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Green functions of the Dirac equation with
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Various Green functions of the Dirac equation with a magnetic-solenoid field~the
superposition of the Aharonov–Bohm field and a collinear uniform magnetic field!
are constructed and studied. The problem is considered in 211 and 311 dimen-
sions for the natural extension of the Dirac operator~the extension obtained from
the solenoid regularization!. Representations of the Green functions as proper time
integrals are derived. The nonrelativistic limit is considered. For the sake of com-
pleteness the Green functions of the Klein–Gordon particles are constructed as
well. © 2004 American Institute of Physics.@DOI: 10.1063/1.1699483#

I. INTRODUCTION

In the present paper we continue our previous study1–3 of the Dirac equation with a magnetic-
solenoid field, constructing and studying various Green functions of this equation. We recall that
the magnetic-solenoid field is the collinear superposition of the constant uniform magnetic field
and the Aharonov–Bohm~AB! field. The AB field is a field of an infinitely long and infinitesi-
mally thin solenoid. Recently the interest in such a field configuration has been renewed in
connection with planar physics problems, quantum Hall effect, and the Aharonov–Bohm effect in
cyclotron and synchrotron radiations.4–9

In principle, the Green functions can be constructed whenever complete sets of solutions of
the Dirac equations are available. In this connection, one should recall that solutions of the Dirac
equation with the magnetic-solenoid field in 211 and 311 dimensions were obtained in Ref. 1.
The singularity of the AB field demands a special attention to the correct definition of the Dirac
operator. The need for self-adjoint extensions in the case of the Dirac Hamiltonian with the pure
AB field in 211 dimensions was recognized in Refs. 10 and 11 where certain boundary condi-
tions at the origin were established. The regularized case and peculiarities of the behavior of a
spinning particle in the presence of the magnetic string were considered in Refs. 12 and 13. The
problem of the self-adjoint extension of the Dirac operator with the magnetic-solenoid field was
studied in Refs. 2, 3, and 14. In 211 dimensions, a one-parametric family of self-adjoint Dirac
Hamiltonians specified by the corresponding boundary conditions at the AB solenoid was con-
structed, and the spectrum and eigenfunctions for each value of the extension parameter were
found. In 311 dimensions, a two-parametric family of the self-adjoint Dirac Hamiltonians was
constructed on the condition that the spin polarization is conserved. The corresponding spectrum
and eigenfunctions for each value of the extension parameters were found as well. In Refs. 2 and
3 the procedure of solenoid regularization was also considered. The procedure implies considering
the finite solenoid and then making its radius go to zero. This procedure specifies some particular
boundary conditions. The values of the extension parameters corresponding to the solenoid regu-
larization case were determined in 211 and 311 dimensions. Further, we call the corresponding
extension the natural extension. Nonrelativistic propagators for the spinless and spin-1/2 particle
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moving in the pure AB field were considered mainly in the relation to the AB effect. The propa-
gator of the spinless particle was found in Refs. 15, 16, and 17 as a sum of partial propagators
corresponding to homotopically different paths in the covering space of the physical background.
The nonrelativistic propagator of the spin-1/2 particle in the AB field for a particular value of the
self-adjoint extension parameter was discussed in Ref. 18. The relativistic scalar case for the AB
field was studied in Ref. 19. The propagators and the AB effect in general gauge theories were
considered in Refs. 20 and 21. Recently, vacuum polarization effects in the AB field have aroused
great interest, see, for example, Refs. 22 and 23 and references therein.

In the present paper, we construct and study the Green functions of the Dirac particle in the
magnetic-solenoid field in 211 and 311 dimensions. The physical importance of the problem is
stressed by the fact that the knowledge of the Green functions in such a configuration allows one
to study quantum~and quantum field! effects in the magnetic-solenoid field on a regular base. A
technical specificity of the problem is related to the necessity to take into account all the pecu-
liarities related to the self-adjoint extension problem of the Dirac operator in the background under
consideration. In Sec. II we consider the (211)-dimensional case in detail. Here, constructing the
Green functions, we use the exact solutions of the Dirac equation that are related to the specific
values of the extension parameter. These values correspond to the natural extension, see above.
The representations of the Green functions as proper time integrals are derived. In addition, we
calculate the nonrelativistic Green functions as well. In Sec. III we extend the results to the (3
11)-dimensional case. In the Appendix, for the sake of completeness, we present the Green
functions of the relativistic scalar particle.

We note that the magnetic-solenoid field belongs to such type of fields that do not violate the
vacuum stability. For such fields a unique stable vacuum exists, and quantum field definitions of
the Green functions below hold true.24 In particular, the causal propagatorSc(x,x8) and the
anticausal propagatorSc̄(x,x8) are defined by the expressions

Sc~x,x8!5 i ^0uTĉ~x!cC ~x8!u0&, ~1!

