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Virasoro constraints and flavor-topology duality in QCD
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We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector
of topological charger. The constraints depend on the topological charge only through the combifgtion
+ Bv/2 where the value of the Dyson indgkis determined by the reality type of the fermions. This duality
between flavor and topology is inherited by the small-mass expansion of the partition functiat speictral
sum rules of inverse powers of the eigenvalues of the Dirac operator. For the specigl=c2deut arbitrary
topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the
potentialV(X) = 1/X.
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. FLAVOR-TOPOLOGY DUALITY Zy, My, . my)
Through the work of 't Hooft we know that the low- ~H MiZy,+p0o(My, - o.My, 0,...,0. (1)

energy limit of QCD is dominated by light flavors and topol-
ogy [1]. We expect that the same will be the case for the'I'his relation, which is now known as flavor topology-

low-lying eigenvalues of t_he Dirac (_)perator. Indged, forduality, is a trivial consequence of the flavor dependence of
massless flavors, the fermion determinant results in the "She chRMT joint eigenvalue distribution.
pulsion of eigenvalues away from=0. It is perhaps 1ess  The mass dependence of the chRMT partition function
known that the presence of exactly zero eigenvalues has the, pe reduced to a unitary matrix integral which is known
same effect. The reason is the repulsion of eigenvalues whigfiom the zero momentum limit of chiral perturbation theory
occurs in all interacting systems and has probably best beg 10]. Starting from this representation of the low energy
understood in the context of random matrix theory where th@imit of the QCD partition function, also known as the finite
eigenvalues obey the Wigner repulsion IB2y. volume partition function, flavor-topology duality was first
In QCD, the fluctuations of the low-lying eigenvalues of proved forN;=2 in [8]. However, its generalization to arbi-
the Dirac operator are described by chiral random matrixrary N andv has only been achieved f@=2[11,12. The
theory (chRMT) [3-5]. This is a random matrix theory with relation(1) has been particularly useful for establishing rela-
the global symmetries of the QCD partition function. It is tions between correlation functions of Dirac eigenvalues and
characterized by the Dyson indg&] 8 which is equal to the finite volume partition function$12—-16.
number of independent variables per matrix element. For For 8=2 the unitary matrix integral, which represents the
QCD with fundamental fermions we hayg@=1 for N.=2 low-energy limit of the QCD partition function, is also
and 8=2 for N;>2. For QCD with adjoint fermions and known as the one-link integral of two-dimensional QCiee
N¢=2 the Dirac matrix can be represented in terms of selffor €xample[17]) or the Brezin-Gross-Witten mod¢L8].
dual quaternions with3=4. The main ingredient of the For zero topological charge it can also be represented as a

chRMT partition function is the integration measure Whichgeneralized Kontsevich modgll9] with potential 1(X)

includes the Vandermonde determinant. In terms of Dirac_ 1/X: This model has been discussed extensively in the con-

eigenvaluesi), it is given by Hk<||)\§_)\|2|ﬁ)\5v+ﬁfl. text of topologiqal gravity(for reviews se¢23-25). In this
Therefore, the presence b massless flavors, with the fer- case the o'ne—llnk mtegra] has t_>een analyiéﬁ,zq by :
. . _ 2N; means of Virasoro constraints which are based on its invari-
mlon determinant 9"’9” byfih, ™, has th.e same effect on ance properties. The main issue we wish to address in this
eigenvalue correlations as=2N¢/f zero eigenvalues. More article is whether flavor-topology duality of the one-link in-
precisely, the joint eigenvalue distribution only depends onegral can be understood without relying on its chRMT rep-
the combination R+ Bv [4,7]. Based on the conjecture resentation. We will do this by deriving Virasoro constraints
[3,4] that the zero-momentum part of the QCD partition for arpitrary topological charge. Fg=2 we find a nonper-

function, Zy, ,(my, ..., my,), is a chiral random matrix tyrpative solution of these constraints in the form of a gen-
theory, it was suggestd@®] that its mass dependence obeyseralized Kontsevich model.
the duality relation(for 5=2) In Sec. Il we will derive the Virasoro constraints for arbi-

