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A system constituted of three bosons interacting via two-body separable potentials with fixed two-
boson binding is known to lead to bound-state collapse in the case where the potential parameters
allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real mo-
mentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy
of the two-body bound state, which signals a decrease in the range of the two-body interaction for
fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas
effect which leads to a collapse of the three-body system when the range of the two-body interaction

goes to zero for a fixed two-body binding.
PACS number(s): 21.45.+v, 03.65.Nk

I. INTRODUCTION

Separable interactions have been frequently used in
various areas of physics, such as particle, nuclear, and
atomic physics, because of the numerical simplicity they
bring to the two- and three-body problems [1]. In
spite of being successfully employed in three-nucleon
(3N) bound-state and scattering calculations, the usual
nucleon-nucleon (NN) separable potentials have the
drawback of being unrealistic in yielding NN phase shifts
which do not change sign, in contradiction with experi-
ment, at higher energies. With a view to finding a rem-
edy for the above problem Tabakin constructed a rank-
one separable NN potential with a two-term form fac-
tor, capable of reproducing S-wave NN phase shifts up
to moderately high energies where these phase shifts be-
come negative in agreement with experiment. The use of
the Tabakin potential [2] in 3N bound-state calculation,
however, leads to a 3N ground state of unusually large
binding of few hundred MeV’s in addition to a weakly
bound excited state. This puzzling result has been stud-
ied by several groups of workers [3-5]. Many other similar
(nonlocal) potentials were employed with an objective to
pinpoint the property of the potential that is responsi-
ble for this peculiar behavior. They all associate such a
bound-state collapse (BSC) with the appearance of a two-
body S-matrix pole on—continuum bound state (CBS)
[6]—or near (resonance) the real energy axis. It should
be recalled that in all such studies the two-body energy
is maintained fixed.

An S-matrix pole on the real energy axis is a zero-
width resonance and is usually called a CBS. The asso-
ciation with the bound state lies on the fact that the
corresponding wave function has no outgoing propaga-
tion. It is in fact a localized function of momentum ¢(p)
and its Fourier transform ¢(r) decreses exponentially like
a bound-state wave function.

This two-body S-matrix pole has been conjectured to
be responsible for the BSC. The collapse becomes more
drastic, contrary to expectations, as the CBS pole moves
to higher energies. No satisfactory explanation of this
surprising effect has, however, been given. Though this
unexplained behavior first appeared in a model nuclear
problem it is now generally accepted that there should
be a universal mechanism leading to this effect. The
objective of the present study is to shed light on the
quantum mechanical origin of this phenomenon.

Quite some time ago, while modeling two- and three-
nucleon problems using very short-range NN potentials
with fixed NN binding, Thomas observed that the SN
system collapses as the range of the NN potential tends
to zero. As a general quantum mechanical effect the
Thomas effect [7] could be stated as follows. If three
bosons interact via a short-range pair potential —AV(r)
leading to a fixed pair binding and characterized by a
range parameter 7o, then as rg tends to zero, the binding
energy of the three-boson ground state increases beyond
any limit. However, as r¢ tends to zero the parameter
A has to be increased so that the binding energy of the
two-boson system remains fixed.
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In the present study we show that the BSC is a man-
ifestation of the Thomas effect. In order to establish
an equivalence between the two phenomena we need to
understand the meaning of the range parameter rq in-
troduced in relation to the Thomas effect. For a one-
term local potential such as the exponential, Gaussian,
and Yukawa potentials or a one-term separable poten-
tial such as the Yamaguchi potential the interpretation
of the range is unambiguous as there is only one char-
acterisic range parameter in these potentials. But for a
general potential which has two (or more) characteris-
tic range parameters, denoting attraction and repulsion,
as in the case of the Tabakin potential discussed above,
the definition of ry is not straightforward. We suggest
the average kinetic energy (T') of the two-body bound
state as an indicator of the range of the interaction r¢ for
fixed two-body binding. As the range parameter ry of
the Thomas effect tends to zero the average kinetic en-
ergy (T') tends to infinity. It is easy to convince this with
a model é function potential, or a separable Yamaguchi
potential where (T') serves as a more precise measure of
the range of the potential when the two-body binding is
maintained constant. Consequently, at the onset of the
Thomas effect (T') diverges and vice versa.

