 for Nc.2. For QCD with adjoint fermions and
Nc>2 the Dirac matrix can be represented in terms of s
dual quaternions withb54. The main ingredient of the
chRMT partition function is the integration measure whi
includes the Vandermonde determinant. In terms of Di
eigenvaluesilk it is given by )k, l ulk

22l l
2ublk

bn1b21 .
Therefore, the presence ofNf massless flavors, with the fe
mion determinant given by)klk

2Nf , has the same effect o
eigenvalue correlations asn52Nf /b zero eigenvalues. More
precisely, the joint eigenvalue distribution only depends
the combination 2Nf1bn @4,7#. Based on the conjectur
@3,4# that the zero-momentum part of the QCD partiti
function, ZNf ,n(m1 , . . . ,mNf

), is a chiral random matrix
theory, it was suggested@8# that its mass dependence obe
the duality relation~for b52!
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ZNf ,n~m1 , . . . ,mNf
!

;)
f

mf
nZNf1n,0~m1 , . . . ,mNf

,0, . . . ,0!. ~1!

This relation, which is now known as flavor topology
duality, is a trivial consequence of the flavor dependence
the chRMT joint eigenvalue distribution.

The mass dependence of the chRMT partition funct
can be reduced to a unitary matrix integral which is kno
from the zero momentum limit of chiral perturbation theo
@9,10#. Starting from this representation of the low ener
limit of the QCD partition function, also known as the finit
volume partition function, flavor-topology duality was firs
proved forNf52 in @8#. However, its generalization to arb
trary Nf andn has only been achieved forb52 @11,12#. The
relation~1! has been particularly useful for establishing re
tions between correlation functions of Dirac eigenvalues a
finite volume partition functions@12–16#.

For b52 the unitary matrix integral, which represents t
low-energy limit of the QCD partition function, is als
known as the one-link integral of two-dimensional QCD~see
for example@17#! or the Brezin-Gross-Witten model@18#.
For zero topological charge it can also be represented
generalized Kontsevich model@19# with potential V(X)
51/X. This model has been discussed extensively in the c
text of topological gravity~for reviews see@23–25#!. In this
case the one-link integral has been analyzed@19,20# by
means of Virasoro constraints which are based on its inv
ance properties. The main issue we wish to address in
article is whether flavor-topology duality of the one-link in
tegral can be understood without relying on its chRMT re
resentation. We will do this by deriving Virasoro constrain
for arbitrary topological charge. Forb52 we find a nonper-
turbative solution of these constraints in the form of a ge
eralized Kontsevich model.

In Sec. II we will derive the Virasoro constraints for arb
trary n and three different values ofb. We observe that they
satisfy the flavor-topology duality relations. A recursive s
lution of these relations is presented in Sec. III. It also p
vides us with an efficient derivation of sum rules for th
©2001 The American Physical Society02-1
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inverse Dirac eigenvalues to high order. In the second pa
this section we discuss the uniqueness of the nonperturb
solution of the Virasoro constraints forb52. Concluding
remarks are made in Sec. IV.

II. VIRASORO CONSTRAINTS

In the simplest case,b52 and vanishing topologica
chargen50, the small-mass Virasoro constraints were fi
found in@19# after an identification of the appropriate unita
integral and the corresponding generalized Kontsev
model ~GKM!. Here we work entirely in the context of un
tary integrals and derive a simple form of the Virasoro co
straints valid for arbitrary topological charge andb. They are
obtained by expanding the partition function in powers of
masses.

A. bÄ2

The low energy limit of QCD in the phase of broke
chiral symmetry is a gas of weakly interacting Goldsto
bosons. Its partition function is determined uniquely by t
invariance properties of the Goldstone fields. For qu
massesm and space-time volumeV in the range

1

L
!V1/4!

1

mp
~2!