trary v and three different values @. We observe that they

satisfy the flavor-topology duality relations. A recursive so-
*Email address: dalmazi@feg.unesp.br lution of these relations is presented in Sec. . It also pro-
TEmail address: verbaarschot@nuclear.physics.sunysb.edu vides us with an efficient derivation of sum rules for the
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inverse Dirac eigenvalues to high order. In the second part de carried out by means of Virasoro constraiits an ex-
this section we discuss the uniqueness of the nonperturbatiy#icit calculation including nonsymmetric saddle points see
solution of the Virasoro constraints fgg=2. Concluding [26]). On the other hand, the small-mass expansion has a

remarks are made in Sec. IV. non-zero radius of convergence, and it can be determined by
different methods for any finitdl; . For example, one can
II. VIRASORO CONSTRAINTS expand the exponential in EG3) and calculate the corre-

. o ) sponding unitary integrals systematically using a character

In the simplest casef=2 and vanishing topological expansion[27,28§. Another efficient technique is again the
charger=0, the small-mass Virasoro constraints were firstyse of the (small-mass Virasoro constraints found in
found in[19] after an identification of the appropriate unitary [19 20,12. By generalizing such constraints to arbitrary to-
integral and the corresponding generalized Kontsevichyological charger we will show that they naturally lead to
model (GKM). Here we work entirely in the context of uni- fjayor-topology duality.
tary integrals and derive a simple form of the Virasoro con-  Fijrst of all, using the unitary invariance of the measure in
straints valid for arbitrary topological charge afdThey are  Eq. (3) we can deduce the covariance properties of the par-
obtained by expanding the partition function in powers of thetjtion function under a redefinition of the mass matyix
masses. -V IMmMu,

—vzpB=2 T
A 2 (detM) =" ZE-2(M M)

The low energy limit of QCD in the phase of broken = (detv *MU) " Z872(vIMUUTIMTV). (4)
chiral symmetry is a gas of weakly interacting Goldstone o g2 -
bosons. Its partition function is determined uniquely by theThis equation implies that (dev) "z~ (M, M) is a
invariance properties of the Goldstone fields. For quarklymmetric function of the eigenvalues of the Hermitian ma-

massesn and space-time volum¥ in the range trix Lop=(MM T),p. Following [19] we can introduce the
infinite set of variables
Lve T ) 1_ (MMM
A m. W=z , k=1, 6)

(wherem,,= y2m2/F< is the mass of the Goldstone modes , hich are explicitly symmetric with respect to permutations
with F the pion decay constant aidthe chiral condensake of the eigenvalues and write

the partition function for the Goldstone modes factorizes B2 +

[9,10] into a zero-momentum part, also known as the finite (detM) " "Z77 (M, M) =G, (ty), (6)
volume partition function, and a nonzero momentum part. )
For fundamental fermions and a gauge group wit=3,  WhereG,(t) has the Taylor expansion

the finite volume partition function in the sector of topologi- G,(ty)=1+ast;+ast,+ati+---. )
cal chargev is given by the following integral over the uni-
tary group[9,10] A simple consistency check on E(f) is that unitary inte-

grals are only nonvanishing if the powers dfandU™ are
B=2 L va(1/2) Tr MUt + M Tu) equal. Following[19] we can find the coefficients of the
2, (MM JUEU(Nf)dU(detU) © ' Taylor expansior(7) from the differential equation

©)

where M=MVZY. Here and below we always take=0.
The quantityM stands for the original unscaled quark mass
matrix. The partition function is normalized such that
ZB=2( M, M) —det'(M) for M—0.