The BSC is always shown to be accompanied by an
increase in (T"), which signals a decrease in the range of
the two-body interaction, and suggests that the BSC is
a manifestation of the Thomas effect.

Throughout this study the two-body binding, v2, is
held fixed. As (T)+(V) = —~2, where (V) is the average
potential energy of the two-body bound state, one could
also, equivalently, use (V) as a measure of the range of
the potential tending towards zero. At the onset of the
Thomas effect as the range of the potential tends to zero,
(TY — o0, and (V) — —oo. However, in this study we
shall only be using (T') as a measure of the range of the
potential.

It is now relevant to comment on some of the interest-
ing features of the BSC. Rupp, Streit, and Tjon [5] (RST)
considered a slightly different version of the Tabakin po-
tential in a relativistic approach and made a careful anal-
ysis of BSC under two different situations. First, they did
not allow the CBS pole to become a resonance in the com-
plex energy plane and then they allowed the CBS pole to
become a resonance. In both cases they maintained the
two-body binding fixed and studied the evolution of the
three-boson binding B with the variation of the param-
eter 3 related to the range of the potential. In the first
case the increase of 8 was governed by a scaling prop-
erty: B — (3%2. In the second case B increased with §
beyond any known scale as the S-matrix pole moved into
the complex energy plane.

Pantis, Fiedeldey, and Sprung [4] (PFS) had confirmed
the above observations of RST earlier. In addition, using
a partly nonlocal potential with an artificial strong re-
pulsion at short distances PFS had demonstrated the ap-
pearance of a CBS without having a BSC. In the present
study and in that of RST this latter situation does not
arise.

In brief, associated with a two-body CBS one may or

may not have a three-body BSC. Also, in the absence of a
two-body CBS and with a two-body resonance pole in the
complex energy plane one may have a BSC. What leads
to a collapse is not completely understood. Nevertheless,
as we see further in this work, a BSC could be explained
via a short-distance mechanism of nonlocality, also re-
lated to the Thomas effect, without necessarily having a
CBS.

In the presence of a purely attractive local or nonlocal
two-body potential, the three-boson binding B grows as
(3% where 3 is the inverse range parameter: 3 = 1/rg.
This scale is extremely accurate in the case of a separable
attractive Yamaguchi potential as we demonstrate in the
present study. However, when the two-body separable
potential has an attractive and a repulsive part governed
by two range parameters as in a Tabakin-type potential
the above scaling breaks down. In both cases (T') serves
as an indicator of the range of the potential. The larger
the (T'), the smaller is the range of the potential and the
larger is B, and one is closer to the Thomas effect.

In Sec. II we present the separable potential model
that we employ for the study of the BSC. We provide an
analytic expression for (T') in this case which we use in
our study of the BSC. In Sec. III we present our numeri-
cal results and discussions relating BSC and the Thomas
effect. Finally, in Sec. IV we present some concluding
remarks.

I1I. THE MODEL

The phenomenon of BSC has been observed in the case
of many separable two-body potentials of the Tabakin
type. A Tabakin-type separable potential is mainly iden-
tified by a momentum space form factor g(p) which may
change sign as a function of p?>. Consequently, the two-
body phase shift changes sign at higher energies. The
phenomenon of BSC is common to all Tabakin-type po-
tentials. The BSC is not only observed in the case of
rank-one potentials, it has also been observed in the case
of higher rank potentials [4].

In the present study we consider the following S-wave
two-body potential in the momentum space:

V(p,q) = Ag(p)9(9), (1)
with
2
9(p) =Y i/ (P* + B?). )
=1

We consider this simpler potential with attractive and
repulsive parts in this study because of its simplicity,
which allows us to understand the origin of BSC. The
two-body t matrix for this potential is given by

t(p,q,k*) = Ar(k)g(p)9(), ®3)

where
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k) =1 /5 [ ” P(o)pdp/ (K — g +0)

2
=1-\ E i /[(k + iBs) (k +iB;)(Bi + B;)]-
ij=1
4)

For a purely attractive separable potential (1) with ap =
0 the range can be unambiguously related to the param-
eter B = B;. This can be realized after taking the Fourier
transform of the form factor g(p), which yields an expo-
nential decay characteristic of the range ro = 1/8. How-
ever, in the presence of two terms of opposite signs in the
form factor denoting a mixture of attraction and repul-
sion, the definition of the range is not so straightforward.
We consider the average kinetic energy (T') of the two-
body bound state as a measure of the range ry of the
potential.