~wheremp5A2mS/F2 is the mass of the Goldstone mod
with F the pion decay constant andS the chiral condensate!
the partition function for the Goldstone modes factoriz
@9,10# into a zero-momentum part, also known as the fin
volume partition function, and a nonzero momentum p
For fundamental fermions and a gauge group withNc>3,
the finite volume partition function in the sector of topolog
cal chargen is given by the following integral over the un
tary group@9,10#

Z n
b52~M,M †!5E

UPU(Nf )
dU~detU !ne(1/2) Tr (MU†1M †U),

~3!

where M5MVS. Here and below we always taken>0.
The quantityM stands for the original unscaled quark ma
matrix. The partition function is normalized such th
Z n

b52(M,M †)→detn(M) for M→0.
Especially forn50, the integral~3! has been studied ex

tensively in the literature. In the context of lattice QCD it
known as the one-link integral@18,21,19# ~see also@17# for a
review!. Of particular interest is the fact that forNf→` the
partition functionZ n

b52 undergoes a phase transition@18#
from a small mass phase (M→0) to a large mass phas
(M→`). The large mass expansion is asymptotic and
coefficients can be calculated, even for finiteNf , by expand-
ing about a flavor-symmetric saddle point. For Re(M)→`
such expansion can be carried out in a efficient way
means of the~large-mass! Virasoro constraints found in@22#.
For Im(M)→`, at fixed value of Re(M), other flavor-
nonsymmetric saddle points contribute to the partition fu
tion as well, and it is not known whether the expansion c
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be carried out by means of Virasoro constraints~for an ex-
plicit calculation including nonsymmetric saddle points s
@26#!. On the other hand, the small-mass expansion ha
non-zero radius of convergence, and it can be determine
different methods for any finiteNf . For example, one can
expand the exponential in Eq.~3! and calculate the corre
sponding unitary integrals systematically using a chara
expansion@27,28#. Another efficient technique is again th
use of the ~small-mass! Virasoro constraints found in
@19,20,12#. By generalizing such constraints to arbitrary t
pological chargen we will show that they naturally lead to
flavor-topology duality.

First of all, using the unitary invariance of the measure
Eq. ~3! we can deduce the covariance properties of the p
tition function under a redefinition of the mass matrixM
→V21MU,

~detM!2nZ n
b52~M,M †!

5 ~detV21MU !2n Z n
b52~V21MU,U21M †V!. ~4!

This equation implies that (detM)2nZ n
b52(M,M †) is a

symmetric function of the eigenvalues of the Hermitian m
trix Lab[(MM †)ab . Following @19# we can introduce the
infinite set of variables

tk5
1

k
TrS MM †

4 D k

, k>1, ~5!

which are explicitly symmetric with respect to permutatio
of the eigenvalues and write

~detM!2nZ n
b52~M,M †!5Gn~ tk!, ~6!

whereGn(tk) has the Taylor expansion

Gn~ tk!511a1t11a2t21a11t1
21•••. ~7!

A simple consistency check on Eq.~6! is that unitary inte-
grals are only nonvanishing if the powers ofU and U† are
equal. Following@19# we can find the coefficients of th
Taylor expansion~7! from the differential equation

]2Z n
b52

]Mba]M ac
†

5
dcb

4
Z n

b52 , ~8!

which follows directly from Eq.~3!. As a consequence
Gn(tk) satisfies the equation

F ]2

]Mba]M ac
†

1nM ab
21 ]

]M ac
† GGn~ tk!5

dcb

4
Gn~ tk!.

~9!

Using the chain rule

]

]M ac
†

5 (
k>1

F ~MM †!k21M
4k G

ca

]k ,

]

]Mba
5 (

k>1
FM †~MM †!k21

4k G
ab

]k , ~10!
2-2
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VIRASORO CONSTRAINTS AND FLAVOR-TOPOLOGY . . . PHYSICAL REVIEW D64 054002
with ]k5]/]tk we immediately obtain, from Eq.~9!,

(
s51

` S MM †

4 D
cb

s21

@L s
b522ds,1#Gn~ tk!50, ~11!

where

L s
b525 (

k51

s21

]k]s2k1 (
k>1

ktk]s1k1~Nf1n!]s , s>1,

~12!