Sc̄~x,x8!5 i ^0uĉ~x!cC ~x8!Tu0&, ~2!

whereĉ(x) is the quantum spinor field in the Furry representation, satisfying the Dirac equation
with the magnetic-solenoid field,u0& is the vacuum in this representation. The symbol of the
T-product acts on both sides: it orders the field operators to its right-hand side and antiorders them
to its left-hand side. The functionsSc(x,x8), Sc̄(x,x8) can be expressed via the functions
S7(x,x8),

Sc~x,x8!5u~Dx0!S2~x,x8!2u~2Dx0!S1~x,x8!, Dx05x02x08, ~3!

Sc̄~x,x8!5u~2Dx0!S2~x,x8!2u~Dx0!S1~x,x8!, ~4!

and the latter can be calculated via a complete set6ca(x) of solutions of the Dirac equation with
the magnetic-solenoid field as

S7~x,x8!5 i(
a

6ca~x! 6c̄a~x8!. ~5!

The solutions with the subscript~1! belong to the positive energy spectrum, whereas the solutions
with the subscript~2! belong to the negative energy spectrum. Viaa all possible quantum num-
bers are denoted.

The Dirac equation with the magnetic-solenoid field has the form

~gnPn2M !c~x!50. ~6!
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Here Pn5 i ]n2qAn(x), x5(xn), q is an algebraic charge, for electronsq52e,0, M is the
electron mass, andAn(x) are potentials of the magnetic-solenoid field. In the (311)-dimensional
casen50,1,2,3 andgn are the corresponding gamma-matrices. In the (211)-dimensional case
n50,1,2 and in what follows, we employ the letterG to denote the gamma-matrices. We use for
these matrices the following representation:

G05s3, G15 is2, G252 is1,

wheres i are the Pauli matrices. In cylindric coordinates (w,r ), x15r cosw, x25r sinw, the
potentials of the magnetic-solenoid field have the form

A050, eA15@ l 01m1A~r !#
sinw

r
, eA252@ l 01m1A~r !#

cosw

r
,

~A350 in 311!, A~r !5eBr2/2. ~7!

HereB is the magnitude of the uniform magnetic field, and the magnitudeBAB of the AB field is
given by the expressionBAB5Fd(x1)d(x2), where F is the AB-solenoid flux, (l 01m)
5F/F0 , F052p/e. It is supposed thatl 0 is integer and 0<m,1.

The functionsS7(x,x8) obey the Dirac equation~6!, whereas the causal and anticausal propa-
gators obey the nonhomogeneous Dirac equations:

~gnPn2M !Sc~x,x8!52d~x2x8! , ~gnPn2M !Sc̄~x,x8!5d~x2x8!.

We note that the commutation functionS(x,x8), the advancedSadv(x,x8) and the retarded
Sret(x,x8) Green functions can be expressed in terms ofSc(x,x8), Sc̄(x,x8) as follows:

S~x,x8!5S2~x,x8!1S1~x,x8!5sgn~Dx0!@Sc~x,x8!2Sc̄~x,x8!#, ~8!

Sadv~x,x8!52u~2Dx0!S~x,x8!, Sret~x,x8!5u~Dx0!S~x,x8!. ~9!

II. 2¿1 DIMENSIONAL CASE

A. Sets of exact solutions

First we study the (211)-dimensional case, for which, as known,2,3 the Dirac operator with
the magnetic-solenoid field in 211 dimensions possesses a one-parameter family of self-adjoint
extensions. That provides a one-parameter family of boundary conditions at the origin. Following
Refs. 2 and 3, we denote the extension parameter asQ. Generally speaking, the AB symmetry is
violated for the spinning particle, which is therefore sensible to the solenoid flux sign. As was
demonstrated in Refs. 2 and 3, the valuesQ56p/2 correspond to the natural extension,Q
52p/2 if the flux is positive andQ5p/2 if the flux is negative. Below we present a set of
solutions 6ca(x) of ~6! which we will use for Green function construction according to the
formulas~5!. We consider the problem separately for two values of the extension parameter.

We start with the caseQ52p/2. The positive energy spectrum is given by1« and the
negative energy spectrum is given by2« ,

1«52 2«5AM21v. ~10!

