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Green functions of the Dirac equation with
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Various Green functions of the Dirac equation with a magnetic-solenoid (fie¢d
superposition of the Aharonov—Bohm field and a collinear uniform magnetig field
are constructed and studied. The problem is considered+ih 2nd 3+ 1 dimen-

sions for the natural extension of the Dirac operdtbe extension obtained from

the solenoid regularizationRepresentations of the Green functions as proper time
integrals are derived. The nonrelativistic limit is considered. For the sake of com-
pleteness the Green functions of the Klein—Gordon particles are constructed as
well. © 2004 American Institute of Physic§DOI: 10.1063/1.1699483

[. INTRODUCTION

In the present paper we continue our previous stutlyf the Dirac equation with a magnetic-
solenoid field, constructing and studying various Green functions of this equation. We recall that
the magnetic-solenoid field is the collinear superposition of the constant uniform magnetic field
and the Aharonov—BohrfAB) field. The AB field is a field of an infinitely long and infinitesi-
mally thin solenoid. Recently the interest in such a field configuration has been renewed in
connection with planar physics problems, quantum Hall effect, and the Aharonov—Bohm effect in
cyclotron and synchrotron radiatiofis’

In principle, the Green functions can be constructed whenever complete sets of solutions of
the Dirac equations are available. In this connection, one should recall that solutions of the Dirac
equation with the magnetic-solenoid field irr2 and 3+ 1 dimensions were obtained in Ref. 1.

The singularity of the AB field demands a special attention to the correct definition of the Dirac
operator. The need for self-adjoint extensions in the case of the Dirac Hamiltonian with the pure
AB field in 2+ 1 dimensions was recognized in Refs. 10 and 11 where certain boundary condi-
tions at the origin were established. The regularized case and peculiarities of the behavior of a
spinning particle in the presence of the magnetic string were considered in Refs. 12 and 13. The
problem of the self-adjoint extension of the Dirac operator with the magnetic-solenoid field was
studied in Refs. 2, 3, and 14. Int2L dimensions, a one-parametric family of self-adjoint Dirac
Hamiltonians specified by the corresponding boundary conditions at the AB solenoid was con-
structed, and the spectrum and eigenfunctions for each value of the extension parameter were
found. In 3+1 dimensions, a two-parametric family of the self-adjoint Dirac Hamiltonians was
constructed on the condition that the spin polarization is conserved. The corresponding spectrum
and eigenfunctions for each value of the extension parameters were found as well. In Refs. 2 and
3 the procedure of solenoid regularization was also considered. The procedure implies considering
the finite solenoid and then making its radius go to zero. This procedure specifies some particular
boundary conditions. The values of the extension parameters corresponding to the solenoid regu-
larization case were determined ir-4 and 3+ 1 dimensions. Further, we call the corresponding
extension the natural extension. Nonrelativistic propagators for the spinless and spin-1/2 particle
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moving in the pure AB field were considered mainly in the relation to the AB effect. The propa-
gator of the spinless particle was found in Refs. 15, 16, and 17 as a sum of partial propagators
corresponding to homotopically different paths in the covering space of the physical background.
The nonrelativistic propagator of the spin-1/2 particle in the AB field for a particular value of the
self-adjoint extension parameter was discussed in Ref. 18. The relativistic scalar case for the AB
field was studied in Ref. 19. The propagators and the AB effect in general gauge theories were
considered in Refs. 20 and 21. Recently, vacuum polarization effects in the AB field have aroused
great interest, see, for example, Refs. 22 and 23 and references therein.

In the present paper, we construct and study the Green functions of the Dirac particle in the
magnetic-solenoid field in 21 and 3+1 dimensions. The physical importance of the problem is
stressed by the fact that the knowledge of the Green functions in such a configuration allows one
to study quantuniand quantum fieldeffects in the magnetic-solenoid field on a regular base. A
technical specificity of the problem is related to the necessity to take into account all the pecu-
liarities related to the self-adjoint extension problem of the Dirac operator in the background under
consideration. In Sec. Il we consider theX2)-dimensional case in detail. Here, constructing the
Green functions, we use the exact solutions of the Dirac equation that are related to the specific
values of the extension parameter. These values correspond to the natural extension, see above.
The representations of the Green functions as proper time integrals are derived. In addition, we
calculate the nonrelativistic Green functions as well. In Sec. lll we extend the results to the (3
+1)-dimensional case. In the Appendix, for the sake of completeness, we present the Green
functions of the relativistic scalar particle.

