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The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are
investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial
way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the
densities might have observable consequences on scattering observables. Our investigation indicates
that the description of the observables for the reactions p-'®0 and p-*°Ca at 200 MeV are not greatly
modified with the use of nonlinear models in comparison with the description using linear models.

PACS number(s): 25.40.Cm, 24.10.Jv, 21.65.+f

Nonrelativistic nuclear models have been used with
success in the last 50 years to describe the ground- and
excited-state properties of nuclei. Nevertheless, in the
near future nuclear systems will be probed at extreme
conditions of density and temperature and obviously non-
relativistic models are inadequate to describe these phe-
nomena. This has motivated the development of rela-
tivistic models for the nucleus based on the methods of
relativistic quantum field theory and an extensive litera-
ture on this subject has been accumulated in recent years.

Calculations -based on the original Walecka [1] mean-
field model have achieved a reasonably good description
of the properties of nuclear ground states and have pro-
vided a remarkably good description of elastic nucleon-
nucleus scattering observables at intermediate energies.
In spite of the successes, there are serious problems re-
lated to the vacuum structure of the models. In par-
ticular, the vacuum polarization effects of the effective
scalar field have undesirable features. In Walecka-type
models, the effective nucleon mass in nuclear matter is
of the order of 50% of its free-space value (renormaliza-
tion can reduce the effect to 70%). This low effective
nucleon mass has the effect of producing among other
things nucleon-antinucleon instabilities. Although there
have been attempts to construct consistent field theo-
retic models for the nucleus [2,3], much still remains to be
done. The main difficulty is that one is dealing with com-
plicated nonperturbative effects in field theory, and there
has been no systematic approximation scheme which is
appropriate for dealing with such effects. With the pur-
pose of including vacuum polarization effects in an effec-
tive way in a mean-field model, Zimanyi and Moszkowski
(4] introduced an effective Lagrangian with a derivative
coupling. The main effect is to reduce the intensity of
the scalar field coupling to the fermions. This nonlinear
model introduces no additional parameters in compari-
son to the standard two-parameter relativistic mean-field
model, although the functional form of the coupling is,
in some sense, arbitrary.

Nonlinear scalar coupling models have been employed
to study the properties of nuclear matter at finite temper-
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ature [5], the real part of the optical potential [6], and the
properties of finite nuclei [7]. One important consequence
of the nonlinear coupling is the modification of the be-
havior of the effective mass as function of the density. For
finite nuclei, the value of the effective mass at saturation
plays an important role in all the properties studied [7].
The vector and scalar densities predicted from different
types of scalar couplings differ in the central region of
the nucleus. For the surface region they give similar re-
sults. These differences are more important for the scalar
density, since this quantity is more sensitive to the lower
component of the Dirac spinor than the vector density.
This is an important result which might have observable
consequences. The details of the structure of the nucleus
affect in a nontrivial way the nucleon-nucleus scattering
observables. This point was made clear by Murdock and
Horowitz [8] in a recent study. These authors effectuated
a relativistic microscopic calculation of the spin observ-
ables of elastic proton scattering from several nuclei at
laboratory kinetic energies near 200 MeV. In particular,
their calculations show that for densities obtained from
a relativistic Hartree approximation, the fits to the scat-
tering observables are poorer for c.m. angles larger than
50°. They point out that vacuum fluctuations might have
significant effects on the densities and this may be the
cause for the discrepancies. It is therefore interesting to
study the consequences of the different couplings on the
scattering observables. It is the purpose of the present
work to perform such a study.

The relevant nuclear structure input to the relativistic
impulse approximation are the nuclear densities

TABLE 1. The functionals m* (o) and gs(o).

m* (o) gs(o) = —Mdm* /do
(a) 1-gso/M gs
(b) 1 — tanh(gso /M) gsm*(o)[2 — m*(0)]
(c) (1+gso/M)™* gs(m*(0))*
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FIG. 1.

Comparison of scalar (a) and baryon (b) densi-
ties calculated for different m*(o) (Table I). Solid curves
stand for case (a), small-dashed curves refer to case (b), and
long-dashed ones stand for case (c).
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The ¢, are single-particle Dirac spinors (p and n indicate
proton and neutron), solutions of the Dirac equation

) = €ada(r) ,
(2)

{—te- V + B[M + Us(r)] + Uv (7) }$a(r

where Ug(r) depends on the mean scalar field o
Us(r) = M[m™(a(r)) - 1], (3)

and Uy (r) depends on the mean fields corresponding to
the w and p mesons and on the photon field A,

Uv(r) = guwo(r) + %g,ﬂ'spo(‘f‘) + %e(l + 73)Ao(r) . (4)

In Eq. (3), gs(o) is given by

dm*(o)

gS(U) = —M dO’ ’

(5)
where m* (o) is a functional of the scalar field o which
comes from a term in the the Lagrangian density of the
form

Loy = Mm* (0-)1/;1/} . (6)

Note that the only difference, compared to the usual
linear models, appears in the equation for the o field;
instead of linear, it is now nonlinear. The solution of this
equation can be written formally as an integral equation

o) = [ a2 G (r ) [ as(o(Fps()] . (7)

0

where G,(r,r') is the Green’s function of the operator
V2 —mk.