Both branches are determined by the spectrum of the quantityv which is defined below. The
solutions6ca(x) can be expressed via the solutionsu(x) of the squared Dirac equation. The latter
solutions have the form

6um,l ,s~x!5e2 i 6«x0
um,l ,s~x'!,

~11!
x'5~x1,x2!, m50,1,... , l 50,61, . . . , s561,

1875J. Math. Phys., Vol. 45, No. 5, May 2004 Green functions of the Dirac
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where

um,l ,s~x'!5Aggl~w!fm,l ,s~r !ys , lÞ0,

um,0,11~x'!5Agg0~w!fm,0,11~r !y11 ,

um,0,21~x'!5Agg0~w!fm,21
ir ~r !y21 , g5euBu,

and

gl~w!5
1

A2p
expH iwF l 2 l 02

1

2
~11s3!G J ,

y115S 1
0D , y215S 0

1D .

The functionsfm,l ,s(r ), fm,21
ir (r ) are expressed via the Laguerre functionsI m1a,m(r) as

fm,l ,s~r !5I m1unu,m~r! , fm,21
ir ~r !5I m2m,m~r!,

~12!
r5gr 2/2 , n5m1 l 2~11s!/2.

We recall that the Laguerre functionsI m1a,m(r) are related to the Laguerre polynomialsLm
a (x)

@8.970, 8.972.1~Ref. 25!# as

I m1a,m~x!5A m!

G~m1a11!
e2x/2xa/2Lm

a ~x!.

For the magnetic fieldB.0, the spectrum ofv corresponding to the functionsum,l ,s(x') is

v5H 2g~m1 l 1m!, l 2~11s!/2>0,

2g~m1~11s!/2!, l 2~11s!/2,0,
~13!

except the functionsum,0,21(x') for which the spectrum ofv is

v52gm. ~14!

Then the complete set6ca with a5(m,l ) has the form

6cm,l~x!5N~GP1M ! 6um,l ,21~x!. ~15!

The latter form provides correct expressions both forvÞ0 andv50, since the states withv
50 can only be expressed in terms of the spinors withs521 @we note that1c[0 for v50,
nevertheless it is convenient to remain in~11! u1 with 1«5M ]. The normalization factor with
respect to the usual inner product (c,c8)5*c†(x)c8(x)dx reads

N5H @2u6«u~ u6«u2M !#21/2, vÞ0,

@2M #21, v50.

The quantum numberl characterizes the angular momentum of the particle,m is the radial
quantum number, see Ref. 1.

For B,0 the spectrum of states differs nontrivially from the expressions given by Eqs.~13!
and ~14!. Herev corresponding toum,l ,s(r ) is
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v5H 2g~m2 l 112m!, l 2~11s!/2,0,

2g~m1~12s!/2!, l 2~11s!/2>0,
~16!

except the functionsum,0,21(x') for which the spectrum ofv is

v52g~m112m!. ~17!

Now we go to the case with the extension parameterQ5p/2. We recall that one needs for
self-adjoint extensions of the radial Dirac Hamiltonian only in the subspacel 50 to which we refer
to as the critical subspace. Thus, the only solutions in thel 50 subspace must be subjected to the
one of asymptotic condition from a one-parametric family of boundary conditions asr→0. By this
reason forQ5p/2, the solutions only differ from~11! in the subspacel 50,

um,0,11~x'!5Agg0~w!fm,11
ir ~r !y11 , fm,11

ir ~r !5I m1m21,m~r!,
~18!

um,0,21~x'!5Agg0~w!fm,0,21~r !y21 ,

where the spectrum forum,0,11(x') is given as

v52g~m1m!, B.0, ~19!

v52gm, B,0. ~20!

B. Construction of Green functions

The main point in constructing the Green functions is the summations in the representation
~5!. In the case under consideration, this summation can be done with the help of special relations
which can be established for the solutions of the Dirac equation.

Let us start with the calculation of the Green functions for the extension parameterQ
52p/2 and B.0. In this case, taking into account that the eigenfunctionsu of the equation
@(GP')21v#u50 corresponding to anyvÞ0 obey the equations

GP' 6um1 ,l ,2s~x!52 iAv 6um2 ,l ,s~x!, l<0 , P'5~0,P1 ,P2!,

~21!
GP' 6um,l ,2s~x!5 iAv 6um,l ,s~x!, l>1, m65m1~16s!/2,

and the explicit form of the solutions6cm,l , one can verify that foru«uÞM the following
relations hold true:

6cm,l~x! 6c̄m,l~x8!5~GP1M !
1

2 6«
e2 i 6«Dx0

(
s561

fm2 ,l ,s~x' ,x'8 !Js , l<0,

~22!

