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The gauge model based on the Yang-Mills equations for the Poincare group cannot be 
con~istently quantized, at least in a perturbative approach. The regulated theory, obtained by 
addmg the counterterms required by consistency and renormalizability, is just the gauge theory 
for a de Sitter group. 

I. INTRODUCTION 

Gauge theories for the Poincare and de Sitter groups 
have been extensively studied as alternative theories for 
gravitation. 1 In this paper, "gauge theories" are to be consid
ered as synonymous for models in which the field equations 
are the Yang-Mills equations for the group. That the gauge 
model for the Poincare group could describe gravitation has 
already been shown elsewhere.2 On the other hand, the 
quantization of such a model is expected from the start to 
face difficulties because of two peculiarities of the group: it is 
nonsemisimple and it acts on space-time itself. As a conse
quence of the first peculiarity, the Yang-Mills equations are 
not derivable from a Lagrangian. 2 As a result of the second 
peculiarity, all source fields belong, besides some tensor or 
spinor representation, to a "kinematic" representation 
whose generators are derivative fields on space-time. The 
number of derivatives appearing in currents and invariants is 
thereby augmented, representing a great threat to renormali
zability. It will be shown here that such a model presents an 
inconsistency in the gauge field vertices, a problem that 
seems to stem from the absence of a Lagrangian. In order to 
illustrate what happens let us consider an unrealistic but 
instructive model. Suppose we did not know the Yukawa 
coupling Lagrangian .Y I = gqJ'I'\Ii, but we had somehow 
arrived at the field equations in the form 

..... 
D'I' = gqJ'I', (1.1) 

\liD = - gqJ\Ii, 

(02 + m2 )qJ = g'\Ii'l', 

( 1.2) 

(1.3 ) 

where D = iyft aft - m. Suppose further that we had some 
evidence (say, "experimental") thatg' #g. This is a baffling 
situation from an intuitive point of view, but the problem can 
be made more definite if, ignoring the Lagrangian, we try to 
quantize the system by the Kiillen-Yang-Feldman (KYF) 
formalism. 3 The trouble is clear: as seen from the channels of 
'I' and \Ii, the coupling constant isg; as seen from the qJ chan
nel, it would be g'. The qJ\Ii'l' vertex obtained from Eqs. ( 1.1 ) 
and ( 1.2) would be different from that obtained from ( 1.3). 
This trivial remark points to a fundamental inconsistency of 
those equations, which are coherent only when g = g'. On 
the other hand, if we examine them in the light of Vain berg's 
theorem,4 which gives necessary and sufficient conditions 
for the existence of a Lagrangian for a given set of equations, 
we find that g = g' is necessary for (1.1 )-( 1.3) to be deriv
able from a Lagrangian. 

We show in Sec. II, by using the KYF formalism, that 
this kind of inconsistency is present in the Yang-Mills equa
tions for the Poincare group. 

The fact that the Poincare group comes out as an Inonii
Wigner contraction limit of the de Sitter groups is exploited 
in Sec. III to provide more insight on the problem. The de 
Sitter groups being semisimple, a Lagrangian model can be 
built up, the path integral formalism may be used to supply 
the Feynman rules, and the Poincare model is then seen as a 
limit case. The comparison of the de Sitter and Poincare 
cases sheds some light on the way the inconsistencies, absent 
in the former, emerge in the latter. Geometrical consider
ations suggest that the de Sitter models can be viewed as 
smoothed versions of the Poincare model. 

Inconsistencies in field theories appear mainly when re
normalization is involved, and sometimes find remedy in the 
addition of counterterms to the Lagragian, with consequent 
modifications in the field equations. A notorious example is 
the electrodynamics of scalar mesons, which only becomes 
renormalizable if a self-interaction term AqJ 4 is added to the 
purely electromagnetic Lagrangian. As here no Lagrangian 
is at hand, we may think of changing the equations directly. 
A study of the possibilities arising in this line of thought is 
given in Sec. IV, where, by combining requirements of vertex 
consistency and renormalizability, successive counterterms 
are introduced in the Yang-Mills equations. Curiously 
enough, the final well-behaved resulting theory is just a de 
Sitter gauge model, which in this way appears as a "function
ally corrected" Poincare model. 