Especially forv=0, the integral3) has been studied ex-

g2zE=2 5
—= _Cbzljzz' (8)
aMbaaM ac 4

which follows directly from Eq.(3). As a consequence,
G,(t,) satisfies the equation

tensively in the literature. In the context of lattice QCD it is 5 s
known as the one-link integrfl 8,21,19 (see als¢17] for a ‘9— —1L _ Ycb
. . . . + +vM ab t Gv(tk) Gy(tk)-
review). Of particular interest is the fact that fot;— o the IMpadM 4¢ ac 4
partition function Z#~2 undergoes a phase transitiphg] (9)

from a small mass phaseM—0) to a large mass phase ]
(M—). The large mass expansion is asymptotic and itsJsing the chain rule

coefficients can be calculated, even for firlitg, by expand- J [ (MM DM

ing about a flavor-symmetric saddle point. For Re¢)(— « = | %

such expansion can be carried out in a efficient way by OMae =11 4 ca

means of thélarge-masgVirasoro constraints found if22].

For Im(M)—o, at fixed value of Re{t), other flavor- 9 _MT(MM fyk-1

nonsymmetric saddle points contribute to the partition func- oM — | % (10
tion as well, and it is not known whether the expansion can ba k=1 4 ab
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with d,= d/ dt, we immediately obtain, from Ed9), Z€:4(MS,M§)
* MM t\s—1
> ( 2 ) [£572=3611G,(t)=0, (11 :f dU(detU)2reMDTr(Ms(UUYT+M Luuh.
s=1 cb UeU(Ny)

where (15
s—1 _

rB=2_ Py Ktede o+ (Ne+1)de,  s=1, wher_ev=NCv gndMszME\(. In this case the' mass matrix
s kz'l KOsk 21 s+t (Nt ) s Ms is an arbitrary symmetric complex matrix. Fromt g

(12 —V'MgV we obtain the transformation law
—v 7 B=4 t

and our convention throughout this paper is that terms like (detMg) "2 (Ms, M)
the first one in the expression fdl; vanish fors=1. The
operatorsCg obey a sub-algebra of the Virasoro algebra

(Lo L)=(r=8)L; (13 (16
without central charge ands=1. This implies that (deMS)’”Z?“(MS,/\/Tlg) is a symmet-
coefficients of the expansion(7) are not determined that - -
uniquely® In Eq. (11) the matrix elements aMM " and the  (detMs) ™" 227 (Mg, M) =GE (1) =1+afti+a5t5
t, are not independent so that we cannot conclude from Eq. S S
(11) that the coefficients of /1M ) vanish. Indeed, the +ag(t)+---, 17
corresponding equations fdf;=1 and»=0 are inconsis- ) ) ]
tent. However, in order to fix the coefficients in Efy  Where in analogy with Eq(5) we have defined
uniquely, we may supplement E@.1) with additional equa-

= (detV'MeV) *ZETHVIMeV,V IM VY D),

. . - 1 (M SMg k
tions. We do that by requiring that all coefficients of tS=Tr (18)
(MM T3 vanish, K=k 7 ,
B=2_ = = =

[£5 9511Gu(t) =0, s=1. (14 anng 4(tf) will be determined by the differential equation
This procedure is justified provided that the all equations are (922€:4 4
consistent. Indeed, fd¥;— < the matrix elements and thg —= 5bCZ€_ . (19
are independent so that E@.4) must be valid. By inserting IMspdM s ac

the Taylor expansiof7) into Eq.(14) we obtain an inhomo- _ . . : .

geneous set of linear equations for the coefficients whick\t€r §ubstltut|/3n:g]4th§ expansidd?) we obtain a differential

depend on the paramet®;+ ». Inconsistencies can only equation forG7= “(t,) which can be written in the form of

arise for isolated values dfi;+ v for which the homoge- the Virasoro constraints,

neous part of the equations becomes linearly dependent. This 4

is indeed what happens in the example=1 andv=0. [5514—255,1](3%_ (t)=0, s=>1, (20
Because of the commutation relatiofds) the constraints

for s=3 follow from the constraints fos=1 ands=2. The  where

coefficients of the Taylor expansidi@) can be found recur- s 1 _

sively by solving the constraints fe=1 ands=2. This will LEA=23 G305+ X, Ko, + (Ni+2v+9)d,

be carried out in Sec. lll after deriving the Virasoro con- k=1 k=1 21)

straints for=4 andB=1.

and gg=dl oty . One can easily check that?=* and £ =2
B. B=4 satisfy the same algebra.