6cm,l~x! 6c̄m,l~x8!5~GP1M !
1

2 6«
e2 i 6«Dx0

(
s561

fm,l ,s~x' ,x'8 !Js , l>1,

where

fm,l ,s~x' ,x'8 !5
g

2p
ei [ l 2 l 02(11s)/2]DwI m1a,m~r!I m1a,m~r8!,

~23!

Dw5w2w8, a5H m1 l 2~11s!/2, l>1,

2@m1 l 2~11s!/2#, l<0,
J615~16s3!/2.
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The above relations and Eqs.~3! and ~5! allow us to represent the causal Green function in the
following form:

Sc~x,x8!5~GP1M !Dc~x,x8!,
~24!

Dc~x,x8!5 i (
m,l ,s

Fu~Dx0!
e2 i 1«Dx0

2 1«
2u~2Dx0!

e2 i 2«Dx0

2 2«
Gfm,l ,s~x' ,x'8 !Js .

Then we can use the representations

u~Dx0!
e2 i 1«Dx0

2 1«
2u~2Dx0!

e2 i 2«Dx0

2 2«
5

1

2p i E2`

` e2 ip0Dx0

«22p0
22 i e

dp0 , ~25!

1

«22p0
22 i e

5 i E
0

`

e2 i («22p0
2)s ds, ~26!

in Eq. ~24!. Integrating overp0 , we obtain finally

Dc~x,x8!5E
0

`

f ~x,x8,s!ds,

~27!

f ~x,x8,s!5
1

2~ps!1/2e~2 iDx0
2/4s! eip/4 e2 iM 2si (

m,l ,s
e2 ivsfm,l ,s~x' ,x'8 !Js .

The path of the integration overs is deformed so that it goes slightly below the singular points
sk5kp/g, k51,2, . . . .

Using ~5!, ~22!, and the representation

2u~2Dx0!
e2 i 1«Dx0

2 1«
1u~Dx0!

e2 i 2«Dx0

2 2«
5

1

2p i E2`

` e2 ip0Dx0

«22p0
21 i e

dp0 ,

~28!
1

«22p0
21 i e

5 i E
20

2`

e2 i («22p0
2)s ds,

instead of~25! and ~26! we obtain from~4!,

Sc̄~x,x8!5~GP1M !D c̄~x,x8!, D c̄~x,x8!5E
20

2`

f ~x,x8,s!ds, ~29!

wheref (x,x8,s) is given by Eq.~27!. The negative values fors are defined ass5usue2 ip, and the
path of integration overs is deformed so that it goes slightly below the singular points2sk .

We now consider the summations in~27!. Applying the formula@8.976~1! ~Ref. 25!# we can
sum overm to get

(
m50

`

e2 i2mgsI m1a,m~r!I m1a,m~r8!5expH i

2
~r1r8!cot~gs!J eiagseigs

2i sin~gs!
e2 ipa/2Ja~z!,

z5Arr8/sin~gs!, ~30!

whereJa(z) are the Bessel functions@8.402 ~Ref. 25!#, and for negatives we take args52p
10.
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Similar results can be obtained for the caseB,0. Here one should use the solutions corre-
sponding to the spectrum ofv ~16! and~17!. Then these results can be united to obtain expressions
which hold true for any sign ofB,

f ~x,x8,s!5 (
l 52`

`

f l~x,x8,s!, f l~x,x8,s!5A~s! (
s561

F l ,s~s!e2 iseBsJs ,

~31!

A~s!5
eB

8p3/2s1/2sin~eBs!
expH ip

4
2 iM 2s2 i l 0DwJ

3expH 2
i ~Dx0!2

4s
1

ieB

4
~r 21r 82!cot~eBs!J ,

F l ,s~s!5eil sDwe2 i ( l s1m)eBse2 ipu l s1mu/2Ju l s1mu~z!, l s5 l 2~11s!/2, lÞ0,

~32!
F0,11~s!5e2 iDwei (12m)eBse2 ip(12m)/2J12m~z!, F0,21~s!5e2 imeBseipm/2J2m~z!.

Now we consider the summation overl . One can see that the following relations hold true:

(
l 51

`

F l ,21~s!5(
l 51

`

F l 11,11~s!5e2 imeBsY~z,Dw2eBs,m!,

(
l 521

2`

F l ,21~s!5 (
l 521

2`

F l 11,11~s!5e2 imeBsY~z,2Dw1eBs,2m!,

where

Y~z,h,m!5a1~z!1Ỹ~z,h,m!, Ỹ~z,h,m!5(
l 52

`

al~z!, al~z!5eih l~2 i ! l 1mJl 1m~z!.

~33!