II. VERTEX INCONSISTENCY 

The Poincare Lie algebra is the semidirect product of 
the Lorentz algebra and the algebra of the translations in 
space-time. It is convenient to use the double index notation 
laf3 (a,{3 = 1,2,3,4, with a </3), for the Lorentz generators 
and to take la for the translation generators. Individual in
dices can be raised and lowered by the Minkowski metric 
TJaf3 . 

Taking Aa 
13ft and B Yft as the gauge potentials related, 

respectively, to the Lorentz sector (which constitutes a 
gauge subtheory) and the translation sector, the correspond
ing field tensors tum out to be2 

F af3 = a A af3 _ a A af3 _ gA a A yf3 + gA a A yf3 
pv It v v Jl Yll 'V yv J.t ' 

(2.1 ) 
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r'Jlv = aJlB~ - avBaf.t - gA aYf.tB ~ + gA a yvB Y,... (2.2) 

The Yang-Mills equations for the Poincare group are 

af.tFapf.tV - gA a Yf.tFYPf.tV + gFa yf.tVA YPJ.L = gsaPv, (2.3) 

a r'f.tv_gAa rYf.tv+gFa f.tVBY =g/2()av (2.4) 
f.t Yf.t Y f.t ' 

where saPv is the source spin density, oav is a source energy
momentum including coupling to the gauge fields, and / is 
the Planck length. 

There is no Lagrangian density from which the above 
field equations can be derived.2 It will be seen in Sec. IV that 
some pieces of this system of coupled equations can have 
Lagrangians, but the fact is that the whole system cannot. 
Attempts to redefine the fields so as to make the theory more 
tractable either disfigure its character by changing the mean
ing of the fundamental fields or make it trivial. For example, 
if the treatment used for the Korteweg-de Vries equation is 
applied here, the fields B a f.t must be some derivative af.t<p a, 
corresponding to the vacuum of the model. 

In the absence of a Lagrangian, the natural way possibly 
open to quantization is the KYF formalism. It is convenient 
to use (2.1) and (2.2) in (2.3) and (2.4) so that equations 
acquire the form 

DA ap _ a (af.tA ap ) v v f.t 

= gVaP
v [A] - g 2WaP

v [A] + saPv, (2.5) 

DB av _ a V(af.tBaf.t ) 

= gUpX[A ]BP" - g 2ZpX[A ]BP" + /2()av, (2.6) 
where 

V ap [A ] = (A P 8a _ A a 8 p) 
v YP£ Epr 

X(8/a u -ifUav)AEYu ' (2.7) 

W aPv [A ] = (8£ a~r - 8
E
P7]0Y) 

X (8 Un"P - 8 "nUP)A E A 'P A I) 
v ., v " 'PP I)" yu' 

up;. [A] = 8" V(af.tA apf.t + 2A apf.t af.t) 

-A apva" -A ap" a v 

(2.8) 

+avA ap" _2a"A apv, (2.9) 

ZpX[A] =AaYf.t(AYpf.t8"v-2AYpv8"f.t) 

+AayvAYp,,' (2.10) 

Gauge-fixing terms should be added to the left-hand side but 
they will not be important for the argument that follows. 

Let us consider the sourceless case. To simplify the dis
cussion, we shall rewrite (2.5) and (2.6) symbolically as 

KA =gV[A] -g2W[A], (2.11) 

KB=gU[A ]B-g 2Z[A ]B. (2.12) 

In the KYF formalism, we look for a perturbative solu
tion in the form 

A =A +gK-1V[A] -g2K- 1W[A], 

B=B+gK-1U[A ]B-g 2K- 1Z[A ]B. 