In the purely attractive case as 3 increases, the three-
boson binding energy B as well as the average kinetic
energy (T') increase, signaling a passage to the Thomas
effect. The parameter 3 provides a precise measure of
the range of the potential.

We shall see that in the case of a partly attractive and
partly repulsive separable potential, as in a Tabakin-type
potential, none of the parameters (; provides a measure
of the range of the potential. However, we shall see that
(T) still provides a good measure of the range of the
potential. Even in this case the divergence of (T') clearly
signals the appearance of the Thomas effect.

For potential (1) the two-body ground-state wave func-
tion in the momentum space is given by

¢(p) = Ng(p)/(v* + p°), (5)

where 4?2 is the two-body binding in units of A%/2m,
where m is the reduced mass of the two-body system.
For the two-nucleon system h%/2m = 41.47 MeV fm?
and 72 is expressed in fm~2. The normalization constant
N is determined by the condition

(2/) /0 ~ (p)pPdp = 1. (6)

After some straightforward algebra the average kinetic
energy (T) is given by

(T) ==z/y, (7)
with
o o3
(Y+B1)2  (v+B)?

2102 (B + B2) + 26102

Bt ) (1 + B2+ o)? ®)
and
o a
YB1(y + B1)®  B2(v + B2)3
2a;0a2(61 + B2 + 27) (9)

¥(B1 + B2)(Br + 7)%(B2 + 7)?

In the present study the binding energy ¥2 of the two-
body system is always fixed at the value (2.225/41.47)
fm~2, when we vary the parameters of the two-body po-
tential. This corresponds to a deuteron binding of 2.225
MeV.

III. RESULTS AND DISCUSSIONS

With the separable potential (1) we calculated the two-
and three-boson binding energies by solving the usual
Lippmann-Schwinger and Faddeev equations in a routine
fashion [1], respectively.

Let us first consider the simple case of oy = 0 in po-
tential (1). In this case there is no possibility of a CBS
pole to appear. Still we find it illustrative to present and
discuss some results in this case. We take a; = —1 and
vary 2 from 3 to 9 fm~1. The results are shown in Fig.
1, where we plot the three-boson energy B versus 3. We
see that as (3, increases B — (3. In this case there is a
single range parameter 5, and we can identify the range
of the potential o to be 1/8;. Then we have as the range
ro = 0, B—ry 2 which is expected from the Thomas
effect. In this case the average kinetic energy (T') of (7)
is given by (T') = B2y. At the onset of the Thomas effect,
for a purely attractive separable potential, as 7y tends to
zero, both B and (T) increase beyond bound, provided
that two-body binding, 72, is held fixed.

Next we consider the full potential (1) with a; = -1
and A1 = 1.4 fm~!, which allows for the possibility of
a CBS to appear. In our study the constants a; and (2
were varied arbitrarily, and then A was adjusted to yield a
fixed two-body binding of 2.225 MeV. It is important for
us to look at the variation of (T'), B, and the two-body S-
matrix pole position when the potential parameters are
varied. In Figs. 2(a) and 2(b) we plot B and (T) as
functions of a; and B2. We see in these plots that as (T")
reaches a maximum, B also does so. In Figs. 3(a) and
3(b) we plot B and (T') for fixed values of ; and for a
continuous variation of (5.

From Fig. 1 we find that 3, is the precise parameter
to measure the range of the purely attractive potential.
The three-boson BSC associated with the Thomas effect
is completely governed by (B;. As 3, increases the three-
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FIG. 1. The three-boson binding B plotted vs 82 for a

simple Yamaguchi potential. B increases linearly and mono-
tonically with 82.
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FIG. 2. (a) The three-boson binding B and (b) the aver-
age kinetic energy (T') of the two-body bound state plotted
vs ai and (2.