We note that the magnetic-solenoid field belongs to such type of fields that do not violate the
vacuum stability. For such fields a unique stable vacuum exists, and quantum field definitions of
the Green functions below hold tré&.In particular, the causal propagatsf(x,x’) and the
anticausal propagat@°(x,x') are defined by the expressions

SO, x") =i(0[Te(x) (x| 0), D
STO6X) =10 00 () T|0), )]
where g(x) is the quantum spinor field in the Furry representation, satisfying the Dirac equation
with the magnetic-solenoid fieldD) is the vacuum in this representation. The symbol of the
T-product acts on both sides: it orders the field operators to its right-hand side and antiorders them
to its left-hand side. The function§°(x,x’), S°(x,x’) can be expressed via the functions
S*(x,x'),
SE(x,x" )= 60(AX®)S™ (x,x")— 0(— Ax9)ST(x,x"), Ax°=x°—x?", (3)
STx,X)= 0(—AX%) ST (X))~ B(AX)S* (x,x'), @

and the latter can be calculated via a complete.ggf(x) of solutions of the Dirac equation with
the magnetic-solenoid field as

sﬂx,x'):ig ca(X) + a(X). (5)

The solutions with the subscript-) belong to the positive energy spectrum, whereas the solutions
with the subscript—) belong to the negative energy spectrum. ¥iall possible quantum num-
bers are denoted.

The Dirac equation with the magnetic-solenoid field has the form

(v"P,—M)#(x)=0. (6)
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Here P,=id,—qA,(X), x=(x"), q is an algebraic charge, for electrogs- —e<0, M is the
electron mass, andl,(x) are potentials of the magnetic-solenoid field. In the-(3-dimensional
caser=0,1,2,3 andy” are the corresponding gamma-matrices. In the {2-dimensional case
v=0,1,2 and in what follows, we employ the letérto denote the gamma-matrices. We use for
these matrices the following representation:

I=¢3 TIl=ie? TI?=-ict,
where o' are the Pauli matrices. In cylindric coordinates,i), x'=r coseg, Xx’=r sing, the

potentials of the magnetic-solenoid field have the form

Ao=0, eA=[lotut+A(N]—— eA=—[lotpnt+AN)]——,

sing COoSe
r

(Ag=0 in 3+1), A(r)=eBr/2. (7

HereB is the magnitude of the uniform magnetic field, and the magniBftfeof the AB field is
given by the expressioB"E=d 5(x)8(x?), where ® is the AB-solenoid flux, I+ u)
=®/dy, dy=2m/e. Itis supposed thdl, is integer and & u<1.

The functionsS™ (x,x’) obey the Dirac equatiof6), whereas the causal and anticausal propa-
gators obey the nonhomogeneous Dirac equations:

(y"P,—M)S(x,x")=—8(x—X"), (y"P,—M)S(x,x")=8(x—x").

We note that the commutation functio®(x,x’), the advanceogad"(x,x’) and the retarded
S*®{(x,x") Green functions can be expressed in term&%k,x’), S°(x,x’) as follows:

S(x,x’)zS*(x,x’)JrS*(x,x’)=sgr(Ax°)[SC(x,x’)—Sz(x,x’)], (8)
SN, x")=—0(—Ax))S(x,x"), S (x,x")=0(AX®)S(x,X"). 9

Il. 2+1 DIMENSIONAL CASE
A. Sets of exact solutions

First we study the (2 1)-dimensional case, for which, as knofvhthe Dirac operator with
the magnetic-solenoid field in21 dimensions possesses a one-parameter family of self-adjoint
extensions. That provides a one-parameter family of boundary conditions at the origin. Following
Refs. 2 and 3, we denote the extension parametér. a3enerally speaking, the AB symmetry is
violated for the spinning particle, which is therefore sensible to the solenoid flux sign. As was
demonstrated in Refs. 2 and 3, the valégs = 77/2 correspond to the natural extensidn,
=—/2 if the flux is positive and® = 7/2 if the flux is negative. Below we present a set of
solutions . #,(x) of (6) which we will use for Green function construction according to the
formulas(5). We consider the problem separately for two values of the extension parameter.