(2.13) 

(2.14 ) 

Iteration to the desired order is then performed by replacing 
the A 's and B's successively in terms of the free solutions 
A and B. The operator K -1 represents a convolution with 
the Green's function of the differential operator in the lhs of 
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(2.5) and (2,6) with Feynman boundary conditions.5 We 
shall refer to K - 1 simply as the Feynman propagator in 
some supposedly fixed gauge. The Feynman rules are ob
tained by projecting each one of these perturbative solutions 
on outgoing fields of the same kind. Each time they "hit" the 
free propagator, these outgoing fields produce free-fields of 
the same kind, so that the first contributions give precisely 
the basic vertices for the Feynman rules. In the case (2.11), 
such vertices are of the form gA V[ A] and g 2 A W[ A] and 
from them just the expected three-leg and four-leg vertices 
for a gauge model for the Lorentz group are obtained. Equa
tion (2.11) is, of course, a set of coupled equations, one for 
each potential Aa Pf.t' Take, for instance, the component 
A 12f.t' The projection is to be made on an outg,oing fi~ld, A 12f.t' 
of exactly the same kind. Other potentials A 23f.t' A 30f.t' etc. 
appear in the vertices. In the equations for A 23f.t and A 30f.t' 
the projections are made on outgoing fields A 23f.t and A 30f.t' 
respectively. The important point is that the three-leg vertex 
involving A 12f.t' A 23f.t' and A 30f.t will appear the same when 
obtained from each one of their respective equations. In oth
er words, the expression for a vertex can be obtained from 
the equation related to any of its legs, and the result is inde
pendent of the choice of the leg. This general fact ofpertur
bative field theory is easily found for (2.11), which are in 
reality the Yang-Mills equations for a Lorentz gauge model. 
Ghost fields could be introduced in principle through the old 
laborious Feynman method,6,7 but (2.11) alone has a La
grangian and in fact it would be simpler to pursue the whole 
treatment for the Lorentz sector by the path integration 
methods. 

Now we come to the main point. The same consider
ations above, when applied to the whole set (2.11) and 
(2.12), lead to an insurmountable difficulty: vertices like 
gB(aA)B,gBA(aA), andg 2BAAB do come out from (2.12) 
but not from (2.11). There are AB couplings in (2.12) but 
no field B appears in (2.11 ). Thus the expression for a vertex 
is no longer obtained from the equation for any of its legs, it is 
now dependent on the choice of the leg. With some freedom 
of language, we might say that the B 's are able to "feel" the 
A's, but not the other way round. Or still, that vertices in
volving B 's and A 's are present for outgoing B 's but not for 
outgoing A's. The same kind of inconsistency would appear 
in our defective Yukawa model [( 1.1 )-( 1.3)] with g = 0 
andg'#O. 

From this fundamental vertex inconsistency we con
clude that, at least from the point of view of the KYF formal
ism, a model with (2.3) and (2.4) as field equations is not 
amenable to quantization. 

III. RELATION TO DE SITTER MODELS 

For usual gauge models, it is simpler to obtain the whole 
set of Feynman rules by the path integral approach and it 
will be instructive to examine our special case in the light of 
this standard procedure. It requires a Lagrangian, which is 
missing, but we can resort to the well-known fact that the 
Poincare group P is an Inonii-Wigner contraction8 of the 
two de Sitter (dS) groups.9 As dS is semisimple, we can 
easily write down both the Yang-Mills equations ahd the 
corresponding Lagrangian for a dS gauge model. The com-
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parison of the two cases will allow us to see why and where 
the procedure breaks down in the Poincare model. 

The relations between classical gauge models for P and 
dS have been studied in detail2•10 and here we shall only 
recall the main poi:l1ts. In order to see what happens to gauge 
fields in the contraction process it is convenient to look at the 
contraction as acting on the group parameters wab 

(a,b= 1, ... ,S, a<b). The parameters wafJ (a,{3= 1, ... ,4), 
related to the Lorentz subgroup, remain untouched. The pa
rameters waS represent "rotation" angles, compact or not, 
depending on the relative sign of 1Jaa and 1Jss, where 1Jab is 
the diagonalized dS invariant metric. Contraction requires 
redefining such angles as LwaS = aa, where the aa are the 
translation parameters and L is a length parameter taken to 
infinity in the contraction limit. A translation is thereby 
viewed as the limit of some infinitesimal rotation with an 
infinite radius. The dS generators Jab obey 