The evaluation of the sum in~33! can be done in a similar way to what was done in Ref. 26. There
exist all ]zal(z) on the half-line, 0,z,`, and the relation@8.471 ~2! ~Ref. 25!#, ]zJn(z)
5@Jn21(z)2Jn11(z)#/2, can be used. The seriesỸ(z,h,m) converges and the series of deriva-
tives ( l 52

` ]zal(z) converges uniformly in~0,̀ !. It is a sufficient condition to write down
]zỸ(z,h,m)5( l 52

` ]zal(z). Thus, one arrives to a differential equation with respect toY(z,h,m),

d

dz
Y~z,h,m!52Y~z,h,m!i cosh1

1

2
~2 i !m@2 ieihJm~z!1J11m~z!#. ~34!

that is true on the half-line, 0,z,`. The solution of~34! reads

Y~z,h,m!5
1

2
~2 i !mE

0

z

ei (y2z)cosh@2 ieihJm~y!1J11m~y!#dy. ~35!

This is also valid forY(z,2h,2m).
It is useful to introduce the following function:

f nc~x,x8,s!5(
lÞ0

f l~x,x8,s!.

It defines the part of the Green functions that is the same for all extensions. With the help of the
function Y(z,h,m) ~33!, ~35! one can write
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f nc~x,x8,s!5A~s!e2 imeBse2 ieBss3
$Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!

1@e2 ipm/2Jm~z!2e2 i (Dw2eBs)e2 ip(12m)/2J12m~z!#J11%. ~36!

The functionf 0(x,x8,s) is specific for each extension. It is reasonable to mark it with a superscript
that assumes the values of the extension parameter. Thus, forQ52p/2,

f 0
(2p/2)~x,x8,s!5A~s!e2 imeBs@e2 iDwe2 ip(12m)/2J12m~z!J111e2 ieBss3

eipm/2J2m~z!J21#.
~37!

Accordingly, the functionf (x,x8,s) acquires the same superscript,

f (2p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(2p/2)~x,x8,s!. ~38!

For the extension parameterQ5p/2, one obtains

f 0
(p/2)~x,x8,s!5A~s!e2 imeBs@e2 iDwe2 ip(m21)/2Jm21~z!J111e2 ieBss3

e2 ipm/2Jm~z!J21#,
~39!

f (p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(p/2)~x,x8,s!.

Besides, one can consider particles with ‘‘spin-down’’ polarization in 211 dimensions. The
corresponding wave functionsc (21)(x) can be presented as

c (21)~x!5s1~GP2M !u~x! ,

where u(x) are solutions~11! of the squared Dirac equation. The propagator related to such
particles can be expressed in terms of the functionDc(x,x8) ~24!,

S(21)
c ~x,x8!52s1~GP2M !Dc~x,x8!s1 .

At this point we should make some remarks.
One can see that there exists a simple relation between scalar Green functions and Green

functions of the squared Dirac equation~for the above considered extensions!. Consider this
relation in the example of causal Green functions. First of all, we note that the Klein–Gordon
equation differs from the squared Dirac equation by the Zeeman interaction term. Then we can see
~remembering the origin of the quantum numberl for both spinning and spinless particles! that the
scalar propagator can be derived fromDc(x,x8) by only retaining the terms withs521 only. The
term eBs3, which is responsible for the Zeeman interaction with the uniform magnetic field, has
to be removed. The Zeeman interaction with the solenoid flux, influencing the terms withl 50,
depends on the flux sign and can be repulsive or attractive. The repulsive contact interaction case
is physically equivalent to the spinless case, since in both cases the corresponding wave functions
vanish at the origin. The necessary boundary condition is realized for the extension parameter
Q5p/2. Thus, one can obtain the scalar Green functions using the coefficients ofJ21 in
f l(x,x8,s) ~31!, ~32! and f 0

(p/2)(x,x8,s) ~39!. By following such prescriptions, one arrives at the
expression~A1! obtained by direct calculation.

In the spinless case there is no physically preferred orientation of the planex1x2. Therefore,
the solenoid flux direction does not matter, i.e., the AB symmetry,l 0→ l 011, is conserved. The
direction of the uniform magnetic field does not matter as well. This can be observed from the
explicit form of the Green functions~A1! where the changeB→2B is equivalent to the choice of
the opposite orientation of the plane,l→2 l , Dw→2Dw, F→2F. In the spinning case the
given spin direction breaks the symmetry related to the plane orientation. The Zeeman interaction
of the spin with the background violates the AB symmetry as well as the symmetry with respect
to the changeB→2B.