and our convention throughout this paper is that terms
the first one in the expression forLs vanish fors51. The
operatorsLs obey a sub-algebra of the Virasoro algebra

@Lr ,Ls#5~r 2s!Lr 1s ~13!

without central charge andr ,s>1.
At fixed value Nf the tk are not independent, and th

coefficients of the expansion~7! are not determined
uniquely.1 In Eq. ~11! the matrix elements ofMM † and the
tk are not independent so that we cannot conclude from
~11! that the coefficients of (MM †)s vanish. Indeed, the
corresponding equations forNf51 and n50 are inconsis-
tent. However, in order to fix the coefficients in Eq.~7!
uniquely, we may supplement Eq.~11! with additional equa-
tions. We do that by requiring that all coefficients
(MM †)s vanish,

@L s
b522ds,1#Gn~ tk!50, s>1. ~14!

This procedure is justified provided that the all equations
consistent. Indeed, forNf→` the matrix elements and thetk
are independent so that Eq.~14! must be valid. By inserting
the Taylor expansion~7! into Eq. ~14! we obtain an inhomo-
geneous set of linear equations for the coefficients wh
depend on the parameterNf1n. Inconsistencies can onl
arise for isolated values ofNf1n for which the homoge-
neous part of the equations becomes linearly dependent.
is indeed what happens in the exampleNf51 andn50.

Because of the commutation relations~13! the constraints
for s>3 follow from the constraints fors51 ands52. The
coefficients of the Taylor expansion~7! can be found recur-
sively by solving the constraints fors51 ands52. This will
be carried out in Sec. III after deriving the Virasoro co
straints forb54 andb51.

B. bÄ4

Similarly, we now derive the Virasoro constraints for a
joint fermions (b54). For fermions in the adjoint represen
tation, the zero-momentum Goldstone modes belong to
coset spaceSU(Nf)/SO(Nf). These Goldstone fields ar
conveniently parametrized byUUT with UPSU(Nf). In the
sector of topological chargen, we thus find the finite volume
partition function@10,29#,

1Of course, they are determined uniquely up to the order that
tk are independent.
05400
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Z n̄
b54

~MS ,M S
†!

5E
UPU(Nf )

dU~detU !2n̄e(1/2)Tr „MS(UUt)†1M S
†UUt

…,

~15!

wheren̄5Ncn andMS5MSV. In this case the mass matri
MS is an arbitrary symmetric complex matrix. FromM S
→VtMSV we obtain the transformation law

~detMS!2 n̄Z n̄
b54

~MS ,M S
†!

5~detVtMSV!2 n̄Z n̄
b54

„VtMSV,V21M S
†~Vt!21

….

~16!

This implies that (detMS)2 n̄Z n̄
b54(MS ,M S

†) is a symmet-
ric function of the eigenvalues ofMSM S

† . We thus have
that

~detMS!2 n̄Z n̄
b54

~MS ,M S
†!5Gn̄

b54
~ tk

S!511a1
St1

S1a2
St2

S

1a11
S ~ t1

S!21•••, ~17!

where in analogy with Eq.~5! we have defined

tk
S5

1

k
TrS MSM S

†

4 D k

, ~18!

andGn̄
b54(tk

S) will be determined by the differential equatio

]2Z n̄
b54

]MS ba]M S ac
†

5dbcZ n̄
b54 . ~19!

After substituting the expansion~17! we obtain a differential
equation forGn̄

b54(tk
S) which can be written in the form o

the Virasoro constraints,

@L s
b5422ds,1#Gn̄

b54
~ tk

S!50, s>1, ~20!

where

L s
b5452(

k51

s21

]k
S]s2k

S 1 (
k>1

ktk
S]s1k

S 1~Nf12n̄1s!]s
S,

~21!

and ]k
S5]/]tk

S . One can easily check thatL s
b54 andL s

b52

satisfy the same algebra.