We start with the cas® = — 7/2. The positive energy spectrum is given by and the
negative energy spectrum is given by ,

re=— _e=M°+ow. (10

Both branches are determined by the spectrum of the quaatitshich is defined below. The
solutions.. ,(X) can be expressed via the solutiar(x) of the squared Dirac equation. The latter
solutions have the form

tum,l,o(x) = e_i tsxoum,l,a(xj_)!
(11

x, =(x1,x?), m=0,,.., 1=0*x1,..., o==*1,
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where
Um,o(X) = VY01(@) b1 o1V, 1#0,
Umo.+10X0) = VY00(@) bmo, 11V 1,
Umo-1(X0)=Vy00(@) i 1(Nv_1, y=€[B],
and

|

( )=Lexp[i [I—I —3(14— %)
gile \/ﬂ ¢ 0 2 o

0
1/

1

o/ V1T

Vi1=

The functionsey, | ,(r), ¢‘r{m,1(r) are expressed via the Laguerre functiops , m(p) as

Gt oD =i pim() s b1 = m(p),
(12)
p=7yr22, v=p+l—(1+0)/2.

We recall that the Laguerre functiohs. , n(p) are related to the Laguerre polynomi&l§(x)
[8.970, 8.972.1Ref. 25] as

| (X) — m! e—x/ZXa/ZLa(X)
mrem VT(m+a+1) m

For the magnetic fiel>0, the spectrum o corresponding to the functions, | ,(x,) is

2y(m+1+pu), 1—(1+0)/2=0,
‘”Z[zy(m+(1+a)/2), | — (14 0)/2<0, (13
except the functionsi, o —;(X, ) for which the spectrum o is
w=2ym. (14)
Then the complete sety, with a=(m,l) has the form
= Ym i (X)=NTP+M) c Uy —1(X). (15

The latter form provides correct expressions both dot 0 and w=0, since the states with
=0 can only be expressed in terms of the spinors with—1 [we note that, =0 for v =0,
nevertheless it is convenient to remain(itl) u, with ,&=M]. The normalization factor with
respect to the usual inner produat, (') = 4" (x) ' (x)dx reads

_ [2|t8|(|:r8|_M)]71/21 w#0,
“[2M]7Y, w=0.

The quantum numbek characterizes the angular momentum of the partioleis the radial
quantum number, see Ref. 1.

For B<O0 the spectrum of states differs nontrivially from the expressions given by(Egs.
and(14). Herew corresponding taiy, | ,(r) is
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2y(m=I+1-pu), |—(1+0)/2<0,
= 1
YTl 2y(m+ (1= 0)2), 1—(1+0)/2=0, (16
except the functionsiy, o —1(x,) for which the spectrum o is
w=2y(m+1—pu). a7

Now we go to the case with the extension paraméter /2. We recall that one needs for
self-adjoint extensions of the radial Dirac Hamiltonian only in the subsla€eto which we refer
to as the critical subspace. Thus, the only solutions irl th@ subspace must be subjected to the
one of asymptotic condition from a one-parametric family of boundary conditions-d@s By this
reason for® = /2, the solutions only differ frong11) in the subspacé=0,

Umoot 1X0) = VY9o(@) b 4 1(Nvs1, b 1(D=lms u1m(p),

(18)
Umo-1(X)=7o(®) bmo-1(F)v-1,
where the spectrum far, 5. 1(X,) is given as
w=2y(m+u), B>0, (19)
w=2ym, B<O. (20)

B. Construction of Green functions

The main point in constructing the Green functions is the summations in the representation
(5). In the case under consideration, this summation can be done with the help of special relations
which can be established for the solutions of the Dirac equation.