The mass functionals m*(o) and the corresponding
coupling functionals gs(o) which we use in this work are
shown in Table I. Those are the same ones used in past
works, Refs. [6,7].

The constraints on the form of m* (o) are that (a) at
zero density Mm*(c) — M [see Eq. (6)], and (b) at
higher densities, the effective nucleon mass never goes
negative and approaches zero asymptotically. Clearly,
case (a) in Table I, which corresponds to the usual linear
coupling model, does not satisfy the last constraint. We
consider this case to compare with the nonlinear cou-
plings in (b) and (c). Case (b) has proved to be best
suited to describe the energy dependence of the real part
of the optical potential for energies up to 400 MeV [6].
Finally, case (c) is the Zimanyi-Moszkowski nonlinear
model [4].

We consider proton scattering from spin-zero targets.
The relevant scattering observables are the differential
cross section do/dS), the analyzing power A,(6), and the
spin rotation Q(6), where 6 is the c.m. angle. These will
be determined by employing the relativistic impulse ap-
proximation (RIA) developed by Murdock and Horowitz
[8]. Their approach is an extension of the original RIA

FIG. 2. Analyzing power and spin rota-
tion for p-'®0O at laboratory kinetic energy
E = 200 MeV for different m* (o) (Table I).
Solid curves stand for case (a), small-dashed
curves refer to case (b), and long-dashed ones
stand for case (c). For experimental data, see

Ref. [8].
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FIG. 3. Same as in Fig. 2 for p-*°Ca.
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of McNeil, Ray, and Wallace [9] in several important as-
pects: exchange effects in the optical potential are in-
cluded, ambiguities with respect to the pion coupling
in the relativistic NN amplitudes are resolved by using
pseudovector coupling instead of pseudoscalar coupling,
and medium modifications from Pauli blocking are incor-
porated using relativistic Brueckner results for nuclear
matter in a local density approximation. Here we do not
go into the details of the formalism, we simply refer the
reader to the original publications in Refs. [8,10] for de-
tails.

The coupled set of Dirac and Klein-Gordon equations
is solved by iteration, following the strategy of Ref. [11].
We start solving the Dirac equation with Woods-Saxon
forms for the Us and Uy. With the solutions of the
Dirac equation we obtain the densities ps, pv, ps, and
pc- These densities are used to solve the Klein-Gordon
equations for the meson fields. The integral equation for
the o field, Eq. (7), is solved by iteration. The meson
fields are then used to get the potentials Us and Uy,
Egs. (3) and (4), and these are used to solve the Dirac
equation. The process is iterated to convergence.

Figures 1(a) and 1(b) show, respectively, the scalar and
baryonic densities for “°Ca for different m* (o) of Table
I. As remarked earlier, the nonlinear terms introduce a
more significant influence in the central region of the nu-
cleus, where the deviation from the linear scalar coupling
(solid lines) is not appreciable. There are no significant
differences among the various couplings at the surface of
the nucleus. Similar features were observed for different
nuclei [7].

With respect to the scattering observables, we found
a relative insensitivity on the functional form of m* (o).
Figures 2 and 3 illustrate the results for the reactions
p-1%0 and p-%°Ca at laboratory kinetic energy E = 200
MeV. For small scattering angles, the agreement with the
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data is perfect, with no significant difference among the
linear and nonlinear couplings. The main contribution of
the nonlinear terms appears for scattering angles larger
than 25°; the effect is larger for the reactions higher mass
target nuclei.

We have also studied the observables at higher and
lower energies and on different target nuclei (}2C, 48Ca,
90Zr, and 2°8Pb), and have also used an alternative form
for the functional m*(o), the exponential form m*(o) =
exp(—gso/m). The results are essentially the same as
described above: independence on the functional form
of M*(o) and the effect of the nonlinearity is larger for
scattering angles larger than 25°.

On the basis of the results of this study, we conclude
that the modifications on the target scalar and vector
densities due to the nonlinear scalar couplings introduce
small deviations on the scattering observables in compar-
ison to the results obtained using the usual linear scalar
coupling of the Walecka model. The deviations from the
linear coupling are larger for angles larger than 25°, and
the effect is larger for the reactions on higher mass nuclei.
An important point of the study is that the results for
the scattering observables are relatively insensitive to the
different functional forms for the scalar coupling. A rela-
tive insensitivity is observed also on the differential cross
sections, in both cases, p-160 and p-%°Ca. Finally, it ap-
pears that-the important role of the nonlinear couplings
is to provide a more reasonable value for the effective nu-
cleon mass, and a consequent lower nuclear compressibil-
ity. Once this is achieved, the predictions of the models
are relatively insensitive to the particular functional form
used for m* (o).
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