[ Jcd ,Je!] = - ifab cd.e! Jab' 

where 

(3.1 ) 

rbcd.e! = 1Jde8~a8;] - 1Jd~~a8:] - 1Jce8ka8;] + 1Jc~ka8:], 
(3.2) 

with [ab] meaning antisymmetrization in the indices. If 
A ab I' are the gauge potentials for the dS gauge model, then 
A atJl' remain the same through the contraction process, but 
A as I' must be redefined so that A as I' = L -I B aI" where 
Ba 

I' is the translation gauge potential of the previous sec
tion. This can be checked, for example, by comparing the 
vacuum potentials A as I' = a I' waS and B a I' = a I' aa . By the 
same process, if pab 1''' are the dS field strengths, the patJl''' 
become the field strengths (2.1) related to the Lorentz sub
group, while ~ 1''' = Lpasl''' become the translation field 
strengths (2.2). The Yang-Mills equations for the dS model, 

a pabl'V _ gA a pcbl'V + gpa I'vA cb = 0 (3.3) 
I' cl' c I' ' 

reduce exactly to the sourceless versions of (2.3) and (2.4) 
in the contraction limit L ..... 00, and the same happens to the 
corresponding Bianchi identities. 

The contraction procedure has been frequently used to 
approach questions involving P, II mainly because it allows a 
point to point comparison to the better behaved dS group. It 
has been so in the demonstration of the nonexistence of a 
Lagrangian for the set of equations (2.3) and (2.4).2 Equa
tion (3.3) comes from the typical Lagrangian 

w Ipab p I'V 
oZ = - 4 JLV ab , (3.4 ) 

in which the algebra double indices are lowered and raised 
by the Cartan-Killing metric of dS. In the contraction limit, 
such a metric becomes degenerate and the field equations 
lose some terms. In particular, the cubic term in B, present in 
(3.3) and related to the four-leg vertex typical of gauge the
ories, is suppressed (as discussed below). 

Path integral quantization can be performed without 
too much ado and Feynman rules of the usual kind are ob
tained for the dS model. For the Pmodel, we start by making 
the substitution A as I' = L - I B a I' and follow the same pro
cedure while keeping in mind what happens at the limit. 
Also, the ghost fields with (as) indices must be substituted 
in an analogous way, but as they will not be important for 
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our central problem we shall not discuss them. In reality we 
shall concentrate on the inconsistency of the P model, leav
ing aside all the details having no bearing upon it. Once the 
substitution is made, (3.4) becomes 

!f = - H(patJl'v +gL -2Ba,..BtJv )2 +L -2(~l'v)2]. 
(3.S) 

It is clear that the limit cannot be taken immediately: only 
the part 

!f - l(p atJ)2 (3.6) .Y - - 4 I'V' 

corresponding to a Lorentz group gauge model, with only 
(2.3) for the field equations, would remain. As is frequently 
the case in the contraction formalism, we should first per
form all the calculations and take the limit at the last step, 
although here we shall keep an eye on the relations to the 
field equations. Because it will be enough to make our point, 
we shall only examine in detail the three-field vertex: (3. S) is 
written as 

!f =!f .y - (L -2/4) [(a[,..B a
V ])2 

+ 2gfatJ,yS.ES (a[I'A atJv]B rl'B rvB \ 

+a[,..B E
v]A atJ[I'Brv ]) +o(g2)], (3.7) 

where we have kept the dS structure constants (3.2). 
We can obtain (2.3) and (2.4) from (3.S) simply by 

taking variations with respect to AatJv and B av' respectively, 
and then taking L ..... 00. An important point is that (2.4) is 
obtained with an overall factor L -2, which cancels out. A 
consequence is that the contributions coming from the three
field terms in (3.7), proportional to L -2, will remain in 
(2.4) but will be suppressed in (2.3). We see in this way how 
it happens that the BA coupling, present in (2.4), vanishes in 
(2.3), and find the same inconsistency of the previous sec
tion. The same happens to the terms A 2 B 2 omitted in (3.7). 
The terms in B 4 have aL -4 factor and are totally suppressed. 