Let us start with the calculation of the Green functions for the extension parar®eter
=—/2 andB>0. In this case, taking into account that the eigenfunctionsf the equation
[(I'P,)?+ w]u=0 corresponding to any+0 obey the equations

TP, U, 1 —e(X)=—iVo cUp | ,(X), <0, P, =(0P,P,),

(21)
TP, cUpy o) =iVo Uy ,(X), 1=1, m.=m+(1+0)/2,

and the explicit form of the solutions ¢,,,;, one can verify that foje|#M the following
relations hold true:

U (%) U ()= (TP+M) s—e = 3 gy (0 XD E,, 1=0,

2.8
(22
_ 1 L
2 () =g ()= (TP M) 57— =3 3 gy (0 XDE,, 121,
where
iy il =l (1+a)2]Ae ,
¢m,|,a(XL vXL)_Ze 0 Im+a,m(P)|m+a,m(P ),
(23

utl—(1+o)2, 1=1,

= = . =(1*o3
[utl—(1+o)2], 1=o, —=iT(1Eed2

Ap=¢p—¢', «
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The above relations and Eq8) and (5) allow us to represent the causal Green function in the
following form:

Sé(x,x")=(TP+M)AC(x,x"),

e—i +8AXO e—i _eAxO (24)
c Y —i 0 Y 0 Iy
A%(x,x") | 6(AX") 7.¢ 0(=AX) ———— | Pm1.o(XL XL B,
Then we can use the representations
e—i+sAx° e—i_sAxo 1 (= e—ipoAx
0 —p(— AxO - ——
O(AX®) 7 e 0(—Ax") > & oy f,,g 7 pls dpo, (25
1 ©
sz—pz—ie:i fo e—l(sz—pg)sds’ (26)
0
in Eq. (24). Integrating ovemp,, we obtain finally
Ac(x,x’)=f f(x,x",s)ds
0
(27)
1 .
f(X,X’,S)Z 2(775)1 e(—|A><(2)/4s iml4 —|M slml e—lw5¢m| ” XL le)‘_'U'

The path of the integration overis deformed so that it goes slightly below the singular points
sx=kmly, k=1,2,....
Using (5), (22), and the representation

=i +anO e—i _eAX? 1 s e—ipoAxO
LAY o> =
6(=Ax7) 2.,¢ +0(Ax7) 2 ¢ 27 J_w & —poz-i-l dpo.

(28

;:if_wei(sng)sds

e?—potie -0 ’

instead of(25) and (26) we obtain from(4),

SE(x,x")=(T'P+M)AS(x,x'), A?(x,x'):f_ f(x,x’,s)ds, (29)

-0

wheref (x,x’,s) is given by Eq(27). The negative values farare defined as=|s|e”'", and the
path of integration oves is deformed so that it goes slightly below the singular points, .

We now consider the summations (7). Applying the formula[8.9761) (Ref. 25] we can
sum overm to get

i 7i2mysl | I — i +p’ eia}’sei%‘ - iwa/ZJ
2 € mt+am(P)miam(p’) =€X E(P p')cotys) me 2),
z=\pp'Isin(ys), (30

where J,(z) are the Bessel functior8.402 (Ref. 25], and for negatives we take arg=—m
+0.
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Similar results can be obtained for the cds€0. Here one should use the solutions corre-
sponding to the spectrum af (16) and(17). Then these results can be united to obtain expressions
which hold true for any sign oB,

f(x,x’,s)zl_z fi(x,x",s), f(x,x',8)=A(S) Zld),,(,(s)e’i”eBSE(,,

(31)
A(S)= eB i M2s—il A
(S)_87r3’251’23in(eBs) ex Z" S—llpAdg
i(Axo)? ieB ,
xexp[— 7s +T(r +r'“)cot(eB9 ¢,
D (s)=elrtee 1ot meBsinlotul2y, (7)), 1,=1-(1+0)/2, 1#0,
(32

CDO,Jrl(S) — e*iA(pei(lf/.L)eBSef iﬂ'(l*/.L)/ZJli‘u(Z), CDO,fl(S) — e*i,u,eBSei 77#/2\]7#(2).

Now we consider the summation oerOne can see that the following relations hold true:

oo

2, @ a(8)= 2, Ppiga(s)=e BN (Z,Ap—eBsp),

— oo — oo

2 Pa(9= 2 P (s)=eT PN (2, - Ag+eBs ),

where

©

Y(z,9,m)=2a1(2) +Y(z,7,1), ?(z,n,,u)=|222a.(z), a(2)=€e"(=)"", ,(2).