C. bÄ1

For QCD with fundamental fermions andNc52 the La-
grangian can be written in terms of fermion multiplets
length 2Nf containingNf quarks andNf anti-quarks. The
chiral symmetry is thus enhanced toSU(2Nf). Since the
fermion condensate is anti-symmetric in this enlarged fla
space, the coset space of the Goldstone modes is give
SU(2Nf)/Sp(2Nf). This coset manifold is parametrized b
UIU t whereUPSU(2Nf) and I is the 2Nf32Nf antisym-
metric unit matrix
e

2-3
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I 5S 0 1

21 0D . ~22!

The partition function in the sector of fixed topologic
chargen is then given by integrating over the group man
fold U(2Nf) instead ofSU(2Nf),

Z n
b51~M̃A ,M̃A

† !

5E
UPU(2Nf )

dU~detU !ne(1/4)Tr „M̃A
†UIU t1M̃A(UIU t)†

…,

~23!

where the mass matrixM̃A5MVS is an arbitrary anti-
symmetric complex matrix. In addition to the usual ma
term given by

S 0 M
2M 0 D ~24!

it contains di-quark source terms in its diagonal blocks. B
low, in the calculation of the mass dependence of the pa
tion function, the di-quark source terms will be put equal
zero. The covariance properties ofZ n

b51 are given by

~detM̃A!2n/2Z n
b51~M̃A ,M̃A

† !

5~detVtM̃AV!2n/2Z n
b51~VtM̃AV,V21M̃A

†Vt21!.

~25!

We thus have that (detM̃A)2n/2Z n
b51(M̃A ,M̃A

†) is a sym-

metric function of the eigenvalues ofM̃AM̃A
† . This results

in the expansion

~detM̃A!2n/2Z n
b51~M̃A ,M̃A

† !

5Gn
b51~ tk

A!

511a1
At1

A1a2
At2

A1a11
A ~ t1

A!21•••, ~26!

where

tk
A5

1

2k
TrS M̃AM̃A

†

4
D k

. ~27!

The factor1
2 in the above definition oftk

A takes into accoun

that M̃ is a 2Nf32Nf matrix for b51. Substituting Eq.
~26! in the differential equation

]2Z n
b51

]M̃A ba]M̃A ac
†

5
dbc

4
Z n

b51 , ~28!

we deduce the differential equations forGn
b51(tk

A) in the
form of Virasoro constraints:

S L s
b512

ds,1

2 DGn
b51~ tk

A!50, ~29!

with

L s
b515

1

2 (
k51

s21

]k
A]s2k

A 1 (
k>1

ktk
A]s1k

A 1S Nf1
n

2
2

s

2D ]s
A ,

~30!
05400
-
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and ]k
A5]/]tk

A . The L s
b51 satisfy the same algebra as th

two other values ofb discussed in previous sections.

III. SOLVING THE CONSTRAINTS

In the first part of this section we discuss the recurs
solution of the Virasoro constraints. Flavor-topology dual
and nonperturbative solutions are discussed in the sec
part of this section.

A. Recursive solution of Virasoro constraints

Remarkably, in all three cases,b51, b52 andb54, the
constraints~14! , ~20! and ~29! can be written in the unified
form:

S L s
b2

1

g
ds,1DG~a,g!50, ~31!

where@see Eqs.~12!, ~21! and ~30!#

L s
b5

1

g (
k51

s21

]k]s2k1 (
k>1

ktk]s1k

1
1

g
@a1g~22s!1s21#]s , ~32!

and, motivated by chRMT results of@31#, we have intro-
duced the notation

a5~Nf22!2/b1n11,

g52/b. ~33!

The tk are defined as in Eqs.~5!, ~18! and ~27! for b
52,4,1, respectively. From Eq.~31! we conclude that in all
three cases the Virasoro constraints only depend onNf andn

through the combinationNf1bn/2 (n→ n̄ for b54).
Proceeding further, we can recursively solve Eq.~31! by sub-
stituting the Taylor expansion of the form~7! for G(a,g) in
Eq. ~31!. By treating thetk as independent variables, we fin
the following relations between the expansion coefficient

g(
k51

`

k~nk1111!an1•••nk21nk1111nk12•••

1~a1g!~n111!an111n2•••
5an1n2•••

, ~34!

for s51 and

~n112!~n111!an112n2•••
1g(

k51

`

k~nk1211!