Similarly, we now derive the Virasoro constraints for ad-

joint fermions (3=4). For fermions in the adjoint represen- C.p=1

tation, the zero-momentum Goldstone modes belong to the £or QCD with fundamental fermions ad,=2 the La-

coset spaceSU(Ny)/SQ(Ny). These Goldstone fields are grangian can be written in terms of fermion multiplets of

conveniently parametrized ByU" with U< SU(Ny). Inthe  jength 2N, containingN; quarks andN; anti-quarks. The

sector of topological charge, we thus find the finite volume  chiral symmetry is thus enhanced 8U(2N;). Since the

partition function[10,29, fermion condensate is anti-symmetric in this enlarged flavor
space, the coset space of the Goldstone modes is given by
SU(2N;)/Sp(2Ny). This coset manifold is parametrized by

10f course, they are determined uniquely up to the order that th&)1U" whereU e SU(2N;) and| is the 2N;x 2N; antisym-
t, are independent. metric unit matrix
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0 1
-1 0/’
The partition function in the sector of fixed topological

chargev is then given by integrating over the group mani-
fold U(2Ny) instead ofSU(2Ny),

207N Ma MY

| = (22)

f dU(detU) e Tr (MuuILt+ auILY
UeU(2Ny)

(23

where the mass matriM,=MVS is an arbitrary anti-

symmetric complex matrix. In addition to the usual mass-

term given by

(29

o

0

it contains di-quark source terms in its diagonal blocks. Be-
low, in the calculation of the mass dependence of the parti-
tion function, the di-quark source terms will be put equal to

zero. The covariance properties £~ are given by
(detMp) = "2ZE=Y My, M)
= (detViM,V) “"2ZE=L VIV, VMRV Y,
(25
We thus have that (dg¥1,) ~"2Zf=Y(M,,M}) is a sym-

metric function of the eigenvalues d¥{, M} . This results
in the expansion

(detMp) " "2Z8-H(Mp, M)

=Gyt
=1+aftf+asty+a(th) 2+ - -, (26)
where — ik
1 MaM]
A—_ R
tk—ZkTr( 7 ) . (27

The factor; in the above definition off; takes into account
that M is a 2N;x 2N; matrix for =1. Substituting Eq.

(26) in the differential equation
?zh=1 5
ﬁ - ﬂ: 5:1 ] (28)
aMA ba&MA ac 4

we deduce the differential equations f&®~*(t¢) in the
form of Virasoro constraints:

s
(cf‘l— %‘)Gf‘la’bzo, (29
with
134 v S
£8=2 gl a@aﬁ_k+gl Kteal i+ | Ne+ 5 = 5) L,
(30

PHYSICAL REVIEW D64 054002

and gp=al oty . The L2~ satisfy the same algebra as the
two other values of3 discussed in previous sections.

Ill. SOLVING THE CONSTRAINTS

In the first part of this section we discuss the recursive
solution of the Virasoro constraints. Flavor-topology duality
and nonperturbative solutions are discussed in the second
part of this section.

A. Recursive solution of Virasoro constraints

Remarkably, in all three case8=1, =2 andB=4, the
constraintg14) , (20) and(29) can be written in the unified
form:

1
(ﬁé—;as,l)ca(a,y):o, (3D)
where[see Eqs(12), (21) and (30)]
1 s—1
LE== 3 hds it 2, Ktdsi
Y k=1 k=1
1
+;[a+'y(2—s)+s—l]ﬁs, (32

and, motivated by chRMT results ¢81], we have intro-
duced the notation
a=(N¢—2)2/1B+v+1,
v=2IB. (33
The t, are defined as in Ege5), (18 and (27) for B
=2,4,1, respectively. From E@31) we conclude that in all
three cases the Virasoro constraints only depenioand v
through the combinatioN¢+ Bv/2 (v—v for B=4).
Proceeding further, we can recursively solve 1) by sub-
stituting the Taylor expansion of the fortd) for G(«,y) in
Eqg. (31). By treating thet, as independent variables, we find
the following relations between the expansion coefficients:

©

ngl k(nk+1+1)an1-~~nk—1nk+1+1nk+2-~

+(a+ '}/)(n1+1)an1+1n2...:anlnz... y (34)
for s=1 and
(N1 2)(Ny+ Dan, s on,..+ 7 2 k(N2 +1)
Xan1~--nkflnk+lnk+2+l~--+(a+ 1)(ny,+1)
Xann,+1ng: - =0, (35)

for s=2. (The subscriptnin,... of the coefficients
ann,... is a shorthand for the partition™2"2 . .. ) All
higher order Virasoro constraints are satisfied trivially
through the Virasoro algebra. If we denote the level of the
coefficients byn=3>,kn, and the total number of partitions
of n by p(n), the total number of unknown coefficients at
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level n+2 is equal top(n+2) whereas the total number of ~ TABLE I. The total number of unknown coefficienf$(n)]
inhomogeneous equatiofior s=1) is equalp(n+1) and and the total number of equatiofB(n—1)+P(n—2)] at leveln.
the total number of homogenous equatidifer s=2) is
equal top(n). The total number of partitions satisfies the " P(n) P(n—1)+P(n—=2) n P(n) P(n—1)+P(n-2)
recursion relatior30]

1 1 1 6 11 12
— 2 2 2 7 15 18
p(n+2)=p(n+1)+p(n)—p(n=3)—p(n—>5)+ s 3 3 8 o I
. 2 . 4 5 5 9 30 37
—(=1’p|n+2-—— |- (=1)"p[n+2 5 7 8 10 42 52
3k%+k
T2 ) B8 (4r1)a,+2a,=0,
. L . : (38)
Since the number of partitions is a monotonic functiomof  ,a,+2(a+ y)aj;=a;= U a+y),
we have that
which are solved by
p(n+2)<p(n+1)+p(n), (37)
and the number of equations is always larger than or equal to a;= (1+a) ,
the number of coefficients. In Table | we give the total num- 2a(aty)(aty+l)
ber of coefficients and the total number of equations up to (39
level n=10. 4 -1
From normalization conditiorag=1 we conclude that 27 a(aty)(aty+1)
a;=1/(a+7y). At level n=2 we obtain one equation each
from Eqgs.(34) and (35), respectively, Up to order (MM T)* we find
T(MMT)  (a+1)(TrMMmT)? Tr(MMT)?

nyNf(M,MT)z(detM)" 1+

4(a+y)  32ala+y)(at+y+l) 32a(a+y)(at+y+l)

2T MM T3 - (a—y+2)T(MMHTr(MM T2
433a(a2— 72)(a+ y+1)(a+y+2) 432a(a2— 72)(a+ y+1)(a+y+2)

[(@=y)(a+3)+2] [T MM
436a(a2— yz)(cH— v+1)(a+y+2)

. (y—5a—6)Tr(MM H)*
45a(a+ 1)(a2— 'yz)(a+ y+1)(a+y+2)(aty+3)(a—2y)

- [20%—4a(y—2)—Ty+6]TH (MM HTr( MM T)3
4%3a(a+1)(a®— ) (a+y+1)(a+y+2)(a+ y+3)(a—2y)

[a?+ a(5—37y)+ 22— y+6][Tr(MM H)?]?
452a(a+ 1)(a2— 'yz)(a-i- y+1)(a+y+2)(aty+3)(a—2y)

. [30%(y—2)— a®—6—4y%+13y+ a(— 11+ 14y— 2y U TIMM H2Tr (MM T)?
ASa(a+1)(a?— Y (a+y+1)(a+y+2)(a+y+3)(a—2y)