(33

The evaluation of the sum i{83) can be done in a similar way to what was done in Ref. 26. There
exist all d,a/(z) on the half-line, 6<z<w«, and the relation8.471 (2) (Ref. 25], 3,J,(2)

=[J,_1(2)—J,.+1(2)1/2, can be used. The seri¥z, 5, u) converges and the series of deriva-
tives =|2,d,a,(z) converges uniformly in(0©). It is a sufficient condition to write down

a,Y (2,7, 1) =3/_,d,a,(z). Thus, one arrives to a differential equation with respedt(m, 7, x),
d i Lo M —jelm
5 Y@ mp) ==Yz p)icosyt S (=D i€, (2) + 31+ 4(2)]- (34)
that is true on the half-line, ©z<. The solution of(34) reads
1 z . .
Y(z,7,u)= 5(—I)”JO el (/720087 —ie!7 (y) + 311 ,(y)]dy. (35

This is also valid forY(z,— n,— u).
It is useful to introduce the following function:

fnc(x,x',s)=§0 fi(x,x',S).

It defines the part of the Green functions that is the same for all extensions. With the help of the
functionY(z,7,u) (33), (35) one can write
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fre(X,X',S)=A(s)e #eB1eBS Iy (72 A p—eBsu) + Y(z,— Ap+eBs —u)
4 [ef iWMIZJ#(Z) _ efi(AqofeBQef iﬂ(li“)IZJlf,L(Z)]EH}- (36)

The functionfy(x,x’,s) is specific for each extension. It is reasonable to mark it with a superscript
that assumes the values of the extension parameter. Thu®,=for /2,

fg)—ﬂ'/Z)(X,Xr’S):A(S)e—i,ueBE[e—iAq;e— iw(l—u)/Z‘]l_M(Z)E+l+e—ieBS(r?’eivT;L/ZJ_M(Z)E_1]_

(37)

Accordingly, the functionf(x,x’,s) acquires the same superscript,
fCT(x,x',8)="Fndx,x",8)+ 5 ™(x,x',s). (39
For the extension paramet@= /2, one obtains

fgﬂ'IZ)(X’X/ ,s):A(S)efiMeBTefiAgae* iw(ufl)/ZJM_l(Z)E+l+efieBSo'3ef iﬂ',u/ZJIu(Z)E_l],

(39
f(72(x,x",8) = fro(x,x',8) + ™D (x,x’,9).

Besides, one can consider particles with “spin-down” polarization #12dimensions. The
corresponding wave functions’"?(x) can be presented as

P I(x) = (TP-M)u(x),

where u(x) are solutions(11) of the squared Dirac equation. The propagator related to such
particles can be expressed in terms of the functié(x,x’) (24),

S-1)(x.x")=—a (TP=M)A%(x,x")at.

At this point we should make some remarks.

One can see that there exists a simple relation between scalar Green functions and Green
functions of the squared Dirac equatidfor the above considered extensipn€onsider this
relation in the example of causal Green functions. First of all, we note that the Klein—Gordon
equation differs from the squared Dirac equation by the Zeeman interaction term. Then we can see
(remembering the origin of the quantum numbéor both spinning and spinless particlésat the
scalar propagator can be derived fraf(x,x’) by only retaining the terms witbr= — 1 only. The
termeBo>, which is responsible for the Zeeman interaction with the uniform magnetic field, has
to be removed. The Zeeman interaction with the solenoid flux, influencing the term$=n@h
depends on the flux sign and can be repulsive or attractive. The repulsive contact interaction case
is physically equivalent to the spinless case, since in both cases the corresponding wave functions
vanish at the origin. The necessary boundary condition is realized for the extension parameter
®=m/2. Thus, one can obtain the scalar Green functions using the coefficierEs._ ofin
f(x,x’,s) (31), (32) and f§™?(x,x’,s) (39). By following such prescriptions, one arrives at the
expressionAl) obtained by direct calculation.

In the spinless case there is no physically preferred orientation of the ptaheTherefore,
the solenoid flux direction does not matter, i.e., the AB symmégril o+ 1, is conserved. The
direction of the uniform magnetic field does not matter as well. This can be observed from the
explicit form of the Green function@\1) where the changB— — B is equivalent to the choice of
the opposite orientation of the plane -1, A¢——A¢, ®——®. In the spinning case the
given spin direction breaks the symmetry related to the plane orientation. The Zeeman interaction
of the spin with the background violates the AB symmetry as well as the symmetry with respect
to the changd8— — B.