3an1•••nk21nk11nk1211•••1~a11!~n211!

3an1n211n3•••
50, ~35!

for s52. ~The subscript n1n2 . . . of the coefficients
an1n2 . . . is a shorthand for the partition 1n12n2 . . . .! All
higher order Virasoro constraints are satisfied trivia
through the Virasoro algebra. If we denote the level of t
coefficients byn[(kknk and the total number of partition
of n by p(n), the total number of unknown coefficients
2-4
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level n12 is equal top(n12) whereas the total number o
inhomogeneous equation~for s51) is equalp(n11) and
the total number of homogenous equations~for s52) is
equal top(n). The total number of partitions satisfies th
recursion relation@30#

p~n12!5p~n11!1p~n!2p~n23!2p~n25!1•••

2~21!kpS n122
3k22k

2 D2~21!kpS n12

2
3k21k

2 D1•••. ~36!

Since the number of partitions is a monotonic function ofn,
we have that

p~n12!<p~n11!1p~n!, ~37!

and the number of equations is always larger than or equ
the number of coefficients. In Table I we give the total nu
ber of coefficients and the total number of equations up
level n510.

From normalization conditiona051 we conclude that
a151/(a1g). At level n52 we obtain one equation eac
from Eqs.~34! and ~35!, respectively,
05400
to
-
o

~a11!a212a1150,
~38!

ga212~a1g!a115a151/~a1g!,

which are solved by

a115
~11a!

2a~a1g!~a1g11!
,

~39!

a25
21

a~a1g!~a1g11!
.

Up to order (MM †)4 we find

TABLE I. The total number of unknown coefficients@P(n)#
and the total number of equations@P(n21)1P(n22)# at leveln.

n P(n) P(n21)1P(n22) n P(n) P(n21)1P(n22)

1 1 1 6 11 12
2 2 2 7 15 18
3 3 3 8 22 26
4 5 5 9 30 37
5 7 8 10 42 52
Z n,Nf

b ~M,M †!5~detM!nF11
Tr~MM †!

4~a1g!
1

~a11!~TrMM †!2

32a~a1g!~a1g11!
2

Tr~MM †!2

32a~a1g!~a1g11!

1
2Tr~MM †!3

433a~a22g2!~a1g11!~a1g12!
2

~a2g12!Tr~MM †!Tr~MM †!2

432a~a22g2!~a1g11!~a1g12!

1
@~a2g!~a13!12#@Tr~MM †!#3

436a~a22g2!~a1g11!~a1g12!

1
~g25a26!Tr~MM †!4

45a~a11!~a22g2!~a1g11!~a1g12!~a1g13!~a22g!

2
@2a224a~g22!27g16#Tr~MM †!Tr~MM †!3

443a~a11!~a22g2!~a1g11!~a1g12!~a1g13!~a22g!

1
@a21a~523g!12g22g16#@Tr~MM †!2#2

452a~a11!~a22g2!~a1g11!~a1g12!~a1g13!~a22g!

1
@3a2~g22!2a32624g2113g1a~211114g22g2!#~TrMM †!2Tr~MM †!2

45a~a11!~a22g2!~a1g11!~a1g12!~a1g13!~a22g!

1
@61a41a3~723g!225g118g21a2~17221g12g2!1a~17243g114g2!#~TrMM †!4

456a~a11!~a22g2!~a1g11!~a1g12!~a1g13!~a22g!