. [6+a+a®(7—37y)—25y+18y?+ (17— 21y+29%) + a(17— 43y + 14y |(TrMM T)*
456a(a+1)(a®— y?)(a+y+1)(a+y+2)(a+y+3)(a—2y)

+O(MMNHE)|. (40)
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For B=1 the mass matrid has been expressed in terms of hite volume partition functions. Fop=2 our sum rules
the standardN;x N; mass matrix that occurs in the QCD agree with the ones derived [20] obtained by means of
partition function[see Eq.(24)]. For =2 and B=4 the _\ﬁrasoro constraintandfIavor-topoIo_gy duality. The remain_-_
matrix M is a complexN;x N; matrix as well, but forg ing sum rulefs-have never been derived before from the finite
=4 it is symmetric. We have checked that all coefficients involume partition functions for3=1,4, but all except the
Eq. (40) agree with the corresponding expansion fx2  fourth one have been o_btalned from chRMT by means of
obtained in [20]. When the masses are degenerateSelberg integrals for arbitrarg [31].

(MM T) b= u?8,, exact expressions foﬁﬁNf are known

for all three values of the Dyson index. For instance, in the B. Flavor-topology duality
special caseN;=2 and 8=1 the finite volume partition

function is given by[29] So far for the sum rules, we now return to the flavor-

topology duality relations which is our main result. To this

- AN [2(v+K)]! end we construct aN;+ Bv/2) X (N¢+ Bv/2) matrix M
2,20 = ZKZO (T) KL (vt K) (vt K+ 2)1 (20 +K)! from the N¢X Ny original mass-matrix\M by adding zeros.
41y  We thus have that THIM ") =Tr(M M), The flavor-
topology duality relation then follows from the observation
which is a convergent series f@fle. The reader can check that all coefficients in the small-mass expansi4@) depend
that Eq.(40) only differs from Eq.(41) by the overall nor- on the number of flavors explicitly through the combination
malization factor 3-2"/(v!(v+2)!). We have also made N;+ Bv/2 and can be written as
similar checks foiB=4. The poles that appear in the expan- _
sion (40) at finite Ny, the so called de Wit—'t Hooft poles Z'f,Nf(M,MT)=(detM)”Zg,wav/z(M,MT), (43)
[32], cancel after rewriting the expansion in powers of prod-
ucts of the eigenvalues 01 " M. They can be regulated by
choosing a noninteger value for the topological chargeyvhere v— v for B=4. For the cases whergv/2 is not an
[20,33. integer, the flavor-topology duality should be understood as
The expansion in terms of traces of the quark mass matrign analytical continuatiénin ». Strictly speaking, we have
can be directly compared withH';'f: 1det® +my))vang-miis ~ ONly shown the duality relatio43) for the recursion rela-
from which we derive spectral sum-rules for inverse powerdions for the coefficients of the small-mass expansion of the
of the eigenvalues of the Dirac operafaf]. With ¢, related ~ partition functions. To complete our proof we have to show
to the eigenvalues-i), of the Dirac operator througlf,  that the Virasoro constraints uniquely determine all coeffi-

=V3I\,, the first six sum rules fom,=0 are given by cients and that the expansion is a convergent series. The
convergence of the small mass expansion follows immedi-
1 1 ately from the compactness of the unitary group. Indeed, for
; - :4(0[—+y), B=2, the small-mass expansion can be resummed to the
& 7-function of a KP hierarchy19,16]. This result can also be
obtained from an exact reconstruction®f 2 [28] from the
2 i - 1 character expansidr27] which is an alternative to the small-
nogr) 16a(aty)(aty+l)’ mass expansion derived here. The uniqueness of the solution
of the Virasoro constraints is a much more difficult question
< ( 5 1 ) 2> a+1 [34]. We have checked explicitly to the ordet(M 1)® that
- = , this is indeed the case for all values of the parameters.
2
" o 16a(aty)(aty+l) For 8=2, however, the uniqueness follows from the ex-
plicit solution[35] of the equation
1 1
<; g_ﬁ>_32a(a2—y2)(a+ y+1)(aty+2)’ p N
2B MM = ZE M MY,
2 1 E 1\ a—vy+2 OMpadM 4
Y 2R ) sdala® P (at yrD(atyt2)’ 44
> 1\° B (a—y)(a+3)+2 obtained from the trace of E@8) or the Schwinger-Dyson
¥ 2] | 6da(a®— v (at y+ D(aty+2) equation|21]
(42)