Another consequence of (3.S) is that, once the B a I' be
come (beside the AatJ v) the fundamental fields in substitu
tion to the A as 1" the conjugate momenta become ill-defined. 
The vanishing of their time components is usual in a gauge 
theory, but here also the space components vanish: the mo
menta conjugate to ~ j is 7r"j = L - 2~j 4' so that in the limit 
the canonical quantization is jeopardized. 

In the Feynman rules for gauge models, the group de
pendence rests basically in the structure constants, 12 whose 
cyclic symmetry is used precisely to make the vertices sym
metric in the external legs. 13 The cyclic symmetry is absent 
for nonsemisimple groups, which suggests that the inconsis
tency found here might be a common illness of all models 
involving such groups. 

We have seen that, as long as we take the Yang-Mills 
equations as the very foundations of the theory, the Poincare 
model is inevitably inconsistent. Let us forget the equations 
for a moment and use the contraction procedure to obtain a 
quantized theory. This amounts to taking (3.S) seriously 
and obtaining the resulting Feynman rules. The task is rath
er lengthy albeit standard. The results are simple and, once 
found, easily understood. Here we shall only describe the 
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main points of the resulting theory, trying to justify them by 
general arguments. 

(i) The Lorentz sector constitutes a gauge subtheory, 
with the usual rules. 

(ii) As seen in (3.5), the propagator of the B fields will 
be just the usual one, in some fixed gauge, times a factor L 2; 
the same applies to the corresponding ghosts. 

(iii) Vertices are as usual, with the difference that each 
B leg (or corresponding ghost) gains a factor L - I (an ob
vious consequence of the A a5 

p, -L -IB ap, substitution). 
Note that no final factor of L comes out from internal B 

lines in a diagram, since the L 2 factor in the propagator is just 
compensated by the L - I factors in the two vertices connect
ed. Graphs with external B legs will retain L - I factors. 
However, if we calculate an S matrix element with N exter
nal B legs, the same L - N factor will appear in each term in 
the perturbative series and, consequently, cancel out. Only 
when graphs with different numbers of external B legs are 
compared will the L - I factors playa role. 

The geometric setting for a P gauge model is best seen as 
an associated bundle, with Minkowski space as the base 
manifold and the fibers being tangent (also Minkowski) 
spaces on which the group acts. In the analogous setting for a 
dS model,2 each tangent space is replaced by a dS space char
acterized by a length parameter L. When L -+ 00, each dS 
space approaches a tangent Minkowski space. Ifwe use con
formal coordinates8 for each dS space, its points will be pro
jected on a Minkowski space. In such coordinates, the natu
ral dS group parameters are precisely {J)aP and aa, and the 
gauge fields become naturally A ap p, and B a p,' The quantized 
theory sketched above is in reality a dS model, viewed in 
conformal coordinates. To use an analogy, a dS model stands 
to a P model like a parabola to its asymptote, which is ap
proached more and more when L becomes larger and larger, 
but it is never really attained. The dS model appears as a 
"smoothing" of the incongruous P model and seems to be its 
nearest quantizable theory. In Sec. IV we shall arrive again 
at a dS model from a rather different approach. 

IV. CONSISTENCY AND LAGRANGIAN CHARACTER 

Lagrangian theories do not exhibit the inconsistency de
scribed above. We could ask whether or not vertex consisten
cy implies the presence of a Lagrangian or, in other words, 
whether only Lagrangian theories are quantizable in a co
herent way. We shall not consider this very general question 
here. We shall restrict ourselves to Eqs. (2.3) and (2.4) in 
the sourceless case and proceed to a kind of naive patchwork, 
trying to see which terms should be dropped or added to 
make them into consistent equations. We find that every 
time they become consistent, they also become derivable 
from a Lagrangian. 