800

B (MeV)

4 -1
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FIG. 3. (a) The three-boson binding B and (b) the aver-
age kinetic energy (T") of the two-body bound state plotted
vs (B2 for fixed values of a; (=0.2, 0.15, 0.13, 0.1, and 0.05).
The curves are labeled by a;. Only one point in each curve
corresponds to a CBS. The 32, B, and (T') corresponding to
the CBS are given in Table I. The points corresponding to
the CBS appear after the maxima of B and (T') have been
attained in each curve.

boson energy steadily increases. This is no longer true
in the general case of a partly attractive and a partly
repulsive potential when «; is positive and a9 is nega-
tive. For example, in Fig. 3 for fixed values of a; we
find that as (3 increases both B and (T') first increase
and then decrease. Naively, one might expect that the
increase of 3, should denote a decrease of the range and
a monotonic increase of energy B. In this case as there
are two characteristic ranges, (2 alone is not a good in-
dicator of the range. However, we find in this case that
(T) is a better indicator of the range. From Figs. 2 and
3 we find that first (T') increases,-and B also increases,
then (T') decreases and consequently, B also decreases.
There is still a shift between the maxima of B and (T')
which points out that (T') is a good, although not perfect,
indicator of the range in this case.

Let us now try to understand why [ fails to be even a
qualitative indicator of the range in the presence of two
terms in the form factor of potential (1). Explicitly, the

form factor, for ap = —1 and B; = 1.4 fm™!, is written
in this case as
9(p) = a1 /(p* + 1.4%) — 1/(0* + B3). (10)

For a small enough ¢ the last term in Eq. (10) dominates
for a not too large B2. Then to a first approximation the
first term on the right-hand side of Eq. (10) can be ne-
glected and one has a situation similar to the Thomas
effect in the case of a purely attractive separable poten-
tial. In this case B increases with @2 which is a good
indicator of the range. RST observed this fact in their nu-
merical studies. However, as (B2 increases monotonically
for a fixed aj, however small, the last term of Eq. (10)
becomes negligibly small for a large enough value of Ga.
Under this situation the first term on the right-hand side
of Eq. (10) dominates and B becomes small and finite
characteristic of a range parameter §; = 1.4 fm~!. This
explains qualitatively why [ fails to be a proper range
parameter for the whole domain of a; and fs.

Even in the preceding situation (T") clearly is a good
indicator of the range for two extreme limits of very small
and very large (B2. For a very small 35 the last term in
Eq. (10) dominates and as (35 increases the range of the
potential decreases and both B and (T') increase. For
a large enough B, the potential becomes one of a small
finite range; consequently, both B and (T') become finite.
For an intermediate (5 there is a convenient interpolation
between these two extremes. In all cases in Figs. 2 and
3 (T) is a good indicator of the range: whenever (T')
increases (decreases), B increases (decreases) and vice
versa. In Figs. 2 and 3 for very small and large 33, (T')
serves as an excellent indicator of range.

At this stage it is interesting to comment on the two-
body S-matrix pole trajectories in the complex energy
(momentum) plane, corresponding to the two extreme
values of a; (= 0.2 and 0.05) of Fig. 3, for fixed oz (=
—1) and B; (= 1.4 fm~1), as 3, is varied. We calculated
the two-body S-matrix pole trajectory for potential (1)
using the method of Ref. [8]. In Fig. 3(a), for a fixed o,
as (s increases, this S-matrix pole trajectory is shown in
Fig. 4. It is clear that only one point on each trajec-
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FIG. 4. S-matrix pole trajectories labeled by «; in the
complex k plane for a1 = 0.05 and 0.2, az = —1, and
B1 = 1.4 fm™'. Some integral values of B, are marked on
the trajectories. They are for a1 = 0.05, B2 = 6 fm™! (A), 7
fm ! (O), 8 fm™! (o), and 9 fm ~! (y); for a1 = 0.2, B2 = 3
fm~! (A), 4 fm™! (O), and 5 fm~! (V).

tory of Fig. 3(a) corresponds to a CBS. All other points
of Fig. 3(a) correspond to two-body resonance poles in
the complex energy (momentum) plane. So it is obvi-
ous that the collapse occurs for a Tabakin-type potential
and there is nothing special about the CBS. The CBS is
just a point on the Thomas route in direction to BSC.
However, unlike in the Thomas effect with a purely at-
tractive potential, the energies B in Figs. 2 and 3 do not
go to infinity, as in these cases (T') is finite indicating a
small, nonzero range r9. In this complex situation, with a
partly attractive and a partly repulsive potential, though
the parameter (T') is an indicator of the range, we could
not find a simple functional relationship between (") and
the range.