As is known, influence of the solenoid flux on the particle is observed only when the flux is
not equal to an integral number of quanta (mÞ0). In this connection it is instructive to consider
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the Green functions for the particular casem50. We note that the partf nc(x,x8,s) ~36! of the
function f (x,x8,s) is regular everywhere, while the partf 0(x,x8,s) is singular at the origin. Thus,
taking the limitm→0 in ~36! and using the relationJ1(y)52J08(y) we get

f nc~x,x8,s!5A~s!e2 ieBss3
$e2 iz cos(Dw2eBs)2J0~z!1@J0~z!1 ie2 i (Dw2eBs)J1~z!#J11%.

The corresponding expression forf 0(x,x8,s) can be obtained in the following way. We restrict the
range ofz to 0,d,z,`, whered!1. Then we take the limitm→0 and use the continuity of the
Bessel functions with respect to its index. At the end we construct the analytic continuation of the
obtained expressions over the interval~0,d!. Thus, starting from either~37! or ~39! we get

f 0~x,x8,s!5A~s!@2 ie2 iDwJ1~z!J111eieBsJ0~z!J21#,

where the superscript is no longer necessary. Thus, the explicit form off (x,x8,s) is

f ~x,x8,s!5
eB

8p3/2s1/2sin~eBs!
expH ip

4
2

i ~Dx0!2

4s
2 iM 2s2 ieBss3J

3expH 2 i l 0Dw1
ieB

4
~r 21r 82!cot~eBs!2

ieBrr8 cos~Dw2eBs!

2 sin~eBs! J . ~40!

Making a transformation to Cartesian coordinates in~40! and settingl 050, one can obtain the
known result of the uniform magnetic field, see for example, Ref. 27.

C. Nonrelativistic case

Consideration of the Green functions in the background under question in the nonrelativistic
case is important for various physical applications. Below we study this case in detail. The
solutions of the Schro¨dinger equation for ‘‘spin-up’’ particles~1! and antiparticles~2! in the case
Q52p/2 read

1fm,l~x!5e2 iEx0A g

2p
ei ( l 2 l 021)wfm,l ,11~r !, E5

vm,l ,s

2M
,

~41!

2fm,l~x!5e2 iEx0A g

2p
e2 i ( l 2 l 0)wfm,l ,21~r !, lÞ0,

2fm,0~x!5e2 iEx0A g

2p
eil 0wfm,21

ir ~r !, ~42!

where the valuesvm,l ,s are defined bym,l ,s with the help of formulas~13!, ~14! for B.0, and
~16!, ~17! for B,0. The solutions1fm,l(x) ( 2fm,l(x)) for the ‘‘spin-down’’ case can be obtained
from the solutions2fm,l(x) (1fm,l(x)) for the ‘‘spin-up’’ case with the changew→2w in ~41!,
~42!.

The retarded Green functions for particles and antiparticles are defined as

Sret,(6)~x,x8!5u~Dx0!(
l

Sl
(6)~x,x8!, Sl

(6)~x,x8!5 i(
m

6fm,l~x! 6fm,l* ~x8!,

~43!

Snc
(6)~x,x8!5(

lÞ0
Sl

(6)~x,x8!,

where the partSnc
(6)(x,x8) is the same for all extensions, whereasS0

(6)(x,x8) is specific for each
extension. Carrying out the summations in~43! one obtains
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Sl
(6)~x,x8!5Anr~x,x8!e7 igte6 i ( l 62 l 0)Dwe2 i u l 61mugte2 ipu l 61mu/2Ju l 61mu~znr!,

Anr~x,x8!5
g

4p sin~gt!
expF i

2
~r1r8!cot~gt!G , ~44!

Snc
(1)~x,x8!5Anr~x,x8!e2 i l 0Dwe2 i (11m)eBt$e2 ipm/2Jm~znr!2e2 iDweieBte2 ip(12m)/2J12m~znr!

1Y~znr ,Dw2eBt,m!1Y~znr ,2Dw1eBt,2m!%, ~45!

Snc
(2)~x,x8!5Anr~x,x8!eil 0Dwei (12m)eBt$Y~znr ,2Dw2eBt,m!1Y~znr ,Dw1eBt,2m!%,

~46!

znr5Arr8/sin~gt!, t5Dx0/2M , l 65 l 2~161!/2, lÞ0,

whereas forl 50,

S0
(1)(7p/2)~x,x8!5Anr~x,x8!e2 i ( l 011)Dwe2 imeBte7 ip(12m)/2J6(12m)~znr!, ~47!

S0
(2)(7p/2)~x,x8!5Anr~x,x8!eil 0Dwei (12m)eBte6 ipm/2J7m~znr!. ~48!

The Green function in the ‘‘spin-down’’ case can be obtained with the changeDw→2Dw in
~44!–~48! and with the changeS(6) by S(7) in all the functionsS(x,x8) in ~44!–~48!. Thus, one
can see that the Green functions for the nonrelativistic particle is irregular atr 50 when the
contact interaction is attractive.