The sum is over the positive eigenvalues only. It is clear that 2The analytical continuation im is subtle. The correct continua-
all sum rules will depend on the topological charge throughtion is obtained by[26,12 expressing the finite volume partition
the combinatiorN+ Bv/2. The first formula in Eq(42) had  function in terms of modified Bessel functions and make an ana-
already been obtained [129] from the low-energy QCD fi- Iytical continuation in the index of the Bessel functions.
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52 In order to cancel the Vandermonde determinantxigr>0
M Mgy T ZB=2(M,MT) we necessarily have that all? are equal and thus,=1.
IMpad Mg Because of the antisymmetry of the columns in the Slater
N determinant(50) we can allow for single particle solutions
=M EaMabeZfzz(M,M ), (45  that satisfy the equations

. , . Dg¢1(X) = ¢1(x),
obtained by contracting Eq8) with M and M . In both 591 $1
cases, the invaria_nce of the partition fur_1ction can be us_ed to Dpdo(X) = do(X) + pordh1(X),
reduce the equations to a separable differential equation in
the e_igenvalu_es ot TM. Because we are Iooki_ng _for a Dgd3(X)= p3(X) + mz101(X) + maah,(X), €tc.
solution that is symmetric in the eigenvalues satisfying the (53
boundary conditiorG,(0)=1, it is determined uniquely by o . ]
the solution of the single particle equation which happens t&Y redefining ¢;,¢,, ... we obtain the equation$or k
be the Bessel equation. =2
Let us discuss this in more detail for E@4). The first _
step is to write the partition function as Ded(X)= 00+ pici-1i-1(%), (54

w2 where theu, 16— 1(X) cancel in the expression for the
Zf‘Z(M,MT)=( detM ) Z (M), (46) Slater determinant. The solution of these equations follows

detm 1 immediately from the recursion relation

DX V2, () ]=X 12 (0 + 2k q(X).

whereZ,(A) is a function of the eigenvalues, of M "M (55

only [A=diag(x1,...fo)]. It satisfies the differential
equation We thus find that

32 V2

A=, (x) (56)

- N~
e — Z(N)=—2Z,(N). (4
OIMp oML, T 4x2 (M=720) @)

and uy —1=2k. Since the Bessel equation has only one
) ] o ] ) regular solution, we conclude that this solution is unique.
This equation can be further simplified by introducing theThe Virasoro constraints together with the boundary condi-

reduced partition function tions determine the partition function uniquely and is given
by a Slater-determinant of modified Bessel functiqbf)
z,(A)=A(X2 W Z(A), 48 which agrees with the known result for the one-link intergral
(M =201 VuZu(A) a8 o

) ) ) 5 Actually the solution of the Virasoro constraints, although
where the Vandermonde determinant is defined{x)  not its uniqueness can be obtained in a simpler way by iden-
=l (xf—x{). We thus have that,(A) is a completely tifying them with constraints which are satisfied by the gen-
antisymmetric function of the eigenvalues with boundaryeralized Kontsevich modglGKM). By changing variables
condition such thaiz,(A)~1II,x; for x,—0. The reduced from the matrix elements oM and M T to the matrix ele-

partition function satisfies the separable differential equatiorinents of the Hermitian matrix = (MM '/4) we can re-
write Eq.(9) as