In Table I we plot in the pure CBS case the potential
parameters a;, (2, the position of the CBS p., and the
corrsponding B and (T). The increase of B with p. is
confirmed in earlier studies [3-5] as well as in the present
one. The increase of B with (T') in Table I, and also
their subsequent decrease together in Figs. 2 and 3, are
consistent with the present interpretation of the BSC as
an approximation to the Thomas effect with a small and
finite, nevertheless, nonzero r¢.

Some of the present findings could have been antici-
pated in the study of RST who calculated an effective
local potential equivalent to the Tabakin-type potential
and found that in the domain of BSC the equivalent local
potential developed a very short-range attractive part. In
this short-range local potential picture it would be nat-
ural to associate the collapse as a manifestation of the
Thomas effect.

TABLEI. The three-boson binding B and average kinetic
energy (T') of the two-body bound state in the case of CBS
with a; = —1 and §; = 1.4 fm™*.

o B2 (fm~!)  p. (fm~!) B (MeV) (T) (MeV)
0.05 8.47 1.307 930.5 106.7
0.1 5.73 1.213 545.3 78.7
0.13 4.92 1.167 446.1 70.9
0.15 4.53 1.149 396.3 66.3
0.2 3.82 1.097 317.3 59.1

IV. CONCLUSIONS

In this work we have presented for the first time a uni-
fied discussion of the Thomas effect and the BSC which
occur in three-body systems for some special situations
of the two-body interactions. We have suggested that in
the situation of collapse the average kinetic energy (T)
of the two-body bound state is a good indicator of the
range of the two-body potential once the two-body bind-
ing is maintained fixed. The BSC is demonstrated to be
an approximation to the Thomas effect for a two-body
potential of short, nevertheless, nonzero range ro. In
both cases the common feature is maintaining the two-
body binding energy fixed. The Thomas effect manifests
in a divergent three-boson energy B as the range r¢ of
the potential goes to zero, whereas the BSC occurs for
a Tabakin-type separable potential used to simulate the
NN interaction.

Other details between the present study and that of
RST and PFS remain distinct. This is because three
different types of potentials are employed in these stud-
ies. Moreover, RST uses relativistic dynamics whereas
the other two studies employ nonrelativistic Schrédinger
dynamics. For example, the S-matrix pole trajectory of
these two other studies are distinct from ours. They are
qualitatively similar to the one of Fig. 4 but with the
direction of the movement of the S-matrix pole reversed
with the variation of the range parameter. Our pole tra-
jectories, however, become similar to that of RST if we
had considered a form factor similar to theirs, e.g., by
combining the two terms of Eq. (2), writing the numer-
ator in the form (p? — p?), and maintaining p. constant
during the movement of the S-matrix pole. We have
checked this numerically. Also, the potentials of RST and
PFS are in some sense much stronger in yielding a very
strongly bound three-boson bound state in the domain
of collapse. The present model has a weaker potential
leading to a less tightly bound three-boson bound state
in the situation of collapse.

To summarize, the BSC observed by RST, PFS, and
in the present study is an approximation to the Thomas
effect for a small nonzero range. The BSC of these stud-
ies do not lead to an infinite B, because the three bosons
in these cases interact via pairwise two-body potentials
whose range is quite small but not exactly zero as in a
pure Thomas effect. This short-range part of the two-
body potential has been established in RST by consid-
ering an equivalent local potential. RST, however, did
not associate BSC with the Thomas effect. We have es-
tablished this short-range part of the two-body potential,
responsible for the BSC, through a consideration of the
average kinetic energy (T") of the two-body bound state,
which becomes very large in situations of collapse.
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