As is known, influence of the solenoid flux on the particle is observed only when the flux is
not equal to an integral number of quanga# 0). In this connection it is instructive to consider
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the Green functions for the particular cage=0. We note that the parft,.(x,x’,s) (36) of the
function f(x,x’,s) is regular everywhere, while the pdg(x,x’,s) is singular at the origin. Thus,
taking the limitx.—0 in (36) and using the relatiod,(y) = —J{(y) we get

Frc(X,X',S) = A(s)e~ e8> (@2 0she=eBI_ 3 (7) + [Jo(7) +ie (49~ ¢BI],(2)]= .4}

The corresponding expression figy(x,x’,s) can be obtained in the following way. We restrict the
range ofz to 0< §<z<«, where§<1. Then we take the limitt— 0 and use the continuity of the
Bessel functions with respect to its index. At the end we construct the analytic continuation of the
obtained expressions over the inter(@)s). Thus, starting from eithe37) or (39) we get

fo(x,x',)=A(s)[—ie™ 41y (2)E ;1 +€°BV(2)E 4],
where the superscript is no longer necessary. Thus, the explicit forfitxpf’,s) is

eB iT  i(Axg)?
8795 sineBs \P| 4 4s

f(x,x",s)=

—iMZS—ieBSa'3]

ieBrr’' cogAp—eBY9
2sineB9 ] (40

) ieB
xex;{ —ilgAg+ T(r2+r’2)cot(eBs)—

Making a transformation to Cartesian coordinate$4f) and settingl,=0, one can obtain the
known result of the uniform magnetic field, see for example, Ref. 27.

C. Nonrelativistic case

Consideration of the Green functions in the background under question in the nonrelativistic
case is important for various physical applications. Below we study this case in detail. The
solutions of the Schidinger equation for “spin-up” particleé+) and antiparticle$—) in the case
0=—7/2 read

_iey0 Y i W o
cdmi)=e B[Sl eg (), E=
W)= B [ Y a-it-lge r), 140
7¢m,l( ) € 27Te ¢m,|,71( ’ 1

Cbml 0= B\ elo gt (r), (42

where the values,, , are defined byn,|,o with the help of formulag13), (14) for B>0, and
(16), (17) for B<O0. The solutions ¢, |(X) ( - ¢m (X)) for the “spin-down” case can be obtained
from the solutions. ¢, |(X) (+ém (X)) for the “spin-up” case with the change— — ¢ in (41),
(42).

The retarded Green functions for particles and antiparticles are defined as

(41)

s‘fe“i’(x,x'):«9<Ax°>2I SEx,x), S XX =1« i (X) < B (X)),
43

Ko Oxx) =2, S(Fxx"),
I#0

where the pars{;)(x,x’) is the same for all extensions, wheregs’(x,x’) is specific for each
extension. Carrying out the summations(#8) one obtains
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Sl(t)(x'x/):Anr(x,xl)eIiyreti(li—IO)A(pe—i||i+/L\yTe— iWIIi+M|/2‘]|li+M\(an)!

, (44)

i
Anr(X,X") = W);\(W) EXI{E(PﬂLP')COf( y7)

SI(:E)(X,X,) :Anr(X,XI)efiloA(pe*i(lJr;L)eBT{e* iﬂ',U,/ZJM(an)_e*iA(peieBTef iw(lf/.L)IZJlipt(an)

+Y (2o A@—€Br, 1)+ Y(zn,— Ap+eBr,— u)}, (45
Sie (XX )= Ap(x,x")ellor eI meBTY (7, — Ap—eBr,u)+Y(Zy  Ap+eBr,—u)},
(46)
Zoe=N\pp'Isin(yr), T=AX°2M, l.=1-(1%1)/2, |+0,
whereas fol =0,
Sg-%—)(:ﬂ'/Z)(X’X/):Anr(X’X/)e—i(|0+1)A<pe—i,u.eBTe1iW(l—p)/ZJi(l_M)(an)’ (47)
(_)(J—,W/z)(xyx,):Am(xlx/)en0A¢ei(1—M)eBTeiiwﬂlzJ:M(znr). (48)

The Green function in the “spin-down” case can be obtained with the change: —Ag in
(44)—(48) and with the chang&™®) by S(*) in all the functionsS(x,x’) in (44)—(48). Thus, one
can see that the Green functions for the nonrelativistic particle is irregulas 8t when the
contact interaction is attractive.