2_
D | 92— ———|z,(A)=N;z,(A). (49) J J
2 14 14 —
3 Axj aLbeLde&de+ Vol G,(L)=6pG,(L). (57
The solution can thus be expressed as a Slater—determinanf;hiS equation admits a solution in the form of a GKM with
_ potential V(X)=1/X where X is a N¢X N; normal matrix.
Z,(A)=det fu(x)], 0 Nore explicitly we hava
where theg, are the regular solutions of the single particle
equation up to terms that vanish in the determinant. This G (L):f dX eTLX+1/X] (58)
requires further discussion. The solution of the single particle g (detxX)Ni—» '
equation

which is a simple modification of the=0 case studied in

5 41°—1 5 [19]. In order to verify that Eq(58) is a solution of Eq(57)
Deor(X)=| d5— v Hu(X) = widi(x),  (51)
is the modified Bessel function 3The contour of integration is such that the integral converges for
all values ofL, and that an integral over a total derivative Xf
He(X) = X1 ,(0,X). (52 vanishes.
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we have to insert a total derivative in the integral oeand =2 the uniqueness of the solution of the Virasoro constraints
multiply it by a second order differential operator as follows: and the convergence of the small mass expansion implies
flavor-topology duality for the fullfinite m) partition func-

1 STILX+1 | _ tion. In this case, we have found a non-perturbative solution

(detx)Ni—* ' of the Virasoro constraints in the form_ of a generallzeq Kont-
(59) sevich model for arbitrary topological charge which
complements the=0 results of 19]. We have not been able

Concluding, forB=2 the Virasoro constraints naturally lead to find an analogous solution f@=1 andB=4. Based on
to a simple and rigorous proof of flavor-topology duali#) numerical evidence we believe that for these two cases the
which is an alternative to the proof presentedifi,12. For  solution of the Virasoro constraints is unique as well, but a
B=1 andB=4 a direct solution of the Virasoro constraints rigorous proof could not be given. The existence of exact
is not known, although we believe that further progress camxpressions for partition functions with degenerate masses
be achieved at least in the case of equal quark masses whet&1M 1), = u?8,, indicates that further progress is pos-
exact formulas for the partition function are knoy@®]. For  sible.
non-degenerate masses the obstacle is the lack of a generali-It is worth commenting that, even f@=2, although or-
zation of the Itzykson-Zuber formula for integrals over sym-der by order the character expansion is equivalent to the
metric and anti-symmetric unitary matrices. Therefore ourmerturbative solution of the small-mass Virasoro constraints,
proof of flavor-topology duality for3=1 andB=4 is only it does not provide us with a natural proof of flavor-topology
valid under the assumption of the uniqueness of the solutioduality (se€[28]). It should also be pointed out that the GKM

d d de d
Il pe Il gc IXed

of the Virasoro constraints. are known to satisfy both small-mass and large-mass Vira-
soro constraints. Thus, in view of our results, we also expect
IV. CONCLUSIONS to find large-mass constraints for#0 at least for3=2.

] o Indeed we have explicitly obtained such constraints entirely

In a parameter range where the main contribution to th§yithin the context of unitary integrals and they depend qua-
QCD partition function comes from the zero-momentumasically on the topological charge contrary to the linear
component of the Goldstone modes, the partition functiongependence of the small-mass constraints. The generalization
reduce to zero-dimensional integrals over the group manigs ihe large-mass constraints =1 and8=4 seems to be
folds SU(Ny), SU(N;)/O(Ny) and SU(2Ny)/Sp(2Ny), for  \yithin reach. Due to the absence of an expliit depen-
fermions in the fundamental representation #d=3 (B gence of the expansion coefficients they are the most rel-
=2), Nc=2 (B=1), and adjoint fermions wittN:=2 (8  eyant ones from the point of view of both the replica limit
=4), respectively. In the sector of fixed topological charge [20,26,13 and the classification of universality clas§as].
we have shown that these partition functions satisfy differ-, particular, for applications in 2D gravity they correspond

ential equations in the form of Virasoro constraints whichyq the continuum Virasoro constraints which appear after the
determine the small-mass expansion for arbitrary values ofioyple scaling limit.
the topological charge. We have calculated the coefficients of

the small mass expansion recursively up to the onafeand ACKNOWLEDGMENTS
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