We note that for the limiting caseB50 ~the uniform magnetic field is absent!,
Sl

(1)(2p/2)(x,x8) coincide with the known expression for the spinless particle,15–17which is natu-
ral in the case of a repulsive contact interaction.Sl

(1)(p/2)(x,x8) for B50 coincide with the
corresponding expressions obtained in Ref. 18.

III. 3¿1 DIMENSIONAL CASE

To obtain the Green functions in 311 dimensions we use the orthonormalized solutions

6Cp3 ,m,l ,s(x) of the Dirac equation found in Refs. 2 and 3. The quantum numbersm, l have the
same meaning as in the (211)-dimensional case,p3 is thex3 component of the momentum, and
s is the spin quantum number. The positive energy spectrum is given by1« and the negative
energy spectrum is given by2« . They both are expressed via the quantityv as

1«52 2«5AM21p3
21v. ~49!

The spectra ofv are given in~13!, ~14! for B.0, and in~16!, ~17! for B,0. ForvÞ0, one can
present the solutions6Cp3 ,m,l ,s in the following form:

6Cp3 ,m,l ,s~x!5N~gnPn1M ! 6Up3 ,m,l ,s~x!,

6Up3 ,m,l ,s~x!5
1

A2p
e2 i 6«x02 ip3x3

Um,l ,s~x'!,

Um,l ,s~x'!5S um,l ,s~x'!

s3um,l ,s~x'! D , N5@2u6«u~ u6«u1p3!#21/2, ~50!

whereas forv50,

6Cp3,0,l ,2j~x!5N~gnPn1M ! 6Up3,0,l ,2j~x!, j5sgn~B!,

1882 J. Math. Phys., Vol. 45, No. 5, May 2004 Gavrilov, Gitman, and Smirnov

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

186.217.234.225 On: Tue, 14 Jan 2014 15:18:27



whereum,l ,s(x') are the two-spinors defined in~11!.
We are going to construct the Green functions using the solutions that correspond to the

natural extensions of the Dirac operator, i.e., for the extension parameters chosen asQ115Q21

5Q, andQ56p/2. First we consider the caseQ52p/2, andB.0. We note that forvÞ0,

gnP'nUm,l ,2s5 iAvUm,l ,s , l>1,
~51!

gnP'nUm1 ,l ,2s52 iAvUm2 ,l ,s , l<0,

whereP'5(0,P1 ,P2,0). The summations in~5! can be done similarly to the (211)-dimensional
case by the help of some important relations derived by us for the solutions~50!. Namely, for the
states with a givenvÞ0, the following relations hold true:

(
s561

6Cp3 ,m,l ,s~x! 6C̄p3 ,m,l ,s~x8!

5 (
s561

1

2 6«
~gnPn1M !

1

2
~11sS3! 6fp3 ,m,l ,s~x,x8!, l>1,

~52!

(
s561

6Cp3 ,m1 ,l ,2s~x! 6C̄p3 ,m1 ,l ,2s~x8!

5 (
s561

1

2 6«
~gnPn1M !

1

2
~11sS3! 6fp3 ,m1 ,l ,2s~x,x8!, l<0,

and forv50, we have

6Cp3,0,l ,21~x! 6C̄p3,0,l ,21~x8!5
1

2 6«
~gnPn1M !

1

2
~12S3! 6fp3,0,l ,21~x,x8!,

where

6fp3 ,m,l ,s~x,x8!5
1

2p
e2 i 6«Dx02 ip3Dx3

fm,l ,s~x' ,x'8 !, Dx35x32x83. ~53!

The functionsfm,l ,s(x' ,x'8 ) are defined in~23!. Therefore,

Sc~x,x8!5~gnPn1M !Dc~x,x8!,

Dc~x,x8!5 i (
m,l ,s

E
2`

`

dp3

1

2
~11sS3!Fu~Dx0!

1

2 1« 1fp3 ,m,l ,s~x,x8!

2u~2Dx0!
1

2 2« 2fp3 ,m,l ,s~x,x8!G . ~54!

Applying the relations~25!,~26!, one obtains the proper time integral representation forDc,

Dc~x,x8!5E
0

`

f ~x,x8,s!ds, f ~x,x8,s!5 (
l 52`

`

f l~x,x8,s!,

f l~x,x8,s!5D~s! (
s561

F l ,s~s!e2 iseBs
1

2
~11sS3!,
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D~s!5
eB

16p2s sin~eBs!
expH i

4s
@~Dx3!22~Dx0!2#2 iM 2sJ

3expH 2 i l 0Dw1
ieB

4
~r 21r 82!cot~eBs!J , ~55!

whereF l ,s(s) are defined in~32!.
Carrying out similar calculations forB,0 one can verify that~55! is valid for both signs of

B. Therefore, for any sign ofB, we get

f nc~x,x8,s!5(
lÞ0

f l~x,x8,s!5D~s!e2 ieBs(m1S3)H Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!