We can start by simply dropping all terms coupling B to 
A in (2.4). The field equations become 

a FaPp,v_gA a Fy{Jp,v+gF a p,vAYP =0 (4.1) p, yp, y p, , 

ap, (aP,B av - a VB ap,) = 0, (4.2) 

which are derivable from the Lagrangian 
51' = - !(FafJ p,v)2 - !(aP,Bav - a VBap,)2. They are the 
field equations of gauge models for the Lorentz group 51' 
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and for the Abelian translation group T 3.1 • Their set would 
describe a model for the direct product 51' ® T 3,1' Notice, 
however, that, as the fields B a p, are Lorentz vector fields, 
they should in reality couple to a Lorentz gauge potential. 
We take this into account by treating Bap, as a source field: 
usual derivatives are replaced by covariant ones and a source 
current appears in (4.1). As B a p, is a vector, it is its rota
tional that goes into the covariant derivative T" p,v given in 
(2.2). Also the divergence in (4.2) becomes covariant. Ver
tex consistency then fixes the source current, and the new 
equations are 

a FafJp,v _ gA a FYPp,v + gFa p,VA yp = gT"P,vBP 
p, yp, y p, p,' 

(4.3) 

ap, T"P,v - gA a yp, rYP,v = O. (4.4) 

These equations are derivable from 51' = - !F2 - !r, from 
which it can be checked that the source current in (4.3) is, as 
it should be, the spin density. We have been treating B a p, as 
"normal" vector fields with the canonical dimension 
(mass)l. In reality, they have a defective dimension, as is 
clear from the redefinition A asp, = L - I ~ p, used in the 
contraction procedure. In order to correct this in the above 
equations, it is enough to add a factor L - I to each ~ p, field 
(and consequently to every T" p,v ). The only novelty will be a 
factor L -2 in the spin density. 

We can now compare the resulting equations with the 
sourceless cases of (2.3) and (2.4); the only difference is the 
term gFayP,V BYp, in (2.4). If we simply add this term to 
( 4.4), vertex inconsistency comes out, but now we can relate 
it to a simple cause: such a term is obtained from a Lagran
gian 51" = - (g/2)Fap p,vBap,BPv when variations are tak
en with respect to Bay; however, 51" should also contribute 
to (2.3) or (4.3) through its variations with respect to Aapy . 
This contribution to (2.3) reestablishes vertex consistency. 
The new Lagrangian, 

51' - - IF p,Y(FaP + 2gL -2B a BP ) - "ap p,v p, v 

4L -2 p,v-cz 
- Ta" }lv' (4.5) 

leads to a rather complicated theory. Then comes a beautiful 
point: this theory, as it is, is nonrenormalizable because of 
the graphs with four external B legs and exchange oftwo or 
more A's. When we look for the necessary counterterms, we 
find that [- (g2/4)Bap,BPy B aP,Bp

V] must be added to 
(4.5). This is quite natural for the four-legged graphs be
cause they have a zero divergence degree. This situation is 
analogous to the case of scalar electrodynamics, where the 
renormalization of the higher order graphs with four exter
nal scalar legs, also of vanishing divergence degree, enforces 
the presence of aA.tp 4 term in the Lagrangian. 12 The addition 
ofthe B 4 term puts (4.5) into the form 

51' = - !(FapP,V +gL -2BaP,BpV)2 - (L -2/4)(rap,v)2. 
(4.6) 

This is the same Lagrangian as (3.5). The added B4 
term leads to a cubic term in (2.4) ,just that one we have seen 
suppressed by contraction in Sec. III. Therefore, summing 
up, by adding to (2.3) and (2.4) the terms necessary to wash 
out the vertex inconsistency, and then adding a last term to 
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make the model renormalizable, we arrive at a de Sitter theo
ry. 

V. FINAL COMMENTS 

The absence of a Lagrangian is a most grievous flaw in a 
field theory. In the case considered here, the group contrac
tion procedure can be used to show that the conjugate mo
menta of the translation gauge potentials are vanishing, so 
precluding a coherent canonical quantization. The existence 
of a Lagrangian for the Yang-Mills equation is closely relat
ed to the structure constants cyclic symmetry,2 which fails 
for nonsemisimple groups. Such a symmetry is used to ob
tain the Feynman rules for gauge models, 13 which have con
sequently to be reexamined. We have seen that, for the Poin
care group, the very definition of a vertex becomes 
impossible and quantization, at least in a perturbative ap
proach, unfeasible. The addition of counterterms required 
by consistency leads to an intricate theory. Interestingly 
enough, the addition of a B 4 term required by renormalizabi
lity turns the model into a gauge theory for the de Sitter 
group, which appears as the nearest coherently quantizable 
theory. 
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