We note that for the limiting caseB=0 (the uniform magnetic field is absent
SIHE2)(x,x') coincide with the known expression for the spinless partitié] which is natu-
ral in the case of a repulsive contact interactidﬁﬁf)(”’z)(x,x’) for B=0 coincide with the
corresponding expressions obtained in Ref. 18.

lll. 3+1 DIMENSIONAL CASE

To obtain the Green functions in431 dimensions we use the orthonormalized solutions
:‘l’pa,m,l,a(X) of the Dirac equation found in Refs. 2 and 3. The quantum nuntbeifshave the

same meaning as in the {21)-dimensional casq; is thex® component of the momentum, and
o is the spin quantum number. The positive energy spectrum is givenebgnd the negative
energy spectrum is given hye . They both are expressed via the quantitas

+8=—,8=\/M2+p§+w. (49

The spectra ofv are given in(13), (14) for B>0, and in(16), (17) for B<0. Forw#0, one can
present the solutions¥,_ |, in the following form:

Vo mio()=N(Y'P, M) LUp i (%),

1 =i sXO—ip x3
:Ups,m,l,a(x):_e = FUmo(X0),

V2w

um,l,a'(XL)
3
g um,l,(r(XL)

U= - N=L2lel(e] o)) 2 50

whereas forw=0,

+Wp 01, -X)=N(Y'P,+M) Up o) —¢(X), £=sgn(B),
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whereup, | ,(x,) are the two-spinors defined {d1).

We are going to construct the Green functions using the solutions that correspond to the
natural extensions of the Dirac operator, i.e., for the extension parameters chd3en=a§ _;
=0, and® = = 7/2. First we consider the cage= — 7/2, andB>0. We note that fok # 0,

Y'PL Ui —o=iVoUn ., 1=1,
(51)
‘yVPLVUerJ,*(T:_i\/Eumi,l,(rv Igoa

whereP, =(0,P,,P,,0). The summations itb) can be done similarly to the (21)-dimensional

case by the help of some important relations derived by us for the soli&onsNamely, for the
states with a giverw # 0, the following relations hold true:

2 ¢Wp3’m’|’0(x) ilipr&,m,l,o(xr)

o==*1

1 1
= 2 5 (YPAM)S(L+03%) Ly mo(x X)), 1=1,

o==*1 218
(52
2 Vom0 o0 Wy m 1 a(X)
1 v 1 3 ’
= 2 5 (YPAM) S0 sy i e(XX), 10,
and forw=0, we have
qr ' 1 v 1 3 ’
=W 00 -1(X) +Wp o), —1(X")= 2+8(7 PV+|V|)§(1—E ) +ép o1, -1(X,X"),
where
1 AxO—ipaAx3 ' 3_,3 3
¢</Jp3,m,|,g(x,><’)=§e PRI (XL XT),  AXT=XTXE (53
The functions¢,) ,(x, ,x|) are defined in23). Therefore,
S(x,x")=(y"P,+M)A*(x,x"),
c ’ H * 1 3 0 1 ’
A x)=i 2| dpsz(1+03%) 6(AXY) 5 by mi o (XX')
0 1 ’
—0(=AX%) 57— g m1 (X X') . (54)

Applying the relationg25),(26), one obtains the proper time integral representatiom\fqr

Ac(x,x’)=f:f(x,x’,s)ds, f(x,x’,s)zlzw fi(x,x",s),

fi(x,x",5)=D(s) ;1 d>|,a(s)e“”eBS%(1+ a3,



1884 J. Math. Phys., Vol. 45, No. 5, May 2004 Gavrilov, Gitman, and Smirnov

eB i )
D(s)= m exp[4—s[(Ax3)2_(Ax0)2]—||\/| ZS]
Xexp[—ilOA(p-f— ?(ranr’z)cot(eBs)], (55)

where®, ,(s) are defined in32).
Carrying out similar calculations fd8<0 one can verify that55) is valid for both signs of
B. Therefore, for any sign 0B, we get

fre(x,X',8)= 2, fi(x,x',8)= D(S)e“eBs(”“+23)[Y(Z.Aw—eBSM)+Y(z,—Aso+eBs—M)
1#0

+[e— I7TM/2JM(Z)_e—I(A<P—eB$e— |7T(1_M)/2‘]17,U‘(Z)] §(1+23) ,

fé*ﬂ'/Z)(X,Xr,S): %D(S)efiueBTefiAqoef iﬂ(liM)IZ‘Jl,#(Z)(l‘Fzg)