1@e2 ipm/2Jm~z!2e2 i (Dw2eBs)e2 ip(12m)/2J12m~z!#
1

2
~11S3!J ,

f 0
(2p/2)~x,x8,s!5 1

2 D~s!e2 imeBs@e2 iDwe2 ip(12m)/2J12m~z!~11S3!

1eieBseipm/2J2m~z!~12S3!#,

f (2p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(2p/2)~x,x8,s!, ~56!

Using the corresponding solutions for the caseQ5p/2, we obtain

f 0
(p/2)~x,x8,s!5 1

2 D~s!e2 imeBs@e2 iDwe2 ip(m21)/2Jm21~z!~11S3!1eieBse2 ipm/2Jm~z!~12S3!#,

f (p/2)~x,x8,s!5 f nc~x,x8,s!1 f 0
(p/2)~x,x8,s!. ~57!

IV. SUMMARY

Various Green functions of the Dirac equation with the magnetic-solenoid field are con-
structed as sums over exact solutions of this equation. We stress that doing that we had to take into
account all the peculiarities related to the self-adjoint extension problem of the Dirac operator in
the background under consideration. Both 211 and 311 dimensional cases are considered.
Compact form for the Green functions was obtained thanks to the important relations~22! and~52!
derived by us for the exact solutions under consideration. The representations of the Green func-
tions as proper time integrals are constructed. The kernels of the proper time integrals are repre-
sented both as infinite sums over the orbital quantum numberl and as simple integrals. The Green
functions are obtained for two natural self-adjoint extensions, one for the positive solenoid flux
and the other one for the negative solenoid flux. The physical motivation for the choice of these
extensions is their correspondence to the presence of the point-like magnetic field at the origin and
their close relation to the MIT boundary conditions.23,28,29Thus, the considered cases are of most
interest for applications. Other values of the extension parameter correspond to additional contact
interactions,30 and some of the values are of physical interest as well. To find a closed form of
Green functions for the arbitrary value of the extension parameter is a more complicated task. The
spectra of the corresponding extensions in the critical subspace are no longer periodic for such a
situation that requires to apply more exquisite calculation methods. We suppose to consider this
issue in the future.

In addition, the nonrelativistic Green functions are constructed. The latter Green functions are
represented for all possible types of 211 dimensional nonrelativistic particles.
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APPENDIX

For the sake of completeness we consider here the Green functions for the scalar particle.
They are defined by Eqs.~3!, ~4!, ~8!, and~9!, whereS7(x,x8) read

S7~x,x8!56 i( 6fn~x! 6fn* ~x8!,

and 6fn(x) form a complete set of orthonormalized solutions of the Klein–Gordon equation.
Here we consider the natural extension of the Klein–Gordon operator for which solutions in 2
11 dimensions and the related spectrum read3

6fm,l~x!5
1

A2«
e2 i 6«x0A g

2p
ei ( l 2 l 0)wI m1u l 1mu,m~r!,

6«56AM21v, v5g@112m1u l 1mu1j~ l 1m!#,

l 50,61,62, . . . , m50,1,2, . . . .

Using Eqs.~25!, ~26!, ~28!, and ~30!, we calculate the causal and anticausal propagators. They
have the form

Sc~x,x8!5E
0

`

f sc~x,x8,s!ds, Sc̄~x,x8!5E
20

2`

f sc~x,x8,s!ds,

f sc~x,x8,s!5(
l

f l
sc~x,x8,s! ,

f l
sc~x,x8,s!5A~s!eil Dwe2 i ( l 1m)eBse2 ipu l 1mu/2Ju l 1mu , ~A1!

f sc~x,x8,s!5A~s!e2 imeBs@e2 ipm/2Jm~z!1Y~z,Dw2eBs,m!1Y~z,2Dw1eBs,2m!#,

whereA(s) is given in~31!, andY(z,h,m) in ~33!, ~35!. The expression~A1! can be generalized
for the (D11)-dimensional case, whereD is the number of spacial dimensions, with the substi-
tution A(s) in ~A1! by A(D)(s),

A(D)~s!5A~s!expH i

4s (
k53

D

~Dxk!
2J S e2 ip/2

4ps D (D22)/2

, D>3.
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