1O„~MM †!6
…G . ~40!
2-5
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For b51 the mass matrixM̃ has been expressed in terms
the standardNf3Nf mass matrix that occurs in the QC
partition function @see Eq.~24!#. For b52 and b54 the
matrix M is a complexNf3Nf matrix as well, but forb
54 it is symmetric. We have checked that all coefficients
Eq. ~40! agree with the corresponding expansion forb52
obtained in @20#. When the masses are degener
(MM †)ab5m2dab exact expressions forZn,Nf

b are known

for all three values of the Dyson index. For instance, in
special caseNf52 and b51 the finite volume partition
function is given by@29#

Zn,2
b51 5 2(

k50

` S m2

4 D (n1k) @2~n1k!#!

k! ~n1k!! ~n1k12!! ~2n1k!!
,

~41!

which is a convergent series forZn,2
b51. The reader can chec

that Eq.~40! only differs from Eq.~41! by the overall nor-
malization factor 2122n/(n!(n12)!). We have also made
similar checks forb54. The poles that appear in the expa
sion ~40! at finite Nf , the so called de Wit–’t Hooft poles
@32#, cancel after rewriting the expansion in powers of pro
ucts of the eigenvalues ofM †M. They can be regulated b
choosing a noninteger value for the topological cha
@20,33#.

The expansion in terms of traces of the quark mass ma
can be directly compared witĥ)a51

Nf det(D1ma)&Yang-Mills

from which we derive spectral sum-rules for inverse pow
of the eigenvalues of the Dirac operator@10#. With zk related
to the eigenvalues6 ilk of the Dirac operator throughzk
5VSlk , the first six sum rules forma50 are given by

K (
n

1

zn
2L 5

1

4~a1g!
,

K (
n

1

zn
4L 5

1

16a~a1g!~a1g11!
,

K S (
n

1

zn
2D 2L 5

a11

16a~a1g!~a1g11!
,

K (
n

1

zn
6L 5

1

32a~a22g2!~a1g11!~a1g12!
,

K (
n

1

zn
2 (

m

1

zm
4 L 5

a2g12

64a~a22g2!~a1g11!~a1g12!
,

K S (
n

1

zn
2D 3L 5

~a2g!~a13!12

64a~a22g2!~a1g11!~a1g12!
.

~42!

The sum is over the positive eigenvalues only. It is clear t
all sum rules will depend on the topological charge throu
the combinationNf1bn/2. The first formula in Eq.~42! had
already been obtained in@29# from the low-energy QCD fi-
05400
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nite volume partition functions. Forb52 our sum rules
agree with the ones derived in@20# obtained by means o
Virasoro constraintsandflavor-topology duality. The remain
ing sum rules have never been derived before from the fi
volume partition functions forb51,4, but all except the
fourth one have been obtained from chRMT by means
Selberg integrals for arbitraryb @31#.

B. Flavor-topology duality

So far for the sum rules, we now return to the flavo
topology duality relations which is our main result. To th
end we construct a (Nf1bn/2)3(Nf1bn/2) matrix M̄
from the Nf3Nf original mass-matrixM by adding zeros.
We thus have that Tr(MM †)k5Tr(M̄ M̄†)k. The flavor-
topology duality relation then follows from the observatio
that all coefficients in the small-mass expansion~40! depend
on the number of flavors explicitly through the combinati
Nf1bn/2 and can be written as

Zn,Nf

b ~M,M †!5~detM!nZ0,Nf1bn/2
b ~M̄,M̄†!, ~43!

wheren→ n̄ for b54. For the cases wherebn/2 is not an
integer, the flavor-topology duality should be understood
an analytical continuation2 in n. Strictly speaking, we have
only shown the duality relation~43! for the recursion rela-
tions for the coefficients of the small-mass expansion of
partition functions. To complete our proof we have to sho
that the Virasoro constraints uniquely determine all coe
cients and that the expansion is a convergent series.
convergence of the small mass expansion follows imme
ately from the compactness of the unitary group. Indeed,
b52, the small-mass expansion can be resummed to
t-function of a KP hierarchy@19,16#. This result can also be
obtained from an exact reconstruction ofZ n

b52 @28# from the
character expansion@27# which is an alternative to the smal
mass expansion derived here. The uniqueness of the solu
of the Virasoro constraints is a much more difficult questi
@34#. We have checked explicitly to the order (MM †)8 that
this is indeed the case for all values of the parameters.