+eiEBSeiWMZJ,#(Z)(l—Eg)],
fET2(x,x,8)=fre(X,X',8)+ 5 ™(x,x’,9), (56)
Using the corresponding solutions for the cé&se 7/2, we obtain
f(()ﬂ'/Z)(X,X/'S): %D(S)efi,ueBTefiAcpef i7r(,u.*1)/2\]lu_l(z)(1+23)+eieBSef iwylZJM(Z)(l_E3)],
f(7(x,x",5)=fro(x,X",8) + ™D (x,x',5). (57)

IV. SUMMARY

Various Green functions of the Dirac equation with the magnetic-solenoid field are con-
structed as sums over exact solutions of this equation. We stress that doing that we had to take into
account all the peculiarities related to the self-adjoint extension problem of the Dirac operator in
the background under consideration. Both 2 and 3+1 dimensional cases are considered.
Compact form for the Green functions was obtained thanks to the important rel@®rasd(52)
derived by us for the exact solutions under consideration. The representations of the Green func-
tions as proper time integrals are constructed. The kernels of the proper time integrals are repre-
sented both as infinite sums over the orbital quantum nuinéed as simple integrals. The Green
functions are obtained for two natural self-adjoint extensions, one for the positive solenoid flux
and the other one for the negative solenoid flux. The physical motivation for the choice of these
extensions is their correspondence to the presence of the point-like magnetic field at the origin and
their close relation to the MIT boundary conditicfi$®2°Thus, the considered cases are of most
interest for applications. Other values of the extension parameter correspond to additional contact
interactions’® and some of the values are of physical interest as well. To find a closed form of
Green functions for the arbitrary value of the extension parameter is a more complicated task. The
spectra of the corresponding extensions in the critical subspace are no longer periodic for such a
situation that requires to apply more exquisite calculation methods. We suppose to consider this
issue in the future.

In addition, the nonrelativistic Green functions are constructed. The latter Green functions are
represented for all possible types o2 dimensional nonrelativistic particles.
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APPENDIX

For the sake of completeness we consider here the Green functions for the scalar particle.
They are defined by Eq$3), (4), (8), and(9), whereS™(x,x’) read

STXX) =% L n(X) =B (X)),
and - ¢,(x) form a complete set of orthonormalized solutions of the Klein—Gordon equation.

Here we consider the natural extension of the Klein—Gordon operator for which solutions in 2
+1 dimensions and the related spectrum fead

1 i 0 Y -
+ Pm(X)= e =X \/Eel(l |0)¢|m+|I+M\,m(P)a

ce=M%+ 0, o=y[1+2m+]|l+u|+E(0+u)],

[=0,+x1,+2,..., m=0,1.2,....

N

Using Egs.(25), (26), (28), and(30), we calculate the causal and anticausal propagators. They
have the form

Sc(x,x’)zf £5¢(x,x',5)ds, Sz(x,x’)=f7 £5¢(x,x’,5)ds,
O —
fsc(x,x’,s)zEI £5x,x',9) ,
flsc(x,xl,S):A(S)ei|A<pe—i(|+p,)eBSe— iW|l+m/2‘J|l+M| ' (Al)

fS(x,x",s)=A(s)e” '#*B{e” "] (2)+Y(z,Ap—eBsu)+Y(z,—Ap+eBs—pu)],

whereA(s) is given in(31), andY(z,7,u) in (33), (35). The expressioAl) can be generalized
for the (D +1)-dimensional case, whef2 is the number of spacial dimensions, with the substi-
tution A(s) in (A1) by AP)(s),

e
47s

—im2\ (D-2)/2
) , D=3.

. D
AD)(s) =A(s)exp| 4I_sk§=:3 (Axk)ZJ (
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