For b52, however, the uniqueness follows from the e
plicit solution @35# of the equation

]2

]Mba]M ab
†

Z n
b52~M,M †!5

Nf

4
Z n

b52~M,M †!,

~44!

obtained from the trace of Eq.~8! or the Schwinger-Dyson
equation@21#

2The analytical continuation inn is subtle. The correct continua
tion is obtained by@26,12# expressing the finite volume partitio
function in terms of modified Bessel functions and make an a
lytical continuation in the index of the Bessel functions.
2-6
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M cd
† Mdb

]2

]Mba]M ac
†

Z n
b52~M,M †!

5M ba
† Mab

Nf

4
Z n

b52~M,M †!, ~45!

obtained by contracting Eq.~8! with M and M †. In both
cases, the invariance of the partition function can be use
reduce the equations to a separable differential equatio
the eigenvalues ofM †M. Because we are looking for
solution that is symmetric in the eigenvalues satisfying
boundary conditionGn(0)51, it is determined uniquely by
the solution of the single particle equation which happens
be the Bessel equation.

Let us discuss this in more detail for Eq.~44!. The first
step is to write the partition function as

Z n
b52~M,M †!5S detM

detM †D n/2

Z̃n~L!, ~46!

whereZ̃n(L) is a function of the eigenvaluesxk of M †M
only @L5diag(x1 , . . .xNf

)#. It satisfies the differentia
equation

F ]2

]Mba]M ab
†

2(
k

n2

4xk
2G Z̃n~L!5

Nf

4
Z̃n~L!. ~47!

This equation can be further simplified by introducing t
reduced partition function

zn~L!5D~xk
2!)

k
AxkZ̃n~L!, ~48!

where the Vandermonde determinant is defined byD(xk
2)

5)k, l(xk
22xl

2). We thus have thatzn(L) is a completely
antisymmetric function of the eigenvalues with bounda
condition such thatZ̃n(L);)kxk

n for xk→0. The reduced
partition function satisfies the separable differential equa

(
k

F ]k
22

4n221

4xk
2 Gzn~L!5Nfzn~L!. ~49!

The solution can thus be expressed as a Slater-determin

zn~L!5detkl@fk~xl !#, ~50!

where thefk are the regular solutions of the single partic
equation up to terms that vanish in the determinant. T
requires further discussion. The solution of the single part
equation

DBfk~x![F ]x
22

4n221

4x2 Gfk~x!5vk
2fk~x!, ~51!

is the modified Bessel function

fk~x!5AxIn~vkx!. ~52!
05400
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In order to cancel the Vandermonde determinant forxk→0
we necessarily have that allvk

2 are equal and thusvk51.
Because of the antisymmetry of the columns in the Sla
determinant~50! we can allow for single particle solution
that satisfy the equations

DBf1~x!5f1~x!,

DBf2~x!5f2~x!1m21f1~x!,

DBf3~x!5f3~x!1m31f1~x!1m32f2~x!,etc.
~53!

By redefiningf3 ,f4 , . . . we obtain the equations~for k
>2)

DBfk~x!5fk~x!1mk k21fk21~x!, ~54!

where themk k21fk21(x) cancel in the expression for th
Slater determinant. The solution of these equations follo
immediately from the recursion relation

DB@xk11/2I n1k~x!#5xk11/2I n1k~x!12kxk21/2I n1k21~x!.
~55!

We thus find that

fk5xk11/2I n1k~x! ~56!

and mk k2152k. Since the Bessel equation has only o
regular solution, we conclude that this solution is uniqu
The Virasoro constraints together with the boundary con
tions determine the partition function uniquely and is giv
by a Slater-determinant of modified Bessel functions~50!
which agrees with the known result for the one-link interg
@21,19,10,35#.

Actually the solution of the Virasoro constraints, althou
not its uniqueness can be obtained in a simpler way by id
tifying them with constraints which are satisfied by the ge
eralized Kontsevich model~GKM!. By changing variables
from the matrix elements ofM andM † to the matrix ele-
ments of the Hermitian matrixL[(MM †/4) we can re-
write Eq. ~9! as

F ]

]Lbe
Lde

]

]Ldc
1n

]

]Lbc
GGn~L !5dbcGn~L !. ~57!

This equation admits a solution in the form of a GKM wi
potential V(X)51/X where X is a Nf3Nf normal matrix.
More explicitly we have3

Gn~L !5E dX

~detX!Nf2n
eTr[LX11/X] , ~58!

which is a simple modification of then50 case studied in
@19#. In order to verify that Eq.~58! is a solution of Eq.~57!

3The contour of integration is such that the integral converges
all values ofL, and that an integral over a total derivative ofX
vanishes.
2-7
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we have to insert a total derivative in the integral overX and
multiply it by a second order differential operator as follow

]

]Lbe

]

]Ldc
E dX

]

]Xed
S 1

~detX!Nf2n
eTr[LX11/X] D 50.

~59!

Concluding, forb52 the Virasoro constraints naturally lea
to a simple and rigorous proof of flavor-topology duality~43!
which is an alternative to the proof presented in@11,12#. For
b51 andb54 a direct solution of the Virasoro constrain
is not known, although we believe that further progress
be achieved at least in the case of equal quark masses w
exact formulas for the partition function are known@29#. For
non-degenerate masses the obstacle is the lack of a gen
zation of the Itzykson-Zuber formula for integrals over sy
metric and anti-symmetric unitary matrices. Therefore o
proof of flavor-topology duality forb51 andb54 is only
valid under the assumption of the uniqueness of the solu
of the Virasoro constraints.

IV. CONCLUSIONS

In a parameter range where the main contribution to
QCD partition function comes from the zero-momentu
component of the Goldstone modes, the partition functi
reduce to zero-dimensional integrals over the group m
folds SU(Nf), SU(Nf)/O(Nf) and SU(2Nf)/Sp(2Nf), for
fermions in the fundamental representation andNc>3 (b
52), Nc52 (b51), and adjoint fermions withNc>2 (b
54), respectively. In the sector of fixed topological chargen
we have shown that these partition functions satisfy diff
ential equations in the form of Virasoro constraints whi
determine the small-mass expansion for arbitrary value
the topological charge. We have calculated the coefficient
the small mass expansion recursively up to the orderm8 and
have obtained new spectral sum rules for inverse power
the eigenvalues of the Dirac operator forb51, b52 and
b54. For all three values ofb the constraints depend on th
topological charge through the combinationNf1bn/2 which
demonstrates flavor-topology duality for the correspond
small-mass (m→0) expansions. For the special case ofb
ak

dy
ct
al
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52 the uniqueness of the solution of the Virasoro constra
and the convergence of the small mass expansion imp
flavor-topology duality for the full~finite m) partition func-
tion. In this case, we have found a non-perturbative solut
of the Virasoro constraints in the form of a generalized Ko
sevich model for arbitrary topological chargen which
complements then50 results of@19#. We have not been able
to find an analogous solution forb51 andb54. Based on
numerical evidence we believe that for these two cases
solution of the Virasoro constraints is unique as well, bu
rigorous proof could not be given. The existence of ex
expressions for partition functions with degenerate mas
(MM †)ab5m2dab indicates that further progress is po
sible.

It is worth commenting that, even forb52, although or-
der by order the character expansion is equivalent to
perturbative solution of the small-mass Virasoro constrain
it does not provide us with a natural proof of flavor-topolo
duality ~see@28#!. It should also be pointed out that the GKM
are known to satisfy both small-mass and large-mass V
soro constraints. Thus, in view of our results, we also exp
to find large-mass constraints fornÞ0 at least forb52.
Indeed we have explicitly obtained such constraints entir
within the context of unitary integrals and they depend q
dratically on the topological chargen, contrary to the linear
dependence of the small-mass constraints. The generaliz
of the large-mass constraints tob51 andb54 seems to be
within reach. Due to the absence of an explicitNf depen-
dence of the expansion coefficients they are the most
evant ones from the point of view of both the replica lim
@20,26,12# and the classification of universality classes@36#.
In particular, for applications in 2D gravity they correspon
to the continuum Virasoro constraints which appear after
double scaling limit.
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